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Abstract Malware threats are growing, while at the
same time, concealment strategies are being used to
make them undetectable for current commercial Anti-
Virus. Android is one of the target architectures where
these problems are specially alarming, due to the wide
extension of the platform in di↵erent everyday devices.
The detection is specially relevant for Android mar-
kets in order to ensure that all the software they o↵er
is clean, however, obfuscation has proven to be e↵ec-
tive at evading the detection process. In this paper
we leverage third-party calls to bypass the e↵ects of
these concealment strategies, since they cannot be ob-
fuscated. We combine clustering and multi-objective
optimisation to generate a classifier based on specific
behaviours defined by 3rd party calls groups. The opti-
miser ensures that these groups are related to malicious
or benign behaviours cleaning any non-discriminative
pattern. This tool, named MOCDroid, achieves an ac-
curacy of 94.6% in test with 2.12% of false positives
with real apps extracted from the wild, overcoming all
commercial Anti-Virus engines from VirusTotal.
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1 Introduction

The Mobile malware report released by G DATA1 for the
last quarter of 2015 o↵ers a panorama of the evolution
and current status of malware a↵ecting smartphones.
Android, with a great market share, is a potential target
for many virus writers. In 2015, the incredible figure
of 2,333,777 new malicious applications was reached,
which is an increase of 50% in comparison with the
previous year. These numbers make clear the necessity
of fast tools capable of detecting zero-day malware. This
observation is reinforced by the fact that many Android
app stores contain malware in their application range
[31].

There are two main approaches when analysing ap-
plications and determining their malicious or benign
character, namely static analysis and dynamic analysis.
While the former is focused on extracting characteristic
data from the file containing the application, dynamic
analysis concentrates on its execution, monitoring the
actions performed. This latter provides a deeper anal-
ysis of the application, however, entails serious costs
in addition to the need for safety precautions. Static
analysis, on the other hand, allows to analyse applica-
tions more quickly, but is heavily a↵ected by the use
of obfuscation techniques [28], which are able to mask
the true purposes until the application execution [19].
Dynamic analysis is also susceptible of being useless
when the application is able to detect that it is being
analysed [20].

1 Available at: https://secure.gd/dl-us-mmwr201504
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Although Java code is highly vulnerable to obfusca-
tion, this is not possible with third-party calls [7]. Any
reference to a Java library needs to remain unchanged
in order to allow the execution of the application. The
method presented in this paper takes the import terms
contained in the Java classes of Android applications to
create two behavioural patterns, one for malicious and
one for benign applications. These patters, consisting
on groups of import terms that use to appear together
in the same applications, are compared against the list
of imports of a new application, where the most similar
pattern will decide its nature. A clustering algorithm
[6,17] is in charge of creating these groups, separately
for malicious and benign applications. The selection of
the groups that are actually representative of particular
behaviours is addressed by a multi-objective genetic
algorithm, which enables or disables clusters seeking the
maximum accuracy rate and the minimum number of
false positives rate in a test dataset.

Previous research focused on static analysis on An-
droid have used di↵erent characteristics of the applica-
tion, such as API-Level features [1] or permissions [3],
among others [24]. The proposed method uses third-
party calls as a novel technique to discern particular be-
nign and malicious behaviours. Due to the large amount
of data required for analysing this characteristic, an al-
gorithm able to manage large volumes of data is needed.
Genetic algorithms have proven to be e↵ective with com-
plex and large datasets, in a wide variety of domains as
it can be malware detection based on static analysis [15].
The method presented in this paper takes advantage
from the use of SPEA2 [32], a multi-objective genetic
algorithm, to select groups of import terms that allows
to discriminate distinctive behaviours of malware and
benign-ware.

The rest of this paper is organised as follows: the
next section o↵ers a description of the related work,
subsequently, a section presents the method proposed,
detailing the analysis of the import terms extracted
from Android applications and defining the classification
model, which is followed by the experimental setup and
the description of the experimentation. The final section
provides conclusions and possible future research.

