
J Heuristics
DOI 10.1007/s10732-017-9338-9

A new lot sizing and scheduling heuristic for multi-site
biopharmaceutical production

Folarin B. Oyebolu1 · Jeroen van Lidth de Jeude2 ·
Cyrus Siganporia3 · Suzanne S. Farid3 ·
Richard Allmendinger4 · Juergen Branke1

Received: 23 May 2016 / Revised: 1 March 2017 / Accepted: 9 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract Biopharmaceutical manufacturing requires high investments and long-
term production planning. For large biopharmaceutical companies, planning typically
involvesmultiple products and several production facilities. Production is usually done
in batches with a substantial set-up cost and time for switching between products. The
goal is to satisfy demand while minimising manufacturing, set-up and inventory costs.
The resulting production planning problem is thus a variant of the capacitated lot-
sizing and scheduling problem, and a complex combinatorial optimisation problem.
Inspired by genetic algorithm approaches to job shop scheduling, this paper proposes
a tailored construction heuristic that schedules demands of multiple products sequen-
tially across several facilities to build a multi-year production plan (solution). The

B Juergen Branke
juergen.branke@wbs.ac.uk

Folarin B. Oyebolu
f.b.oyebolu@warwick.ac.uk

Jeroen van Lidth de Jeude
j.van-lidth-de-jeude@warwick.ac.uk

Cyrus Siganporia
c.siganporia@ucl.ac.uk

Suzanne S. Farid
s.farid@ucl.ac.uk

Richard Allmendinger
richard.allmendinger@manchester.ac.uk

1 Warwick Business School, University of Warwick, Coventry CV4 7AL, UK

2 Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK

3 Department of Biochemical Engineering, University College London, London WC1E 7JE, UK

4 Alliance Manchester Business School, University of Manchester, Manchester M13 9SS, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-017-9338-9&domain=pdf
http://orcid.org/0000-0002-4343-5878

F. B. Oyebolu et al.

sequence in which the construction heuristic schedules the different demands is opti-
mised by a genetic algorithm. We demonstrate the effectiveness of the approach on a
biopharmaceutical lot sizing problem and compare it with a mathematical program-
ming model from the literature. We show that the genetic algorithm can outperform
the mathematical programming model for certain scenarios because the discretisation
of time in mathematical programming artificially restricts the solution space.

Keywords Evolutionary algorithm · Heuristics · Scheduling · Biopharmaceutical
manufacture · Capacity planning · Construction heuristic

1 Introduction

The production of biopharmaceuticals is an expensive and time-consuming endeavour.
The average cost to bring a new biopharmaceutical to market is estimated at $1.2–1.8
billion given the high attrition rates (DiMasi andGrabowski 2007; Paul et al. 2010), and
building large multiproduct manufacturing facilities can take 4–5 years to complete
and costs $40–650 million (Farid 2007). Given the high cost and long timeframes,
biopharmaceutical companies have to plan ahead over a long time horizon, based
on a demand forecast for each time period. It is important that production schedules
are optimised to make best use of the available production capacity, and even small
improvements can have a substantial impact on a company’s profit.

Biopharmaceutical production is typically done in a batch-wise manner, with sub-
stantial set-up cost and time for switching between products, and a relatively high
storage cost. The resulting problem can thus be considered as a variant of the lot-
sizing and scheduling problem, where a “lot” (or “campaign” as it is often called in
this industry) is composed of a set of batches. However, biopharmaceutical production
has a number of characteristics that make it challenging to optimise. To spread risk,
companies usually have a portfolio of various products, andmanufacturing takes place
across a network of different facilities, including in-house facilities and outsourced
(contract) manufacturing. The facilities’ capabilities usually vary with respect to the
set of products they can produce, the production rates for different products, batch pro-
duction costs and batch production times. Furthermore, products have a finite shelf-life
and cannot be stored for very long. Overall, biopharmaceutical production constitutes
a complex combinatorial optimisation problem.

The current literature on capacity planning in the biopharmaceutical sector ismostly
based on mathematical programming models such as, for example, in Lakhdar et al.
(2007). Because of the simplifications required tomodel the problem formixed integer
linear programming, the solution potentially suffers from an artificial restriction of the
search space. Thegoal of this paper is therefore to develop amoreflexiblemetaheuristic
approach for the biopharmaceutical lot sizing and scheduling problem, and contrast
it with the proposed mixed-integer programming approach as described by Lakhdar
et al. (2007).

To this end, we design an genetic algorithm (GA) with an embedded problem-
specific construction heuristic. The GA uses an indirect permutation encoding, i.e.,
the specifically developed construction heuristic schedules demands sequentially in

123

A new lot sizing and scheduling heuristic for multi-site...

the order prescribed by the chromosome. As we demonstrate, the use of an GA allows
for a more flexible and realistic model of the real-life problem and avoids some of the
simplifications necessitated by available mathematical programming models.

The paper makes three contributions. First, it proposes a new heuristic to solve
the multi-site biopharmaceutical lot sizing and scheduling problem that outperforms
previously published approaches on a close to real-world case study. Second, it demon-
strates that the combination of genetic algorithm and construction heuristic that has
been very successful in the scheduling domain can be successfully transferred to tackle
complex lot sizing problems. Third, it provides an example for the fact that an exact
method based on typical simplifications (in this case fixed time periods) can be worse
than a heuristic that does not need to make such simplifications.

The paper is structured as follows. First we provide a brief overview of relatedwork.
Section 3 describes in more detail the case study used to evaluate our approach. The
GA and the associated construction heuristic are explained in Sect. 4. The results of
the empirical evaluation, including a comparison with anMILP approach, are reported
in Sect. 5. The paper concludes with a summary and an outlook on future work.

2 Related work

Production planning aims to make best use of production resources in order to sat-
isfy production goals or demand over a planning horizon. It is omnipresent in any
manufacturing environment. One particular area in production planning is lot siz-
ing and scheduling, which mostly focuses on the trade-off between set-up cost and
inventory cost. The basic lot sizing problem was introduced in 1958 by Wagner and
Whitin (1958), who considered the case of a single product with deterministic demand.
Since then, many different extensions have been considered, reflecting the different
environments in different industries. A particularly important extension is to include
capacity constraints, resulting in the “capacitated lot sizing problem” (CLSP). Good
overviews on the research in this area have been compiled, for example, by Drexl and
Kimms (1997), Karimi et al. (2003), and Jans and Degraeve (2008). Recently, Copil
et al. (2017) have proposed a classification system for simultaneous lot sizing and
scheduling problems.

Very often, CLSPs are modelled as linear or mixed-integer programming problems
and solved with software such as IBM’s CPLEX (Ramya et al. 2016; Dangelmaier
and Kaganova 2013; Walser et al. 1998). However, the CLSP is NP-hard (Bitran
and Yanasse 1982), and so there is a limit to the size and complexity of CLSPs that
can be tackled with exact mathematical programming methods. For larger and more
complex scenarios, various approaches based on meta-heuristics have been proposed.
Most of themeta-heuristic approaches use evolutionary algorithms (EAs)–particularly
GAs–but also tabu search or particle swarm optimisation have been used, see, e.g.,
Piperagkas et al. (2012), Jans and Degraeve (2007), and Goren et al. (2008). For a
bi-objective CLSP problem, Mehdizadeh et al. (2016) develop two multi-objective
meta-heuristic algorithms.

Literature on the capacity planningproblem inpharmaceutical or biopharmaceutical
industry represent complicated extensions to the CLSP, with multiple products and

123

F. B. Oyebolu et al.

facilities, product-specific manufacturing rates and costs, multi-stage processing, and
perishable products. They have applied primarily mathematical programming models
based on discrete time-periods which are solved using MILP solver software.

