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Abstract

Recent work by the author with Bonchi and Sobociński shows how PROPs of linear relations (subspaces)
can be presented by generators and equations via a “cube construction”, based on letting very simple
structures interact according to PROP operations of sum, fibered sum and composition via a distributive
law. This paper shows how the same construction can be used in a cartesian setting to obtain presentations
by generators and equations for the PROP of equivalence relations and of partial equivalence relations.
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1 Introduction

PROPs (product and permutation categories [21]) are symmetric monoidal cate-

gories with objects the natural numbers. In the last two decades, they have become

increasingly popular as an environment where to study diverse computational mod-

els in a compositional, resource sensitive fashion. To make a few examples, they

have recently featured in algebraic approaches to Petri nets [7,26], bigraphs [8],

quantum processes [11] and signal flow graphs [2,4,1].

PROPs can be used to specify both the syntax and the semantics of systems.

A “syntactic” PROP T is generated starting from a symmetric monoidal theory

(Σ, E), which intuitively is an algebraic specification for operations with multiple

inputs and outputs; arrows of T are freely constructed by composition of operations

in the signature Σ, and then quotiented by the equations in E. On the other hand,

a “semantic” PROP S is specified with a direct definition of its arrows, typically in

terms of some mathematical object of interest. A full completeness result is a precise

correspondence between these two perspectives, in the form of an isomorphism

T
∼=−→ S. (1)
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In this situation, we say that (Σ, E) presents S. Examples of (1) are ubiquitous

and play a foundational role in most of the aforementioned research threads. For

instance, the theory of commutative monoids presents the PROP of functions; the

theory of Hopf algebras presents the PROP of integer matrices; the theory of Frobe-

nius algebras presents the PROP of 2-Dimensional cobordisms.

In recent years, increasingly more elaborated examples have been tackled using

modular reasoning principles. An illustrative case is the theory of interacting Hopf

algebras IH, which characterises the PROP LRelk of k-linear relations [5]. This result
inspired recent investigation in the foundations of the ZX-calculus [3,14] and in

categorical control theory [2,4,1]. What is most interesting for our purposes is that

the isomorphism IH ∼= LRelk can be obtained as a universal arrow through a “cube”

construction, based on seeing the two PROPs as the result of the interaction of

simpler theories by means of operations of sum, fibered sum and composition. This

modular account is a valuable source of information about the structural properties

of the theories of interest: for instance, it shows that LRelk is the result of combining

PROPs of spans and of cospans of linear maps, and the equations of IH essentially

describe this interaction.

The central idea of this work is to show how the same cube construction can

be used to characterise other PROPs of relations: whereas [5] focuses on the linear

case, we shall study the cartesian case, both total and partial. In the total case,

we construct a modular characterisation for the PROP ER of equivalence relations

starting from PROPs of spans and cospans of (injective) functions, see (5) below.

This will show an isomorphism between ER and the PROP IFr freely generated by a

quotient of the theory of special Frobenius algebras [9], which plays a foundational

role in many recent works [23,2,1,11].

IFr
∼=−→ ER (2)

To give an idea of how the isomorphism (2) works, an arrow of IFr, for which we

shall use the 2-dimensional representation as a string diagram, as on the left below,

shall represent an equivalence relation on the sets of variables associated with its left

and right ports, as on the right below. Two variables are in the same equivalence

class if they are linked in the graphical representation.

v1
v2
v3

u1
u2
u3
u4
u5

�→ an equivalence relation with classes

[v2], [v1, v3, u1, u2, u3], [u4, u5].

The dotted lines hint at the fact that, as a result of our modular perspective,

any diagram of IFr will enjoy a factorisation in terms of simpler theories, whose

interaction is what the axioms of IFr describe.

Building on this result, we will shift to the partial case. First, we use PROP

composition to construct a presentation PMn (partial commutative monoids) for

the PROP PF of partial functions. Then, we will show that the PROP PER of partial
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HA + HAop

∼=

��
���

�� HAop ; HA

�� ∼=
��

HA ; HAop ��

∼=
��

IH
∼=

��
Matk +Matopk

��
��

�
Span(Matk)
��

Cospan(Matk) �� LRelk

Mn+Mnop

∼=

��
���

��Mnop ; Mn

�� ∼=
��

Mn ; Mnop ��

∼=
��

1
∼=

��
F+ Fop

��
��

�
Span(F)

��Cospan(F) �� 1

Un+ Unop

∼=

��
���

�� Unop ; Un

�� ∼=
��

Mn ; Mnop ��

∼=
��

IFr
∼=

��
In+ Inop

��
��

�
Span(In)

��
Cospan(F) �� ER

Un+ Unop

∼=

��
���

�� Unop ; Un
�� ∼=

��
PMn ; PMnop ��

∼=
��

IPFr
∼=

��
In+ Inop

��
��

�
Span(In)

��
Cospan(PF) �� PER

Figure 1. An overview of the various cube constructions considered in this paper. From the top-left corner:
the linear case, yielding a characterisation for the PROP LRelk of k-linear relations (see [5]); the degenerate
cartesian case, collapsing to the terminal PROP (Remark 4.11); the (non-degenerate) cartesian case, yielding
a characterisation for the PROP ER of equivalence relations (Theorem 4.2); the partial cartesian case,
yielding a characterisation for the PROP PER of partial equivalence relations (Theorem 5.4). In the main
text we shall write PROPs of spans and cospans in factorised form to emphasise their provenance from
distributive laws, e.g. Span(F) as Fop ; F ans Cospan(F) as F ; Fop .

equivalence relations (PERs) 2 arises as the result of merging PROPs of cospans of

partial functions and of spans of injective functions, see (10) below. As for the case

of ER, an isomorphism arises from this modular account: it will relate PER and

the syntactic PROP IPFr, yet another variation of the theory of special Frobenius

algebras.

IPFr
∼=−→ PER

In a nutshell, the diagrammatic rendition of partial equivalence relations given by

IPFr enhances the total case by integrating connectors , for partiality.

Related work. The use of partial equivalence relations in program semantics

dates back to the seminal work of Scott [24]. They have been used extensively in

the semantics of higher order λ-calculi (e.g., [17,28]) and, more recently, of quantum

computations (e.g., [18,15]). Note that in most of these applications PERs are

the objects of the category of interest, whereas in the PROP PER they are the

arrows, with relational composition, and only defined on finite domains. In fact, our

emphasis is on the modular techniques to characterise PER (and their applicability

to similar families of structures) rather than on the use of PERs in semantics.

