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ABSTRACT

Model-driven software engineering raises the abstraction level mak-
ing complex systems easier to understand than if written in textual
code. Nevertheless, large complicated software systems can have
large models, motivating the need for slicing techniques that reduce
the size of a model. We present a generalization of observation-
based slicing that allows the criterion to be defined using a variety
of kinds of observable behavior and does not require any complex
dependence analysis. We apply our implementation of general-
ized observational slicing for tree-structured representations to
Simulink models. The resulting slice might be the subset of the
original model responsible for an observed failure or simply the
sub-model semantically related to a classic slicing criterion. Unlike
its predecessors, the algorithm is also capable of slicing embed-
ded Stateflow state machines. A study of nine real-world models
drawn from four different application domains demonstrates the
effectiveness of our approach at dramatically reducing Simulink
model sizes for realistic observation scenarios: for 9 out of 20 cases,
the resulting model has fewer than 25% of the original model’s
elements.
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1 INTRODUCTION

Executable models are widely used in software engineering as well
as other engineering domains to prototype, communicate, reason
about, and simulate complex systems. Two reasons for their wide-
spread use are that they support the representation of, and permit
engagement with, larger and more complex domains than would
be tractable using traditional (lower-level) programming languages.
Nonetheless, models are still plagued by familiar problems caused
by their complexity. For example, model comprehension can easily
become a challenge as model size grows. As such, there is a need for
analytical techniques that can address problems such as test case
generation [27, 40, 45], fault localization [27], impact analysis [1],
slicing [6, 43], and clone detection [19, 41]; techniques that mirror
those developed for programs.

One particular challenge, borne of the implicit size of the systems
captured by models, is a need for techniques such as program slicing
(or perhaps model slicing) that can extract from a large model those
elements that pertain to the computation (e.g., a fault) of interest.
Such techniques help to uncover the causes of the inevitable errors
found when modeling complex systems. Example model slicing
techniques include those based on dependence analysis [43] and
model projection [6].

This paper presents a new method, Tree Observational Slicing
(Tree-ORBS), for dynamically slicing models where the only pre-
requisite is that the model is represented using a tree-structured rep-
resentation (e.g., XML). Tree-ORBS is inspired by ORBS [11, 12, 54],
an observation-based slicing technique for traditional program-
ming languages. It is capable of slicing away parts of a model not
required to capture a specified behavior. In addition to behaviors
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specified using explicit parts of the model (e.g., the values flowing
from one component to another), the specified behavior can also
be a property of the output (e.g., the presence of a particular tone
from a music simulation model), or even of the execution itself (e.g.,
a warning from the run-time environment rather than the model).

In this paper, we focus on a widely-used product for modeling
that uses a tree structured representation: Mathworks’ Simulink [47],
part of the MATLAB software suite. Simulink provides a graphi-
cal simulation environment in which complex discrete and con-
tinuous systems can be constructed and simulated under a range
of experimental conditions. Simulink models have been the sub-
ject of research for various model analysis techniques including
test-case generation and fault localization [27, 40, 45], clone de-
tection [19, 41], and quality assessment metrics [38]. Although
Simulink is our focus here, the algorithm is not tied to Simulink and
has been subsequently successfully applied to other XML-based
representations [13] (e.g., stcML [16]).

As an example application of Tree-ORBS, consider using it with
a system for finding test data that triggers a fault. One such tool
for Simulink, described by Holling, Pretschner, and Gemmar, is
8Cage [27, 42]. The combination of 8Cage and Tree-ORBS provides
the ability to undertake automated end-to-end test-case generation
and model reduction for fault localization. Given a fault of interest,
the first step runs 8Cage, which produces test data that triggers
the fault. Then, using this data, Tree-ORBS can produce a reduced
model that includes only those components that contribute to the
production of the fault.

In support of such applications, this paper makes the following
contributions

o Observational Slicing — a generalization of observation-
based slicing that supports different types of observation
and criteria.

e An algorithm, Tree-ORBS, for observational slicing of tree-
structured representations.

e Animplementation of Tree-ORBS for XML-based languages
such as Simulink (XML-ORBS).

o A case study that demonstrates the utility of Tree-ORBS
by exhibiting the end-to-end fault localization scenario
outlined above.

e Empirical studies that demonstrate the application, op-
eration, and characteristics of XML-ORBS applied to a
collection of Simulink models (in some cases including
Stateflow).

2 BACKGROUND
2.1 Slicing Programs and Models

Program slicing is a technique for deleting parts of a software sys-
tem that are irrelevant to a chosen slicing criterion [7, 44, 52]. There
are many forms including static, dynamic, quasi-static, conditioned,
amorphous, and syntax-preserving [44]. By focusing on the crite-
rion, slicing has found many applications, including testing [10, 25],
debugging [33, 53], maintenance [21, 23], re-engineering [14], re-
use [9, 15], comprehension [18, 32, 50] and refactoring [20].

