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Abstract The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation

during contraction correlates with morphological features suggestive of inherent left–right (L/R)

asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic

nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse

models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves

have asymmetries, which can be established independently of each other during early

embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other

organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L

versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both

pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L–R imprinting

of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to

match neural circuit formation to organ asymmetry.

DOI: 10.7554/eLife.18481.001

Introduction
The diaphragm is the main respiratory muscle of mammalian organisms, separating the thoracic and

abdominal cavities. Many diseases, including congenital hernia, degenerative pathologies and spinal

cord injury, affect diaphragm function and thereby cause morbidity and mortality (Greer, 2013;

McCool and Tzelepis, 2012). Despite the large interest given to diaphragm function in various phys-

iological and pathological contexts (Lin et al., 2000; Misgeld et al., 2002; Strochlic et al., 2012), lit-

tle attention has been paid to the embryological origin of left–right (L/R) asymmetries in diaphragm

morphology and contraction, in part because they were inferred to be simply an adaptation to the

structure of other, surrounding asymmetric organs such as the lungs (Laskowski et al., 1991; White-

law, 1987). In the present study, we investigated the origin and the mechanisms responsible for the
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establishment of the diaphragm asymmetries, including motor innervation by the left and right

phrenic motoneurons that arise in the spinal cord at cervical levels C3 to C5 (Greer et al., 1999;

Laskowski and Owens, 1994). Our findings show that both the diaphragm muscle and phrenic

nerves have asymmetries, which are established independently of each other during early

embryogenesis.

Results
As many L/R asymmetries are determined prenatally (Sun et al., 2005), we analyzed the diaphragm

innervation of mouse embryos on embryonic day (E) 15.5, when synaptic contacts begin to be estab-

lished in this organ (Lin et al., 2001). We observed that the phrenic nerves split into primary dorsal

and ventral branches when reaching the lateral muscles, whereby the distance from the end-plate to

the nerve entry point differs between the left and right side and results in a characteristic ‘T’ -like

pattern on the left and ‘V’ -like pattern on the right (Figure 1A; Figure 1—figure supplement 1A,

B). Similar differences in the L/R branching patterns are present in the human diaphragm

(Hidayet et al., 1974) (Figure 1—figure supplement 1C). Additionally, we observed an asymmetric

number of branches defasciculating from the left and right primary nerves to innervate the motor

end-plates (Figure 1A; Figure 1—figure supplement 1A,B). We further found that the L/R distribu-

tion of acetylcholine receptor (AchR) clusters at the nascent neuromuscular junctions also differed,

with a 2.1 ± 0.2-fold increase in the medio-lateral scattering of AchR clusters on the right side of the

diaphragm compared to the left side (N = 11, p<0.001 Wilcoxon) (Figure 1B; Figure 1—figure sup-

plement 2A,B). The time course analysis revealed that these asymmetric nerve patterns arose at

E12.5, concomitantly with branch formation (Figure 1C–E; Figure 1—figure supplement 3A–C).

Thus, phrenic branch patterns exhibit clear asymmetries before synapse formation and fetal respira-

tory movements (Lin et al., 2001, 2008), and are therefore unlikely to be induced by nerve activity

or muscle contraction.

We therefore asked whether diaphragm nerve asymmetry was genetically hard-wired downstream

of Nodal signaling, which initiates a left-restricted transcriptional cascade to establish visceral asym-

metry (Komatsu and Mishina, 2013; Nakamura and Hamada, 2012). To answer this question, we

examined two complementary types of mouse mutants that have defective Nodal signaling and

ensuing lung isomerism. First, we examined Pitx2DC/DC embryos lacking PITX2C, a transcription

eLife digest The diaphragm is a dome-shaped muscle that forms the floor of the rib cage,

separating the lungs from the abdomen. As we breathe in, the diaphragm contracts. This causes the

chest cavity to expand, drawing air into the lungs. A pair of nerves called the phrenic nerves carry

signals from the spinal cord to the diaphragm to tell it when to contract. These nerves project from

the left and right sides of the spinal cord to the left and right sides of the diaphragm respectively.

The left and right sides of the diaphragm are not entirely level, but it was not known why. To

investigate, Charoy et al. studied how the diaphragm develops in mouse embryos. This revealed

that the left and right phrenic nerves are not symmetrical. Neither are the muscles on each side of

the diaphragm. Further investigation revealed that a genetic program that establishes other

differences between the left and right sides of the embryo also gives rise to the differences between

the left and right sides of the diaphragm. This program switches on different genes in the left and

right phrenic nerves, which activate different molecular pathways in the left and right sides of the

diaphragm muscle.

The differences between the nerves and muscles on the left and right sides of the diaphragm

could explain why some muscle disorders affect only one side of the diaphragm. Similarly, they

could explain why congenital hernias caused by abdominal organs pushing through the diaphragm

into the chest cavity mostly affect the left side of the diaphragm. Further studies are now needed to

investigate these possibilities. The techniques used by Charoy et al. to map the molecular diversity

of spinal cord neurons could also lead to new strategies for repairing damage to the spinal cord

following injury or disease.

DOI: 10.7554/eLife.18481.002
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Figure 1. L/R asymmetries of the phrenic nerve patterns are established from the onset of diaphragm innervation. (A) Neurofilament (NF) staining

showing the branching patterns of the left and right phrenic nerves in whole-mount E15.5 mouse diaphragm. Left and right primary branches are

pseudocolored (middle panel) in green and red, respectively. (See Figure 1—figure supplement 1A, for complete branch traces). L/R asymmetry is

especially apparent after superimposing the left and right primary branches (right panel). Arrows point to the nerve entry points. Images are top views

of the whole diaphragm, oriented as indicated in the top left hand corner of the left panel (V, Ventral; D, Dorsal; L, Left; R, Right). (B) NF and