For example, Gatica et al. (2003) and Levis and Papageorgiou (2004) present a
mathematical programming approach for the capacity planning problem, but with a
focus on long-term planning and capacity investment decisions under clinical trials
uncertainty rather than scheduling.Within the context of the biopharmaceutical indus-
try, Lakhdar et al. (2005) developed a mixed-integer linear program for the planning
and scheduling of a multi-product biopharmaceutical manufacturing facility and later
extended it for use with a multi-facility model where multiple criteria were considered
using goal programming (Lakhdar et al. 2007). Siganporia et al. (2014) considered con-
tinuous perfusion processes in their planning model as well as variations of bioreactor
titres and demand. Each of these models is based on discrete time periods and allows
only one product to be manufactured in each time-period. In the case of Lakhdar et al.
(2007), where discrete 90 day periods are used, this means that at most four different
campaigns (lots) can be scheduled per year and facility. As a result, this effectively
artificially restricts the search space.

TheGA-based approaches to lot sizing can be broadly divided into approaches using
a direct representation or an indirect representation, where the former appears much
more often. In a direct representation, the sequence and lot sizes are directly encoded
in the chromosome. The main challenge with such an approach is that mutations and
crossovers can generate infeasible solutions, which is usually dealt with by discarding
those solutions or by special repair operators (Özdamar and Birbil 1998). Methods
with an indirect representation use a mapping function/heuristic to derive a production
plan from a solution’s chromosome. An indirect GA representation has been proposed
by Kimms (1999). In his paper, a two-dimensional matrix is used as chromosome,
with each entry representing a rule for selecting the set up state for a machine at
the end of a period (e.g., the item with maximum holding costs, minimum set up
cost, maximum depth, maximum number of predecessors). Thus, this approach can
be seen as a selection hyper-heuristic (Burke et al. 2013). To compute the fitness
value of a chromosome, a construction scheme is called, which constructs the solution
backwards, starting from the end of the planning horizon.

As noted, e.g., by a recent survey (Jans and Degraeve 2008), most meta-heuristics
developed for lot sizing are validated only on artificial test data, failing to demonstrate
that they can tackle the complexities of real-world problems. Another current research
gap is that the vast majority of work on lot sizing assumes that the problems are
deterministic, whereas in reality, demand and production rates are usually subject
to uncertainty. Integrating uncertainty will require novel approaches, and EAs have
already demonstrated some promise in dealing with such problems (Jin and Branke
2005).

A lot more work has been published on GAs for the job-shop scheduling problem
(JSP), and they typically use a permutation-based representation, and then apply a con-
struction heuristic to actually construct the schedule based on the permutation (Cheng
et al. 1996; Branke and Mattfeld 2005; Bierwirth and Mattfeld 1999). A typical con-
struction heuristic is the Giffler-Thompson algorithm (Giffler and Thompson 1960),
which generates active schedules by iteratively selecting the job with the highest pri-

123

A new lot sizing and scheduling heuristic for multi-site...

ority (lowest permutation index) from the set of eligible jobs, and then scheduling it at
the earliest possible time. However, this approach cannot be directly transferred to our
lot sizing problem, because (i) scheduling as early as possible would lead to excessive
storage costs and (ii) the existence of a heterogeneous set of alternative facilities.

Variations of construction heuristics have been used for various types of lot sizing
problems. For example, Ho et al. (2006) developed two construction heuristics for
the uncapacitated dynamic lot-sizing problem that are extensions of earlier heuris-
tics by Silver and Meal (1973), and show that they outperform six other construction
heuristics including the original Silver and Meal heuristic. James and Almada-Lobo
(2011) propose, along with other heuristics, a MILP-based ‘relax-and-fix’ construc-
tion heuristic for the parallel-machine capacitated lotsizing and scheduling problem
with sequence-dependent setups (CLSD-PM). This construction heuristic solves a
sequence of decomposed ‘subMILPs’ in order to construct an initial solution for the
various search algorithms it is coupled with. Ant Colony Optimisation (ACO) has also
been used for uncapacitated and capacitatedmulti-level problems (Pitakaso et al. 2007;
Almeder 2010). In both cases, ACO was used to determine production decisions from
top items to raw materials and a MILP solver is used to calculate the corresponding
production and inventory levels. Finally, Almada-Lobo et al. (2007) propose a five
step heuristic for finding good feasible solutions. Each step of the heuristic is either
a forward or backward pass (or a combination of both) through the schedule. Fur-
ther work uses this heuristic as an initial starting solution for meta-heuristic searches
(Almada-Lobo and James 2010).

It is interesting to note that the construction heuristics mentioned above operate
sequentially in either a forwards or backwards pass through the schedule, or a com-
bination thereof. Instead, the construction heuristic proposed here inserts jobs in an
order of importance determined by the GA and not necessarily in any chronological
order.

The construction heuristic we propose in this paper is therefore tailored to our
problem, and still allows us to use the permutation-based approach that is successful
in the job shop scheduling domain.

3 Industrial case study

To evaluate our proposed method, we use the biopharmaceutical industrial case study
presented by Lakhdar et al. (2007). This is anonymized real world data comprising
anticipatedmarket demand andmanufacturing facility characteristics. This benchmark
problem features multiple products to be produced on multiple facilities with different
efficiencies and costs, setup times, batch production, perishable inventory, and the
possibility to backlog demand.

The demand forecast comprises a time horizon of 15 years and 15 products (p1–
p15). The forecast indicates yearly market demands, assumed to be fulfilled at the end
of each year (Table 1)1. The demand can be scheduled across 10 facilities (i1–i10), but

1 Note that the product 1 demand for year 10 in Table 1 in Lakhdar et al. (2007) was 63, which is not
consistent with the general trend of the other years, so we changed it to 163.

123

F. B. Oyebolu et al.

Ta
bl
e
1

Pr
od

uc
td

em
an
d
fo
re
ca
st
fo
r
in
du

st
ri
al
ca
se

st
ud

y
(P
ro
du

ct
s
p1

–p
15

)
(k
g)

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

Y
8

Y
9

Y
10

Y
11

Y
12

Y
13

Y
14

Y
15

p1
21

32
18

28
61

10
4

15
3

15
6

16
4

16
3

16
1

16
2

16
2

16
3

16
5

p2
6

5
4

4
4

3
3

3
3

3
3

3
2

2
2

p3
12

43
38

5
22

52
97

13
2

13
3

13
5

13
7

11
8

10
9

10
0

90

p4
58

3
62

8
65

5
68

7
75

8
92

1
98

9
94

1
99

3
64

9
62

1
57

3
52

1
46

8
42

1

p5
12

12
11

10
9

7
6

5
4

3
2

2
2

2
3

p6
21

1
20

0
24

5
24

6
25

7
26

6
28

4
27

4
22

6
18

0
16

6
15

1
13

7
12

3
11

0

p7
4

5
5

7
6

5
8

9
8

9
7

7
6

5
5

p8
5

5
5

7
6

5
8

9
8

9
7

7
6

5
5

p9
15

15
15

13
12

9
8

6
5

4
3

3
2

2
2

p1
0

72
99

10
4

10
2

11
1

12
0

13
0

13
9

18
8

12
0

10
6

93
81

69
58

p1
1

55
2

61
5

69
9

73
7

74
3

73
3

68
4

57
2

51
8

47
1

42
4

38
1

34
2

30
7

27
4

p1
2

5
5

5
7

6
5

8
9

8
9

7
7

6
5

5

p1
3

21
1

25
2

29
0

29
8

28
6

21
6

16
9

15
3

15
0

14
5

11
0

10
0

93
84

10
2

p1
4

2
2

4
3

3
3

16
11

13
16

16
16

16
17

17

p1
5

4
4

5
6

16
11

24
32

37
40

41
42

42
43

44

123

A new lot sizing and scheduling heuristic for multi-site...

not all facilities can produce all 15 products. All facilities are assumed to be available
for the entire time horizon apart from facility 6 (i6) which is unavailable until Y2, and
facility 9 (i9) which is unavailable until Y11. Of the ten manufacturing facilities, i1,
i4, i6, and i9 are owned facilities while the rest are owned by contract manufacturing
organisations (CMO). Production rates (Table 2), manufacturing yields (Table 3) and
manufacturing costs (Table 4) are specified for all facility-product combinations (RMU
in the tables denotes relative monetary unit). The manufacturing yield determines how
many kilograms of a specific product are produced in a batch for a specific facility.
The manufacturing cost of a product is thus also dependent on the yield. Setup cost
and time are incurred when a facility is switching between products. For consecutive
batches of the same product, no setup time/cost is involved. There is the additional
requirement for setup if the facility has been idle for more than 90 days. This accounts
for the extra equipment preparation activities (cleaning, sterilisation, etc.) required
after prolonged idle time. There is also a restriction on the time a product may be
stored before it has to be thrown away, the so-called maximum shelf-life. In the case
that the demand cannot be fulfilled in time, it is backlogged, but there is a backlog
penalty for every unit that is not delivered on time. Also, backlogged demand decays
exponentially at a rate of 50% every three months. For example, if a demand of 100
kg cannot be delivered on time, 6 months later, only 25 kg could actually be sold, and
75 kg of the demand would have been lost, reducing the revenue correspondingly.