The present paper is inspired by a recently-introduced form of
dynamic slicing known as Observation-Based Slicing [11, 12, 54],
which dynamically slices multilingual systems using speculative
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deletion of system elements as the slicing operation. Such deletions
are checked against observations with respect to the behavior as
specified by the criterion. Those deletions for which there are no
observable changes for the criterion are accepted, while those that
have an observable effect are discarded (so the corresponding pro-
gram elements are retained and the speculative deletion is rejected).
Observation-based slicing has the advantage that it can capture
dependencies overlooked by previous slicing techniques, which fail
to account for observation (preferring some more abstract depen-
dence model) [12]. Observation-based slicing produces inherently
smaller slices than static slicing, because it is based on dynamic
observation, but it can also produce smaller slices than traditional
dynamic approaches because of its focus on observation (rather
than dynamically-traversed statically-defined dependence) [11, 30].
One important feature of the ORBS implementation of observation-
based slicing [11] is the way that focusing on deleting lines instead
of statements liberates the slicing algorithm from the need for de-
tailed (and thus expensive and brittle) semantic analysis; lines can
be deleted and the effect simply observed, a property from which
ORBS derives its language independence. Furthermore, using only
speculative lexical deletion is language-independent, thereby ORBS
is able to slice systems expressed in multiple languages. In contrast,
such multilingual slicing is a considerable challenge for existing
(dependence analysis based) slicing techniques. However, hitherto,
observation-based slicing has only been applied to programs, not
to models.

2.2 Slicing Simulink

This paper presents the first tree-based observational slicing tech-
nique and reports on experiments with its implementation using a
collection of MATLAB/Simulink models. A Simulink model, which
is saved textually as an XML file (or files if Stateflow is included),
is visually represented as a diagram with functional blocks (pos-
sibly encapsulating sub-systems) connected by lines representing
the flow of data during simulation. We treat the XML file(s) as the
model’s ‘source code’. Associated with the model are a range of
parameters governing the way the simulation is run and how the
model interacts with external devices, files, and the underlying
MATLAB workspace. Simulink models can interface with Stateflow
state machines, which then share data.

There are several existing approaches to slicing Simulink mod-
els [22, 39, 43, 46], but none of them uses observational slicing, leav-
ing open the question as to what extent the advantages reported for
observation-based program slicing extend to observational model
slicing. Of course, an XML file could be regarded as line-based
source code to which the original ORBS implementation of tradi-
tional observation-based slicing [11] could be applied. However,
this approach would be suboptimal as it would not take advantage
of the tree-based nature of XML where whole sub-trees can be
pruned rather than individual lines.

Without sacrificing language independence, but exploiting the
tree structure of XML, we introduce a tree-based observational
slicing algorithm, Tree-ORBS. We implement the algorithm for
Simulink models and evaluate this on a collection of real-world
Simulink models. Unlike non-observational alternatives, the re-
sulting slices are fully executable. Thus they can be loaded into
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MATLAB/Simulink and used in place of the original. Our imple-
mentation can slice Stateflow state machines as part of a Simulink
model.

3 A GENERALIZED FRAMEWORK FOR
OBSERVATION-BASED SLICING

The concepts of static, dynamic, and observation-based slicing work
well for traditional programming languages (e.g. C, Java) where
variables and statements are well defined. For other programming
languages and criteria, the definitions of slicing and the correspond-
ing implementations must be changed accordingly. Instead of giving
yet another specific definition, we generalize observation-based
slicing to accommodate different observations that can be made
over a program. The original definition of an observation-based
slice is based on comparing execution trajectories thus:

(Trajectory) Observation-Based Slice [ 11]: An observation-based
slice S of a program P on a slicing criterion C = (v, [, I') composed
of variable v, line [, and set of inputs 7, is any executable program
with the following properties:

(1) The execution of P for every input I in 7 halts and produces
a sequence (a trajectory) of values V(P, I, v, [) for variable
v at line [.

(2) S can be obtained from P by deleting zero or more state-
ments from P.

(3) The execution of S for every input I in J halts and produces
a sequence of values V (S, I, v,1) for variable v at line .

4) YierV(P,Lv, 1) =V(S,Lv,l).

In this definition the execution is observed using the trajectory
of values that a variable (or set of variables) produces for a specific
input. More generally, one can envision an observer O(P,I) that
extracts from program P some subset of the behavior (“the behavior
of interest”) for a given input I. Furthermore, the observed behavior
need not be exactly matched, and thus rather than equality, the
relation between the behavior of the original program and its slice
need only be related by a matching relation R. Using O and R,
Generalized Observational Slicing can be defined as follows:

Generalized Observational Slice: A generalized observational
slice S of a program P on a slicing criterion C = (O, R, 1) com-
posed of an observer O, a matching relation R, and a set of inputs
I, is any executable program with the following properties:

(1) The execution of P for every input I in 7 halts and produces
the observed behavior O(P, I).
(2) S canbe obtained from P by deleting zero or more elements
from P.
(3) The execution of S for every input I in J halts and produces
the observed behavior O(S, I).
(4) Y1erO(S.1) ~g O(P.I).
In the above definition, the program P can be any executable entity
and the observer O can be any observation made about P. A simple
instantiation defines the observer O(P, I) as the output of a program
P when P is run on each input I € I If the matching relation, R, is
equality, then the corresponding generalized observational slice S
is P after unused code (w.r.t. the set of inputs 1) is removed.
Dynamic slicing can also be defined as an instance of general-
ized observational slicing: the trajectory of values of a variable
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v at a location [ for input I to program P is V(P,I,v,l) as de-
fined for trajectory observation-based slicing. Given the criterion
C = (v,1, I) for a trajectory observation-based slice, the observer
is O(P,I) = V(P,I,v,1) and the matching relation R is equality for
the generalized observational slice.