2 Related Work

Android malware analysis has been performed from
two main perspectives: detection and classification. The
former aims to discriminate between malware and be-
nignware [27], while the latter aims to generate a model
that can detect specific malware families [2]. In this
work we focus the analysis on the detection problem.

This section presents some background about malware
detection in general and, specifically, in Android devices.

2.1 Malware analysis

Understanding malware has become a complex prob-
lem over the last few years. The definition of malicious
behaviour has a fuzzy boundary between those pro-
grams that can be considered benign programs and those
consider malware. Out of this boundary, we normally
categorise maliciousness based on known behaviours ex-
tracted from a deep software analysis [4]. Once we are
able to determine that a specific behaviour is harmful,
we use that information to detect similar behaviours in
order to understand whether a new program is malicious
or not. The main analysis strategies for understanding
malware behaviour are [9]:

– Static Analysis: these kinds of analyses study a
program from its source code or disassembly code.
In Android case, the starting point is the dex code.
The common static procedures extract the program
control flow graph, the opcode (operation codes) and
variables variations, among others, and study the
behaviour of di↵erent branches in order to identify
suspicious code.

– Dynamic Analysis: these approaches are based
on studying the malware according to its execution
behaviour. The frequent setup is based on an em-
ulator or virtual machine running the application.
Di↵erent information is extracted from this process,
specially focused on traces, network packets, mem-
ory modification and register modification, among
others.

– Hybrid Analysis: These methodologies combine
static and dynamic analysis in order to complement
each other.

Due to the development of new malicious behaviours
requires a strong e↵ort [9], black hats have developed
di↵erent ways to overcome the detection process. These
concealment strategies are usually applied in di↵erent
levels of abstraction in order to avoid static and dynamic
analysis.

For static analysis, the concealment strategy aims
to cheat the disassembly process and the control flow
graph generation. This is usually performed using poly-
morphism and metamorphism. Polymorphism consists
on changing the appearance of the program, using, for
example, encryption or compression of specific parts
[9]. Metamorphism is focused on recoding the program,
which is usually performed using obfuscation, specially
on the control flow graph [9]. Another concealment strat-
egy is based on dynamic classes which are usually hidden
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using polymorphism. These classes are generated during
runtime. In this paper we are not targeting this last
case, but the previous ones.

In dynamic analysis, the concealment is based on hid-
ing the malware behaviour at least long enough to skip
the detection. Furthermore, black hats have methods
for identifying the environment where the application
is running, and their malware uses this information to
perform only benign operations. This is usually applied
for Android emulators or virtual machines [25]. The com-
bination of static and dynamic concealment strategies
can also avoid hybrid analysis.

Even when the concealment is a strong limitation for
the analysis, there are some limitations to the conceal-
ment, such as system calls, that can not be obfuscated
[7] and provide enough information about the behaviour
of a program, specially when this program aims to con-
trol the system or use it in a harmful way, which is
usually the main goal of malware. This work is focused
on this specific information to detect Android malware.

2.2 Malware Detection in Android system

The first references to malware designed for Android
date back to the same year it was presented the first
device running this Operating System, by the year 2008.
From then on, the number of malicious applications has
grown exponentially and, as a result, important e↵orts
have been performed in order detect them and reduce
their e↵ects.

Several authors have dealt with the malware detec-
tion problem from di↵erent perspectives. For example,
Shabtai et al. [23] introduce a framework which extracts
execution features and applies Machine Learning tech-
niques to classify them. In a similar way, Arp et al
[2] combine di↵erent classifiers with execution features
creating a new tool, named Drebin. Another similar
example is CooperDroid [27] which is focused on recon-
structing the behaviour of an Android application in
order to identify Malware. CopperDroid is a dynamic
analysis tool where system calls are analysed dinam-
ically, which make the application less vulnerable to
alterations. Our approach is similar in that sense, but
we use static system calls, instead of dynamic, which
can be hidden.