Algebraic presentations for categories of equivalence relations have been studied

in the last two decades by a few authors. A characterisation for ER in terms of

Frobenius structures is given in [13], with a proof based on finding a normal form

for string diagrams. The same result appears in a recent manuscript [12], which is

based, like our work, on treating equivalence relations as jointly-epi cospans. This

idea, as well as its algebraic implications, is studied in the earlier paper [6] as part

of a taxonomy of span/cospan categories over Set.

The present work is part of the author’s PhD thesis [29], defended in October

2015. Differently from the aforementioned papers, our approach focuses on a modu-

2 Recall that a relation on a set X is a PER if it is symmetric and transitive — equivalently, if it is an
equivalence relation on a subset Y ⊆ X.
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lar reconstruction of ER: its presentation is built from the interaction of very simple

algebraic theories, by the use of PROP operations. In particular, Lack’s technique

for composing PROPs [19] is pivotal. Also, we extend our methodology to the anal-

ysis of partial functions and partial equivalence relations, in a way that to the best

of our knowledge did not appear before in the literature.

It is also worth mentioning that there is a pleasant symmetry between the analy-

sis of equivalence relations and (plain) relations. Whereas the former are jointly-epic

cospans and are modeled by separable Frobenius algebras with an additional axiom

from the theory of bialgebras, the latter are jointly-mono spans and are modeled

by bialgebras with the addition of an axiom from the theory of separable Frobenius

algebras [20]. Interestingly, the combination of the two theories in their entirety

collapses to the terminal PROP, see Remark 4.11 below. 3

Synopsis. In §2 we recall the basics of the theory of PROPs. § 3 introduces

the PROP operations of sum, fibered sum and (iterated) composition, with the

example of partial functions (Ex. 3.3). § 4 constructs the cube (5) necessary for the

characterisation of equivalence relations (Th. 4.2). § 5 completes the picture with

the characterisation (10) of partial equivalence relations (Th. 5.4).

Prerequisites and notation. We assume familiarity with basic category the-

ory (see e.g. [22]) and the definition of symmetric strict monoidal category [22,25]

(often abbreviated as SMC). We write f ; g : a → c for composition of f : a → b

and g : b→ c in a category C. It will be sometimes convenient to indicate an arrow

f : a→ b of C as x
f∈C−−→ y or also

∈C−−→, if names are immaterial. For C an SMC, ⊕
is its monoidal product, with unit object I, and σa,b : a⊕ b→ b⊕a is the symmetry

associated with a, b ∈ C. We write 0 for ∅ and n+ 1 for {1, . . . , n, n+ 1}.

2 PROPs

Our exposition is founded on PROPs (product and permutation categories [21]).

Definition 2.1 A PROP is a symmetric strict monoidal category with objects the

natural numbers, where ⊕ on objects is addition. PROPs form a category PROP

with morphisms the identity-on-objects symmetric strict monoidal functors.

A typical way of constructing a PROP is starting from a symmetric monoidal

theory (SMT): it is a pair (Σ, E), where Σ is a signature of generators o : n→ m with

arity n and coarity m. The set of Σ-terms is obtained by composing generators in Σ,

the unit id : 1→ 1 and the symmetry σ1,1 : 2→ 2 with ; and ⊕. That means, given

Σ-terms t : k → l, u : l → m, v : m → n, one constructs new Σ-terms t ; u : k → m

and t ⊕ v : k + n → l + n. The set E of equations contains pairs (t, t′ : n → m) of

Σ-terms with the same arity and coarity.

There is a natural graphical representation for Σ-terms using the formalism

of string diagrams [25]. A Σ-term n → m is pictured as a box with n ports on

3 This observation is also relevant for algebraic approaches to quantum processes, see e.g. [16, Th. 5.6].
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the left and m ports on the right. Composition t ; s is rendered graphically as

st and t⊕ s as t
s . The symmetric monoidal structure is generated from

, representing id1 : 1 → 1, , representing id0 : 0 → 0, and , representing

σ1,1 : 2→ 2.

An SMT (Σ, E) freely generates a PROP T by letting arrows n → m in T be

Σ-terms modulo E. We say that (Σ, E) is a presentation of a PROP S when S ∼= T .
When Σ′ ⊆ Σ and E′ ⊆ E, there is an evident inclusion PROP morphism from

the PROP T ′ generated by (Σ′, E′) to the one T generated by (Σ, E), for which

henceforth we reserve notation T ′ � � �� T .

Example 2.2

(a) In the SMT (ΣM , EM ) of commutative monoids, ΣM contains a multiplication

: 2 → 1 and a unit : 0 → 1. Equations EM assert associativity (M1),

commutativity (M2) and unitality (M3).

= (M1) = (M2) = (M3)

(ΣM , EM ) presents the PROP F whose arrows n → m are total functions

from n to m, with n = {1, . . . , n}. Writing Mn for the PROP freely generated

by (ΣM , EM ), the isomorphism Mn ∼= F is defined by interpreting string
diagrams as graphs of functions. For instance, the diagram on the

right represents the function 3→ 3 mapping 1 on the left to 2 on the

right and 2, 3 on the left to 1 on the right.

(b) The SMT (ΣC , EC) of cocommutative comonoids is based on a comultiplication

: 1→ 2 and a counit : 1→ 0. EC is the following set of equations.

= (C1) = (C2) = (C3)

We write Cm for the PROP freely generated by (ΣC , EC). There is an

evident isomorphim Cm ∼= Mnop given by “vertical rotation” of string diagrams.

Therefore, (ΣC , EC) presents F
op .

(c) The PROP Fr of special Frobenius algebras [9] is generated by the theory (ΣM	
ΣC , EM 	 EC 	 F ), where F is the following set of equations.

= = (F1) = (F2)

(d) The PROP B of (commutative/cocommutative) bialgebras is generated by the

theory (ΣM 	 ΣC , EM 	 EC 	B), where B is the following set of equations.

= (B1)

= (B2)

= (B3)

= (B4)

Remark 2.3 The assertion that (ΣM , EM ) is the SMT of commutative monoids—

and similarly for other SMTs appearing in our exposition—can be made precise
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by establishing a correspondence between commutative monoids in a symmetric

monoidal category C and objects F (1) identified by symmetric monoidal functors

F : Mn → C, often called models or algebras of Mn. As models are not central in

our work, we refer the reader to [19] for more information.

3 PROP operations

The following table summarises three operations on given PROPs T1 and T2. Sup-
posing that they are presented by SMTs (Σ1, E1) and (Σ2, E2) respectively, the

second column describes a presentation for the PROP resulting from the operation.