As a third example, consider a test suite 7~ where each test case
T € 7 includes a model input Ty and an expected output. One can
define a test-focused version of generalized observational slicing in
which O(P, Ty) is the observation of whether or not P passes test
case T. The matching relation can either be strict, where all tests
must yield the same result for the slice S and the original program
P, in which case the matching relation R is equality. Alternatively,
the matching relation can be relaxed where all tests that the original
program P passes must also be passed by the slice S, but any test
that the original program P fails is allowed to be passed by S. Let
I = {T7IT € 7} and X(I) be PASS or FAIL and O(P,I) = X(Ty).
The strict matching relation is equality (R is ‘=") and the relaxed
matching relation is R = {(PASS, PASS), (FAIL, FAIL), (FAIL, PASS)}.

A similar generalization extended the ORBS algorithm to slice
picture description languages [54] where, when the sliced program
is rendered, it produces a specified pattern (the criterion). Using
generalized observational slicing, matching the specific pattern is
captured by an observer O that checks if the pattern exists in the
rendered image using equality for the matching relation R. The
actual implementation uses a template matching score capturing
how well the rendered image matches the specified template (the
observer O) and the matching relation is less-or-equal-than (so that
the rendered slice can match the template better (but no worse)
than the rendered original picture description).

Generalized observational slicing is better suited for models than
the original definition of observation-based slicing because models
do not necessarily have the concepts of ‘variables’ or ‘lines’ (loca-
tions). Moreover, we can instantiate the definition of generalized
observational slicing for models in a similar way to traditional
programs. Examples include

A traditional slice. For a given element, E of model P, ob-
server O extracts the trajectory of values produced for an
input I at E and the matching relation, R, is equality.

Program Specialization. The observer O extracts all output
of model P for input I and the matching relation, R, is
equality. In this case, the slice is a variant of P specialized to
T . For example, if 7 involved the computation of distances
in meters then the slice would work for (is specialized to)
the subset of inputs that use meters.

Fault Localization. The observer O extracts (some subset
of) the warning and error output from the model execution
environment when executing model P on input I, and the
matching relation is either equality and thus the same
errors must be produced, or “non-empty subsequence” in
which case at least one of the errors must be produced.

Non-termination Removal. The observer O extracts (some
subset of) the output (or the warning and error output)
of the model execution environment for the execution of
model P for input I, and the matching relation is prefix
thus allowing the slice to continue executing where P has
entered an infinite loop or abnormally terminated.
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We will make use of the flexibility in generalized observational
slicing in defining Tree-ORBS, the algorithm for tree-structured
representations, and its implementation XML-ORBS, which we use
to slice Simulink models under various observations.

4 MODEL SLICING

This section presents our algorithm for slicing models and then
describes details of the implementation. To begin with, Figure 1
presents the Tree-ORBS algorithm, which satisfies the definition
of generalized observational slicing for tree-structured representa-
tions. The algorithm adopts a similar overall approach to ORBS but
differs in its deletion-target selection and traversal strategy in order
to support tree structures. It takes five inputs although the final
input is optional. These five include the model to be sliced M, the
slicing criterion consisting of an observer O, a matching relation R,
and a set of inputs 7. The observer executes the candidate slice and
returns the result of the observation for a specific input. Finally,
the optional input is a start node that specifies the subtree at which
the algorithm should start (the default start node is the root node).

The algorithm uses several auxiliary functions: DELETE removes
the subtree rooted at component ¢ from the tree representation of
model M. CHILDREN returns the children of component c. Finally,
APPEND, DEQUEUE, and EMPTY are straightforward queue operations.
The algorithm begins by saving the observations that result from
executing model M using each input. This output forms the oracle
against which subsequent executions are compared. Like ORBS,
Tree-ORBS then repeatedly passes over the nodes of the tree at-
tempting to delete nodes until no further deletions are possible. On
each iteration it traverses the tree in breadth-first order (children
are appended/traversed left to right in a breadth-first greedy traver-
sal). The processing of each component ¢ of the tree speculatively
deletes the subtree rooted at ¢ to produce a candidate slice. The
subtree rooted at c is permanently deleted if the observations for
all inputs match the oracle. Otherwise c’s children are appended
to the breadth-first worklist. If no deletions are made during an
iteration, the slice is complete. Similar to traditional ORBS, the
deletion order has an impact. TreeORBS produces a 1-minimal slice,
however, there may be other 1-minimal slices (the full state-space
is therefore not traversed).

Based on the original ORBS implementation, we implemented
the Tree-ORBS algorithm to work with XML-represented models
and refer to the resulting implementation as XML-ORBS. It uses
a mixture of shell-scripts and Python code to set up projects for
analysis and undertake the slicing. To improve efficiency, XPath
axes can be supplied to identify the start node and a stop list. The
default start node is the root of the tree. The stop list specifies node
types that the slicer should ignore; it is empty by default. The stop
list can be used to instruct XML-ORBS not to attempt to delete
nodes of a specific type, which is useful, for example, to prevent
positional properties from being removed. Finally, in addition to
model input, each input I € I includes environmental inputs and
execution settings.

Applying XML-ORBS to Simulink models requires some addi-
tional configuration to enable XML-ORBS to start MATLAB and
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TREeORBSLICE(M, O, R, I, N)

Input: model M; the criterion consisting of observer O,
matching relation R, and inputs J; and a start node N
Output: A slice, S, of M for C = (O,R, I)

(1) foreachlIel

(2) Vi« O(M,I)

(3) repeat

4) nothingDeleted < True

(5) q < APPEND(empty_queue, [N])
(6) while - EmPTY(q)

7) ¢ < DEQUEUE(q)

(8) M’ « DELETE(M, ¢)

9) deletable «— True

(10) foreachI e I

(11) V'« oM’ 1)

(12) if Vi »g VvV’

(13) deletable « False
(14) if deletable

(15) M« M

(16) nothingDeleted < False
(17) else

(18) q < APPEND(q, CHILDREN(c))
(19) until nothingDeleted

(20) return M

Figure 1: Tree-ORBS Algorithm

Simulink, execute models, and retrieve trajectories. A typical con-
figuration merely requires defining an observer (e.g., by an exe-
cution script that exposes values of properties of interest to Tree-
ORBS). Our implementation uses MATLAB scripts to prepare the
workspace, execute the model, and extract values for TreeORBS. An
observer can be as simple as a statement printing a value of interest.
The matching relation can be a simple equality test (e.g., trajectories
must be identical), or more complex (e.g., filter error logs and check
subset containment). The advantage is that the core algorithm does
not need to be modified for different properties or tree-structured
languages (a line-oriented domain-specific language would be more
appropriately sliced by original ORBS).