Bungarotoxin staining showing the asymmetry of acetylcholine receptor clusters and nerve domains on the left (left panel, green frame) and right (right

panel, red frame) diaphragm muscles of an E15.5 embryo (see Figure 1—figure supplement 2 for quantification). (C) NF staining showing the patterns

of left and right phrenic nerves at E13.5 and E14.5. Green- and red-framed panels show enlarged images of the left and right phrenic nerves,

respectively. (D) Schematics showing the method used to quantify the defasciculation distance (shown in blue), from the nerve entry point to the dotted

line and histogram of the defasciculation distance at E13.5, E14.5 and E15.5 (E13.5 — left 32.76 ± 11.01, right 94.82 ± 21.94, N = 9, p=0.0106; E14.5 —

left 42.56 ± 4.16, right 135.71 ± 10.20, N = 8, p=0.00015; E15.5 — left 77.16 ± 7.32, right 188.51 ± 7.01, N = 18, p=4 E-10, Mann-Whitney). (E) Schematics

showing the method used to quantify the secondary branch number by counting the number of NF-positive fascicles that crossed the dotted line

positioned at 80% of the defasciculation distance and histogram of the secondary branch number at E13.5, E14.5 and E15.5 (E13.5 — left 5.55 ± 0.96,

right 8.88 ± 0.65, N = 9, p=0.0288; E14.5 — left 7.5 ± 0.38, right 10.88 ± 0.69, N = 8, p=0.00117; E15.5 — left 5.94 ± 0.31, right 10.7 ± 0.3, N = 18, p=2.35

E-7, Mann-Whitney). Histograms show the mean ± SEM for each stage. Scale bars: 200 mm (A,C); 100 mm (B). Numerical values used to generate the

graphs are accessible in Figure 1—source data 1.

DOI: 10.7554/eLife.18481.003

The following source data and figure supplements are available for figure 1:

Source data 1. Left and right measures of the defasciculation distance and branch number in E13.5, E14.5 and E15.5 mouse embryos.

DOI: 10.7554/eLife.18481.004

Figure supplement 1. Phrenic nerve patterns and quantification in mice and L/R nerve asymmetry in a human diaphragm.

DOI: 10.7554/eLife.18481.005

Figure supplement 2. L/R differences of acetylcholine clusters during synaptogenesis.

DOI: 10.7554/eLife.18481.006

Figure supplement 2—source data 1. Left and right endplate thicknesses measured from Bungarotoxin labeling in E15.5 mouse embryos.

DOI: 10.7554/eLife.18481.007

Figure 1 continued on next page
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factor downstream of Nodal (Essner et al., 2000; Liu et al., 2001; Schweickert et al., 2000). In the

absence of PITX2C, Nodal signaling is interrupted, which causes a right pulmonary isomerism (i.e.

the left lung has three main lobes like the right lung, instead of only one) (Liu et al., 2001,

2002). Second, we examined Rfx3–/– embryos lacking RFX3, which is essential for cilia function that

helps to distribute Nodal to the left side of the body. As a result, some Rfx3–/– embryos exhibit bilat-

eral Nodal expression and left pulmonary isomerism (i.e. the right lung has one lobe like the left

lung) (Bonnafe et al., 2004). We found that diaphragm L/R nerve asymmetries were lost in both

Pitx2DC/DC and Rfx3–/– embryos with impaired visceral asymmetries at E14.5 (Figure 2A–E) (number

of secondary branches, Wt versus mutant with lung isomerism: PITX2C, p=4.493E-5; RFX3,

p=0.002884; defasciculation distance, Wt versus mutant with lung isomerism: PITX2C, p=0.001268;

RFX3, p=2.719E-6, Mann-Whitney). Thus, the Nodal pathway is essential for the establishment of

diaphragm nerve asymmetry.

We next asked whether phrenic nerve asymmetry has an environmental origin, because it is con-

ceivable that the lung buds confer L/R asymmetry-inducing signals to nerves that are navigating

Figure 1 continued

Figure supplement 3. Stereotypy and variability of L/R asymmetry of the phrenic nerve patterns.

DOI: 10.7554/eLife.18481.008

Figure supplement 3—source data 2. Paired analysis of left and right defasciculation distances in E14.5 mouse embryos.

DOI: 10.7554/eLife.18481.009
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Figure 2. L/R asymmetries of the phrenic nerve patterns require Nodal signaling. (A) NF staining of E14.5 diaphragms from wild-type, Pitx2DC/DC and

Rfx3–/– embryos with the respective superimposed L/R nerve pattern and the Nodal expression. (B–C) Schematic of the secondary branches

quantification and histograms of the R/L ratios of secondary branches: Pitx2DC/+and Pitx2+/+ 2.23 ± 0.20, versus Pitx2DC/DC with lung isomerism

1.09 ± 0.05, p=4.493E-5 (B); Rfx3+/+ and Rfx3–/+ 1.75 ± 0.12, versus Rfx3–/– with lung isomerism 1.07 ± 0.10, p=0.002884, Mann-Whitney (C). (D–E)

Schematic of the defasciculation distance measurements and histograms of the R/L ratios of defasciculation distance for: Pitx2DC/+and Pitx2+/

+ 4.63 ± 0.26, versus Pitx2DC/DC with visceral isomerism: 2.28 ± 0.59, p=0.001268, Mann-Whitney (D); Rfx3+/+ and Rfx3–/+ 4.62 ± 0.43, versus Rfx3-/- with

visceral isomerism 1.35 ± 0.19, p=2.719E-6, Mann-Whitney (E). Note that there is no lung isomerism in wild-type embryos. Histograms show the mean ±

SEM. Numbers above bars indicate the number of embryos analysed. ni, non-isomeric (embryos that did not exhibit visceral isomerism); i, isomeric.

Scale bars: 200 mm. Numerical values used to generate the graphs are accessible in Figure 2—source data 1.

DOI: 10.7554/eLife.18481.010

The following source data is available for figure 2:

Source data 1. Ratios of the defasciculation distance and branch number in E14.5 mouse embryos of Pitx2C and Rfx3 lines.