Other example is presented by Isohara et al. [10]
which focus on Android markets and its security during
the apps validation process. This work shows that some
markets do not try to detect malicious apps, compro-
mising devices and sensitive data. Authors create an
audit framework to monitor the application behaviour
recording all the system calls invoked and using signa-
tures of normal calls. The technique used to detect the

Malware behaviour is based on kernels. DroidSIFT [29]
proposes a similar semantic-based methodology, based
on API Dependency Graphs. Authors use a similarity
metric between the API Dependency Graphs of di↵erent
applications and a threshold to detect anomalies. Also
their method aims to detect di↵erent malware families.

Research has also studied Obfuscated malware, analysing
its e↵ects in the code. For example ALTERDROID [26]
defines an approach for detecting obfuscated compo-
nents. A deep study of the implications of using these
concealment strategies is presented in [30], showing that
specific families of malware (for example the Droid-
KingFu family) make use of encryption to hide the
malicious part of the application. These obfuscation
techniques are able to adversely a↵ect the precision of
commercial Anti-virus [21]. As we will show in the exper-
imentation section, our method is able to detect more
accurately malicious applications in comparison with
commercial Anti-virus engines.

Machine Learning has been successfully applied to
the Android malware detection problem using di↵erent
features, such as binary information [13], Control Flow
Graphs [22], analysing Dalvik bytecode frequency anal-
ysis [11] or API-Level features [1]. In addition, these
techniques allow to defeat the use of obfuscation tech-
niques [14]. The selection of features is a very important
step when using Machine Learning tools [16], where API
calls and Control Flow Graphs are the most discrim-
inative to generate strong classification models. The
method presented in this paper makes use of these tech-
niques to build a strong classifier able to reach high
accuracy rates even when obfuscation techniques are
involved.

From a human-based perception analysis, Gorla et
al. developed a detection framework named CHABADA
which is able to detect malware using the reviews pub-
lished by the users in the application market [8]. This
framework is more robust in some cases than usual an-
alytical process, but it is extremely sensitive to users
perceptions. The tool presented in this work aims to
overcome all these limitations.

3 MOCDroid: the Multi-Objective
Evolutionary Classifier

The third-party calls invoked from an Android appli-
cation can be seen as a set of relevant characteristics
that may allow to create general patterns to discrimi-
nate between malware and benign-ware samples. Due
to these calls target external software, it is di�cult to
obfuscate them and most of the authors avoid it. The
combination of di↵erent calls help to define a behaviour,
e.g., when an app tries to activate the microphone and
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the network, it is clear that the application is sending
audio data to an external server. These behaviours can
be statically approximated by the semantic intention
extracted from 3rd party API calls combinations, which
can be described using clustering over these calls. Once
we define these groups, the final model, named MOC-
Droid, needs to discriminate malware and benign-ware,
hence, it creates two submodels keeping only relevant
behaviours for these two categories. A candidate pro-
gram will be evaluated against these two submodels to
measure if it fits better with benign-ware or malware.
The whole workflow of the process is summarised in Fig.
1, described in depth in the next sections.

3.1 Mining Android imports from source code

Our main hypothesis, which claims that the imports
terms included in each Java class of an Android applica-
tion can be used to arise di↵erent behaviours of malware
and benign-ware samples, involves a series of prepro-
cessing techniques to extract the needed information of
each app. This will help to create a representation of
each malicious or benign application to train a model
through a Multi-Objective Optimisation process, with
the ultimate aim of generating two representative model
of each kind of applications.

As stated before, we have selected the specific decla-
ration of imports terms to represent each application.
Thus, the first big step involves analysing each app sep-
arately to retrieve all these terms. Android application
are presented as files with the “.apk” extension, which
are ZIP files that can be decompressed with any de-
compression tool. Each of the applications retrieved was
uncompressed with Unzip to extract its DEX files, which
contain compiled code to be executed in the Dalvik Vir-
tual Machine. Using Jadx2, this code is decompiled to
obtain Java code (similar, but not necessarily identical,
to that written by the authors due the use of obfuscation
techniques), which allows to finally retrieve a list of
the import terms declared in the application.