PROPs SMTs Reference

Sum T1 + T2
signature: Σ1 	 Σ2

equations: E1 	 E2

see e.g.

[29, §2.3].
Fibered

sum

over T3
T defined by

T3 � � ��
� �

�� �
T1
� �

��
T2 � � �� T

sig.: (Σ1 	 Σ2)≡Σ3

eq.: (E1 	 E2)≡E3

see e.g.

[29, §2.5].

Composition

via λ

T1 ; T2
defined by

λ : T2 ; T1 → T1 ; T2.

sig.: Σ1 	 Σ2

eq.: E1 	 E2 	 Eλ

introduced in

[19], see also

[29, §2.4].

We now illustrate the three operations. The simplest, the sum, just combines

the two theories without adding any interaction.

The fibered sum mimics a kind of construction typical in algebra, from geometric

gluing constructions of topological spaces to amalgamated free products of groups.

The idea is to identify some structure T3 that is in common between the two theories.

In all applications, the assumption is that Σ3 ⊆ Σ1 ∩ Σ2 and E3 ⊆ E1 ∩ E2: the

quotient ≡Σ3 identifies o1 ∈ Σ1 and o2 ∈ Σ2 when o1 = o2 is in Σ3, and ≡E3

acts similarly on equations. On PROPs, this operation amounts to pushing out the

inclusion morphisms T1 T3���� � � �� T2 from the PROP T3 freely generated by (Σ3, E3).

The composition enhances the sum with compatibility conditions between T1
and T2. Also this operation mimics a standard pattern in algebra: e.g. a ring is

given by a monoid and an abelian group, subject to equations that ensure that the

former distributes over the latter. Formally, the operation T1 ; T2 is defined in [19]

by understanding PROPs T1, T2 as monads in a certain bicategory [27], and then

compose them via a distributive law λ : T2 ; T1 → T1 ; T2. The resulting monad

T1 ; T2 is also a PROP, enjoying a presentation as the quotient of T1 + T2 by the

equations Eλ encoded by the distributive law. The set Eλ is simply the graph of

λ, which can be seen as a set of directed equations (
∈T2−−→ ∈T1−−→) ≈ (

∈T1−−→ ∈T2−−→) telling

how arrows of T2 distribute over arrows of T1. In fortunate cases, like the examples

below, it is possible to present Eλ by a simpler, or even finite, set of equations, thus

giving a sensible axiomatisation of the compatibility conditions expressed by λ.

Example 3.1
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(a) The PROP F of functions can be described as the composite Su ; In, where Su
and In are respectively the PROP of surjective and of injective functions [19].

The witnessing distributive law λ : In ; Su → Su ; In maps a function
∈In−−→ ∈Su−−→

to its epi-mono factorisation
∈Su−−→ ∈In−−→.

In more syntactic terms, using the isomorphism F ∼= Mn, this result says

that Mn is the composite Mu ; Un, where Mu ∼= Su is the PROP freely gener-

ated by the SMT ({ }, {(M1), (M2)}) and Un ∼= In by the SMT ({ }, ∅).
The distributive law explains the origin of equation (M3) of Mn, which indeed

describes how to move the generator of Un past the one of Mu.

(b) There is a distributive law λ : Fop ; F → F ; Fop mapping a pair
∈Fop−−−→ ∈F−−→,

i.e. a span
∈F←−− ∈F−−→, to (a choice of) its pushout cospan

∈F−−→ ∈F←−−, i.e. a pair
∈F−−→ ∈Fop−−−→ [19]. Because Mn ∼= F and Cm ∼= Fop , this yields a composite PROP

Mn ; Cm, presented as Mn + Cm modulo the equations arising from the dis-

tributive law. By definition of λ, such equations can be read from pushout

squares in F. For instance:

2
����

2
��1

��
1

��

�� 		 1





��
1

1 1



 yields ; = ;

where the second diagram is obtained from the pullback by applying the iso-

morphisms F ∼= Mn and Fop ∼= Cm. In fact, Lack [19] shows that in order to

present λ it suffices to check three pushout squares, corresponding to equa-

tions (F1)-(F2). Therefore, Mn ; Cm is isomorphic to Fr (Example 2.2), and

both have a concrete description in terms of cospans, i.e. the arrows of F ; Fop .

(c) Dually, there exists a distributive law λ : F ; Fop → Fop ; F, defined by pullback

in F [19], which yields the PROP Fop ; F of spans. All the equations arising by

this distributive law can be proven from (B1)-(B4), yielding Fop ; F ∼= B.

Composing distributive laws

For our developments it is useful to generalise PROP composition to the case

when there are more than two theories interacting with each other. The following

result, a variation of a theorem by Cheng [10], is proven in [29, §2.4.6].

Proposition 3.2 Let F , H and G be PROPs presented by SMTs (ΣF , EF ),
(ΣH, EH) and (ΣG , EG) respectively. Suppose there are distributive laws

λ : H ; F → F ; H χ : H ; G → G ; H ψ : G ; F → F ; G

satisfying the following “Yang-Baxter” equation:

H ; F ; G λG ��F ; H ; G Fχ
��H ; G ; F

Hψ ��

χF �� F ; G ; H
G ; H ; F Gλ �� G ; F ; H ψH

�� (3)
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then the following two are distributive laws:

(
H ; F ; G λG−−→ F ; H ; G Fχ−−→ F ; G ; H

) (
G ; H ; F Gλ−−→ G ; F ; H ψH−−→ F ; G ; H

)

yielding the same PROP F ; G ; H. Furthermore, call Eλ, Eχ and Eψ the sets of

equations encoding the three laws. Then F ; G ; H is presented by the signature

ΣF 	 ΣH 	 ΣG and equations EF 	 EH 	 EG 	 Eλ 	 Eχ 	 Eψ.

Example 3.3 We show how the PROP PF of partial function can be presented

modularly using iterated distributive laws. First, we introduce a new PROP Cu,
generated by the signature { } and no equations: modulo the different colouring,

it is just Unop . Following the recipe of Proposition 3.2, we now combine Cu, Un and

Mu via three distributive laws:

λ : Un ; Cu→ Cu ; Un χ : Un ; Mu→ Mu ; Un ψ : Mu ; Cu→ Cu ; Mu

Using the isomorphisms Un ∼= In, Cu ∼= Inop and Mu ∼= Su, we can define χ by epi-

mono factorisation as in Example 3.1(a); therefore, the resulting PROP Mu ; Un is

Mu+Un quotiented by (M3). Because pullbacks in F preserve both monos and epis,

we define λ and ψ by pullback in F. It is readily seen that λ and ψ are presented,

respectively, by the first and the second equation below:

= (P1) = . (P2)

Also, λ, χ and ψ verify the Yang-Baxter equation (3) and thus Proposition 3.2

yields a PROP Cu ; Mu ; Un presented as the quotient of Cu + Mu + Un by (M3),

(P1) and (P2). By analogy with the total case Mn ∼= Mu ; Un, we shall use PMn
(partial commutative monoids) as a shorthand for Cu ; Mu ; Un.

