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be small. Then, giveny = Ax� andw, we solve

minimize
x

� x� 1 + � g(x Š w)

subject to Ax = y, (1)

where� > 0 establishes a tradeoff between signal sparsity and
�delity to prior information. We consider two speci�c, convex
models forg: g1 := � · � 1 and g2 := 1

2� · � 2
2, where� z� 2 :=�

z� z is the � 2-norm. Then, problem (1) becomes

minimize
x

� x� 1 + � � x Š w� 1

subject to Ax = y (2)

minimize
x

� x� 1 +
�
2

� x Š w� 2
2

subject to Ax = y, (3)

which we will refer to as� 1-� 1 and � 1-� 2 minimization,
respectively. The use of the constraintsAx = y implicitly
assumes thaty was acquired without noise. However, our
results also apply to the noisy scenario, i.e., when the con-
straints are� Ax Š y� 2 � � instead ofAx = y.

1) Overview of Results:Problems (2) and (3), as well as
their Lagrangian versions, have rarely appeared in the literature
(see Section II). For instance, [11], [20] (resp. [12]) considered
problems very similar to (2) (resp. (3)). Yet, to the best of our
knowledge, no CS-type results have ever been provided for
either (2), (3), their variations in [11], [12], and [20], or their
Lagrangian versions.

Our goal is to establish bounds on the number of measure-
ments that guarantee that (2) and (3) reconstructx� with high
probability, whenA has i.i.d. Gaussian entries. Our bounds
are a function of the prior information “quality” and the
tradeoff parameter� . Hence, they not only help us understand
what “good” prior information is, but also to select a� that
minimizes the number of measurements. The main elements
of our contribution can be summarized as follows:

€ Our bound for (2) is minimized when� = 1, a value
independent ofw, x� , or any other problem parameter.
We will see that the best� in practice is indeed very
close to 1. In contrast, the optimal� for (3) depends on
several parameters, including the unknown entries ofx� .

€ We also establish sharper versions of our bounds, which
have to be computed numerically, but precisely describe
the experimental performance of (2) and (3). Our analy-
ses of the bounds, sharp and non-sharp, reveal that,
typically, (2) requires much fewer measurements than
both BP (classical CS) and (3). This superior performance
is also observed experimentally, and we interpret it in
terms of the underlying geometry of the problem.

€ Based on the measures for the quality of prior information
revealed by our bounds, we propose schemes that modify
prior information in order to improve its quality. The
schemes are validated with simulations, which also show
that (2) outperforms Modi�ed-CS [12], another strategy
for integrating prior information.

2) A Representative Result:To give an example of our
results, we state a simpli�ed version of Theorem 12 from
Section IV-B, which establishes bounds on the number of
measurements for successful� 1-� 1 reconstruction. Here, we

rewrite it for � = 1, which gives not only the simplest result,
but also the best bound. De�ne

h :=
�
�{i : x�

i > 0, x�
i > w i } � { i : x�

i < 0, x�
i < w i }

�
�

� :=
�
�{i : wi 	= x�

i = 0}
�
� Š

�
�{i : wi = x�

i 	= 0}
�
� ,

where | · | denotes the cardinality of a set. Note thath
is de�ned on the supportI := { i : x�

i 	= 0} of x� .
Recall thats = | I |. Later, we will callh the number of bad
componentsof w. For example, ifx� = (0, 3, Š2, 0, 1, 0, 4)
and w = (0, 4, 3, 1, 1, 0, 0), thenh = 2 (due to 3rd and last
components) and� = 1 Š 1 = 0 (4th and 5th components).

Theorem 1 (� 1-� 1 Minimization: Simpli�ed): Let x� � Rn

be the vector to reconstruct and letw � Rn be the prior
information. Assumeh > 0 and that there exists at least one
index i for which x�i = wi = 0. Let the entries of A� Rm× n

be i.i.d. Gaussian with zero mean and variance1/ m. If

m 
 2h log
� n

s + �/ 2

�
+

7
5

�
s +

�
2

�
+ 1, (4)

then, with probability greater than1Š exp
�

Š 1
2(mŠ

�
m)2�

,
x� is the unique solution of(2) with � = 1.