3.2 Clustering imports

This set of import terms forms a set of raw information
which can hardly be used to disclose specific behaviours
of malware and benign-ware; import terms can be widely
dispersed, complicating the search of general patterns
able to discern between malicious and benign applica-
tions. While a specific class (declared by an import term
in the Java source code header) can be used in di↵erent

2 https://github.com/skylot/jadx

applications without providing any relevant information,
an association of import terms that tend to appear to-
gether (e.g. a function which implies calling another
particular function), may arise more general patterns
and thus facilitate the creation of a malware and benign
representative model.

The process of grouping this terms can be addressed
using clustering techniques [12], allowing to find recur-
ring groups of di↵erent sizes of correlated import terms.
We have to note that, thus far, each sample is repre-
sented by a variably sized list of import terms declared.
Applying a clustering process over a dataset involves
representing all samples in the same space, that is to
say, with a shared configuration of attributes (a vector
of equals length for all of them). As each application is
linked to a particular set of import terms, these sets can
be combined in order to generate a new binary vector of
attributes listing all the import terms found. The values
of this vector will indicate whether the application in-
cludes a particular import term (“1”) or not (“0”). This
process is equivalent to that used for generating a Term-
Document matrix, where each document represents an
app and a term represents an import term. Given this
equivalence, we used the Text Mining Package for R
[18] to generate this matrix. This package also includes
a function to remove sparse terms, only employed on a
few documents (or applications), based on a parameter
that allows to adjust the sparsity.

Once these two matrices are built, one formed by
malware and one by benign samples, are then passed
as input to the clustering algorithm, coupled with the
numbers of clusters desired. Throughout the process, an
euclidean distance will be used to measure the proximity
between samples that, given the representation chosen,
considers as closer those samples that are shared by a
set of applications. This clustering process is executed
two times, one to group sets of imports terms of benign-
ware applications and a second one with terms related
to malicious ones, which will be the input of the next
step, a genetic algorithm.

3.3 Multi-Objective Optimisation

The basic idea of the classification algorithm developed
consists on generating two representative models, one
for malware and another one for benign-ware. Each of
these two models will be related with a certain config-
uration of clusters, a subset of the clusters delivered
in the previous step for the respective model. When
a new sample is presented to be classified, its import
terms will be compared separately with each represen-
tative model and the most similar one will deliver the
label of the sample. This classification model has been
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Fig. 1: General diagram of the classification model

implemented following a Multi-Objective Optimisation
strategy leaded by a genetic algorithm, where each in-
dividual represents a possible solution, simultaneously
defining both configurations of clusters (sets of import
terms sets) enabled and disabled representative of mali-
cious and benign applications. Below is described the
design chosen for this genetic algorithm.

3.3.1 Encoding

When designing a genetic algorithm, one of the most
important steps is the individual’s encoding, since it
will define the shape of the solutions. In the present
case, each individual must consider two models at the
same time. For this reason, it is divided in two sections
called segments, representing respectively the benign
and malicious model. These segments contain a number
of positions equivalent to the number of clusters used
in the associated clustering model, m in the case of the
malware clustering process and n in the case of benign-
ware. Each position of the segment is related with a
particular cluster, where it is only possible to adopt two
di↵erent values to indicate whether the associated cluster
is enabled (its import terms are taken into account
to classify samples) or disabled (its import terms are
discarded).

3.3.2 Genetic operations

There are four operations that lead the evolution of the
population composed by these individuals. A selection
operator, which is elitist, chooses the l best individuals
of a generation to be part of the next one; a Tournament

operator is in charge of selecting the individuals to be
reproduced; a crossover operator performs a uniform
crossover separately in each segment of the individual
and, finally, a Flip Bit based mutation is implemented
to swap the state of each cluster between enabled or
disabled.

3.3.3 Fitness function

Enabling or disabling di↵erent clusters will lead to two
discriminative models specifically adapted to malicious
and benign applications. When analysing a new sample,
it will be compared against each model to check their
degree of adaptation and the model that best suits
the sample will decide the prediction. Comparing the
prediction of a example in the training dataset to its
real label will allow to assess the quality of each solution.
If this process is performed with all the samples in the
training dataset, it is possible to measure the accuracy
of the classification model: the percentage of instances
correctly classified. Although this measure is greatly
significant of the quality of the model, when evaluating
a malware detection tool it is also advisable to evaluate
the false positives rates, responsible of ensuring the
correct operation of system applications. These two
values, have been chosen to determine the fitness value
of an individual, linking each one to a di↵erent objective
of the optimisation process: while the first one tries to
maximise the accuracy, the second one seeks to provide
solutions with a low false positives rate.