An Executer class in the XML-ORBS script provides an API
through which application-specific execution environments can
be managed. MATLAB scripts are used to provide the bridge be-
tween XML-ORBS and the model (thus forming part of the model
instrumentation). Owing to the comparatively long start-up time
for MATLAB/Simulink with each model execution, one version of
the Executer class actively manages a running MATLAB instance,
restarting it only when a crash or a timeout occurs. Although this
‘fast’ executer offers significant runtime savings over the ‘generic’
version, some models exhibited non-deterministic behavior under
this executer despite having deterministic behavior when used with
the generic executer (perhaps due to some internal persistent state
within Simulink).

Recall that the generalized framework requires model evaluation
to terminate for all I € 7. This requirement cannot be guaranteed
even when simulation start and end times are specified because a
crash may occur causing MATLAB to drop back to the interactive
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shell and thus appear not to halt. To account for this possibility, a
conservative timeout value is used. It is assumed that any execution
taking longer than the timeout is non-terminating and thus the
current model is not a viable slice.

5 CASE STUDY

As a case study, we consider the application of XML-ORBS to the
problem of fault localization using the example provided by Holling,
Pretschner, and Gemmar [27]. This example was used to illustrate
their technique for test-case generation (the 8Cage model described
in Table 2). Their algorithm is able to construct test cases that in-
duce particular faults at selected blocks in a Simulink model (the
values for the specific test cases used are described in a video accom-
panying their paper [26]). They identify three faults in the model,
an absolute value overflow, a division overflow, and a threshold
violation. From these they generate inputs to trigger each fault. In
the following, we demonstrate how our approach is used to reduce
the 8Cage model to the sub-model responsible for the failures. Since
this is an experiment relying on execution properties (the introduc-
tion of failures), XML-ORBS is configured to use an observer that
extracts warnings produced by the execution environment. Key to
this application is that XML-ORBS produces executable slices.

For each of the three scenarios (one per fault), 8Cage produces
a set of inputs that trigger the corresponding fault. Executing the
model with each of these inputs generates a list of warnings. We
apply XML-ORBS with a strict matching relation so that the slice
will generate the same list of observed warnings for each input. The
results are shown in Table 1 under the heading “Slices for all failures
with strict matching relation” Block Count and XML Lines refer to
the number of elements of the diagram (model) remaining (the Total
Elements count is the sum of these plus the number of systems in
the model: there is always one, but there may be more if additional
subsystems exist). These are measured directly by counting the
appropriate nodes in the XML file defining the block diagram. Note
that the model used for “Threshold Violation” has one additional
block and line compared to the original model because an assertion
block was added to instrument the model. The percentages show,
for each model element counted, the amount of the original model
deleted by slicing.

For the first and the third scenarios the reduction in total ele-
ments is around 50%, while for the the middle scenario “Division
Overflow”, the reduction is almost 80%. The percentages of deleted
blocks are slightly lower, while the percentages for the deleted
XML lines are slightly higher. This indicates that “average block
complexity” is lower in the slice, which is in part because the slice
retains some rather simple blocks in order to remain executable.

The numbers for the “Absolute Overflow Slice” and the “Thresh-
old Violation Slice” are very similar, suggesting that the slices may
be similar. However, a visual inspection revealed that the two slices
are very different and share only 21 blocks (of the 44 blocks in the
original model).

It turns out that each scenario generates additional warnings
that indicate failures beyond those considered by Holling et al. [26].
In each scenario there are three such warnings. Therefore, we also
applied XML-ORBS with a relaxed matching relation for each of
the nine individual failures. The relaxed matching relation allows
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Table 1: Slice size and percent reduction for the slices of the
system studied by Holling et al. [27] using XML-ORBS with
the test cases produced by 8Cage [26].

Block XML Total
Count Lines Elements
Original Model 44 64 109

Slices for all failures with strict matching relation

Absolute Overflow Slice 28 36% 26 59% 55  50%
Division Overflow Slice 13 70% 9 86% 23 79%
Threshold Violation Slice 28 38% 28 57% 57 49%