DOI: 10.7554/eLife.18481.011
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close by (Figure 3A,B). However, the analysis of Pitx2DC/DC and Rfx3–/– mutants showed that the pat-

tern of nerve asymmetry did not always correlate with the pattern of lung asymmetry; for example,

in 2/10 Pitx2DC/DC embryos, nerve patterns were normal even though the lungs were isomerized
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Figure 3. The asymmetry of phrenic circuits results from an intrinsic neuronal program. (A) Schematic representation of the organisation of the phrenic

nerves as they pass through the lungs and reach the diaphragm. (B) Photomicrographs of the expected L/R asymmetry of lungs and diaphragm muscles

at E14.5 in wild-type embryos and the altered L/R asymmetry observed in the Rfx3–/– and Pitx2DC/DC mutant embryos. Quantification of diaphragm

muscle asymmetry: Pitx2+/+ and Pitx2DC/+ 6.25 ± 0.68, N = 20, versus Pitx2DC/DCiso 0.26 ± 0.6, N = 6; Rfx3 +/+ and Rfx3-/+ 7.02 ± 0.74, N = 17 versus

Rfx3–/-–iso 0.72 ± 1.6, N = 7 (see methods). (C) Schematic representation of L/R asymmetries in the lungs, diaphragm muscles and phrenic nerves. A

colour code is used to show the uncoupling occurring between phrenic nerve and lung asymmetries or phrenic nerve and diaphragm muscle

asymmetries. Any structure represented in green is indicative of its left characteristics, whether it is observed on the left or the right side of the embryo,

whereas red structures represent right characteristics. (D) Pou3f1 (Oct6) staining showing the pool of phrenic motoneurons, projection formed by serial

sections of the entire cervical region of an E11.5 spinal cord embryo. (E) Histogram showing the area positive for the Pou3f1 (Oct6) labeling in the left

and right cervical motoneuron domains (N = 3, p=0.5, Wilcoxon signed rank). (F) GFP staining of ventral cervical spinal cord explants from E12.5 HB9::

GFP embryos; the dashed line is indicative of the explant border. (G) Quantification of the area occupied by GFP-positive axons for left and right

explants (left — 100% ± 17.4; right — 214% ± 30.2, p=0.0045, Mann-Whitney). (H) Quantification of the width ratio (see Figure 3—figure supplement 1

for quantification details) (left —100% ± 7.3; right — 127% ± 8.0, p=0.0127, Mann-Whitney). Numbers above bars indicate the numbers of explants

analysed. Histograms show the mean ± SEM. Scale bars: 100 mm (D), 200 mm (F). Numerical values used to generate the graphs are accessible in

Figure 3—source data 1.

DOI: 10.7554/eLife.18481.012

The following source data and figure supplements are available for figure 3:

Source data 1. Pool size and in vitro axon growth from left and right motoneurons.

DOI: 10.7554/eLife.18481.013

Figure supplement 1. Uncoupling between lung or muscle and nerve asymmetry and intrinsic L/R differences of axon growth from cultured cervical

motoneuron explants.

DOI: 10.7554/eLife.18481.014

Figure supplement 1—source data 1. Distribution of defasciculation ratios in the Pitx2C mouse line.

DOI: 10.7554/eLife.18481.015
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(20%; Figure 3C; Figure 3—figure supplement 1A,B). Moreover, 1/13 Rfx3–/– embryos exhibited

nerve isomerism together with pulmonary situs inversus, and nerve patterns were reversed in 1/13

embryo with lung isomerism (7.7% and 7.7%; Figure 3C; Figure 3—figure supplement 1A,B). Alter-

natively, it is conceivable that muscle asymmetry controls nerve asymmetry. In agreement with this

possibility, L/R asymmetry of the lateral diaphragm muscles was lost in both Pitx2DC/DC and Rfx3–/–

mutants (Figure 3B). However, muscle width did not correlate with changes in nerve patterns in 2/

10 Pitx2DC/DC embryos or in 6/13 Rfx3–/– embryos (20% and 46.2%, respectively). For example, mus-

cle isomerism could be observed in 1/13 Rfx3–/– embryos that have normal nerve patterns (7.7%) or

in 1/13 Rfx3–/– embryos with reversed nerve patterns (7.7%). Finally, nerves were isomerized in 2/13

Rfx3–/– embryos that exhibit normal L/R muscle asymmetry (15.4%) (Figure 3C; Figure 3—figure

supplement 1C). Together, these findings raise the possibility that phrenic motoneurons possess

intrinsic L/R differences that are established independently of visceral and muscle asymmetries.

3D reconstructions of cervical spinal cord tissue immunolabeled with Pou3f1/Oct6, whose expres-

sion has been reported in motoneurons (Philippidou et al., 2012), did not reveal any obvious differ-

ences in the L/R organization of the cervical motoneuron pools in the spinal cord (Figure 3D–E). We

therefore explanted phrenic motoneuron-enriched Hb9::GFP spinal cord tissue (Wichterle et al.,

2002) to follow the behavior of motor axons as they extended from the explants independently of

the surrounding organs (Figure 3—figure supplement 1D). We observed that axons explanted from

right tissue extended over longer distances and were organized differently than axons explanted

from left tissue (Figure 3F–H; Figure 3—figure supplement 1E–F). This observation suggests that

intrinsic factors present within the ventral spinal cord confer different behaviors to left and right

motoneuron axons.

To identify molecular determinants of L/R differences in phrenic axon growth, we laser-captured

left versus right GFP-positive cervical motoneurons from Hb9::GFP transgenic E11 embryos for

microarray analysis (Figure 4A). The presence of several markers for phrenic motoneurons (e.g.

Pou3f1/Oct6, Islet1 and ALCAM) in the microarray data demonstrated the accuracy of the dissection

procedure (Figure 4—figure supplement 1A–B). Consistent with the lack of obvious anatomical dif-

ferences distinguishing left and right Pou3f1/Oct6+ cervical motoneuron populations, none of these

markers had asymmetric expression levels. We further observed that amongst 22,600 transcripts

expressed above background, 146 were enriched on the left and 194 on the right, with a predomi-

nance of transcripts encoding nuclear proteins (differentially enriched transcripts: right 35.56% ver-

sus left 26.02%; Figure 4B; Figure 4—source data 1 and 2). Immunoblotting confirmed that

Morf4l1, a protein involved in histone acetylation/deacetylation and chromatin remodeling and

reported to be essential for neural precursor proliferation and differentiation (Chen et al., 2009;

Boije et al., 2013), was enriched in the left cervical motoneuron domain (L/R fold-change

1.81 ± 0.163, p=0.0022, Mann-Whitney; Figure 4C–E). Xrn2, a protein regulating RNA processing

and miR stability that regulates miR expression in neurons (Kinjo et al., 2013), was also enriched in

the left cervical motoneuron domain (L/R fold-change 1.37 ± 0.13, p=0.028; Mann-Whitney; Fig-

ure 4—figure supplement 1C). Thus, cervical motoneurons are intrinsically L/R-specified.