To explain the prediction procedure in detail, its
pseudo-code is shown in Figure 1. This function receives
the individual, a candidate program and the two im-
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M0 M1 M2
... Mm-1 MmIndividual: B0 B1 B2

... Bn-1 Bn

Malware segment Benignware segment

Fig. 2: Representation of the individual

ports models: malware and benign-ware. A loop iterates
over each position of the whole chromosome (line 2).
Since it is divided in two segments, in each iteration
it is evaluated if the position of the chromosome being
analysed belongs to the first segment (line 3), associated
to the malware model, or to the second segment (line
8), linked to the benign model. The following steps are
similar for both segments: for each cluster, represented
by each position in the chromosome, it is checked if it is
activated (line 3 or 8 depending on the segment). If yes,
it is retrieved the list of imports terms of the cluster
in question (line 4 or 9), comparing them to the list
of imports presented in the candidate sample (line 5
or 10). If the cluster is represented within the list of
imports declared in the application, the related counter
is increased by 1. The segment providing a higher num-
ber of clusters represented in the sample delivers the
prediction.

This prediction function is applied to each sample
in the training dataset, and compared to the real label
enabling to return the two values that define the fitness
value of the individual being evaluated: the accuracy
as the percentage of samples correctly labelled and the
false positives rate. Throughout the evolutionary pro-
cess, these values will lead to solutions where the first
objective is maximised while the second one minimised.
At the end, di↵erent solutions forming a Pareto frontier
will be returned. Because most of the approaches pro-
posed for Malware detection consider the accuracy as
the main factor to assess its quality, we have extracted
from the Pareto front the solution maximising the first
objective.

4 Experimental Setup

This section describes the set of Android apps we have
collected and processed to train and test the model, as
well as the parameterisation of the classification algo-
rithm and the preprocessing operations performed.

4.1 Dataset

The assessment of the classification model described
above requires a set of Android applications labelled as
benign and malicious. We have collected 9,430 benign

Algorithm 1 Candidate Prediction Procedure

Require: Chromosome, MalModel, BenModel, Candidate
Ensure: Prediction: Malware or Benign-ware
1: CountMal = 0, CountBen = 0
2: for i = 0 to len(Chromosome) do
3: if Chromosome[i] == 1 && i <= len(MalModel) then
4: imports = getImp(MalModel,i)
5: if imports ✓ candidate then
6: CountMal++
7: end if
8: else if Chromosome[i] == 1 && i > len(MalModel)

then
9: imports = getImp(BenModel,i�len(MalModel))
10: if imports ✓ candidate then
11: CountBen++
12: end if
13: end if
14: end for
15: if CountBen < CountMal then
16: return “Malware”
17: end if
18: return “Benign-ware”

and 9,383 malign Android applications. The first ones
have been extracted from an on-line app store called
Aptoide3. On the other hand, the malign applications
have been obtained from VirusShare4, an on-line portal
that provides malicious applications for research pur-
poses. While the applications retrieved from VirusShare
can be considered certainly as malware, since they have
been analysed via the VirusTotal5 website, the nature
of the apks downloaded from Aptoide is unknown. For
this reason, the original obtained from this website was
also analysed with VirusTotal, discarding those appli-
cations that tested positive for malware (they did not
joint the malware set due to the lack of certainty of
their categorisation). The data have been divided into
two equally-sized partitions with a balanced number
of benign and malicious applications, one dedicated to
train the algorithm and the other to test it.