Slices for specific failures with relaxed matching relation

Absolute Overflow Slice (1) 25 43% 22 66% 48 56%
Absolute Overflow Slice (2) 26 41% 23 64% 50 54%
Absolute Overflow Slice (3) 27 39% 25 61% 53 51%
Division Overflow Slice (1) 11 75% 7 89% 19 83%
Division Overflow Slice (2) 12 73% 8 87% 21 81%
Division Overflow Slice (3) 13 70% 9 86% 23 79%
Threshold Violation Slice (1) 20 56% 19 71% 40 64%
Threshold Violation Slice (2) 12 73% 8 88% 21 81%
Threshold Violation Slice (3) 12 73% 9 86% 22 80%

the slice to generate fewer warnings but does not permit additional
warnings. In addition, the specific failure of interest must be gener-
ated by the slice. For each of the nine failures, the slice is smaller, as
shown in Table 1 under the heading “Slices for specific failures with
relaxed matching relation.” For the “Absolute Overflow” Scenarios,
the reduction is slightly greater. The three different warnings gener-
ated in this scenario are all overflow warnings from a similar region
of the model. Therefore the slices only differ slightly. The situation
with the three “Division Overflow” Scenarios is similar: the three
warnings are again from a common area of the model and thus
yield similar reductions. It is interesting to note that the third slice
is the same as the strict slice (the one that retains all three failures)
indicating that it contains the other two as subslices. Finally, the
three generated warnings in the “Threshold Violation” Scenario
show greater difference because one of the warnings comes from a
completely different area of the model. This leads to Threshold Vi-
olation Slice (1) being larger than and very different from Slices (2)
and (3). All three slices are much smaller than the strict slice where
use of the strict matching relation forces the slice to keep both areas
of the model. Close inspection of slices (2) and (3) reveals that they
are almost identical to the Division Overflow Slices (1) and (2).
Figure 2 shows the original model and the slices produced by
XML-ORBS for the three specific failures considered by Holling et
al. (to save space we have rearranged the layout of the original).
The figure aims to show the general reductions of the model rather
than focusing on detail. In each slice, the significant reduction in
the number of model elements is visually evident. In particular, the
complexity of the Division Overflow Slice is reduced to the point
where an engineer can quickly comprehend the cause of the failure.
Note that all the slices include blocks that are required to ensure the
slice is executable. This accounts for the handful of isolated blocks
seen in the figure. In addition, it is also visually evident that the
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Figure 2: Slices for the example system of Holling et al. [27] using test cases generated by 8Cage [26].

Absolute Overflow Slice (1) and the Threshold Violation Slice (1)
share a large common part of the model where 19 blocks are shared.

Figure 3 shows a more detailed illustration of part of the obser-
vational slice for the threshold violation criterion. It shows two
switch blocks where XML-ORBS has removed the incoming trig-
ger for both blocks (XML-ORBS also removed the upper input of
Switch1). The trigger input determines the state of the switch. The
incoming triggers act like the predicate of an if statement and cause
a control dependence as they decide which incoming signal reaches
the outgoing signal. The removal of these two inputs is a “red flag”
to an engineer trying to diagnose the fault. In both cases, XML-
ORBS was able to remove the incoming trigger because the failure
is caused when the two switches are in their default states — it is

errantly not necessary to flip the switches with a change of the
incoming trigger. In comparison, a static slicer would clearly be
unable to remove the incoming trigger due to the static dependence
of the block’s output on all three incoming signals. Moreover, a
dependence-based dynamic slicer would not be able to remove the
incoming trigger’s connection because it computes the dynamic
slice by removing from the static slice those dependences that are
never executed. Alas, in this example, the dependences are exe-
cuted and thus would be included in the dynamic slice. In short, the
ability to remove executed, but unnecessary dependences allows
XML-ORBS to remove large portions of models (such as the one
shown in Figure 2) that a static or dynamic slicer could not.
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Figure 3: Detail of the Observational Slice for the Threshold
Violation Criterion

6 EVALUATION

To evaluate XML-ORBS we undertook an empirical investigation
using a range of models from various sources to determine how
effective XML-ORBS is in slicing Simulink models and to consider
the characteristics of the slicing process. The models used in the test
corpus come from a variety of sources and domains and are of vari-
ous sizes. They include realistic models and some small illustrative
examples. Table 2 summarizes the models, their characteristics, the
criteria used, and their type. Test cases were identified in various
ways. For some models (e.g., 8Cage) the test cases and criteria were
identified by others (as described in Section 5), for others they were
supplied with the model (e.g., the Campus Energy Modeling [3]
library tests and demos), and the remainder were created with the
model (e.g., for the set of illustrative models we created a model im-
plementation of Danicic and Howroyd’s Montreal Boat code [17]).
In each case the output was either provided alongside the test case,
or, where it was difficult to determine the outcome, the entire set
of workspace variables produced was captured.

In each case, a model’s suitability for inclusion in the corpus
was determined by manual inspection to understand something
of its operation (many of these models are in domains in which
we do not have expertise), the data required to initiate simulation,
and what might be considered important aspects of the resulting
trajectory. Minor modifications (e.g., the inclusion of ToWorkspace
blocks or assignment of values to workspace variables in start-up
scripts) were made in a few cases to enable the automatic start-up
and capture of model data and suppression of the interactive GUIs.

The models were also checked to ensure that they exhibited de-
terministic behavior under at least one of the two execution regimes
available: the generic executer that starts a fresh MATLAB/Simulink
session with each execution or the ‘fast’ executer that manages an
ongoing MATLAB/Simulink instance as a subprocess, only restart-
ing it when a crash or timeout occurs.

Finally, the experiments were undertaken using the XML-ORBS
implementation described above on a MacBook Pro, 2.8 GHz Intel
Core i7 with 16Gb RAM, SSD storage and running OS X Version
10.11.3. All models were run using MATLAB release 2015b in com-
bination with Python scripts and instrumentation in MATLAB and
XML-ORBS itself. Each model analysis was executed four times and
the results (e.g., timings) averaged where appropriate.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

6.1 Results and Discussion

This section presents the results from the test corpus (including
those presented as part of the case study above). The true slice is
an (undecidable) minimal slice. Slice size is the well-established
and widely-accepted metric to measure slice precision. The case
study has already shown how observational slicing is precise with
respect to requiring those dependencies that are actually required
to capture the slice. Here we consider the resulting slice sizes. This
can be measured in a number of ways using the various model
elements (blocks, lines, systems/subsystems, layers). Measurements
can be made either via Simulink’s metrics API (although this does
not capture all the elements of interest such as the lines excluded,
furthermore metric counts vary between MATLAB versions for
the same model), or in terms of the raw XML. We present metrics
as measured using XPath queries on the XML-represented block
diagram.