We now claim that PMn ∼= PF. To see this, observe that partial functions

n
f∈PF−−−→ m are in bijective correspondence with spans n

i∈In←−− z
f∈F−−→ m: the injection

i tells on which elements z of n the function f is defined. Since Inop ∼= Cu and

F ∼= Mn ∼= Mu ; Un, this correspondence yields the desired isomorphism PF ∼=
Inop ; F ∼= Cu ; Mu ; Un ∼= PMn.

As a last remark, note that the factorisation property of PMn allows to interpret
any arrow of this PROP as the graph of a partial function, where

indicates partiality. For instance, the diagram on the right represents

the function 4→ 3 undefined on 1 and mapping 2, 4 to 2 and 3 to 3.

4 A presentation of equivalence relations

This section builds modularly a presentation for the PROP ER of equivalence rela-

tions, using the operations introduced in § 3. In defining ER, we use the following

notation: �e� is the symmetric and transitive closure of a relation e and d�Y is the

restriction of an equivalence relation d on a set X to a subset Y ⊆ X.
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Definition 4.1 Let ER be the PROP whose arrows n → m are the equivalence

relations on n 	m. Given e1 : n→ z and e2 : z → m, the composite e1 ; e2 : n→ m

is defined in steps as follows.

e1 ∗ e2 := {(v, w) | ∃u. (v, u) ∈ e1 ∧ (u,w) ∈ e2}
e1 � e2 := e1 ∪ e2 ∪ �e1 ∗ e2�
e1 ; e2 := e1 � e2�n�m

The monoidal product e1 ⊕ e2 is given by disjoint union of e1 and e2.

In words, for composition one first defines an equivalence relation e1 � e2 on

n	z	m by gluing together equivalence classes of e1 and e2 along common witnesses

in z, then obtains e1 ; e2 by restricting to elements of n 	m. Here is an example:

4 �� 5 ; 5 �� 5 = 4 �� 5.

Our approach in characterising ER stems from the observation that cospans can be

interpreted as “redundant” equivalence relations. This becomes particularly neat

when representing cospans as string diagrams via the characterisation Fr ∼= F ; Fop

(Example 3.1(b)), as below.

. (4)

The dotted line emphasizes the fact that Fr factorises as Mn ; Cm. Both string di-

agrams in (4) define an equivalence relation e on 5 	 7 by letting (v, w) ∈ e if the

port associated with v and the one associated with w are linked in the graphical

representation. For instance, 1, 2 ∈ 5 on the left boundary are in the same equiv-

alence class as 1, 2, 3 ∈ 7 on the right boundary, whereas 5 ∈ 5 and 4 ∈ 7 are the

only members of their equivalence class.

Observe that the two representations of e in (4) only differ for the sub-diagram

, which indeed does not play any role in the interpretation and stands for an

“empty” equivalence class. Equation (B4) will be employed to express the redun-

dancy of . Let us call IFr (irredundant Frobenius algebras) the PROP defined

as the quotient of Fr by (B4). Our discussion leads to the following claim.

Theorem 4.2 IFr ∼= ER.

The isomorphism of Theorem 4.2 shall arise as a universal arrow in the following

“cube” diagram in PROP, provided that the top and bottom square are pushouts.
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Un+ Cu
∼=

��

��


� � �� Cu ; Un�	

�� ∼=
��

Fr � � ��

∼=
��

IFr
∼=

��
In+ Inop[ι1,ι2]





[κ1,κ2] �� Inop ; In

Υ��
F ; Fop

Π
�� ER

(5)

First we explain the PROP morphisms in (5). Those of the top face are defined by

inclusion of the corresponding SMTs and the rear vertical isomorphisms have been

introduced in Examples 3.1-3.3. Thus we focus on the bottom face.

Definition 4.3

• morphisms κ1 : In → Inop ; In, κ2 : In
op → Inop ; In, ι1 : In → F ; Fop and

ι2 : In
op → F ; Fop are given by

κ1(n
f−→ m) = (n

id←− n
f−→ m) κ2(n

f−→ m) = (n
f←− m

id−→ m)

ι1(n
f−→ m) = (n

f−→ m
id←− m) ι2(n

f−→ m) = (n
id−→ n

f←− m).

• Π: F ; Fop → ER is defined on a cospan n
p−→ z

q←− m by

(v, w) ∈ Π(n
f←− z

g−→ m) iff

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(v) = q(w) if v ∈ n,w ∈ m

q(v) = p(w) if v ∈ m,w ∈ n

p(v) = p(w) if v, w ∈ n

q(v) = q(w) if v, w ∈ m.

(6)

• Υ: Inop ; In → ER is defined on a span n
f∈In←−−− z

g∈In−−−→ m as the reflexive and

symmetric closure of {(v, w) | f−1(v) = g−1(w)}.
It is lengthy but conceptually simple to verify that Π and Υ are indeed functorial

assignments — details are reported in [29, Appendix A].

Informally, Π implements the idea of interpreting a cospan as an equivalence

relation. For Υ, the key observation is that spans of injective functions can also be

seen as equivalence relations. Once again, the graphical representation of an arrow

of Inop ; In as a string diagram in Cu ; Un can help visualising this fact. A factorised
arrow of Cu ; Un as on the right can be interpreted as the equivalence

relation associating 1 on the left boundary with 2 on the right boundary,

3 on the left with 1 on the right and letting 2 on the left, 3 on the right

be the only representatives of their equivalence class.
Note that this interpretation would not work the same way for spans of non-injective

functions, as their graphical representation in Fop ; F may involve and —

more on this in Remark 4.11.

As explained above, Theorem 4.2 will follow from the following two lemmas.

Lemma 4.4 The top face of (5) is a pushout.

Proof The PROP Cu ; Un is defined as in Example 3.3, by pullback in In, whence
it is presented as the quotient of Un + Cu by (B4). Therefore, by definition, the
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SMT of IFr consists of the SMTs for Fr and Cu ; Un, modulo the identification of

generators and equations of Un+ Cu. This is the situation described by the fibered

sum operation of § 3, which implies the statement of the lemma. �

Lemma 4.5 The bottom face of (5) is a pushout.