To determine whether molecular differences in L/R specification manifest themselves in differen-

tial axon guidance responses, we studied mice lacking Slit/Robo signaling, which is known to regu-

late the fasciculation of phrenic axons (Jaworski and Tessier-Lavigne, 2012). In agreement with

prior reports, we observed defective nerve defasciculation in Robo1–/–;Robo2–/– double mutants

(Figure 5A). Notably, defasciculation of the left nerve was as high as that of the right nerve and

assumed a similar pattern in the left and right diaphragm, rather than adopting the normal asymmet-

ric pattern seen in wild-type littermates (Figure 5A). Partial symmetrization was observed in double

heterozygous mutants, indicating concentration-dependent sensitivity of phrenic nerve axons to Slit

signals (Figure 5A).

To determine whether differential levels of Slit/Robo signaling dictate the L/R pattern of phrenic

nerve fasciculation, we examined their transcript levels, but found no evidence for lateralized expres-

sion of the transcripts for Robo1, the major regulator of diaphragm innervation (Jaworski and Tess-

ier-Lavigne, 2012), or the ligands of Robo1: Slit1, Slit2 and Slit3 (Figure 5—figure supplement 1A–

B). By contrast, we identified L/R differences in Robo1 protein by immunoblotting of phrenic motor

neuron-enriched cervical spinal cord tissue. Robo1 was detected in one long and two short forms

(Figure 5—figure supplement 1C), whereby the long Robo1 form migrating as a 250 kDa protein

was enriched in the left samples and the short forms migrating as 120 kDa and 130 kDa proteins
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were enriched in the right samples (R/L ratio— 1.22 ± 0.1, p=0.01587; Mann-Whitney, Figure 5B,

Figure 5—figure supplement 1D). Even though 12 alternatively spliced isoforms have been pre-

dicted for mouse Robo1, the predicted changes in protein sequence are unlikely to account for the

short forms we observed in our immunoblots, because they are predicted to change the molecular
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Figure 4. L/R molecular signature of cervical motoneurons. (A) Transverse sections of E11.5 Hb9::GFP embryo

cervical spinal cord, illustrating the areas used for laser-capture microdissection. (B) Pie charts showing the

proportion of left-enriched and right-enriched genes according to their Gene Ontology ‘cellular component’

terms. The ‘nucleus’ component is detached from the pie. (C) Ladder graph showing the left and right expression

of Morf4l1 in three embryos. Average L/R fold-change shown in brackets. (D) Immunodetection of Morf4l1 and

loading control tubulin (Tub.) in left and right ventral cervical spinal cord tissues. (E) Graph showing normalized

protein levels of Morf4l1 in left and right ventral cervical spinal cords from E11.5 mouse embryos. Individual values

observed for the six western-blots (dots) and mean ± SEM are represented (L/R ratio: 1.81 ± 0.163, L versus R;

p=0.0022, Wilcoxon signed rank). Average L/R fold-change shown in brackets. Scale bar: 100 mm. Numerical values

used to generate the graphs are accessible in Figure 4—source data 3.

DOI: 10.7554/eLife.18481.016

The following source data and figure supplements are available for figure 4:

Source data 1. List of enriched genes in the left cervical motor neurons of HB9::GFP embryos at E11.5.

DOI: 10.7554/eLife.18481.017

Source data 2. List of enriched genes in the right cervical motor neurons of HB9::GFP embryos at E11.5.

DOI: 10.7554/eLife.18481.018

Source data 3. Lateralization expression of Morf4l1 in cervical motoneurons.

DOI: 10.7554/eLife.18481.019

Figure supplement 1. Symmetric expression of phrenic motoneuron markers, and lateralized Xrn2 expression.

DOI: 10.7554/eLife.18481.020

Figure supplement 1—source data 1. RNA level of motoneuron markers and asymmetric expression of Xrn2.

DOI: 10.7554/eLife.18481.021
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Figure 5. Slit/Robo signalling and MMP2 control asymmetry of L/R phrenic nerves. (A) NF staining of E14.5 diaphragm from Robo1+/+ and Robo2+/+

and Robo1–/– and Robo2–/–- embryos, left and right primary branches are pseudocolored in green and red,respectively, and superimposed to show the

lack of asymmetry in the Robo1 and 2–/– embryos. Histogram showing the branch number and the defasciculation distance in Robo1+/+ and Robo2+/+,

Robo1+/– and Robo2+/– and Robo1–/– and Robo2–/– embryos (R/L branch ratio: Robo1+/+ and Robo2+/+ 2.30 ± 0.37, versus Robo1–/– and

Robo2–/– 1.06 ± 0.06; p=0.00048; R/L distance ratio: Robo1+/+ and Robo2+/+ 4.99 ± 0.89, versus Robo1–/– and Robo2–/– 1.05 ± 0.07; p=3E-6, Mann-

Whitney). (B) Immunodetection of Robo1 and loading control (Tub) in left and right HB9::GFP ventral cervical spinal cord and distribution of the relative

amount of the two shorter forms (pink arrowheads) to the full-length form (black arrowhead). The graph shows the normalized left and right values

obtained for the five western-blots (dots, 6–8 embryos per sample) and the mean ± SEM (R versus L: p=0.01587, Wilcoxon singed rank); average fold-

change is shown in brackets (1.22 ± 0.10). Normalization between lines was done on the Robo1 long form. (C) Ladder graph showing the left and right

expression of Mmp2 detected by microarray in three embryos. Average Log2(R/L ratio) shown in brackets. (D) Photomicrograph of cultured ventral

cervical spinal cord motoneuron. The combination of in situ zymmography with DQ-Gelatin and Islet1/2 staining enables the identification of

motoneuron with MMP gelatinase activity. Histogram showing the amount of motoneuron with gelatinase activity in left and right samples (left