Table 3 shows the original and sliced sizes of each model. For the
8Cage scenarios, Table 3 only shows the slices for all failures with
the strict matching relation (Table 1 shows the other nine slices).
The slice sizes are given as absolute sizes and as a proportion of
the original program for each of the size metrics reported. In terms
of total number of model elements, the sizes range from a slice that
includes 83% of the original model (“Fourier synth, 0-3s”) to slices
than have removed almost every element (“Aeroradar”). The latter
situation can occur when Simulink blocks have default values that
are output in the absence of input. If the default value happens to
coincide with the oracle, then the remainder of the model may be
deleted and still produce the oracle trajectory.

Excluding the illustrative model executions leaves twenty realis-
tic execution scenarios (the twelve 8Cage scenarios (Table 1), the
three Mathworks’ Simulink examples (Table 3), and the five models
from the Campus Energy Modeling Project [3] (Table 3)). For al-
most half of these scenarios (nine of the twenty), the resulting slice
contains less than 25% of the original model’s elements. Note that
it is not possible to directly compare the results of XML-ORBS to
other static or dynamic slicers (even if they would be available to us)
for two reasons. First, many of the criteria that we used cannot be
mapped to traditional slicing criteria and second, XML-ORBS is the
only Simulink slicer that guarantees that its slices are executable.

Execution characteristics are shown in Table 4. The table shows
the number of iterations XML-ORBS does before no more deletions
are possible, the number of times a model is executed after a deletion
has been attempted, and the elapsed and CPU time needed.

It is interesting to note that in no case does the number of it-
erations exceed four, suggesting that there is limited dependence
ordering that is not explicitly captured by the line connections
(additional iterations are required where the deletion order differs
from the dependence order, for example, a use must be deleted be-
fore the corresponding definition). Also, the majority of the models
only need two iterations, which means that all possible deletions
occur during the first iteration. The final iteration is, in one sense,
superfluous in that it becomes final because nothing more can be
deleted and thus it has no effect on the slice size. However, it must
be completed to ensure that slicing is actually complete.

The results do not indicate any obvious correlation between
size, execution time, type of observer, or number of executions
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Table 2: Corpus of models used.

Islam, J. Krinke, S. Yoo

Model [ Description [ Source [ Type [ Test Cases [ Criterion Type
Standard slicing example C hand-translated . _ .
Sum Product (e.. [49]) Authors into Simulink Single (n=4) Trajectory values
Standard slicing example C hand-translated | Single composite {(0, 0), (1, -1), (16, -1), .
Montreal Boat (g [17]) Authors into Simulink (16, -19)} Trajectory values
C hand-translated . .
Delorder Cross-block dependency example Authors into Simulink Single (no params) Trajectory values
. . . . . Multiple (0-1, 1-2, 2-3, 0-3) Trajectory property
Fourier synth Fourier synthesis model Authors Simulink seconds of audio output (audio power at f Hz)
AeroRadar Conceptual model of ATC radar Mathworks’ Trajectory values
AeroTrimlin Autopilot control trimming Simulink Simulink Default values Traj. values & properties
Powerwindow Car power window demonstration examples Trajectory values
8Cage Published Large Model [26, 27] Holling et al. Simulink From the 8Cage video [26] Exec‘l’ltion proPerty
[27] (runtime warnings)
Constant Power Power Source Tester c Assertions
. . ampus — ;
EV A ElecFrlc vehlc?e tester Energy Simulink models Default values derived from the Ass?rtlons
EV Charging Vehicle charging tester . supported by other . . Trajectory values
Modelling libraries supplied test scripts .
Weather Weather testers Project [3] Trajectory values
PVWatts PV Watts SSC co-simulation Trajectory values
Table 3: Slice size results of XML-ORBS applied to the test corpus.
Original Model Sliced Model
XML Total XML Total
XML XML XML XML
Model Test Case Block . Model Block . Model
Lines | Systems Lines Systems
Count Elements Count Elements
Sum Product n=4 20 20 2 42 14 70% 12 60% 2 100% 28 67%
Montreal Boat Composite case 58 47 11 116 37 64% 21 45% 7 64% 65 56%
Delorder Default 5 2 1 8 1 20% 0 0% 1 100% 2 25%
0-1s 18 15 3 36 9 50% 7 47% 2 67% 18 50%
. 1-2s 18 15 3 36 15 83% 12 80% 3 100% 30 83%
Fourier synth
2-3s 18 15 3 36 9 50% 7 47% 2 67% 18 50%
0-3s 18 15 3 36 15 83% 12 80% 3 100% 30 83%
Aeroradar Default values 129 134 11 274 1 1% 0 0% 1 9% 2 1%
AeroTrimlin Default values 72 79 6 157 63 88% 61 77% 5 83% | 129 82%
Powerwindow Default values 238 200 27 465 53 22% 20 10% 7 26% 80 17%
Absolute Overflow 44 64 1 109 28 64% 26 41% 1 100% 55 50%
8Cage Division Overflow 44 64 1 109 13 30% 9 14% 1 100% 23 21%
Threshold Violation 44 64 1 109 28 62% 28 43% 1 100% 57 51%
Constant Power | Single phase values 25 28 1 54 4 16% 0 0% 1 100% 5 9%
EV Default values 6 7 1 14 5 83% 4 57% 1 100% 10 71%
EV Charging Default values 34 46 1 81 14 41% 11 24% 1 100% 26 32%
Weather Default values 5 5 1 11 3 60% 2 40% 1 100% 6 55%
PVWatts Default values 37 45 2 84 14 38% 14 31% 1 50% 29 35%