The case study assumes a fixed sales price, changeover cost, storage cost, and setup
time for all products (Table 5).2 The setup time includes the time of production of the
first batch. In addition, it is assumed that a month is 30 days and, subsequently, a year
is equal to 360 days.

The objective is to maximize the overall profit, calculated as total revenue minus
the cost for production, storage, setups and backlog penalties. Given a set of hetero-
geneous facilities with different manufacturing yields, manufacturing cost, and batch
production rates for different products, this takes into account maximizing the amount
of products sold, and minimizing the manufacturing cost, the storage cost, the setup
cost, and any backlog penalty.

Lakhdar et al. (2007) used mixed integer linear programming (MILP) to solve
this problem, and a full description of the mathematical programme formulation can
be found in the “Appendix”. The GA proposed in this paper is subject to the same
constraints, except that we do not restrict production on a particular facility to one
product per time period. This seemed to be an artificial restriction imposed only to
reduce the modelling complexity of the MILP.

4 Proposed genetic algorithm with construction heuristic

For job shop scheduling, many successful GAs use indirect encodings, with the GA
only searching the space of permutations of jobs. For evaluation, a schedule is con-

2 Note that the description by Lakhdar et al. (2007) had some inconsistencies in the units specified, so in
Table 5 we updated the units for setup cost, sales price, storage cost and backlog penalty to be consistent
with the other data.

123

F. B. Oyebolu et al.

Ta
bl
e
2

Pr
od

uc
tio

n
ra
te
s
of

fa
ci
lit
ie
s
(i
1–

i1
0)

fo
r
in
du

st
ri
al
ca
se

st
ud

y
(b
at
ch
/d
ay
)

p1
p2

p3
p4

p5
p6

p7
p8

p9
p1

0
p1

1
p1

2
p1

3
p1

4
p1

5

i1
0.
35

0.
39

0
0.
45

0
0.
29

0
0.
35

0.
25

0.
39

0.
41

0.
39

0
0.
12

0.
35

i2
0.
6

0
0

0.
61

0
0.
6

0
0.
6

0
0.
43

0.
56

0
0.
6

0.
6

0.
6

i3
0

0
0

0
0

0
0

0
0

0
0

0
0.
23

0
0

i4
0

0
0

0.
12

0
0

0
0

0
0

0
0

0
0

0

i5
0

0
0

0.
45

0
0

0
0.
45

0
0.
45

0.
45

0
0

0.
45

0.
45

i6
0

0
0

0.
45

0
0

0
0.
45

0
0.
45

0.
45

0
0

0.
45

0.
45

i7
0

0
0

0
0

0
0.
45

0
0

0.
45

0
0

0
0

0

i8
0

0
0.
58

0
0.
45

0
0

0
0

0
0

0
0

0
0

i9
0.
45

0
0

0.
45

0
0.
45

0
0

0
0.
45

0.
45

0
0

0.
45

0.
49

i1
0

0.
45

0.
45

0
0.
45

0
0.
45

0
0.
45

0.
45

0.
45

0.
49

0.
45

0.
45

0.
45

0.
45

123

A new lot sizing and scheduling heuristic for multi-site...

Table 3 Manufacturing yields of facilities for industrial case study (kg/batch)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 10 1 0 8 0 6 0 10 2 9 7 1 0 12 12

i2 9 0 0 8 0 6 0 9 0 8 10 0 10 12 11

i3 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0

i4 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 10 0 0 0 10 0 8 8 0 0 11 11

i6 0 0 0 12 0 0 0 10 0 8 17 0 0 17 14

i7 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0

i8 0 0 36 0 10 0 0 0 0 0 0 0 0 0 0

i9 10 0 0 12 0 5 0 0 0 8 16 0 0 12 13

i10 9 1 0 12 0 5 0 10 2 8 14 1 10 12 12

Table 4 Manufacturing costs of facilities for industrial case study (RMU/batch)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 1 1 0 10 0 3 0 1 1 1 3 1 0 1 1

i2 10 0 0 5 0 2 0 5 0 10 2 0 2 5 2

i3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

i4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

i5 0 0 0 20 0 0 0 20 0 20 20 0 0 5 20

i6 0 0 0 10 0 0 0 10 0 10 10 0 0 1 10

i7 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0

i8 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0

i9 10 0 0 10 0 10 0 0 0 10 8 0 0 1 10

i10 15 15 0 15 0 15 0 15 15 15 15 15 15 15 15

Table 5 Case study parameters Parameter Value Unit

Setup time 14 Days

Setup cost 2 RMU/changeover

Setup ‘expiration’ time 90 Days

Sales price 2.5 RMU/kg

Storage cost 0.01 RMU/(kg ×period)

Storage period 90 Days

Shelf life 2 Years

Production time per year 360 Days

Backlog decay 0.5 Per 3 months

Backlog penalty 0.1 RMU/kg

123

F. B. Oyebolu et al.

structed from the permutation by a construction heuristic, often Giffler-Thompson,
which iteratively selects the job with the highest priority (lowest permutation index)
from the set of eligible jobs, and then schedules it at the earliest possible time. This
avoids infeasible solutions and introduces a desirable heuristic bias, in the sense that
it excludes obviously bad solutions (such as schedules with big gaps) from the search
space. Inspired by this work, we also propose using an indirect, permutation-based
encoding combined with a construction heuristic. The construction heuristic, however,
had to be carefully designed for the problem at hand.

In the following two subsections, we first explain the proposed construction heuris-
tic, then provide details on the GA used.

4.1 Construction heuristic

The construction heuristic works on the basis of forecasted demands, in our case
demands for each year and product (see Table 1). Its task is to schedule demands (or
rather the production to satisfy the demand, but for simplicity we will continue calling
it demand) sequentially, in the order prescribed by the GA. When deciding at what
time and what facility to insert a new demand into the schedule, the heuristic explores
a number of different alternatives, and then greedily picks the alternative that creates
the smallest additional cost. In essence, the heuristic will consider each facility in
which the product may be produced. It then tries to schedule the entire demand in an
uninterrupted way as late as possible to minimise storage cost, and as late as possible
but adjacent to already scheduled demand of the same product to avoid setup cost and
time.

Only if these alternatives are not feasible for a facility, e.g., because a facility does
not have a sufficiently large gap in its schedule, further options are explored that
either move some of the already scheduled demands to make sufficient space for the
new demand, split the demand into two parts and schedule the second part in another
facility, or backlog the demand.

Figure 1 provides a simple example based on just two facilities and four products,
while Algorithm 1 lays out brief pseudocode of the construction heuristic. The six
alternatives considered shall now be explained in detail.

(I) Schedule as late as possible The first alternative considered is to schedule the
entire demand as late as possible but before the due date, as one uninterrupted
block, whichminimizes storage cost at this facility. In the example, this is possible
for Facility 1, see Fig. 1 (I), but not for Facility 2, since there is not sufficient
uninterrupted capacity available to schedule the entire demand.