4.2 Genetic Algorithm Parameterisation

The selection of the right parameters for the execution
of the genetic algorithm was performed using a Grid

3 http://www.aptoide.com/
4 https://www.virusshare.com/
5 https://www.virustotal.com
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Fig. 3: Accuracy and false positives ratios depending on the number of clusters

Search, testing di↵erent configurations in order to find
the most appropriate settings. The population size was
fixed to 500 individuals with a range of 10 to 1000, while
the maximum number of generations was set at 200 after
testing that it was enough to ensure the convergence.
Regarding the crossover and mutation probabilities, they
were fixed 20% and 10% respectively, with a range of
10% to 40%, and the elitism was defined to take the best
10 individuals of each generation with a range between
5 to 50.

Due to the random nature of genetic algorithms, for
each di↵erent configuration, the genetic algorithm run
50 times. Regarding the possible configurations to test,
two parameters were identified as a↵ecting considerably
the results: the number of clusters and the number of
import terms used. While the first one is a parameter of
the clustering algorithm, the number of terms depends
on a function of the TM package for R, which is in
charge of removing sparse terms. A value ranging from
0 to 1 determines the permissiveness with these sparse
terms, where a high value is related to the use of more
sparse terms. We have executed di↵erent configurations
based on the parameter of the remove sparse function
ranging between 0,980 and 0,995. Higher values were

impossible to test, due to the large amount of time
and memory needed. Table 1 shows the final size of the
datasets after applying di↵erent values to these function.
The second parameter having large e↵ects on the results
is the number of clusters. We have executed first the
k-means algorithm with di↵erent numbers between 20
and 180 clusters, pursuing a high level of granularity
but without losing generalisation ability.

5 Experimentation

The large number of applications collected and anal-
ysed allows to make a detailed assessment of the algo-
rithm proposed. This section describes the evaluation
performed with this dataset, explaining the results ob-
tained, providing an evaluation of di↵erent parameter
configurations with the aim of choosing the most appro-
priate, describing a comparison against other malware
detection tools to, finally, discuss about the quality and
relevance of the results.
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Sparse No. Import terms Best setting
parameter Malware dataset Benign-ware dataset Accuracy rate False positives rate Number of clusters

0.995 5,938 18,283 94.26% 2.35% 120
0.990 3,132 14,003 94.60% 2.12% 120
0.985 1.873 11,861 93.90% 2.44% 140
0.980 1,484 9,222 93.90% 2.16% 180

Table 1: Malware and benign-ware datasets sizes and results achieved depending on the parameter of remove sparse
function

5.1 Parameters configuration and selection

Evaluating a method dependent on di↵erent parameter
involves testing each possible configuration in order to
select the most appropriate with a view to maximise
the results. These configurations mainly depend on two
parameters: the number of clusters in which the import
terms of each label are grouped and the argument of
the function in charge of removing sparse terms. Both
number have an import influence in the solutions, af-
fecting considerably its complexity. An increment in the
number of clusters is related to a more complex classifi-
cation model, since the individual’s encoding becomes
larger at the same time that the average cluster size
decreases, focusing on specific import terms instead of
using general behavioural patterns. In the other side,
the sparse parameter is completely correlated with the
number of import terms used. Using the lowest possible
quantity, taking into account the most important ones,
will help to generate classification model more robust
against fresh data.

Each possible value assignment to these two parame-
ters, based on the ranges detailed in the previous section,
was executed 50 times. Figure 3 shows the average ac-
curacy and false positives rates for these executions
depending on the parameter of the sparse function and
the number of clusters. This last value plays an essential
role in the achievement of the best solutions, both in
terms of accuracy and false positives rates. Both mea-
sures improve considerably when this value is increased
from the lowest value to around 80 clusters. At that
point, the quality of the individuals is stabilised and few
changes are reported. This suggests that both the mal-
ware space and the benign-ware space of samples need
at least a division into 80 regions to separate representa-
tive groups of calls of a particular nature. At the same
time, from 140 clusters onward, neither the accuracy
nor the false positives ratio improve. This means that
is not necessary to create a further subdivision of the
space, which is not advisable if it is pursued a model
with a high generalisation ability.