required. The only correlation that can be seen is for 8Cage: in the
Division Overflow Scenario, more is deleted with fewer attempted
executions and in less time compared with the others.
Observing the implementation when running suggests that the
proportion of crashes and timeouts increases in later iterations. This
is to be expected as less of the model is deletable in each iteration.
While the current version of TreeORBS may not be suitable for
interactive debugging (owing to long run-time), it could be inte-
grated into overnight integration testing, automatically generating
sliced models from failed tests for inspection the following day.

6.2 Stateflow

Existing slicers for Simulink do not fully handle the dependencies
induced by and within Stateflow elements of a model. By working
on the tree-structured XML, XML-ORBS is able to correctly and
precisely slice Stateflow elements and the constituent state diagrams
with respect to the test suite either alone, or as part of slicing the
containing Simulink model. Since Simulink currently stores the
Stateflow portions of the diagram in a separate file, one need only
direct XML-ORBS to slice this file instead, or as well as, the main
block diagram. The results shown in Table 3 sliced only the main
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Table 4: Performance metrics resulting from applying XML-ORBS to the test corpus.

Avg Avg

Model Test Case Iterations | Executions | Elapsed CPU
Time (s) | Time (s)
Sum Product n=4 2 88 378.52 389.75
Montreal Boat Composite case 2 192 1455.41 1600.29
Delorder Default 3 15 137.35 146.17
0-1s 2 64 324.34 329.33
Fourier synth 1-2s 2 77 481.24 503.72
2-3s 2 64 321.75 327.85
0-3s 2 77 483.53 505.78
Aeroradar Default values 2 335 8640.12 9209.62
AeroTrimlin Default values 3 465 9577.37 | 10829.04
Powerwindow Default values 2 604 3860.55 4132.47
Absolute Overflow 3 274 1554.00 1655.5
8Cage Division Overflow 3 185 500.67 506.21
Threshold Violation 2 209 1060.33 1126.49
Constant Power | Single phase values 4 116 2728.49 1189.53
EV Default values 2 36 1164.49 641.44
EV Charging Default values 2 146 1163.58 645.33
Weather Default values 2 26 732.37 407.68
PVWatts Default values 2 155 7325.68 3343.51

block diagram, treating any Stateflow models present as simply
a Simulink block. Table 5 shows slicing results for three models
that contain Stateflow elements where the slicer was directed to
slice both the Simulink and Stateflow files (two examples from the
original test corpus and the other, ‘Coin’, developed by the authors
specifically to evaluate Stateflow slicing). In two cases the slicer
can remove the Stateflow entirely, in the other, it can reduce the
size of the state machine. The slices arising from these analyses are
thus more precise with respect to the test suite than those produced
without slicing the Stateflow elements.

6.3 Threats to Validity

As with any study of dependence analysis techniques, the empirical
results could be enhanced by further research on additional subjects.
To avoid unnecessary external threats to the validity of the findings
in terms of generalizability, we have drawn upon a variety of sources
of Simulink models, including previously published work, and both
large and small model sizes, for a variety of different domains.
In terms of construct validity, minor changes have been made to
models, in order to instrument these, as is standard with system
analysis work. This instrumentation is entirely independent of
the existing model computation, merely playing the role of data
collection, allowing us to report our results.

7 RELATED WORK

Program slicing was introduced by Weiser [52] and developed sub-
stantially through the 1980s and 1990s particularly targeting static
slicing. This culminated in industrial-tools [5] based on the widely-
used System Dependence Graph (SDG) algorithm [28]. It remains a
topic of interest to the present day [4, 44, 55].

Static program slicing produces a slice that is correct for all
possible program executions (and thus has similarities with the
cone-of-influence computation [24]). Dynamic slicing was intro-
duced to tailor slices to a particular program execution [2, 31]. Most
of these algorithms are based, at least in part, on static dependence

analysis. For example, the first of Agrawal and Horgan’s four dy-
namic slicing algorithms [2] removes from the static slice those
elements not executed on a particular program execution.
Observation-based slicing was recently introduced as a form
of dynamic slicing where the slice need only respect those depen-
dencies actually observed [11]; a dependence is observed when its
removal leads to the computation of different values at the slic-
ing criterion. Basing slice computation purely on observation has
far-reaching implications for the underlying algorithms. For exam-
ple, a particular problem in dynamic slicing is caused by control
dependence which must be pre-computed statically. Whenever a
statement is included in a dynamic slice, all predicates on which the
statement is control dependent are commonly included, together
with all statements on which the predicate dynamically depends.
Even when the predicate never changes its outcome, a dynamic
slice tends to include it. An observational slice can remove the
predicate and all statements on which only the predicate depends.
Observation-based slicing algorithms can also cater for differ-
ent languages [11, 30, 54] and multilingual systems [11], whereas
the white-box dependence analysis used by all previous slicing ap-
proaches forms a barrier to multilingual slicing. This combination
of language independence and faithfulness to dependences actually
observed during execution, has led to increased recent interest in
multilingual [37] and observation based slicing techniques [29, 30].
Although our work is observational, it is also concerned with
model slicing, which presents different challenges to the more
widely studied paradigm of program slicing. Model slicing has be-
come a recent topic of interest in its own right because of the im-
portance and prevalence of software models [7]. Much of the work
on model-based slicing has focused on UML models [6, 8, 34, 35].
In the remainder of this section we describe model-based slicing
approaches that specifically target Simulink models, since these are
most closely related to our own observational Simulink slicer.
There are three key challenges for Simulink dependence compu-
tation:
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Table 5: Slice size results of XML-ORBS applied to combined Simulink/Stateflow examples.