(II) Schedule next to previous demand To avoid setup times and setup costs, it may be
beneficial to schedule a demand adjacent to the same product already scheduled.
The heuristic picks the latest time slot before the due date that allows to link to
a previously-scheduled demand of the same product, and has sufficient available
capacity to schedule the entire demand–see Fig. 1 item (II). Again, this is only
possible on Facility 1, as Facility 2 does not have sufficient uninterrupted capacity.
Note that due to the avoided setup time, the overall time required to produce the
demand is smaller.

123

A new lot sizing and scheduling heuristic for multi-site...

Product 1

Product 2

Product 3

Product 4

Y1 Y2 Y3 Y4

Facility 1

Facility 2

Demand
due end of
Year 3 to be
scheduled:

Current Schedule

deludehcsylsuoiverpottnecajdaeludehcS:)II(elbissopsaetalsaeludehcS:)I(
demand of the same product

(III): Schedule by shifting other demands to left (IV): Schedule by splitting over two facilities

(V): Schedule later than due date by backlogging
and apply a penalty to the demand

(VI): Split over two facilities and schedule the first
part late by backlogging

Facility 2

Facility 2

Facility 2 Facility 2

Facility 2

Facility 2

Facility 1 Facility 1

Facility 1

Facility 1

Fig. 1 Visualisation of construction heuristic, based on a simple example with two facilities and four
demands. Items (I)—(VI) show the alternatives the heuristic considers when identifying the most profitable
place to insert a new demand into the schedule. The rectangle representing a demand includes the setup time
(so length varies depending on where the new demand is inserted). Note that just using (I) or (II), feasible
options are found on Facility 1 but not on Facility 2. Therefore the heuristic will terminate its search on
Facility 1 but continue on Facility 2 using (III), (IV), (V), and (VI)

If, in a particular facility, none of the above two alternative insertion attempts
resulted in a feasible solution, the following options are explored. In particular, it is
attempted to move already scheduled demands, to split a demand, and to backlog a
demand.

(III) Move previously scheduled demands Since there was not a sufficiently long gap
in the current schedule to allocate the entire production for the new demand, one
possibility to create a feasible schedule may be to shift previously-scheduled
demands to an earlier time to make space for the new demand. Thereby, the
heuristic identifies the latest gap in the considered facility before the due date.
All conflicting scheduled demands before this gap are shifted backward in time
(towards the start of the planning horizon), without changing the order, and just
enough to make space for the new demand. This can be seen in Fig. 1 item (III)
for Facility 2, where 4 previously scheduled demands had to be left-shifted to
make space for the new demand.

(IV) Split demand Another option to fit the demand may be to split the new demand.
In this alternative, the heuristic will again consider the latest gap before the due
date, and use all available consecutive capacity. Then, it will attempt to schedule
the rest of the demand at each of the other facilities, but only considering options
(I), (II), and (V) (which is described below). An example is provided in Fig. 1

123

F. B. Oyebolu et al.

Algorithm 1 Pseudocode of the construction heuristic.
procedure Construction Heuristic(job J)

Determine possible time window for J ensuring batches finish before due date
but do not expire before due date
for each facility i do

Gi1 = latest gap that can fit J � (I)
Gi2 = latest gap that fits J and links to job of same product � (II)
if Gi1 + Gi2 == {} then

Find latest gap that can fit at least one batch, Gi3
Split J into two parts r1 and r2 such that r1 is largest size that can fit in Gi3
Gi3 = Gi3+ Second Facility Search(i,Gi3, r2) � (IV)
Find latest gap
Attempt to enlarge gap by left-shifting already scheduled jobs without violating
shelf-life dependencies, Gi4 � (III)
Gi5 = the first gap past or straddling due date, that is big enough for
penalized job, J ′ � (V)
Find earliest gap past or straddling due date that fits at least one batch, Gi6
Split J ′ into two parts r ′

1 and r ′
2 such that r ′

1 is largest size that can fit in Gi6
Gi6 = Gi6+ Second Facility Search(i,Gi6, r

′
2) � (VI)

end if
end for
Evaluate overall cost for each facility and gap, and pick the one with minimal cost,
min Cost(Gi j) ∀ i, j � Construct and add to schedule

end procedure

procedure Second Facility Search(facility i , gap G, remainder of job R)
for each facility k �= i do � The remaining facilities

Fk1 = latest gap that can fit R
Fk2 = latest gap that fits R and links to job of same product
if Fk1 + Fk2 == {} then

Fk3 = the first gap past or straddling due date, that is big enough for
penalized remainder of job, R′

end if
end for
Evaluate overall costs, Cost(Fkj) ∀ k, j , and return cheapest option

end procedure

item (IV), where only a small fraction of the demand can be scheduled at Facility
2, and the remainder is then moved to Facility 1. Note that splitting the demand
may cause an additional setup time and setup cost. A demand can only be split
into two i.e., a demand cannot be split more than once.

(V) Backlog If the facilities are really busy, it may be best (or the only feasible option)
to backlog the demand. That is to say that the time slot allocated to produce the
material to meet the demand falls partly or wholly later than the due date for the
demand. As described in the case study, this will result in a monetary penalty
and part of the demand being lost, as is reflected in Fig. 1 (V) by the smaller
rectangle for the scheduled demand). In order to reduce the magnitude of the
penalty, the heuristic will schedule the demand as early as possible in a gap that
either straddles, or is later than, the due date. An example is provided in Fig. 1
item (V).

(VI) Backlog and split As a kind of last resort, with this alternative, the heuristic will
combine steps (IV) and (V). As in (IV), the demand is split, but rather than using

123

A new lot sizing and scheduling heuristic for multi-site...

the latest gap before the due date, the first part of the demand is scheduled in the
earliest gap after the due date. The remaining portion of the demand is attempted
again to be scheduled in all other facilities, but only using options (I), (II) or (V).
This is illustrated in Fig. 1 item (VI).

The above alternatives will be evaluated for all the facilities that are capable of
producing the product. Then, the demand is inserted into the schedule according to
the most profitable alternative examined, and the algorithm moves on to schedule the
next demand.

Overall, if there are n facilities, in the worst case the heuristic considers 6n2 − 2n
alternatives: (n) alternatives for each of the options (I), (II), (III) and (V), and then
3n(n−1) alternatives each for option (IV) and option (VI), due to different possibilities
in scheduling the remaining part of a demand in case of a split. This means that in
the worst case the complexity of the construction heuristic is O(mn2), where m is the
number of demands and n the number of facilities. In practice, however, as we will
show later, in the majority of cases, only options (I) and (II) are explored per facility.

Note that batch production means that unless the demand is exactly equal to an
integer multiple of the batch size (which itself is different for different facilities) it
is not possible to produce exactly the required demand. In such cases, the number
of produced batches is always rounded up to the minimal integer number of batches
necessary to fulfill the demand. The amount overproduced in such a case is put in
storage, possibly to be used to (partly) fulfill future demand. Before going through the
steps above to insert a demand into the schedule, the construction heuristic will always
check whether the product is in the storage, and try to partially fulfill the demand from
storage. The cost associated with this is storage cost only, as manufacturing costs are
invoked at the time of production, i.e., when a previous scheduled demand produced
that overcapacity. Products left in storage that the heuristic can not use in later steps
are considered lost and have no value.

4.2 Genetic algorithm

The quality of the solution produced by the above construction heuristic is to some
extent dependent on the order inwhich the demands are inserted into the schedule since
available production capacity is more restricted the later a demand is considered. By
giving priority to certain demands mainly three situations can be created.

1. Demands of the same product that should be ideally scheduled consecutively to
avoid setup costs, can be assigned similar priorities, making it very likely that the
construction heuristic will link them together.