Regarding the number of imports terms used, defined
by the argument of the remove sparse function, the
results remained largely unchanged for all the values

tested. Discuss the relevance of this fact requires first
to measure the e↵ects of the parameter chosen in the
number of terms. Table 1 the resulting number of import
terms both in the malware dataset and in the benign one.
Decreasing the parameter from 0.995 to 0.980 results
in a reduction of the import sets related to malware
by a factor of 4, while in the case of benign-ware, the
list of imports is reduced by half. Going forward, Fig. 3
shows that, despite the drastic reduction of import terms,
there is hardly any di↵erence in the results, meaning
that there is a subset of terms of the whole dataset able
to distinguish between samples with high precision.

Table 1 also shows the best results achieved depend-
ing on the sparse parameter used for the best number
of clusters setting found. Each value is obtained from
the average of the 50 executions performed, then, the
number of cluster which maximises the accuracy in the
training dataset is used to show the considered as best
solution for each sparse parameter value. The best result,
both in terms of accuracy and false positives rate, is
achieved using 0.990 as argument of the remove sparse
function and grouping the import terms of both labels
in 120 clusters, which arises a 94.60% accuracy with
2.12% of false positives rate.

5.2 Comparison against Anti-virus engines

With the objective of assessing and comparing these
results, we have analysed a random set of 10,000 benign
and malicious applications (the same size as the used in
the test dataset) with the di↵erent Anti-Virus engines
provided by VirusTotal. Table 2 summarises the best
results obtained with these Anti-Virus in comparison to
MOCDroid. The best engine value arises a 83% accuracy,
which is far from the number obtained with the method
here described, more than 10% below. This large gap
can be produced by the e↵ects of obfuscation techniques,
which these engines are not able to successfully tackle,
and also due to the use of non su�ciently discriminatory
characteristics. The use of third-party calls allows to
successfully neutralise the changes produced by these
concealment strategies, focusing on highly representative
and inmutable features. Thus, the selection of specific
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Malware detection engine Accuracy
MOCDroid 94.60%

Cyren 83.03%
Ikarus 82.72%
VIPRE 82.53%
McAfee 82.45%
AVG 82.36%

AVware 81.95%
ESET NOD32 81.81%
CAT QuickHeal 81.79%

AegisLab 81.74%
NANO Antivirus 81.15%

Table 2: Comparison of results between MOCDroid and
the top ten accuracy results for 10 di↵erent commercial
engines applied by VirusTotal

groups of import terms helps to reveal behaviours associ-
ated mainly to a particular type of applications, whether
malware or benign-ware.

5.3 Discussion

As the results have stated, using third-party calls by the
declaration of import terms in the application allows
to arise high accuracy and low false positives rates. In
comparison with 10 commercial Anti-virus, the method
here presented is improves the results by more than
10 percentage points. The impossibility of obfuscating
third-party calls make it possible to avoid the e↵ects
of the concealment strategies that hinder the malicious
code in order to be detected by a static analysis.

The approach followed in this research allows to
make a series of conclusions based on the di↵erent re-
sults obtained. Recalling the plots shown in Fig. 3, re-
ducing remarkably the number of import terms produces
very few changes in the two quality measurements used.
This fact can be understood by assuming that the most
important di↵erences between benign and malicious ap-
plications follow high-level behavioural patterns, instead
of focusing in particular details. This is also happening
with the number of clusters, which can be fixed to a
maximum of 140 groups to arise the best results, which
can be considered as the number of groups in which
import terms related to malware or benign-ware have to
be grouped in order to distinguish relevant di↵erences.

6 Conclusions

Although obfuscation techniques represent a barrier to
detect the nature of a program, it is still possible to arise
distinctive characteristics which allow to di↵erentiate
behaviours between malicious and benign applications.
In this research we have developed a method which

uses the 3rd party API calls included in each Java file,
which cannot be obfuscated, to create an accurate clas-
sification model, named MOCDroid, to disclose sets
of import terms typically associated to malware and
benign-ware. The core of this method, a multi-objective
genetic algorithm, is able to successfully select the most
representative groups of these two types of applications,
pursuing high accuracy rates and minimising the num-
ber of false positives. Our future work involves taking
into account more characteristics and the use of other
clustering methods with the ultimate aim of improving
the accuracy and face big data approaches [5].
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6. Gema Bello-Orgaz, Héctor D Menéndez, and David Ca-
macho. Adaptive k-means algorithm for overlapped
graph clustering. International journal of neural sys-
tems, 22(05):1250018, 2012.