Recall that, with a similar probability, classical CS requires

m 
 2s log
� n

s

�
+

7
5

s + 1 (5)

measurements to reconstructx� [27]; see also Theorem 4 and
Proposition 6 in Section III below. These bounds say that,
for large n, (2) requiresO(2h log n) measurements whereas
classical CS requiresO(2s log n). Recall that, by de�nition,
h � s. Equality holds, i.e.,h = s, only when the supports
of x� and w are disjoint. This means� 1-� 1 minimization
is robust to inaccurate prior information; yet, ifh is small,
(4) can be much smaller than (5). For� 1-� 2 minimization (3),
we establish a similar bound:O(v� log n), where

v� �
�

i � I

�
1 + � sign(x�

i )(x�
i Š wi )

� 2 , (6)

and sign(·) returns the sign of a number. The approximation
is due to neglecting a term that depends on the disjointness of
the supports ofx� and w; thus, (6) is accurate whenx� and
w have similar supports. Notice that whileh is independent
from � and is determined only by the signs of the entries ofx�

and x� Š w, v� depends on� and also on the actual values
of x� and w. Furthermore, as shown by our experiments, in
practice, it is much easier to obtain smaller values forh than
it is for v� .

3) A Numerical Example:We provide a numerical exam-
ple to illustrate further our results. We generatedx� with
1000 entries, 70 of which were nonzero, i.e.,n = 1000
ands = 70. The nonzero components ofx� were drawn from
a standard Gaussian distribution. The prior informationw was
created asw = x� + z, wherez is a 28-sparse vector whose
nonzero entries were drawn from a zero-mean Gaussian distri-
bution with standard deviation 0.8. The supports ofx� and z
coincided in 22 positions and differed in 6. This pair ofx�

and w yielded h = 11 and� = Š 42. Plugging the previous
values into (4) and (5), we see that� 1-� 1 minimization and
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Fig. 1. Experimental rate of reconstruction of classical CS (1),� 1-� 1
minimization, and� 1-� 2 minimization, both with� = 1. The vertical lines
are the bounds for classical CS, and� 1-� 1 and � 1-� 2 minimization.

classical CS require 136 and 472 measurements for perfect
reconstruction with high probability, respectively.

Fig. 1 shows the experimental performance of classical
CS and � 1-� 1 and � 1-� 2 minimization, i.e., problems (1),
(2) and (3), respectively. More speci�cally, it depicts the rate
of success of each problem versus the number of measure-
mentsm. For a �xed m, the success rate is the number of
times a given problem recoveredx� with an error smaller
than 1% divided by the total number of 50 trials (each trial
considered different pairs ofA and b). The plot shows that
� 1-� 1 minimization required less measurements to recon-
struct x� successfully than both CS and� 1-� 2 minimization.
The curves of the last two, in fact, almost coincide, with
� 1-� 2 minimization (line with triangles) having a slightly
sharper phase transition. The vertical lines show the
bounds (4), (5), and the bound for� 1-� 2 minimization, pro-
vided in Section IV. We see that, for this particular example,
the bound (4) is quite sharp, while the bound for� 1-� 2
minimization is quite loose (the sharpness of our bounds
is discussed in Sections IV and VI). More importantly, this
example shows that using prior information properly can
improve the performance of CS dramatically.

Our bounds have been used to design an adaptive-rate
scheme for state estimation with applications in compressive
video background subtraction [40], [41], a reweighted� 1-� 1
minimization scheme [47], [48], and also to design measure-
ments in CS-based communication systems [49].

B. Outline

In Section II, we discuss related work, including the use of
other types of “prior information” in CS. Section III introduces
fundamental tools in our analysis, which are also used to pro-
vide geometrical interpretations of� 1-� 1 and� 1-� 2 minimiza-
tion. The main results are stated and discussed in Section IV.
There, we also provide guidelines on how to improve the
prior information in practice. Section V describes experimental
results. The main results are proven in Section VI, and the
appendix is used for auxiliary results.

II. RELATED WORK

There is a clear analogy of CS with prior information and
the distributed source coding problem. Namely, we can view

the number of measurements and the reconstruction quality in
CS as the information rate and the incurred distortion in coding
theory, respectively. As such, CS with prior information at the
reconstruction side is reminiscent of the problem of coding
with side/prior information at the decoder, a �eld founded by
Slepian and Wolf [50], and Wyner and Ziv [51].