We will get to the proof of Lemma 4.5 in steps. First, we need an understanding

of when two cospans are identified by Π. (4) gives us a lead: two cospans represent

the same equivalence relation precisely when they are the same modulo (B4). Now,

since (B4) arises by a distributive law F ; Fop → Fop ; F defined by pullback in F
(Example 3.1(b)), one could be tempted of claiming that Π identifies two cospans

precisely when they have the same pullback. However, this approach identifies too

much. A counterexample is given by cospans represented by and , which

have the same pullback but express different partitions of 2. The correct

approach is subtler: since we only need to rewrite as , it suffices to pull

back the region of the cospan where all sub-diagrams of shape lie. Formally, we

decompose a cospan
∈F−−→ ∈F←−− as

∈Su−−→ ∈In−−→ ∈In←−− ∈Su←−− using the factorisation F ∼= Su ; In

(Example 3.1(a)), and then pull back the middle cospan
∈In−−→ ∈In←−−. This removes all

sub-diagrams of shape , as in the following riproposition of (4).

InInSu Su→→ →→ InInSu Su→ → →→

(7)

We crystallise our approach with the following definition.

Definition 4.6 We say that two cospans n
p1∈F−−−→ z

q1∈F←−−− m and n
p2∈F−−−→

r
q2∈F←−−− m are equal modulo-zeros if there is an epi-mono factorisation

e1p∈Su−−−−→
m1

p∈In−−−−→
m1

q∈In←−−−−
e1q∈Su←−−−− of

p1−→ q1←−, and one
e2p∈Su−−−−→

m2
p∈In−−−−→

m2
q∈In←−−−−

e2q∈Su←−−−− of
p2−→ q2←−

such that
m1

p−−→
m1

q←−− and
m2

p−−→
m2

q←−− have the same pullback and e1p = e2p, e
1
q = e2q .

Remark 4.7 It may be insightful to remark that two cospans are equal modulo-

zeros precisely when they are in the equivalence relation generated by(
n

p−→ z
q←− m

)
∼

(
n

p−→ z
h−→ z′

h←− z
q←− m

)
, where h is an injection.

The idea is that z
h−→ z′

h←− z plays a role akin to a repeated use of equation (B4) in

the diagrammatic language: it deflates the codomain of [p, q] : n +m → z so as to

“make it surjective”.

Our proof of Lemma 4.5 relies on showing that Π equalizes two cospans precisely

when they are equal modulo-zeros. As a preliminary step, we need to establish some
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properties holding for any Γ, Δ and X making the following diagram commute.

In+ Inop
[κ1, κ2] ��

[ι1, ι2]





Inop ; In

Γ


F ; Fop

Δ
��X

(8)

Lemma 4.8 Given a PROP X and a commutative diagram (8), the following hold.

(i) If
p−→ q←− is a cospan in In with pullback (in In)

f←− g−→, then Γ(
f←− g−→) = Δ(

p−→ q←−).
(ii) If

p1←− q1−→ and
p2←− q2−→ are cospans in In with the same pullback then Δ(

p1−→ q1←−) =
Δ(

p2−→ q2←−).
(iii) If

p1−→ q1←− and
p2−→ q2←− are equal modulo-zeros then Δ(

p1−→ q1←−) = Δ(
p2−→ q2←−).

(iv) If
f←− g−→ is a span in In with pushout (in F)

p−→ q←−, then Γ(
f←− g−→) = Δ(

p−→ q←−).

Proof

(i) We have that Δ(
p−→ q←−) = Δ(ι1p ; ι2q) = Δι1p ; Δι2q = Γκ1p ; Γκ2q =

Γ(κ1p ; κ2q) = Γ(
f←− g−→).

(ii) Let
f←− g−→ be the pullback of both

p1−→ q1←− and
p2−→ q2←−. By (i) Γ(

f←− g−→) = Δ(
p1−→ q1←−)

and Γ(
f←− g−→) = Δ(

p2−→ q2←−). The statement follows.

(iii) By assumption n
p1−→ z

q1←− m and n
p2−→ r

q2←− m have epi-mono factorisations

n
ep−→

m1
p−−→ z

m1
q←−− eq←− m and n

ep−→
m2

p−−→ r
m2

q←−− eq←− m respectively, where
m1

p−−→
m1

q←−− and
m2

p−−→
m2

q←−− have the same pullback. Then:

Δ(
p1−→ q1←−) = Δ(

ep−→
m1

p−−→
m1

q←−− eq←−) = Δ(
ep−→ id←−) ; Δ(

m1
p−−→

m1
q←−−) ; Δ(

id−→ eq←−)
(ii)
=Δ(

e2p−→ id←−) ; Δ(
m2

p−−→
m2

q←−−) ; Δ(
id−→ eq←−) = Δ(

ep−→
m2

p−−→
m2

q←−− eq←−) = Δ(
p2−→ q2←−).

(iv) Analogous to (i). �

Lemma 4.8 states that any commutative diagram (8) equalizes all cospans that

are equal modulo-zeros. In our cube (5), also the converse statement holds.

Lemma 4.9 The following are equivalent

(a) n
p1−→ z

q1←− m and n
p2−→ r

q2←− m are equal modulo zeros.

(b) Π(
p1−→ q1←−) = Π(

p2−→ q2←−).

Proof Since bottom face of (5) commutes (see Lemma A.1 in the Appendix),

Lemma 4.8 yield the direction (a) ⇒ (b). For the converse direction, a routine

check shows that the definition of Π enforces the two cospans to have epi-mono

factorisations with the desired properties. For details, see Appendix A. �

We now have all the ingredients to show that the bottom face of (5) is a pushout.

Proof of Lemma 4.5 Commutativity is given by Lemma A.1, thus it remains

to show the universal property. Suppose that we have a commutative diagram as
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in (8). It suffices to show that there exists a PROP morphism Θ: ER → X with

ΘΥ = Γ and ΘΠ = Δ – uniqueness is automatic by fullness of Π (Lemma A.2).