7. Christian Collberg, Clark Thomborson, and Douglas Low.
A taxonomy of obfuscating transformations. Technical
report, Department of Computer Science, The University
of Auckland, New Zealand, 1997.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.researchgate.net/publication/288267309_Permission-Based_Android_Malware_Detection?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/288267309_Permission-Based_Android_Malware_Detection?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/288267309_Permission-Based_Android_Malware_Detection?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/281412960_Social_Big_Data_Recent_achievements_and_new_challenges?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/281412960_Social_Big_Data_Recent_achievements_and_new_challenges?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/281412960_Social_Big_Data_Recent_achievements_and_new_challenges?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/281412960_Social_Big_Data_Recent_achievements_and_new_challenges?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/278705505_DroidAPIMiner_Mining_API-Level_Features_for_Robust_Malware_Detection_in_Android?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/278705505_DroidAPIMiner_Mining_API-Level_Features_for_Robust_Malware_Detection_in_Android?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/278705505_DroidAPIMiner_Mining_API-Level_Features_for_Robust_Malware_Detection_in_Android?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/278705505_DroidAPIMiner_Mining_API-Level_Features_for_Robust_Malware_Detection_in_Android?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/264785935_DREBIN_Effective_and_Explainable_Detection_of_Android_Malware_in_Your_Pocket?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/264785935_DREBIN_Effective_and_Explainable_Detection_of_Android_Malware_in_Your_Pocket?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/264785935_DREBIN_Effective_and_Explainable_Detection_of_Android_Malware_in_Your_Pocket?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/264785935_DREBIN_Effective_and_Explainable_Detection_of_Android_Malware_in_Your_Pocket?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/264785935_DREBIN_Effective_and_Explainable_Detection_of_Android_Malware_in_Your_Pocket?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/230731592_Adaptive_K-means_algorithm_for_overlapped_graph_clustering?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/230731592_Adaptive_K-means_algorithm_for_overlapped_graph_clustering?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/230731592_Adaptive_K-means_algorithm_for_overlapped_graph_clustering?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/230731592_Adaptive_K-means_algorithm_for_overlapped_graph_clustering?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/220687984_Computer_Viruses_and_Malware?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/220687984_Computer_Viruses_and_Malware?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/37987523_A_Taxonomy_of_Obfuscating_Transformations?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/37987523_A_Taxonomy_of_Obfuscating_Transformations?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/37987523_A_Taxonomy_of_Obfuscating_Transformations?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==
https://www.researchgate.net/publication/37987523_A_Taxonomy_of_Obfuscating_Transformations?el=1_x_8&enrichId=rgreq-a6031a42e30fee1506e2c04094a8a345-XXX&enrichSource=Y292ZXJQYWdlOzMwNTY0MzYxNjtBUzozOTAyMzQ2NDc4NzU1ODVAMTQ3MDA1MDU5ODUyNA==


10 Alejandro Mart́ın et al.

8. Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and
Andreas Zeller. Checking app behavior against app de-
scriptions. In Proceedings of the 36th International Con-
ference on Software Engineering, pages 1025–1035. ACM,
2014.

9. Nwokedi Idika and Aditya P Mathur. A survey of malware
detection techniques. Purdue University, 48, 2007.

10. Takamasa Isohara, Keisuke Takemori, and Ayumu Kub-
ota. Kernel-based behavior analysis for android malware
detection. In Computational Intelligence and Security
(CIS), 2011 Seventh International Conference on, pages
1011–1015. IEEE, 2011.

11. Byeongho Kang, BooJoong Kang, Jungtae Kim, and
Eul Gyu Im. Android malware classification method:
Dalvik bytecode frequency analysis. In Proceedings of
the 2013 Research in Adaptive and Convergent Systems,
RACS ’13, pages 349–350, New York, NY, USA, 2013.
ACM.

12. Daniel T Larose. Discovering knowledge in data: an
introduction to data mining. John Wiley & Sons, 2014.
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