23.37% ± 2.7, N = 792 versus right 37.94% ± 2.1, N = 797; p=0.00109, Mann-Whitney). Histogram showing the gelatinase activity measured in cultures

from Rfx3–/– embryos with symmetric lungs (Iso) and in cultures from Rfx3+/+, Rfx3+/– embryos (Rfx3 wt: — 1.4 ± 0.08; Rfx3 iso — 0.96 ± 0.08, p=0.0013,

Mann-Whitney). (E) NF staining of E14.5 diaphragms from wild-type and Mmp2–/– embryos. Left (green) and right (red) primary and secondary branch

traces shown in the middle panel are superimposed in the right panel to compare the left and right patterns. Histograms showing the R/L ratios of

branch number and defasciculation distances. Ratio of secondary branches: Mmp2+/+ and Mmp2–/+ 1.74 ± 0.07, versus Mmp2–/– 1.21 ± 0.10; p=0.00029;

defasciculation distance: Mmp2+/+ and Mmp2–/+ 5.33 ± 0.44, versus Mmp2–/– 3.49 ± 0.38; p=0.022, Mann-Whitney. Scale bar: 200 mm (A,E), 10 mm (D).

Numerical values used to generate the graphs are accessible in Figure 5—source data 1.

DOI: 10.7554/eLife.18481.022

The following source data and figure supplements are available for figure 5:

Source data 1. Slit/Robo signalling controls asymmetry of L/R phrenic nerves and Robo1 exhibits different processing levels in left and right cervical

motoneurons.

DOI: 10.7554/eLife.18481.023

Figure supplement 1. Post-translational regulation of Robo1.

DOI: 10.7554/eLife.18481.024

Figure 5 continued on next page
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weight by just 7.1 kDa. However, both human and drosophila Robo1 have been shown to be proc-

essed by metalloproteases (Seki et al., 2010; Coleman et al., 2010), and potential cleavage frag-

ments have been reported in mouse brain tissues (Clark et al., 2002). These findings raise the

possibility that differential post-translation processing of Robo proteins may be involved in creating

L/R asymmetries in diaphragm innervations.

Next, we investigated whether axon guidance effectors that were revealed by our transcriptomic

analysis to exhibit asymmetric expression levels could also contribute to the L/R phrenic nerve pat-

terns. Given that metalloproteases have emerged as important regulators of axonal behaviors during

development and regeneration (Bai and Pfaff, 2011; Łukaszewicz-Zając et al., 2014; Small and

Crawford, 2016; Verslegers et al., 2013b), we concentrated on these effectors. Consistent with

previous expression data (GSE41013) (Philippidou et al., 2012), our transcriptome analysis indicated

that cervical motoneurons express several metalloproteases. Interestingly, among the 7 Mmps and

13 ADAMs expressed by cervical motoneurons, Mmp2 and ADAM17 were expressed at higher levels

in the right motoneurons. We focused on MMP2 because it was shown to control axon development

in mouse and motor axon fasciculation in drosophila (Miller et al., 2011; Gaublomme et al., 2014;

Zuo et al., 1998; Miller et al., 2008).

The microarray analysis showed that Mmp2 transcripts were enriched in the Hb9-positive right

motoneurons, which was confirmed using qRT-PCR and quantitative in situ hybridization (log2(R/L)

Embryo 1 — 0.22 ± 0.08; Embryo 2 — 0.63 ± 0.11, RNAscope) (Figure 5C; Figure 5—figure supple-

ment 2A–D). Moreover, in situ zymography with DQ-Gelatin (Hill et al., 2012), which is effectively

cleaved by MMP2 (Snoek-van Beurden and Von den Hoff, 2005), showed that gelatinase activity

on the axon shaft and growth cones was 1.6 times higher in right than in left motoneuron cultures

(Figure 5D; Figure 5—figure supplement 2E). Remarkably, this difference was absent in motoneu-

ron cultures prepared from Rfx3–/– embryos with phenotypic left isomerism (Figure 5D). These

results provide evidence that the differential L/R MMP activity is controlled by the Nodal pathway

and further suggest that MMP2 contributes to the establishment of phrenic nerve asymmetry.

We therefore analyzed the diaphragm nerve patterns in Mmp2–/– mice (Itoh et al., 1997). At

E14.5, Mmp2–/– embryos exhibited normal lung asymmetry and well-developed phrenic branches on

both sides (Figure 5E). Interestingly, we observed a partial symmetrization of the phrenic branches,

with a right pattern that resembled the one observed on the left in control littermates in E14.5

Mmp2–/– embryos (Figure 5E). Thus, higher right MMP2 activity could contribute to promote the

right pattern of phrenic nerve defasciculation.

Discussion
Taken together, our work shows that the first asymmetry instruction in diaphragm patterning is pro-

vided by early Nodal signaling, which sets the L/R axis and visceral asymmetry of the embryo.

Beyond this early mechanism, phrenic motoneurons have an intrinsic, genetically encoded L/R asym-

metry that manifests itself in the differential activation of molecules that have key roles in axon guid-

ance, including Robo1 and MMP2.

Future work should aim to address how and at which stage phrenic motoneurons are imprinted.

For example, an early Nodal signal might be propagated from the lateral plate mesoderm (LPM) to

the cervical spinal cord. In agreement with this idea, it has been suggested that Lefty expression in

the prospective floor plate of the neural tube prevents Nodal diffusion to the left LPM

(Shiratori and Hamada, 2006). Moreover, Lefty expression is confined to the left prospective floor

plate and is reversed or expanded bilaterally in ‘iv’ or ‘inv’ mutants, which exhibit reverse visceral

asymmetry (Meno et al., 1997). Given the key role of the floor plate in the patterning and

Figure 5 continued

Figure supplement 1—source data 1. Post-translational regulation of Robo1 and biased expression of Mmp2.

DOI: 10.7554/eLife.18481.025

Figure supplement 2. Asymmetric expression of MMP2.

DOI: 10.7554/eLife.18481.026

Figure supplement 2—source data 2. Asymmetric expression of Mmp2 in cervical motoneurons and expression of other MMPs.