2. Demands that are best scheduled just before the due date to save storage cost can
be given a high priority. This will lead to the construction heuristic scheduling
these demands early on, at a time where still a lot of capacity is available, and the
cheapest option just before the due date would be selected.

3. Demands that benefit most from a highly utilised facility (e.g., because all other
facilities are much more expensive), can also be given high priority, which will
lead to early scheduling when this highly demanded facility is still available.

123

F. B. Oyebolu et al.

Table 6 Profit performance for
base case (in RMU) ± SD for
three different population sizes
and mutation rates

Population size Mutation rate

0.01 0.02 0.03

20 66612 ± 0.9 66601 ± 1.0 66594 ± 0.9

30 66613 ± 0.8 66604 ± 0.9 66593 ± 0.9

60 66612 ± 0.8 66603 ± 0.8 66592 ± 0.8

Optimising this order is left to the GA, which was implemented in Java using the
ECJ library (Luke et al. 2014). It uses a permutation representation of all the demands
to be scheduled, i.e., 225 in the industrial case study used here (the number of elements
in Table 1). Specifically, each demand is given a unique ID number (from 1 to 225),
and the chromosome is a permutation of these numbers. The ordering of the numbers
on the chromosome determines the order bywhich the construction heuristic processes
the respective demands (from first to last position) and thus influences the resulting
schedule.

Originally, we initialised individuals randomly, but then realised that better solu-
tions are produced if demands from a single year are grouped together on the
chromosome. Unless stated otherwise, the results in this paper are thus based on
runs where 50% of the population is initialised randomly, whereas the other 50% only
randomise the sequence of demands from the same year, but maintain the sequence
of years (i.e., all demands of a particular year appear in the permutation before the
demands of later years). For fitness evaluation, the GA calls the construction heuris-
tic described in Sect. 4.1 which builds a schedule by inserting demands iteratively
in the order prescribed by the solution’s chromosome. The actual fitness is then the
overall profit of the resulting schedule, i.e., revenue minus storage, production, setup
cost and backlog penalty. This objective function is defined mathematically in the
“Appendix”. We did not spend much effort on tuning parameters to this problem, but
experiments with different population sizes and mutation rates show that results are
rather insensitive to the parameter settings (see Table 6). For the rest of the paper,
we used a population size of 30, generational reproduction with elite of 6, and fitness
proportional selection with stochastic universal sampling. For crossover, we used the
Precedence Preserving Crossover (PPX) proposed by Bierwirth et al. (1996) which
ensures that if a demand i is before a demand j in both individuals, this will also be
true in the offspring. As the mutation operator we used shift mutation, which iterates
through every element of the permutation and, with probability pm = 0.02, removes
a demand and re-inserts it at a new random position. The algorithm is run for 1500
generations, and all results are based on averages over 50 runs.

5 Empirical evaluation

5.1 Comparison with mathematical programming

We ran our algorithm on the case study described in Sect. 3, and results for this are
reported in Table 7 as “standard case/GA”. As it turns out, the case study has ample

123

A new lot sizing and scheduling heuristic for multi-site...

Table 7 Profit, customer service level (CSL), and other characteristics for GA and MILP

“Standard case” 2× Demand 3× Demand

GA MILP GA MILP GA MILP

Revenue 74,533 74,490.9 148,952
± 18.3

148,389.8 222,530
± 89.8

221,603

Manufacturing
costs

7274
± 0.69

7452 20,367
± 25.12

20,541 42,427
± 83.7

40,346

Storage costs 337± 0.9 447.4 862 ± 4.8 952.8 1698
± 11.7

1559.9

Setup costs 318 ± 0.9 272 330 ± 1.20 274 342 ± 1.56 276

Backlog
penalties

0 ± 0.0 3.3 9 ± 1.5 53.4 88 ± 7.5 156.7

Profit 66,604
± 0.9

66,316 127,385
± 11.0

126,568.7 177,975
± 52.6

179,265

CSL 100% 99.9% 99.9% ±
0.01%

99.5% 99.5%
± 0.04%

99.1%

Time (s) 105.1 600.5 184.3 600.4 269.5 600.4

Optimality gap – 0.25% – 0.64% – 0.92%

For the GA, mean ± SD are listed, whereas MILP is a deterministic method and was only run once. Best
mean is highlighted in bold–where the difference is not significant both are highlighted. GA timing values
are the average time elapsed for each of the 50 runs (i.e., the total runtime of 50 runs divided by 50)

production capacity, which is due to modelling the option of outsourcing production
at higher cost as additional facilities. To see how our algorithm would perform also in
a more loaded scenario, we also tested variations of the case study where we increased
the demand in each year by a factor of 2 or 3, and the results of these experiments are
reported in Table 7 as well.

To judge the performance of our proposed algorithm, we compare it with a mixed
integer linear programming (MILP) implementation as described by Lakhdar et al.
(2007) and replicated in the “Appendix”. We re-implemented the approach and com-
pared the results of the GA with the results we obtained with our mathematical
programming implementation. This ensures that the solutions are generated with
exactly the same assumptions and data. However, there is one important difference
that deserves discussion. The MILP model has variables that specify how much is
produced for each facility, product and time period. It thus requires the problem to be
broken down into discrete time periods, and it allows for at most one product to be
produced in a particular facility and time period. The choice of the length of a time
period is somewhat arbitrary, but has huge implications. If the time period is chosen
very large, then most demands would require only a fraction of a time period to be
produced, the facility would be idle in the remaining part of the time period, leading
to poor solutions. On the other hand, if the length of a time period is chosen to be
rather short, because the number of batches to be produced is integer, often a fraction
of the time period remains unused (e.g., if a time period is 5 days, and producing a
batch takes 3 days, only one batch can be produced in each time period and 2 days in
each time period remain unused–up to the point where a time period is too short for

123

F. B. Oyebolu et al.

even one batch and there is no feasible solution). Furthermore, reducing the length of
the time period increases the number of variables and constraints quite significantly,
with corresponding drastic implications on running time. After some experimenting,
we concluded that the 90 day period used by Lakhdar et al. (2007) indeed performs
well, and all our results are based on this time granularity.

Different from the MILP model, our GA can work with arbitrary time periods, and
even continuous time, without any implications on running time. In our implementa-
tion, we chose to use days as the smallest time unit. This allows us to model reality
more closely than themathematical programming implementation. As a result, the GA
sometimes is able to produce solutions with a higher profit than the MILP approach,
even if MILP is run to optimality. Please note that we do not claim that the MILP
implementation by Lakhdar et al. (2007) is the best possible, or that it is not possible
to design an MILP formulation that circumvents or at least reduces the impact of the
time period length. However, theMILPmodel is the only onewe found in the literature
for this problem, and we do believe that one of the advantages of GAs is their greater
flexibility in modelling the real world, and that solving a problem heuristically that is
close to reality can sometimes work better than a model further from reality but solved
to optimality.

Results from the MILP model and the GA are compared in Table 7. As can be seen,
in the standard case as taken from Lakhdar et al. (2007), the GA solution has lower
manufacturing costs, i.e., utilises better the low-cost facilities, and lower storage costs.
It also manages to satisfy all the demand (customer service level of 100%), whereas
the MILP model chooses to backlog some of the demand. This is because the GA tries
to satisfy all the demand as first priority and only backlogs if there is no other feasible
option. TheMILP, however, has an explicit trade-off between backlog and other costs,
and backlogs if the resulting solution has a higher profit. On the other hand, the setup
costs of the GA solution are higher. Overall, the profit generated by the GA solution
is consistently higher, and by more than the 0.25% optimality gap, i.e. the difference
between the best solution found and the upper bound determined by the MILP solver.
This is possible because MILP, due to its imposed time granularity, has an artificially
restricted search space. It can switch less often between products, resulting in lower
setup cost and higher storage cost. Also, it sometimes wastes part of a time period,
which may mean the need to use occasionally more expensive facilities, resulting
in higher manufacturing costs. These differences can be seen also by comparing the
Gantt charts of the optimal solutions found by theMILP and theGAwhich are depicted
in Fig. 2. The Gantt chart of the MILP solution generally shows shorter campaigns
(sequences of batches of the same product), and, especially visible on facility i4, small
gaps between production in different time periods, simply because the time period (of
90 days) is not equivalent to a duration spanned by a multiple of batches for this
product in this facility. The schedule optimised by the GA has longer un-interrupted
idle time, which may be advantageous if a new product is introduced to the facility or
if a third party is seeking to rent and use production capacity.