Given an equivalence relation e : n → m, there exist a cospan
p−→ q←− such that

Π(
p−→ q←−) = e. We let Θ(e) = Δ(

p−→ q←−). This is well-defined: if
p′−→ q′←− is another

cospan such that Π(
p′−→ q′←−) = e then Lemma 4.9 says that

p−→ q←− and
p′−→ q′←− are equal

modulo-zeros and thus, by Lemma 4.8, Δ(
p−→ q←−) = Δ(

p′−→ q′←−). This argument also

shows that, generally, ΘΠ = Δ. Finally, Θ preserves composition:

Θ(e ; e′) = Θ(Π(
p−→ q←−) ; Π( p′−→ q′←−)) = Θ(Π((

p−→ q←−) ; ( p′−→ q′←−)))

= Δ((
p−→ q←−) ; ( p′−→ q′←−)) = Δ(

p−→ q←−) ; Δ(
p′−→ q′←−) = Θ(e) ; Θ(e′).

We conclude by showing ΘΥ = Γ: given a span
f←− g−→ in In, let

p−→ q←− be its pushout

span in F. By Lemma 4.8.(iv), Γ(
f←− g−→) = Δ(

p−→ q←−) = ΘΠ(
p−→ q←−) = ΘΥ(

f←− g−→). �

We can now conclude the characterisation of ER.

Proof of Theorem 4.2 The top and the bottom face of (5) are pushouts by

Lemma 4.4 and 4.5. This yields a unique PROP morphism IFr → ER making the

diagram commute. Since the other vertical arrows in (5) are isomorphisms, then

IFr→ ER is also an isomorphism. �

Remark 4.10 As hinted by the rightmost diagram in (7), one can give an alter-

native characterisation of ER as the composite PROP Su ; Inop ; In ; Su. This would
rely on defining the appropriate distributive laws and combine them using Propo-

sition 3.2: the resulting equations are precisely those of IFr. Then, showing that

factorised arrows of Su ; Inop ; In ; Su are in bijective correspondence with equiva-

lence relations in ER completes the proof that IFr ∼= ER. In our exposition we

preferred to use the “cube” construction (5), as it applies also to linear and partial

functions (cf. § 6). Also, it yields the isomorphism IFr ∼= ER as a universal arrow.

Remark 4.11 Our construction merges the theory of cospans of functions and of

spans of injective functions to form the theory of equivalence relations. One may

wonder what happens with a more symmetric approach, namely if we consider

spans of arbitrary functions. Mimicking the cube construction (5) would result in

the following diagram in PROP, where the top and the bottom face are pushouts.

Mn+ Cm
∼=
��


���
� � �� B�
�� ∼=

��
Fr � � ��

∼=
��

T

��
F+ Fop

��
�� Fop ; F

��F ; Fop �� .

(9)

The SMT for T includes the SMTs for Fr and B, allowing us to prove

(M3),(C3)
=

(F1)
=

(B2)
=

(B1)
=

(B4)
= .
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This derivation trivialises the theory, as it implies that any two arrows of the same

type are equal. Thus T , as well as the pushout object of the bottom face in (9), is

the terminal object in PROP: for any PROP S there is a unique morphism that

maps any arrow n
∈S−→ m into the unique arrow with that source and target in T .

5 A presentation of partial equivalence relations

Building on the results of the previous section, we shall now characterise the PROP

PER of partial equivalence relations (PERs) via another cube construction. In defin-

ing PER, we write dom(e) for the set Y ⊆ X of elements on which a partial equiv-

alence relation e on X is defined. Also, we reuse the operation − �− introduced in

defining ER (Definition 4.1).

Definition 5.1 Let PER be the PROP with arrows n → m partial equivalence

relations on n	m. Given e1 : n→ z, e2 : z → m, the composite e1 ; e2 is defined by

Ω(e1,e2) := {u ∈ n 	m | ∀w ∈ z. (u,w) ∈ e1 � e2 ⇒ w ∈ dom(e1) ∩ dom(e2)}
e1 ; e2 := e1 � e2�Ω(e1,e2)

.

The monoidal product e1 ⊕ e2 is given by disjoint union.

In words, composition in PER is defined as in ER, but e1 ; e2 is left undefined

on elements that, while gluing e1 and e2 into e1 � e2, fall into the same equivalence

class as an element of z on which either e1 or e2 is undefined. Here is an example

in which the composite e1 ; e2 turns out to be everywhere undefined:

3 �� 4 ; 4 �� 2 = 3 �� 2.

We now discuss what SMT will present PER. As we did for equivalence relations,

we first establish some preliminary intuition on the diagrammatic rendition of PERs.

For functions, partiality was captured graphically by incorporating an additional

generator (Example 3.3). The strategy for PERs is analogous: for the elements

on which a PER e is defined, the diagrammatic description is the same given for

equivalence relations in (4); the elements on which e is undefined will correspond

instead to ports where we plug in (if on the left) or (if on the right).

Therefore, the string diagrammatic theory for PERs will involve Fr expanded

with generators , , subject to suitable compatibility conditions. This plan

concretises into the PROP of “partial” special Frobenius algebras, whose definition

relies on the PROP PMn discussed in Example 3.3.

Definition 5.2 The PROP PFr is defined as PMn + PMnop quotiented by equa-

tions (F1), (F2) and the following two.
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= = (PFR1) = (PFR2)

Intuitively, (PFR1) (together with (P1) and (P2) from PMn and their counter-

parts in PMnop) is the algebraic rendition of the “cancellation property” that we

observed in the composition of partial equivalence relations.

As a partial version of Fr, we expect PFr to characterise cospans of partial

functions. To phrase this statement, note that PF is equivalently described as

the coslice category 1/F (that is, the skeletal category of pointed finite sets and

functions) and thus has pushouts inherited from F. We can then form the PROP

PF ; PFop of cospans in PF via a distributive law PFop ; PF→ PF ; PFop defined by

pushout, analogously to the case of functions (Example 3.1(b)).

Proposition 5.3 PFr ∼= PF ; PFop.

Proof For soundness of PFr, one simply needs to check that (PFR1) and (PFR2)

can be read off pushout squares in PF, analogously to Example 3.1(c). Conversely,

completeness amounts to show that any equation that can be read off pushout

squares in PF is provable in PFr. The key insight is that any such pushout can

be decomposed into simpler pushout squares only involving the generators of PFr.
Thus it suffices to check that the interaction of generators is covered by the axioms

of PFr. We leave further details for Appendix A. �

Now that we have an algebraic theory of cospans of partial functions, we can

approach PERs by removing redundancy. Let us call IPFr (irredundant partial

Frobenius algebras) the quotient of PFr by (B4).

Theorem 5.4 IPFr ∼= PER.

We proceed analogously to the case of equivalence relations. The isomorphism

of Theorem 5.4 arises as a universal arrow in the following diagram in PROP,

provided that the top and the bottom face are pushouts.