DOI: 10.7554/eLife.18481.027
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specification of spinal cord neuronal lineages (Goulding et al., 1993; Placzek et al., 1991), left and

right floor plate cells might also differently imprint left and right spinal cord. Alternatively, or addi-

tionally, endothelial cells invading the ventral spinal cord could convey early Nodal signaling from

the LPM to the spinal cord. Indeed, these cells exhibit L/R asymmetries that can be preserved during

their migration (Chi et al., 2003; Klessinger and Christ, 1996). The resulting L/R imprints could

occur early on during neurogenesis or later on during motoneuron differentiation. The two hypothe-

sizes might not be exclusive. Indeed, recent work in zebrafish habenula suggests that differences in

both the timing of neurogenesis and exposure to lateralized signal during neuron differentiation act

in parallel to set L/R asymmetries (Hüsken et al., 2014). Interestingly, early imprinting of progenitors

in Caenorhabditis elegans induces an epigenetic mark for L/R identity that drives differential genetic

programs during neuron differentiation (Cochella and Hobert, 2012; O’Meara et al., 2010).

Our work provides evidence to show that a L/R imprint confers specific axon behaviors to the left

and right phrenic motoneurons. For example, we found that Slit/Robo signaling is required for the

establishment of asymmetric nerve patterns, which suggests that left and right phrenic motoneurons

have different Slit/Robo signaling levels. Interestingly, Slit/Robo signaling has previously been shown

to control phrenic axon fasciculation (Jaworski and Tessier-Lavigne, 2012). Consistent with an

intrinsic control of Slit/Robo signaling as the cause of this axonal asymmetry, we discovered L/R dif-

ferences in Robo1 protein in motoneurons, which may arise through differential proteolysis

and may help to modulate responsiveness to Slit signaling, even though Slit and Robo genes are

expressed similarly in the left and right motoneuron pools. In support of the idea that differential

proteolysis contributes to the emergence of different Robo1 forms in the left and right phrenic

motoneuron pools, Robo processing has previously been reported in other contexts (Seki et al.,

2010; Coleman et al., 2010). This Robo1 processing could have different outcomes on Slit/Robo

signaling. In drosophila, cleavage of Robo by ADAM10 is required for recruitment of downstream

signaling molecules and the axon guidance response (Coleman et al., 2010). Metalloproteases can

also decrease the amount of available receptors and/or terminate adhesion and signaling (Bai and

Pfaff, 2011; Hinkle et al., 2006; Romi et al., 2014; Hattori et al., 2000; Gatto et al., 2014).

Slit/Robo signaling can control many different aspects of axon development, such as axon growth,

branching, guidance or fasciculation. As primary and secondary branches are formed by selective

defasciculation and because Slit/Robo signaling controls phrenic axon fasciculation, our interpretation

is that the different Slit/Robo signaling abilities of left and right phrenic axons result in different axon–

axon fasciculation states, with right axons having greater defasciculation behavior than the left ones.

Alternatively, the Slit/Robo pathway may differentially regulate axon and branch growth, or branch

trajectories, as it does for other systems of neuronal projections (Wang et al., 1999; Brose et al.,

1999; Blockus and Chédotal, 2016). These ideas have to be taken cautiously. Differential Robo forms

were assessed from spinal cord tissue essentially containing neuronal soma, and not peripheral

phrenic axons. Furthermore, the tissue samples, although enriched in phrenic motoneurons by the

procedure, contained additional neuronal sub-types. Further investigations are thus needed to assess

with more specific tools Robo protein dynamics and distribution along phrenic axons and in the

growth cones. This work will provide a better characterization of the functional outcome

determined by the balance of short and long Robo forms in the establishment of phrenic nerve

patterns.

Asymmetries in several genes implicated in axon guidance were observed in our transcriptome

analysis. In particular, we found differences in the expression of regulators of guidance receptors

activities, such as metalloproteases. Mmp2 expression level and gelatinase activity were found

to be higher in right cervical motoneurons. Moreover, differential gelatinase activity between left

and right motoneurons was lost in cultures from Rfx3–/-– mutants with symmetrical Nodal signaling,

suggesting that early Nodal signaling impacts on gelatinase activity in motoneurons. Mmp2 genetic

loss reduced the asymmetry of the diaphragm branch pattern, suggesting that asymmetric expres-

sion of Mmp2 in motoneurons contributes to set phrenic nerve patterns.

However, in contrast to embryos lacking Pitx2 and Rfx3, embryos lacking Mmp2 only exhibited a

partial symmetrization of the phrenic nerve branches. Rfx3 and Pitx2C transcription factors act at the

onset of the left–right imprinting, and their genetic loss is therefore expected to abolish the entire

program of L/R nerve asymmetry. By contrast, the subsequent construction of individual neuronal cir-

cuits relies on the concerted action of many different signaling pathways, whereby loss of a single

pathway is not expected to disrupt the entire asymmetry program. The partial defect may be due to
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the presence of other effectors of the Nodal pathway that contribute to L/R nerve asymmetries inde-

pendently of MMP processing, to the co-expression of several MMPs acting with partial redundan-

cies with each other (Prudova et al., 2010; Kukreja et al., 2015) and to the fact that MMPs have

many different substrates with potentially opposite effects on the same biological process. For

example, proteomic studies have identified more than 40 secreted and transmembrane substrates

for MMP2 (Dean and Overall, 2007), of which we found 32 to be expressed in cervical motoneurons

including Adam17, which is enriched in right motoneurons (Figure 5—figure supplement 2F, Fig-

ure 4—source data 2).

The MMP substrates that are responsible for asymmetric phrenic nerve patterning remain to be

determined, but Slit/Robo signaling appears to be an obvious candidate. First, cleavage of human

Robo1 has been suggested to be MMP-dependent, although in drosophila, Robo1 is cleaved by

Adam10/Kuzbanian (Coleman et al., 2010; Seki et al., 2010). Second, short forms of Robo1, lprob-

ably generated by proteolysis, are enriched in right motoneurons, in which MMP activity is the high-

est. In support, incubation of cervical spinal cord tissue with active MMP2 significantly increased the

short Robo1 forms (fold change: 1.60 ± 0.23, p=0.00285, Mann-Whitney, four independent western

blots, Supplementary file 1). Nevertheless, the L/R ratio of Robo protein forms in cervical motoneu-

ron tissue collected from Mmp2 null embryos, although showing a tendency towards reduction, was

not statistically different from the wild-type ratio (WT: 1.22 ± 0.10, N = 5; Mmp2–/–: 1.14 ± 0.01,

N = 3; p=0.78, Mann-Whitney; Supplementary file 2). This might be due to an insufficient number

of tested embryos. Alternatively, because short Robo1 forms were still detected, this L/R ratio might

rather reflect the activity of other proteases, either compensating for MMP2 loss or also contributing

to Robo processing.