For the scenario with twice the demand, the conclusions are similar to the base
case. However, for three times the demand, it seems backlogging becomes crucial,
and the MILP approach seems better in doing that. While backlogging reduces the
products sold due to lost demand and thus reduces revenue, the savings that can be

123

A new lot sizing and scheduling heuristic for multi-site...

Time [years]

2005 2010 2015 2020

Fa
ci
lit
y

i10

i9

i8

i7

i6

i5

i4

i3

i2

i1

GA - Profit: 66618 [RMU], CSL: 100.00%

P
ro
du

ct

0

5

10

15

Time [years]

2005 2010 2015 2020

Fa
ci
lit
y

i10

i9

i8

i7

i6

i5

i4

i3

i2

i1

MILP - Profit: 66316 [RMU], CSL: 99.94%

P
ro
du

ct

0

5

10

15

Fig. 2 Exemplary Gantt chart of a schedule generated by the GA (top) andMILP (bottom), for the standard
case. The profit and customer service level (CSL) for each schedule is also indicated

achieved in terms of manufacturing cost and setup cost seem to outweigh this loss, and
the overall profit of the MILP approach is higher in this scenario. Whether a slightly
higher profit justifies a lower customer service level is a different issue. The GA’s
construction heuristic, always tries to meet all the demand, even if this may lead to a
possibly lower profit. Finally, we observe that the GA has still lower storage cost and
higher setup cost, probably due to not being constrained by the coarse time periods.

123

F. B. Oyebolu et al.

Table 8 Runtime of MILP until it reached an optimality gap of 0.25%, and runtime of GA to reach the
same solution quality as was reached by MILP, for different problem sizes, depending on problem size

15 years 23 years 30 years

Target (RMU) 66,284 90,236 111,229

MILP time (s) 200.86 824.134 1332.59

GA time (s) 0.07 0.131 0.195

Runtimes strongly depend on the implementation skills of the developer, the hard-
ware used, and software tools used, and thus have to be handled with caution.
Nonetheless, Table 7 also reports on the runtime of the two algorithms. For MILP,
the stopping criterion was 600s, so the runtime remained the same, but the optimality
gap increased as the problem became more difficult by increasing the demand and
thus utilisation level. The GA was run for a fixed number of generations. The com-
putational time still increased with increasing the demand level. The reason is that
an increasing demand raises the utilisation level and the construction heuristic is then
less likely to be able to schedule a demand in steps (I) or (II), and thus more often has
to look at the other alternatives for scheduling it. This will be explored further in the
next subsection.

We also investigated the scaling behaviour of both optimisation methods with
increasing problem sizes. For this, we ran the GA and MILP for problems with longer
time horizons of 23 and 30years (in addition to the 15 year-long base case). For the
longer time horizons, the demand forecasts for the years after year 15 were set equal to
the forecast for each product in year 15. To compare the two methods, the MILP was
first run for all three problem sizes with a stopping criterion of a 0.25% optimality gap,
at which point, the solution quality (profit) was recorded along with the time taken
to achieve the solution. This profit value was then used as a target for the GA. The
average time over the 50 runs that it took for the GA to match or beat those targets
was recorded. The results of this experiment are shown in Table 8. As can be seen,
the time required for the MILP and GA increases roughly linearly with problem size,
however the factor by which runtime increases when moving from 15 to 30 years is
6.6 for MILP, but only 2.8 for the GA.

Overall, from these results, we conclude that the suggested GA approach is com-
petitive with the MILP approach, but does not suffer from the introduction of artificial
time periods and thus is sometimes able to find better solutions than MILP. The trend
seems to be that the times for both optimisationmethods are going up linearly.However
the increase of the GA approach is of a smaller factor than that of the MILP optimisa-
tions. This suggests that the relative performance of the GA is less susceptible to the
detrimental impact of increasing the scale of the problem.

5.2 Algorithm components

In order to better understand the importance and robustness of the various components
of our algorithm, we did some additional experiments.

123

A new lot sizing and scheduling heuristic for multi-site...

Table 9 Breakdown of how often each part of the heuristic is used in optimised solutions, mean ± SD

1 × Demand 2 × Demand 3 × Demand

(I) 71.9% ± 0.18% 70.7% ± 0.27% 64.1% ± 0.25%

(II) 20.9% ± 0.19% 16.8% ± 0.22% 12.8% ± 0.20%

(III) 0.3% ± 0.03% 2.8% ± 0.13% 4.9% ± 0.14%

(IV) 6.9% ± 0.03% 8.3% ± 0.17% 10.4% ± 0.12%

(V) 0.0% 1.3% ± 0.18% 7.7% ± 0.22%

(VI) 0.0% 0.0% 0.04% ± 0.02%

Total backlogged jobs 0.0% 1.8% ± 0.25% 9.2% ± 0.25%

Also detailed is the percentage of separate jobs that are delivered late

Fig. 3 The ratio in profit of the
full model compared to the
simple model, optimized by the
GA, shown for multiples of the
base market demand as
presented in the case study. The
increasing ratio indicates the
increasing benefit the full model
will have in more complicated
scheduling problems than the
basic case study. Error bars
represent the standard error

Table 9 examines how often the various alternatives to insert a demand are actually
selected by the construction heuristic, averaged over the best solution found in each of
the 50 runs. As can be seen in the table, in the standard case, the majority of demands
(92.8%) are inserted by either scheduling it as late as possible (I), or adjacent to a
previous demand of the same type (II). This is reassuring, since if such an insertion is
possible, the other options are not tested, which significantly speeds up the algorithm.
As we move to the scenarios with higher demand, the percentage drops from 92.8
to 78.9%. This still constitutes the majority of cases, but clearly the other insertion
alternatives of the heuristic become more important.

Figure 3 looks at the relevance of the alternatives (III)–(VI) in terms of their impact
on profit. It shows the ratio of the obtained profit depending on whether the construc-
tion heuristic during the GA search was limited to looking at alternatives (I) + (II)
(denoted as “Simple”), or all alternatives (“Full”). A profit ratio of 1 means that the
two models obtain the same profit, while a greater profit ratio indicates that the full
model is able to achieve higher profits than the simple model. It confirms that the
more complicated cases with splitting, backlogging and moving previously scheduled
demand are responsible for an increasing share of the profit as the overall demand is
increased. Especially once the demand is increased to three times the original values,
there seems to be a step change and the more complicated alternatives seem to become
indispensable.

123

F. B. Oyebolu et al.

Fig. 4 Convergence of profit over generations, for GA and random search. Random search is tested with
fully randomised permutations and where 50% of the permutations are randomised only amongst demands
of the same year, but keep the order on years. RS random search

123

A new lot sizing and scheduling heuristic for multi-site...

Lastly, Fig. 4 shows the convergence of the GA over generations, and compares
it with a purely random search, using fully random permutations or limited random
permutations, i.e., when half of the permutations are only random amongst demands
of the same year, but the order on years is kept. As can be seen the results optimised
by the GA are considerably better than the results obtained by random search. The
limited randomisation helps in particular for the less loaded problems (1 × Demand),
but is no longer better than fully randomised permutations for the case of 3×Demand.
This also makes sense, as with higher utilisation of the facilities, there is increasing
need to schedule demands outside the year the demand is delivered, and the artificial
limitation of randomisation to within a year is no longer helpful.