The concept of prior information has appeared in CS under
many guises [11], [12], [20], [23], [42]. The work in [11]
was apparently the �rst to consider (1), in particular� 1-� 1
minimization. Speci�cally, [11] considers dynamic computed
tomography, where a prior image helps reconstructing the
current one, which is accomplished by solving (2). That work,
however, neither provides any kind of analysis nor highlights
the bene�ts of solving (2) with respect to classical CS,
i.e., BP. Very recently, [20] considered a variation of (2)
where the second term of the objective penalizes differences
betweenx andw, rather than in the sparse domain, in the sig-
nals’ original domain. Speci�cally, [20] solves (a Lagrangian
version of)

minimize
x

� x� 1 + � � �( x Š w)� 1

subject to �� x = y , (7)

whereA was decomposed as the product of a sensing matrix�
and a transform matrix� that sparsi�es bothx� and w.
Although [20] shows experimentally that (7) requires less mea-
surements than conventional CS to reconstruct MRI images,
no analysis or reconstruction guarantees are given for (7).

In [12], prior information refers to an estimateT �
{1, . . . , n} of the support ofx� (see [10], [16], [18] for related
approaches). Using the restricted isometry constants ofA,
[12] provides exact recovery conditions for BP when its objec-
tive is modi�ed to � xTc� 1, wherexT denotes the components
of x indexed by the setT, and Tc is the complement ofT
in {1, . . . , n}. The resulting problem is called Modi�ed-CS
(Mod-CS), against which we benchmark the performance
of (2) and (3) in Section V. WhenT is a reasonable esti-
mate of the support ofx� , those conditions are shown to
be milder than the ones in [24] and [25] for standard BP.
Then, [12] considers prior information as we do: there is
an estimate of the support ofx� as well as of the value
of the respective nonzero components. However, it solves a
problem slightly different from (3). Namely, the objective
of (3) is replaced with� xTc� 1+ � � xT Š wT � 2

2. Although some
experimental results are presented, no analysis is given for that
problem.

A popular modi�cation of BP, of which Mod-CS is a
particular instance, considers the weighted� 1-norm � x� r :=� n

i= 1 ri |xi |, whereri 
 0 is a known weight. This norm penal-
izes each component ofx according to the magnitude of the
corresponding weight and, thus, requires “prior information”
aboutx. The weightri associated to the componentxi can, for
example, be proportional to the probability of x�

i = 0. Several
works studied weighted� 1-norm minimization [13]–[17], and
some [19] used tools similar to ours.

Alternative work has considered

minimize
x

� x� 1 + � g(x Š w) + 	 � Ax Š y� 2
2 , (8)
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with 	 > 0, which can be viewed as a Lagrangian version of

minimize
x

� x� 1 + � g(x Š w)

subject to � Ax Š y� 2 � � . (9)

Problem (9) is a generalization of (1) for noisy scenarios, and
we will provide bounds on the number of measurements that
it requires for successful reconstruction withg = � · � 1 and
g = 1

2� · � 2
2. Problem (8) has appeared before in [42], in

the context of dynamical system estimation. Speci�cally, the
statext of a system at timet evolves asxt+ 1 = ft (xt ) + 
 t ,
where ft models the system’s dynamics at timet, and 
 t

accounts for modeling errors. Observations of the statext

are taken asyt = At xt + � t , where At is the observation
matrix and� t is noise. The goal is to estimate the statext

given the observationsyt . The state of the system in the
previous instant,xtŠ1, can be used as prior information by
makingwt = ftŠ1(xtŠ1). If the modeling error
 t is Gaussian
and the statext is assumed sparse, thenxt can be estimated
by solving (8) with g = � · � 2

2; if the modeling noise is
Laplacian, we setg = � · � 1 instead. Although [42] does
not provide any analysis, their experimental results show
that, among several strategies for state estimation, including
Kalman �ltering, (8) with g = � · � 1 yields the best results.
If we take into account the relation between (8) and (9), our
theoretical analysis can be used to provide an explanation.
Applying the KKT conditions to problem (9) reveals that it
has the same solutionx as (8) if � Ax Š y� 2 = � and 	 is
the optimal dual variable of (9). Note that obtaining such	
without �rst solving (9) is nearly impossible. In contrast, in
several applications, it is relatively easy to obtain accurate
bounds� on the magnitude of the acquisition noise. For related
approaches, see [23], [52].