Un+ Cu�


��

� � ��

∼=

��

Fr�


��

� � ��

∼=

��

PFr��

�� ∼=
��

Cu ; Un � � ��

∼=
��

IFr � � ��

∼=

��

IPFr
∼=

��

In+ Inop
[κ1,κ2]
��

[ι1,ι2] �� F ; Fop
Π

��

Λ ��PF ; PFop
Π′

��
Inop ; In

Υ
�� ER

Ξ
��PER

(10)

The leftmost cube is just (5). We now specify Λ, Ξ and Π′.

• For Λ, recall that there is a functor R : PF → F which maps n to n+ 1 and

f : n → m to the function n+ 1 → m+ 1 sending to � ∈ 1 the elements on

which f is undefined. Now, R has a left adjoint L : F → PF: the obvious

embedding of functions into partial functions. We define Λ as the embedding
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of F ; Fop into PF ; PFop induced by L. This is a functorial assignment because

left adjoints preserve pushouts.

• Similarly, we let Ξ be the obvious embedding of ER into PER. This assignment

is functorial because composition in PER behaves as composition in ER on

PERs that are totally defined.

• The PROP morphism Π′ : PF ; PFop → PER is the extension of Π: F ; Fop → ER
to partial functions, defined by the same clause (6). Note that the generality

of PER is necessary: the value e of Π′ on a cospan
p−→ q←− in PF is possibly not

a reflexive relation, since p and q may be undefined on some elements of n, m.

Proof of Theorem 5.4 The leftmost top and bottom squares of (10) have been

proven to be pushouts in Lemmas 4.4 and 4.5. The rightmost top square is readily

seen to be a pushout by definition of the SMTs involved, similarly to the proof

of Lemma 4.4. It thus remains to show that the rightmost bottom square is also

a pushout. It clearly commutes by definition of Π, Π′, Ξ and Λ. To complete the

proof, because Λ is an embedding, it suffices to check that Ξ(e) = Π′(
p−→ q←−) precisely

when there exist
p′−→ q′←− in F ; Fop such that e = Π(

p′−→ q′←−) and Λ(
p′−→ q′←−) = p−→ q←−. We

leave the (simple) details to Appendix A.

Finally, since the top and the bottom face of (10) are pushouts and the vertical

arrows are isomorphisms, the universal arrow IPFr→ PER is also an isomorphism.�

6 Conclusions

Our work combines PROPs of spans and cospans of functions to give an algebraic

characterisation for PROPs of equivalence relations. What we find most striking

is that the same “cube” pattern leads to similar results in the total and partial

cartesian case, explored here, and in the linear case, investigated in [5]. It seems

that we are scratching the surface of a more general construction, which needs some

further insights to be better understood — as we saw, it collapses with spans of

non-injective functions (Remark 4.11). We leave this investigation for future work.

Acknowledgement

Thanks to Filippo Bonchi, Pierre-Louis Curien, Peter Selinger, Pawel Sobociński
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A Omitted Proofs

The following lemma is used in § 4.

Lemma A.1 The bottom face of (5) commutes.

Proof It suffices to show that it commutes on the two injections into In+ Inop , that

means, for any f : n → m in In, Υ(
id←− f−→) = Π(

f−→ id←−) and Υ(
f←− id−→) = Π(

id−→ f←−).
These statements are clearly symmetric, so it is enough to check one:

Υ(
id←− f−→) = {(v, w) | v = f−1(w) ∨ w = f−1(v) ∨ v = w}

= {(v, w) | f(v) = w ∨ f(w) = v ∨ v = w}
f ∈ In
= {(v, w) | f(v) = w ∨ f(w) = v ∨ f(v) = f(w)} = Π(

f−→ id←−).

�

Proof of Lemma 4.9 We complete the proof in the main text by showing that

(b) ⇒ (a). For this purpose, it is useful to first verify the following properties:

(i) for all u, u′ ∈ n, p1(u) = p1(u
′) if and only if p2(u) = p2(u

′)

(ii) for all v, v′ ∈ m, q1(v) = q1(v
′) if and only if q2(v) = q2(v

′)

(iii) for all u ∈ n, v ∈ m, p1(u) = q1(v) if and only if p2(u) = q2(v)

(iv) Let p1[n] be the number of elements of n that are in the image of p1, and

similarly for p2[n]. Then p1[n] = p2[n].

(v) q1[n] = q2[n].

For statement (i), observe that, by definition of Π, for any two elements u, u′ ∈ n the

pair (u, u′) is in Π(
p1−→ q1←−) if and only if p1(u) = p1(u

′). Similarly, (u, u′) ∈ Π(
p2−→ q2←−)

if and only if p2(u) = p2(u
′). Since by assumption Π(

p1−→ q1←−) = Π(
p2−→ q2←−), we obtain

(i). A symmetric reasoning yields (ii). The argument for statement (iii) is analogous:

for i ∈ {1, 2} and u ∈ n, v ∈ m, by definition of Π, (u, v) ∈ Π(
pi−→ qi←−) if and only

if pi(u) = qi(v). Since Π(
p1−→ q1←−) = Π(

p2−→ q2←−), we obtain (iii). Statement (iv) is an

immediate consequence of (i), and (v) of (ii).

Now, by virtue of properties (i)-(v), it should be clear that we can define epi-

mono factorisations n
e1p−→

m1
p−−→ z

m1
q←−−

e1q←− m and n
e2p−→

m2
p−−→ r

m2
q←−−

e2q←− m of n
p1−→ z

q1←− m

and n
p2−→ r

q2←− m respectively, with the following properties.

(vi) e1p and e2p are the same function, with source n and target p1[n] = p2[n]. Also

e1q and e2q are the same function, with source m and target q1[m] = q2[m].

(vii) For all u ∈ p1[n] = p2[n] and v ∈ q1[n] = q2[n], m
1
p(u) = m1

q(v) iff m2
p(u) =

m2
q(v).

It remains to prove that
m1

p−−→
m1

q←−− and
m2

p−−→
m2

q←−− have the same pullback. For this
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purpose, let the following be pullback squares in In:

h1
g1

��

f1 �� q1[n]

m1
q

��
p1[n]

m1
p

�� z

h2
g2

��

f2 �� q1[n]

m2
q

��
p1[n]

m2
p

�� r

By the way pullbacks are computed in In (i.e., in F), using (vii) we can conclude that

m1
pg2 = m1

qf2 and m2
pg1 = m2

qf1. By universal property of pullbacks, this implies

that the spans
g1←− f1−→ and

g2←− f2−→ are isomorphic. �

The following observation is used in the proof of Lemma 4.5.

Lemma A.2 Π: F ; Fop → ER is full.