6 Conclusion

In this paper, we have considered the lot sizing and scheduling problem for a complex
biopharmaceutical production scenario featuringmultiple products, multiple facilities,
and batch processing. For this challenging optimisation problem, we have proposed
an GA based on an indirect permutation encoding that is decoded into a full schedule
by a novel construction heuristic tailored to the problem at hand. A comparison with
an MILP approach from the literature showed that the GA is at least competitive, and
often produces even better results than the MILP approach. The reason is that the
MILP model artificially imposes a time granularity by dividing the time into discrete
periods that is not needed in the GA approach. This shows that although GAs are
heuristic methods, they can sometimes outperform exact methods not only in terms of
running time, but also because they are able to work with a model closer to reality.

In the future, we are considering various extensions of the proposed GA. First, in
reality, demand is estimated and uncertain, so we would like to adapt our approach
to stochastic and dynamic problems. This would also hopefully be a good juncture to
investigate different instances of the problem solved in this work. Second, often in bio-
pharmaceutical production, other objectives such as risk play a role, and an extension
of our approach to the multi-objective case seems straightforward. Third, we plan to
capture more realistic biopharmaceutical processes, e.g., by modelling multiple pro-
duction stages. Fourth, the biopharmaceutical industry has seen a resurgence of interest
in alternative ways to batch manufacturing, in particular continuous manufacturing,
and so we would like to extend our algorithmic framework to also be applicable to this
form of manufacturing. Fifth, from a theoretical perspective, it would be important to
investigate the formal properties of the proposed GA to, for example, guarantee that
the optimal schedule is indeed within reach of the search algorithm. Finally, one might
explore also other optimisation methodologies to solve this problem such as constraint
programming (Laborie 2009) or hybrid approaches (Blum and Raidl 2016).

Acknowledgements The first author would like to acknowledge funding through the EPSRC Centre for
Doctoral Training in Emergent Macromolecular Therapies, EP/L015218/1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

123

http://creativecommons.org/licenses/by/4.0/

F. B. Oyebolu et al.

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

The appendix summarises the mathematical programme used in this paper and intro-
duced by Lakhdar et al. (2007).

Notation

The indices i , p, and t denote individual facilities, products, and time periods respec-
tively. The subsets characterising the facilities being considered are: P I i , the set of
products produced by facility i ; I P p, the set of facilities that can produce product p;
and T I i , the set of time periods in which facility i is available for use.

Binary variables

Yipt 1 if product p is produced over period t at facility i ; 0 otherwise
Zipt 1 if a new campaign of product p at facility i is started in period t ; 0 otherwise

Integer variables

Bipt amount of product p produced over period t at facility i , batches

Continuous variables

Ipt amount of product p stored over period t , kilograms
Kipt amount of product p produced over period t at facility i , kilograms
Prof expected operating profit, RMU
Spt amount of product p which is sold over period t , kilograms
Tipt production time for product p at time period t at facility i
T f toti t total production time over period t at facility i
Wpt amount of product p wasted over period t , kilograms
Δpt amount of product p which is late over period t , kilograms

Parameters

Cp storage capacity of product p, kilograms
Dpt demand of product p at time period t , kilograms
rip production rate of product p at facility i , batches per unit time
Ht available production time horizon over time period t
T max
ip maximum production time for product p

Tmin
ip minimum production time for product p
ydip yield conversion factor, kilograms per batch
αi p lead time for production of first batch of product p at facility i
ζp life time of product p, number of time periods t
υp unit sales price for each kilogram of product p, RMU per kilogram
ηi p unit cost for each batch produced of product p in facility i , RMU per batch
ψp unit cost for each new campaign of product p, RMU

123

A new lot sizing and scheduling heuristic for multi-site...

δp unit cost charged as penalty for each late kilogram of product p, RMU per
kilogram

ρp unit cost for each stored kilogram of product p, RMU per kilogram
π rate of backlog decay

Production constraints

Constraint (1) represents batch processing. The number of batches produced in facility
i of product p at time period t , Bipt , is determined by a continuous production rate,
rip, production lead time, αi p, and production time Tipt . The lead time allows for the
duration of the first batch of a campaign plus the setup and cleaning time before the
first batch commences. Incorporation of lead time is enforced by a binary variable
Zipt .

Bipt = Zipt + rip
(
Tipt − αi p Zipt

) ∀ i, p ∈ P Ii , t ∈ T Ii (1)

Constraint (2) converts the number of batches into kilograms produced using a yield
conversion factor ydip which differs for each combination of facility and product. Lead
time is only avoided in a facility if the same product is manufactured in the preceding
period; this is covered in (3). Constraint (4) ensures that at most one product p is
manufactured in any given facility i per time period t .

Kipt = Bipt ydip ∀ i, p ∈ P I i , t ∈ T I i (2)

Zipt ≥ Yipt − Yip,t−1 ∀ i, p ∈ P I i , t ∈ T I i (3)
∑

p∈P I i

Yipt ≤ 1 ∀ i, t ∈ T I i (4)

Timing constraints

Constraints (5) and (6) represent the appropriate minimum and maximum production
time constraints. These are only active if Yipt is equal to 1, otherwise the production
times are forced to 0.

Tmin
ip Yipt ≤ Tipt ∀ i, p ∈ P I i , t ∈ T Ii (5)

Tipt ≤ min
{
Tmax
ip , Ht

}
Yipt ∀ i, p ∈ P I i , t ∈ T Ii (6)

Storage constraints

The following constraints enforce an inventory balance for production and force total
production to meet product demand. In (7), the amount of product p stored at the end
of the time period, Ipt , is equal to the amount stored in the previous period, plus the
total amount produced across all facilities i , less the amount sold, Spt , and the amount
of product wasted,Wpt , in the current time period t . Product stored cannot be negative
and should not exceed maximum product storage capacity in (8); and total inventory

123

F. B. Oyebolu et al.

at any point cannot exceed the global storage capacity in (9).

Ipt = Ip,t−1 +
∑

i

Kipt − Spt − Wpt ∀ p ∈ P I i , t ∈ T I i (7)

0 ≤ Ipt ≤ Cp ∀ p, t (8)

0 ≤
∑

p

Ipt ≤ Ctot
P ∀ t (9)

The duration a product can be stored in inventory is limited by its shelf-life in (10).

Ipt ≤
t+ζp∑

θ=t+1

Spθ ∀ p, t (10)

Backlog constraints

A penalty is incurred for every time period t that a given amount of product p is late.
For a given product p at time t , the amount of product that is late, Δpt , is equal to the
amount of undelivered product from the previous time period, Δp,t−1, multiplied by
a factor, πp (which allows for the backlog to decay), plus demand at time t , Dpt , less
the sales at time t , Spt .

Δpt = πpΔp,t−1 + Dpt − Spt ∀ p, t (11)

Objective function

The objective function is to maximise profit, which is the difference between total
revenue (sales in kilogram times price υp), and total operating costs which include
the changeover cost at ψp per setup, storage cost at ρp per kilogram of product, late
delivery penalties of δp per kilogram of product, and batch manufacturing cost at υi p
for every product-facility combination. All costs and prices are in relative monetary
units (RMU).

max Profit =
∑

p

∑

t∈T I i

⎛

⎝υpSpt − ρp Ipt − δpΔpt −
∑

i∈I P p

(ηi p Bipt + ψi p Zipt)

⎞

⎠

(12)

References

Almada-Lobo, B., James, R.J.: Neighbourhood search meta-heuristics for capacitated lot-sizing with
sequence-dependent setups. Int. J. Prod. Res. 48(3), 861–878 (2010)

Almada-Lobo, B., Klabjan, D., Antónia carravilla, M., Oliveira, J.F.: Single machine multi-product capac-
itated lot sizing with sequence-dependent setups. Int. J. Prod. Res. 45(20), 4873–4894 (2007)

123

A new lot sizing and scheduling heuristic for multi-site...