Finally, we mention that the phase transition phe-
nomenon in sparse recovery problems was �rst studied
in [33], [53], and [54], and that alternative reconstruction prob-
lems, such as message passing [55], also have precise phase
transitions [55]–[57].

III. G EOMETRY OF� 1-� 1 AND � 1-� 2 MINIMIZATION

This section introduces concepts and results in CS used in
our analysis. We follow the approach of [27], since it leads to
the current best CS bounds for Gaussian measurements, and
provides the means to understand some of our de�nitions.

A. Known Results and Tools

The concept ofGaussian widthplays a key role in [27].
Originally proposed in [58] to quantify the probability of a
randomly oriented subspace intersecting a cone, the Gaussian
width has been used in several CS-related results [27],
[32], [34], [36]. Before de�ning it, we analyze the opti-
mality conditions of linearly constrained convex optimization
problems.

1) The Nullspace Property:Consider a real-valued convex
function f : Rn Š� R and the following optimization problem:

minimize
x

f (x)

subject to Ax = y . (10)

Fig. 2. Visualization of the nullspace property in Proposition 2 for BP.

AssumeAx = y has at least one solution, say,x� . The set
of all solutions of Ax = y, i.e., the feasible set of (10), is
A := x� + null(A), where null(A) := { x : Ax = 0} is the
nullspaceof A. To determine if a givenx� � A is a solution
of (10), we use the concept oftangent coneof f at x� :

Tf (x� ) := cone
�
Sf (x� ) Š x� �

, (11)

where coneC := { � c : � 
 0, c � C} is the cone generated
by the set C, and Sf (x� ) := { x : f (x) � f (x� )} is the
sublevel set of f at x� . See [59, Proposition 5.2.1, Th. 1.3.4].

Proposition 2 ([27, Proposition 2.1]): x� is the unique
optimal solution of(10) if and only if Tf (x� ) 
 null(A) = { 0}.
Although this proposition was stated in [27, Proposition 2.1]
for f equal to an atomic norm, its proof holds for any real-
valued convex function. Fig. 2 illustrates it forf (x) = � x� 1,
i.e., for BP. It shows the respective sublevel setS�·� 1(x� ) and
tangent coneT�·� 1(x� ) at a “sparse” pointx� . In the �gure,
A = x� + null(A) intersectsT�·� 1(x� ) at x� only, that is,
T�·� 1(x� ) 
 (x� + null(A)) = { x� }. Subtractingx� to both sides,
we obtain the condition in Proposition 2.

2) Gaussian Width:When A is generated randomly, its
nullspace has a random orientation, and the condition in
Proposition 2 holds or not with a given probability. The
smaller the width (or aperture) ofTf (x� ), the more likely
that condition will hold. Such a statement was formalized for
Gaussian matricesA by Gordon in [58]. To measure the width
of a setS � Rn, Gordon de�ned theGaussian width:

w(S) := Eg

	
sup
z� S

g� z



, (12)

whereg � N (0, In) is a vector ofn independent, zero-mean,
and unit-variance Gaussian random variables, andEg[·] is the
expected value with respect tog. When the set is a coneC,
i.e., x � C � � x � C for all � 
 0, we have to intersect
C with the unit � 2-norm sphere inRn: Sn(0, 1) := { x � Rn :
� x� 2 = 1}. To simplify notation, we de�ne

w(C) := w(C 
 Sn(0, 1)) = Eg

	
sup

z� C 
 Sn(0,1)
g� z



. (13)

It turns out that w(C 
 Sn(0, 1)) = w(C 
 Bn(0, 1)),
where Bn(0, 1) := { x � Rn : � x� 2 � 1} is the unit
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Fig. 8. Prior information improvement with a multiplicative factor:w =
c · wb, wherewb is the baseline prior information. The vertical axis shows
the minimum number of measurements to achieve 1% error. The horizontal
lines show the CS bound in [60] and the performance of Mod-CS [12].