An additional MMP candidate is NCAM, which is highly expressed by developing phrenic axons,

controls axon-axon fasciculation, and is cleaved by MMPs (Dean and Overall, 2007; Hinkle et al.,

2006). In the light of MMP redundancy and the possible involvement of other proteases in the proc-

essing of axon guidance receptors and their ligands, the in vivo assessment of these hypotheses

will be challenging.

Finally, the genetic program for L/R identity in spinal cord motoneurons that we have described

here may provide important insights into motoneuron development and diseases. For example,

the L/R imprinting of spinal motoneuron might also explain why right-sided fetal forelimb move-

ments are far more frequent than left-sided movements at developmental stages when motoneurons

have not yet received any input from higher brain centers (Hepper et al., 1998). In addition, our

description of early events controlling diaphragm formation may have broad implications for our

understanding of several human conditions. Examples include congenital hernias, which generally

affect the left hemi-diaphragm and can cause perinatal lethality (Pober, 2008), and some types of

congenital myopathies that impair diaphragm function only on one side (Grogan et al., 2005). Our

data thus provide a novel basis for investigations of molecular diversity in spinal cord neurons and

for functional studies of diaphragm physiology and pathology.

Materials and methods

Genotyping of mouse lines
This work was conducted in accordance with the ethical rules of the European community and

French ethical guidelines. Genotyping of transgenic mouse lines was performed as described in

Liu et al. (2001) for Pitx2DC (original line: RRID:MGI:3054744), in Bonnafe et al. (2004) for Rfx3

(RRID:MGI:3045845), in Delloye-Bourgeois et al. (2015) for Robo1 and Robo2 (RRID:MGI:5522691),

in Verslegers et al. (2013b) for Mmp2 (RRID:MGI:3577310) and in Huber et al. (2005) for the HB9::

GFP (RRID:IMSR_JAX:005029).

Diaphragm immunolabeling
Diaphragms were dissected from embryos fixed overnight in 4% paraformaldehyde. After permeabi-

lization and blocking in PBS with 5% BSA with 0.5% Triton X-100, diaphragms were incubated over-

night at room temperature with the primary antibody, Neurofilament 160 kDa (1/100, RMO-270,

Invitrogen, France; RRID:AB_2315286). Diaphragms were then incubated with the secondary anti-

body, a-mouse Alexa-555 (1/400, Invitrogen, France) with or without Alexa488-coupled a-BTX (1/50,
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Molecular probes, ThermoFischer Scientific, France; RRID:AB_2313931), for 4 hr at room tempera-

ture in blocking solution. The procedure was performed entirely on freely floating diaphragms. Dia-

phragm imaging was then performed under an inverted microscope and a montage was constructed

using the metamorph software (Molecular device, Sunnyvale, CA).

Immunofluorescent labeling and in situ hybridization
Cryosections (20 mm) were obtained from embryos fixed overnight in 4% paraformaldehyde, embed-

ded in 7.5% gelatin with 15% sucrose. For immunolabeling, embryonic sections or cultured neurons

were incubated overnight at 4˚C with Oct6 antibody (1/50; Santa Cruz, Germany) and then for 2 hr

at room temperature with anti-goat secondary antibody, Alexa-488 (1/400; Invitrogen, France).

Nuclei were stained with bisbenzimide (Promega, Madison, WI). In situ hybridization was performed

as described previously (Moret et al., 2007). The probes were synthetized from the Mmp2 IMAGE-

clone plasmid (n6813184). Mmp2 in situ hybridization and Pou3f1 (Oct6) immunolabeling were per-

formed on adjacent sections because the antibody could no longer recognize the Oct6 epitope after

in situ hybridization.

Images processing and quantifications
Serial Pou3f1/Oct6-labeled sections were imaged using a confocal microscope. Series of images

were converted into a single stack using the ImageJ plugin Stack Builder. Images were aligned man-

ually using morphological structures and labeled nuclei were extracted. A three-dimensional recon-

struction of the Pou3f1 (Oct6) labeling from the cervical to the brachial part of the embryos was then

generated in ImageJ (3D Project command). All quantifications were done using ImageJ. For quanti-

fication of defasciculation distance, we first traced the tangential straight line of the endplate (Fig-

ure 1—figure supplement 1B). We then traced a perpendicular line to the tangent that goes

through the nerve entry point. Finally, we measured the distance from the entry point to the inter-

section of both lines. For branch number quantification, we traced a parallel to the tangential

straight line of the endplate. The line was placed at a distance of one quarter of the defasciculation

distance. We then counted the number of secondary branches that crossed the line. The endplate

thickness was evaluated from the a-Btx staining. The a-Btx-positive region was outlined and divided

into 30 rectangles. The average width of the rectangles was calculated. Width evaluation of endplate

from the plot profile of a-Btx staining gave similar values.

Western blot
Cervical ventral spinal cords were dissected from E11.5 HB9::GFP embryos in cold HBSS with 6% glu-

cose (as shown in Figure 4—figure supplement 1D) and directly frozen in dry-ice cooled eppendorf

tubes. Typically, left and right dissected tissues from 6–8 embryos were pooled and lysed in RIPA

buffer with protease inhibitors for 30 min at 4˚C. Western blots were performed using primary anti-

body (Anti-Morf4l1 (1:1000, Abcam, France – ab183663), anti-Xrn2 (1:1000, Abcam, France –

ab72181, RRID:AB_2241927), anti-Robo1 (1:500 [Seki et al., 2010]) and secondary antibody (Anti-

goat or -mouse HRP [A5420 and A4416, Sigma-Aldrich, France] at 1/5000). Image quantification was

done with Image Lab4.0 software (Bio-Rad, France). Left and right data were normalized to the tubu-

lin level for Morf4l1 and Xrn2 and to Robo1 full-length or tubulin for Robo1 short forms. To allow

comparison between replicates left and right values were then normalized to have the same left plus

right sum for all western blots.