Almeder, C.: A hybrid optimization approach for multi-level capacitated lot-sizing problems. Eur. J. Oper.
Res. 200(2), 599–606 (2010)

Bierwirth, C., Mattfeld, D.: Production scheduling and rescheduling with genetic algorithms. Evolut. Com-
put. 7(1), 1–18 (1999)

Bierwirth, C., Mattfeld, D.C., Kopfer, H.: On permutation representation for scheduling problems. In:
Parallel Problem Solving from Nature, pp. 310–318. Springer, Berlin (1996)

Bitran, G.R., Yanasse, H.H.: Computational complexity of the capacitated lot size problem. Manag. Sci.
28(10), 1174–1186 (1982)

Blum, C., Raidl, G.R.: Hybrid Metaheuristics: Powerful Tools for Optimization. Springer, Berlin (2016)
Branke, J., Mattfeld, D.: Anticipation and flexibility in dynamic scheduling. Int. J. Prod. Res. 43(15),

3103–3129 (2005)
Burke, E.K., Gendreau,M., Hyde,M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey

of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using genetic

algorithms–i. Representation. Comput. Ind. Eng. 30(4), 983–997 (1996)
Copil, K., Wörbelauer, M., Meyr, H., Tempelmeier, H.: Simultaneous lotsizing and scheduling problems: a

classification and review of models. OR Spectr. 39(1), 1–64 (2017)
Dangelmaier, W., Kaganova, E.: Robust solution approach to CLSP problem with an uncertain demand. In:

Robust Manufacturing Control, pp. 455–467. Springer, Berlin (2013)
DiMasi, J.A., Grabowski, H.G.: The cost of biopharmaceutical R&D: is biotech different? Manag. Decis.

Econ. 28(4–5), 469–479 (2007)
Drexl, A., Kimms, A.: Lot sizing and scheduling–survey and extensions. Eur. J. Oper. Res. 99, 221–235

(1997)
Farid, S.S.: Process economics of industrial monoclonal antibody manufacture. J. Chromatogr. B 848(1),

8–18 (2007)
Gatica, G., Papageorgiou, L., Shah, N.: Capacity planning under uncertainty for the pharmaceutical industry.

Chem. Eng. Res. Des. 81(6), 665–678 (2003)
Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling problems. Oper. Res. 8(4),

487–503 (1960)
Goren, H.C., Tunali, S., Jans, R.: A review of applications of genetic algorithms in lot sizing. J. Intell.

Manuf. 21(4), 575–590 (2008)
Ho, J.C., Chang, Y.L., Solis, A.O.: Two modifications of the least cost per period heuristic for dynamic

lot-sizing. J. Oper. Res. Soc. 57(8), 1005–1013 (2006)
James, R.J.W., Almada-Lobo, B.: Single and parallel machine capacitated lotsizing and scheduling: new

iterative MIP-based neighborhood search heuristics. Comput. Oper. Res. 38(12), 1816–1825 (2011)
Jans, R., Degraeve, Z.: Meta-heuristics for dynamic lot sizing: a review and comparison of solution

approaches. Eur. J. Oper. Res. 177(3), 1855–1875 (2007)
Jans, R., Degraeve, Z.:Modeling industrial lot sizing problems: a review. Int. J. Prod. Res. 46(6), 1619–1643

(2008)
Jin, Y., Branke, J.: Evolutionary optimization in uncertain evolutionary optimization in uncertain

environments–a survey. IEEE Trans. Evolut. Comput. 9(3), 303–317 (2005)
Karimi, B., Fatemi Ghomi, S., Wilson, J.: The capacitated lot sizing problem: a review of models and

algorithms. Omega 31(5), 365–378 (2003)
Kimms, A.: A genetic algorithm for multi-level, multi-machine lot sizing and scheduling. Comput. Oper.

Res. 26(8), 829–848 (1999)
Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three problems. In: van Hoeve

WJ, Hooker J (eds) International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Springer, LNCS, vol. 5547, pp. 148–162
(2009)

Lakhdar, K., Zhou, Y., Savery, J., Titchener-Hooker, N.J., Papageorgiou, L.G.: Medium term planning of
biopharmaceutical manufacture using mathematical programming. Biotechnol. Prog. 21(5), 1478–
1489 (2005)

Lakhdar, K., Savery, J., Papageorgiou, L.G., Farid, S.S.: Multiobjective long-term planning of biopharma-
ceutical manufacturing facilities. Biotechnol. Progr. 23(6), 1383–1393 (2007)

Levis, A.A., Papageorgiou, L.G.: A hierarchical solution approach for multi-site capacity planning under
uncertainty in the pharmaceutical industry. Comput. Chem. Eng. 28(5), 707–725 (2004)

123

F. B. Oyebolu et al.

Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Kicinger, R., Popovici, E., Sullivan, K., Harrison,
J., Bassett, J., Hubley, R., Desai, A., Chircop, A., Compton, J., Haddon, W., Donnelly, S., Jamil, B.,
Zelibor, J., Kangas, E., Abidi, F., Mooers, H., O’Beirne, J., Talukder, Khaled Ahsan McDermott J.:
ECJ: A Java-based Evolutionary Computation Research System. (2014) https://cs.gmu.edu/~eclab/
projects/ecj/

Mehdizadeh, E., Hajipour, V., Mohammadizadeh, M.R.: A bi-objective multi-item capacitated lot-sizing
model: two Pareto-based meta-heuristic algorithms. Int. J. Manag. Sci. Eng. Manag. 11(4), 279–293
(2016)

Özdamar, L., Birbil, S.I.: Hybrid heuristics for the capacitated lot sizing and loading problem with setup
times and overtime decisions. Eur. J. Oper. Res. 110(3), 525–547 (1998)

Paul, S., Mytelka, D., Dunwiddie, C., Persinger, C., Munos, B., Lindborg, S., Schacht, A.: How to improve
r&d productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214
(2010)

Piperagkas, G.S., Konstantaras, I., Skouri, K., Parsopoulos, K.E.: Solving the stochastic dynamic lot-sizing
problem through nature-inspired heuristics. Comput. Oper. Res. 39(7), 1555–1565 (2012)

Pitakaso, R., Almeder, C., Doerner, K.F., Hartl, R.F.: AMAX-MIN ant system for unconstrainedmulti-level
lot-sizing problems. Comput. Oper. Res. 34(9), 2533–2552 (2007)

Ramya, R., Rajendran, C., Ziegler, H.: Capacitated lot-sizing problemwith production carry-over and set-up
splitting: mathematical models. Int. J. Prod. Res. 54(8), 2332–2344 (2016)

Siganporia, C.C., Ghosh, S., Daszkowski, T., Papageorgiou, L.G., Farid, S.S.: Capacity planning for batch
and perfusion bioprocesses across multiple biopharmaceutical facilities. Biotechnol. Progr. 30(3),
594–606 (2014)

Silver, E.A., Meal, H.C.: A heuristic for selecting lot size quantities for the case of a deterministic time-
varying demand rate and discrete opportunities for replenishment. Prod. Invent. Manag. 14(2), 64–74
(1973)

Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manag. Sci. 5(1), 89–96
(1958)

Walser, J.P., Iyer, R., Venkatasubramanyan, N.: An integer local search method with application to capaci-
tated production planning. In: Proceedings of AAAI-98, pp. 373–379 (1998)

123

https://cs.gmu.edu/~eclab/projects/ecj/
https://cs.gmu.edu/~eclab/projects/ecj/

	A new lot sizing and scheduling heuristic for multi-site biopharmaceutical production
	Abstract
	1 Introduction
	2 Related work
	3 Industrial case study
	4 Proposed genetic algorithm with construction heuristic
	4.1 Construction heuristic
	4.2 Genetic algorithm

	5 Empirical evaluation
	5.1 Comparison with mathematical programming
	5.2 Algorithm components

	6 Conclusion
	Acknowledgements
	Appendix
	Notation
	Production constraints
	Timing constraints
	Storage constraints
	Backlog constraints
	Objective function

	References