Fig. 9. Same as Fig. 8, but for an additive factor. The data is the same, but
the prior information is generated asw = wb + c · sign(wb), for c 
 0.

� 1-� 2 was too large to be displayed), and the horizontal lines
the classical CS (sharp) bound in [60] and the performance of
Modi�ed-CS (Mod-CS) [12]. Mod-CS integrates prior infor-
mation in CS via an estimate of the support ofx� ; naturally,
we used the support ofwb for such estimate. The plot shows
that both the experimental performance of� 1-� 1 and its bound
are nondecreasing withc, con�rming the effectiveness of
our strategy to improve the prior information. Both curves
decrease monotonically until aroundc = 3.5, after which
they reach a plateau: 121 for� 1-� 1 and 154 for the bound.
Mod-CS requires 148 measurements to solve this particular
problem, a value smaller than the number of measurements
required by� 1-� 1 minimization forc � 1.2. For anyc > 1.2,
� 1-� 1 minimization required less measurements than Mod-
CS. Regarding� 1-� 2 minimization, its performance improved
for 1 < c � 2: for example, it required 305 measurements
for c = 1.5. For c > 2, its performance degraded quickly.
In conclusion, as predicted in Section IV-E, improving the
prior information via a multiplicative factor works well for
� 1-� 1 minimization, but not as well for� 1-� 2 minimization.

3) Results for an Additive Factor:The results for an addi-
tive factor are shown in Fig. 9. The curves are the same as in
Fig. 8, but now we show the bound for� 1-� 2 minimization.

The bound was quite sharp forc = 1, but became loose for
largerc. In spite of this, the performance of� 1-� 2 minimization
improved with increasingc, outperforming classical CS for
c 
 1. This improvement was not enough to reach the
148 measurements required by Mod-CS. We can also see that
both the performance of� 1-� 1 minimization and the respective
bound (4) decreased withc and, in fact, reached the same
plateaus as in Fig. 8.

These experiments con�rm that improving side information
with an additive factor works well for� 1-� 2 minimization,
and improving it with both an additive and a multiplica-
tive factor works well for � 1-� 1 minimization. They also
show that, in general,� 1-� 1 minimization performs better
than � 1-� 2 minimization and, if the prior information has
enough quality, also better than state-of-the-art approaches like
Mod-CS [12].

VI. PROOF OFMAIN RESULTS

In this section, we present the proofs of all results from
Section IV. We start with some auxiliary results.

A. Auxiliary Results

The following lemma plays an important role in our proofs.
Its �rst part gives an exact expression for the expected squared
distance of a scalar Gaussian random variable to an interval
as a function of theQ-function, de�ned as

Q(x) :=
1

�
2�

� +�

x
exp

�
Š

u2

2

�
du=

� +�

x
�( u) du, (49)

where

�( x) :=
1

�
2�

exp
�

Š
x2

2

�
(50)

is the probability density function of a zero-mean, unit vari-
ance scalar Gaussian random variable. To obtain the closed-
form bounds in Theorem 12, we will need to (upper) bound
the exact expression. That is done in the second part of the
lemma. We represent an interval inR as

I(a, b) :=


x � R : |xŠ a| � b

�
=

�
aŠ b, a+ b

�
. (51)

Lemma 17: Let g � N (0, 1) be a scalar, zero-mean
Gaussian random variable with unit variance. Let a, b � R
and b
 0.

a) Part I) Exact expression: There holds

Eg

	
dist

�
g, I(a, b)

� 2



= (a Š b)�( a Š b)

Š (a + b)�( a + b) +
�
1 + (a + b)2�

Q(a + b)

+
�
1 + (a Š b)2��

1 Š Q(a Š b)
�
. (52)

b) Part II) Bounds:
1) If b = 0, thenI(a, b) = { a} and

Eg
�
dist(g, a)2�

= a2 + 1. (53)

2) If b > 0 and |a| < b, i.e.,0 � I(a, b), then

Eg

	
dist

�
g, I(a, b)

� 2



�
�( b Š a)

b Š a
+

�( a+ b)
a+ b

. (54)
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