Motoneuron explant culture
E12.5 GFP-positive mouse embryos (4–6 per experiment) from HB9::GFP transgenic mice were

selected and dissected using the fluorescence GFP-positive pool. Ventral cervical spinal cords were

isolated (left and right parts separated) and cut into explants. Explants were cultured as described in

Moret et al. (2007). Immunohistochemistry was performed using Anti-Tuj1 (1:100, Millipore, France

– MAB1637, RRID:AB_2210524) and anti-GFP (1:100, Invitrogen, France – A11122, RRID:AB_

221569). Axon outgrowth was calculated using the ImageJ plugin NeuriteJ (Torres-Espı́n et al.,

2014), which creates regions of interest (ROI) corresponding to radial concentric rings separated by

25 pixels. NeuriteJ extracted the signal from GFP-positive axons and measured the labeled surfaces

between two ROIs. To quantify the total area occupied by GFP-positive axon, we summed the
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surface of all ROIs. To calculate the proximo-distal index, the width of the labeled axons was calcu-

lated in the second ROI (proximal ring) and in the ROI at 30% of the maximal distance of growth (dis-

tal ring) (see Figure 4—figure supplement 1F). The index was calculated by dividing the width of

the proximal fascicles by the width of the distal fascicles.

Dissociated motoneuron culture and in situ zymography assay
For dissociated motoneuron culture, left and right cervical ventral spinal cord tissues were dissected

from E12.5 OF1 or Rfx3 pregnant mice. Neurons were dissociated and cultured as described previ-

ously (Charoy et al., 2012; Cohen et al., 2005). After 24 hr in vitro, neurons were incubated for 10

min at 37˚C with DQ-Gelatin 20 mg/mL (Invitrogen, France). Cells were washed twice with warm PBS

and fixed in 4% paraformaldehyde both containing 25 mM of GM6001 MMP inhibitor

(Millipore, France-CC1100). The cultures were incubated with Islet 1/2 antibody (1/50;

DSHB, Iowa, USA – 39.4D5) overnight at 4˚C then for 2 hr with a-mouse Alexa-555 (1/400;

Invitrogen, France) to detect motoneurons. Nuclei were counter-stained with bisbenzimide (Prom-

ega). For quantification, the number of cells expressing Islet1/2 with gelatinase activity is reported

realtive to the total number of Islet-1/2-positive cells.

Microarray analysis and quantitative real-time PCR
The GFP+ motor pool was laser-captured from E11.5 GFP+ mouse embryos from HB9::GFP trans-

genic mice frozen in �45˚C isopentane. Captured tissues were lysed in the lysis buffer provided with

the RNA purification kit (RNAeasy microkit, Qiagen, France ). RNA quality was assessed on

an Agilent 2100 bioanalyser (Agilent Technologies, USA). L/R matching samples that had a RNA

integrity number (RIN) above 9 were amplified (ExpressArt PICO mRNA amplification kit, Amp-tec-

Exilone, France) and reverse transcribed (BioArray HighYield RNA Transcript Labeling, ENZO,

France). cDNA quality was assessed on an Agilent 2100 bioanalyser before fragmentation and

hybridization on an Affymetrix microarray (GeneChip Mouse 430 2.0, Affymetrix, ThermoFischer sci-

entific, France). Expression normalizations and present or absent calls were performed in Affymetrix

Expression Console Software. Fold change and filtering were performed in Excel. Transcripts were

considered as being expressed if scored as present in at least one sample of each embryo. Tran-

scripts were classified as differentially expressed if the fold change (FC) between left and right sam-

ples had the same trend for all embryos (same sign for log2 ratio) and was over 1.5 (FC > 0.58 or

FC < �0.58 in log2) on average and for at least two of the embryos. Transcripts with very low

expression (maximal normalized expression <200) were removed. Raw data are available on GEO

under the accession number GSE84778.

Real-time PCR was performed using MIQE pre-validated Mmp2 (qMmuCID0021124) and Mnx1

(qMmuCED0040199) primers (BioRad, france). Data were normalized to GAPDH expression values

(primers Fw: AGAACATCATCCCTGCATCC; Rv: ACACATTGGGGCTAGGAACA). Real time PCRs

were performed in duplicate on amplified RNA prepared as described for the microarray. Laser-

capture microdissection, RNA preparation, microarray and qPCR were performed at the ProfileXpert

core facility (France).

RNAscope in situ hybridization
RNAscope in situ hybridization (Advanced Cell Diagnostic, Ozyme, France) was performed on 14–

20-mm cryosections according to the manufacturer’s recommendations for fresh frozen samples,

using Mmp2 C3 and C1 proprietary probes (references 315937 and 315931-C3, ACD,

Ozyme, France). Both probes gave the same pattern, which mirror the distribution observed using

the conventional in situ procedure. UBC and DapB probes were used as positive and negative con-

trols, respectively (references 310777 and 312037, ACD, Ozyme, France). All incubations were per-

formed in the HyBez hybridation system (ACD, Ozyme, France). Sections were fixed in 4%

paraformaldehyde for 15 min before dehydratation and incubated in pretreat buffer 4 (Advance Cell

Diagnostic, Ozyme, France) for 15 min at room temperature. DAPI staining was performed at the

end of the procedure. The left and right side of the cervical spinal cord were imaged at 20x on a

FV1000 confocal microscope (Olympus, France) using the same acquisition parameters. Labeled sur-

faces were quantified in ImageJ in ROI drawn from the DAPI staining. The threshold calculated on
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the sum of the Z-stack image of one side was applied to the other side. Surface ratios were calcu-

lated after normalization to the selection area.

Statistical analyses
Control and mutant embryos were from the same litters. All analyzable samples (diaphragm, western

blots, cells or explants) were included, no outliers were removed. Left and right samples were from

the same embryos. Analyses of the diaphragm innervation and Mmp2 quantitative in situ were per-

formed blind. No blinding was done on other data collections or analyses. Sample sizes, statistical

significance and tests are stated in each figure and figure legend. All statistical analyses were done

using Biostat-TGV (CNRS). Mann-Whitney (method: Wilcoxon rank sum) or Wilcoxon signed rank

were used for small-sized samples or when distributions were not normal. Wilcoxon signed rank was

used when paired analysis was needed (left versus right from the same embryo).
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