Proof Let c1, . . . , ck be the equivalence classes of an equivalence relation e on n	m.

We define a cospan n
p−→ k

q←− m by letting p map v ∈ n to the equivalence class ci
to which v belongs, and symmetrically for q on values w ∈ m. It is routine to check

that Π(
p−→ q←−) = e. �

Next, we give more details on the proof of Proposition 5.3. The hard part is to

check that the equation associated with any pushout diagram in PF is provable by

the equations of PFr. The key observation is that we can confine ourselves to just

pushouts involving the generators of PMn.

Before making this formal, we illustrate the idea of the argument with the fol-

lowing example. The leftmost diagram below is a diagram representing a span
f←− g−→ (left), which we transform into a cospan (right) pushing out

f←− g−→, only using

equations of PFr.

→→

⇒
→→ →→ →

⇒

→ →→ → →

⇒

→→ →→ →

⇒
→ →→ →→

⇒
→ →→ →→

The steps are as follows. First, we expand
f←− and

g−→ as
f1←− f2←− and

g1−→ g2−→ g3−→
respectively, in such a way that each fi and gi contains at most one generator of

PF and PFop . In the next steps, we proceed pushing out spans
fi←− gj−→ whenever

possible: graphically, this amounts to apply valid equations of PFr of a very simple

kind, namely those describing the interaction of a single (or no) generator of PFop

with one (or none) of PF. Note that pushing out spans of this form always gives

back a cospan
p−→ q←− with p, q containing at most one generator, meaning that the

procedure can be applied again until no more spans appear. The resulting diagram

(the rightmost above) is the pushout of the leftmost one by pasting properties of

pushouts. Therefore, we just proved that the equation

→→

=

→ →→ →→
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arising by the distributive law PFop ; PF→ PF ; PFop is provable in PFr.

We now formalise the argument sketched above. Let us call atom any diagram of

PMn of shape
f−→ b−→ g−→, where f and g consist of components and composed

together via ⊕ or ; , and b is either or a generator of PMn. The following lemma

establishes that PFr is complete for pushouts involving atoms.

Lemma A.3 Let
f←− g−→ be a span in PF where f and g are in the image (under

the isomorphism PMn ∼= PF) of atoms and suppose that the following is a pushout

square.
rf

��
g

��m
p ��

n
q��z

(A.1)

Then (i) p and q are also in the image of atoms and (ii) the associated equation is

provable in PFr.

Proof The two points are proved by case analysis on all the possible choices of

generators of PMn and (PMn)op . �

Proof of Proposition 5.3 Fix any pushout square (A.1) in PF and pick expansions

f = f1 ; . . . ; fk and g = g1 ; . . . ; gj , with each fi and gi in the image of an atom.

We can calculate the pushout above by tiling pushouts of atoms as follows:

zf1
��

g1
��f2�� �� ��

g2 ��. . .fk�� �� ���� . . .��
gj

��
�� . . . ��

�� . . .�� �� ��. . . �� . . .��

(A.2)

Point (i) of Lemma A.3 guarantees that each inner square only involves arrows in

the image of some atom and Point (ii) ensures that all the associated equations

are provable in PFr. It follows that also the equation associated with the outer

pushout (A.2) is provable. �

We complete the proof sketch of Theorem 5.4 given in the main text. The

following is the key lemma.

Lemma A.4 Let e ∈ ER[n,m] and
p−→ q←−∈ PF ; PFop. The following are equivalent.

(i) Ξ(e) = Π′(
p−→ q←−).

(ii) There are cospans
p1−→ q1←−, . . . , pk−→ qk←− in F ; Fop [n,m] such that

e = Π(
p1−→ q1←−)

Λ(
p1−→ q1←−) = Λ(

p2−→ q2←−)
Π(

p2−→ q2←−) = Π(
p3−→ q3←−)

. . . . . .

Λ(
pk−→ qk←−) = p−→ q←− .
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Proof First we observe that, because Λ is an embedding, Λ(
pi−→ qi←−) = Λ(

pi+1−−−→ qi+1←−−)
implies

pi−→ qi←−= pi+1−−−→ qi+1←−−. It follows that (ii) is equivalent to the statement that (iii)

there exist
p′−→ q′←−∈ F ; Fop [n,m] such that e = Π(

p′−→ q′←−) and Λ(
p′−→ q′←−) = p−→ q←−.

It is very easy to show that (iii) implies (i):

Ξ(e)
(iii)
= ΞΠ(

p′−→ q′←−) comm. of (10)
= Π′Λ(

p′−→ q′←−) (iii)
= Π′(

p−→ q←−).

For the converse direction, suppose that we can show (*) the existence of
p′−→ q′←−∈ F ; Fop [n,m] such that

p′−→ q′←−= Λ(
p−→ q←−). Then the following derivation gives

statement (iii):

Ξ(e)
(i)
= Π′(

p−→ q←−) (*)
= Π′Λ(

p′−→ q′←−) comm. of (10)
= ΞΠ(

p′−→ q′←−).

Indeed, because Ξ is an embedding, the derivation above implies that e = Π(
p′−→ q′←−).

Therefore it suffices to show (*). For this purpose, we just need to prove that both

n
p∈PF−−−→ z and m

q∈PF−−−→ z are total functions. Let u be an element of n: since

Π′(
p−→ q←−) = Ξ(e) and Ξ embeds equivalence relations into PERs, then Π′(

p−→ q←−) is

in fact an equivalence relation, meaning that u belongs to some equivalence class of

the partition induced by Π′(
p−→ q←−). It follows by definition of Π′ that p : n → z is

defined on u. With a similar argument, one can show that q : m → z is defined on

all elements of m and thus both p and q are total functions. This implies that
p−→ q←−

is in the image of the embedding Λ. �

Proof of Theorem 5.4 In order to complete the proof of the main text, it re-

mains to show that the leftmost bottom face of (10) is a pushout. First, recall that

pushouts in PROP can be calculated as in Cat. In particular, (10) involves cate-

gories all with the same objects and identity-on-objects functors. This means that

the pushout object is the quotient of ER and F ; Fop along the equivalence relation

generated by

{(e, p−→ q←−) | there is
p′−→ q′←− such that Π(

p′−→ q′←−) = e and Λ(
p′−→ q′←−) = p−→ q←−}. (A.3)

Lemma A.4 proves that Π′ and Ξ map n
e∈ER−−−→ m and n

p−→ q←− m to the same arrow

exactly when they are in the equivalence relation described above. This means that

PER indeed quotients by (A.3) and thus is the desired pushout object. �
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