Original Model Sliced Model
Simulink XML Total Simulink XML Total
Model Test Case XML S):Iavt%s Tra)rii\ft];ons Data Model XML S)ii/t%s Tra)r?s\ft]idons Data Model
Elements Nodes | Elements Elements Nodes Elements
Aeroradar Default 274 6 10 6 296 2 1% 0 0% 0 0% 0 0% 2 1%
Powerwindow | Default 465 3 5 2 475 80 17% 0 0% 0 0% 0 0% 80 17%
Coin ‘Reject’ 37 6 9 3 55 12 33% 1 0.2% 2 02% 3 100% 18 33%

(1) Because the model is a data-flow model, control-flow is
implicit, rather than explicit as it is in programming lan-
guages, making the precise computation of control depen-
dence non-trivial (see Reicherdt and Glesner [43]).

(2) There are hidden data dependences (beyond those repre-
sented by the signal lines that connect blocks) [22].

(3) Simulink models can include multiple embedded Stateflow
models, that have a separate syntax and semantics; thus
Simulink slicing is inherently multilingual.

Fortunately, the unique properties of observational slicing allow it
to address all three of these challenges.

Most of the work on slicing Simulink models computes static
slices and therefore is less suitable for applications like fault lo-
calization that require the precision of dynamic (or observational)
slicing. Reicherdt and Glesner [43] introduced one of the earliest
static Simulink slicers, based on Conditional Execution Contexts
to capture control dependence, but it does not handle Stateflow
models, with the result that it does not apply to many real-world
Simulink models. Subsequently, Sridhar and Srinivasulu [45, 46]
introduced a static Simulink slicer that does handle Stateflow mod-
els, but assumes the absence of parallel states, which also limits
real-world applicability. Pantelic et al. were the first to incorporate,
into a static Simulink slicer, the data dependences due to implicit
signal flow involving data stores and Goto/FroMm blocks [39]. More
recently, Gerlitz and Kowalewski presented a flow-sensitive static
slicer for Simulink models [22], but this also does not handle State-
flow models, limiting its real-world applicability.

The most closely related work to our observational Simulink
slicer is that on dynamic Simulink slicers, of which only two exist.
The dynamic Simulink slicer contained in the fault localization tool
of Liu et al. [36] computes dynamic slices as the intersection of the
static slice and the coverage information on executed elements. This
approach mirrors the initial dynamic program slicing algorithm
of Agrawal and Horgan [2], applied to Simulink models. Simply
intersecting the static slice with the executed elements can lead
to overly-large slices, as was also found by Agrawal and Horgan
for dynamic program slicing, motivating them to develop more
sophisticated dynamic program slicing algorithms. Furthermore,
this approach computes so-called ‘closure slices’ [51], which may
fail to compile. For Liu et al., closure slicing was sufficient for fault
localization, but it is inadequate for many other slicing applications
that require compilable or executable slices.

The second dynamic Simulink slicer is contained within the
proprietary Simulink Design Verifier package slicing tool [48]. It
can compute static Simulink slices by determining dependencies
between blocks, signals, and model components. Moreover, the
static slice can be refined (limited to the elements executed during

a simulation). However, this is a commercial tool for which the
algorithms used are not publicly available in the peer-reviewed
literature. Nevertheless, while Simulink’s slicer aims to produce
executable slices, the documentation is quite clear that it makes no
guarantees that the resulting slice will be executable. By its nature,
XML-ORBS guarantees the production of executable slices.

In comparison with this previous work, our approach computes
fully executable observational slices that are precise with respect
to the chosen test suite, capture all implicit (hidden) dependencies
dynamically traversed by the test suite, and slice the dependencies
induced by Stateflow. Moreover, all previous slicing approaches
restrict the slicing criteria and thus none offer the flexibility of the
generalized observational slicing framework.

8 CONCLUSIONS AND FUTURE WORK

We have introduced the first observational slicing algorithm for
models, using a tree-based approach that retains observation-based
slicing’s language independence. We applied our tree-oriented slic-
ing algorithm to Simulink models, demonstrating the ability to
significantly reduce model size. We evaluated the approach on
nine real-world Simulink models, including models from previous
publications and modeling projects in the public domain. In the
evaluation, the resulting model had fewer than 25% of the origi-
nal model’s elements in 9 out of 20 scenarios (with a mean value
of 35% of the original in the same 20 scenarios). Additionally, we
presented three examples where Stateflow was explicitly sliced
in combination with Simulink. Doing so led to even greater size
reduction.

The case study presented in Section 5 demonstrates the utility
of Tree-ORBS when combined with other approaches to identify
observations of interest. The model size reductions are clear and
substantial for the case study and other models.

Future work will include investigating heuristic approaches to
reducing the computational cost, applying Tree-ORBS to other
executable modeling languages, investigating applications of Tree-
ORBS to reactive systems, parallelising the implementation, and
investigating the effect of slicing on model complexity.
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