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Abstract

In a social network, the number of links of a node, or node elegss often as-
sumed as a proxy for the node’s importance or prominencemtitie network. It
is known that social networks exhibit the (first-order) atsive mixing, i.e. if two
nodes are connected, they tend to have similar node deguaggesting that peo-
ple tend to mix with those of comparable prominence. In thisgs, we report the
second-order assortative mixing in social networks. If two nodes are emted, we
measure the degree correlation between their most promnesghbours, rather
than between the two nodes themselves. We observe vergsteaond-order as-
sortative mixing in social networks, often significantlyostger than the first-order
assortative mixing. This suggests that if two people irteiraa social network,
then the importance of the most prominent person each kreovery likely to be
the same. This is also true if we measure the average proo@refmeighbours
of the two people. This property is weaker or negative in social networks. We
investigate a number of possible explanations for this @ryp However, none of
them was found to provide an adequate explanation. We tirerebnclude that
second-order assortative mixing is a new property of so@alorks.

1 Background

arXiv:0903.0687v3 [physics.soc-ph] 20 Jan 2017

A network or graph consists of nodes connected togetheinka.l Networks are
utilised in many disciplines. The nodes model physical elets such as peo-
ple, proteins or cities, and the links between nodes reptesmnections between
them, such as contacts, biochemical interactions, andrdadecent years study-

ing the structure, function and evolution of networked syt in society and na-
ture has become a major research focus[[21, 123,/2]4] 7, 19].

The degreek, of a node is defined as the number of links the node possesses.

The probability distribution of node degrees is indicatifa network’s global con-
nectivity. For example random graphs with a Poisson degsggtulition [9] have
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most nodes with degrees close to the average degree. Irashntrany complex
networks in nature and society are scale-free graphs [lipiixiy a power-law

degree distribution, where many nodes have only a few limds asmall num-
ber of nodes have very large numbers of links. However, tigeegedistribution

alone does not provide a full description of a network’s togg. Networks with

exactly the same degree distribution can possess otheeniespthat are vastly
different [15] 13} 24].

One such property, is the mixing pattern between the two extks of a
link [18, [17], i.e. the joint probability distribution of aode with degreek be-
ing connected to a node with degriée In general, biological and technological
networks arealisassortative mixing meaning that well-connected nodes tend to link
with poorly-connected nodes, and vice versa. In contrastabnetworks, such as
collaborations between film actors or scientists, extafsortative mixing, where
nodes with similar degrees tend to be connected.

To quantify this mixing property, Newmah [17] proposed tisartative coef-
ficient,r, where—1 <r < 1. Itis derived by considering the Pearson correlation
between two sequences, where corresponding elements twdleequences rep-
resent the degree of the nodes at either end of a link in ttveonlet For a directed
network, the degree of the starting node of a link is conthimeone sequence,
and the degree of the ending node is in the other sequencenurhker of ele-
ments in each sequence is the number of links. For an uneitewtwork, as all
the networks studied in this paper, each undirected linkpgaced by two directed
links pointing at opposite directions. Thus the number efrents in a sequence
is twice the number of links.

A network with assortative mixing is characterised by a fimesvalue ofr;
wherer = 1 corresponds to a perfect assortative mixing, i.e., evakydonnects
two nodes with the same degree. A network with disassogatixing has a neg-
ative value ofr; wherer = —1 corresponds to a perfect disassortative mixing, i.e.,
every link connects two nodes with difference degrees. Whesquals or close to
0, there is no degree correlation, i.e., the network is rendoneutral in terms of
degree mixing.

The mixing pattern has been studied as a fundamental pyopkrtetworks,
and the assortative coefficienhas been widely used to measure this property.

2 Second-Order Mixing Pattern

We now introduce and define a related property which we refastthesecond-
order mixing pattern.

2.1 Definition of Zmax and Zavg

Following Newman'’s definition of the (first-order) assoratcoefficientr [17],
we defineZmax as the second-order assortative coefficient based on thleborirs



Figure 1: Examples of node excess degrees, which is node@egnus one. Consider
the link between node& andB, the excess degree of nodes 5; and the neighbours
maximum excess degree of noflés 7, which is the excess degree of ndle

maximum degree,

<%max = 29 (l)

wherelL is the number of links in the network; andK/ are the neighbours maxi-
mum degrees of the two nodasindb connected by the link i.e.K; = max(kn, :

Na € Na\p) and K/ = max(kn, : My € Ny\a); Nap denotes the set of neighbours
of nodea, excluding nodeb; and N, , denotes the set of neighbours of ndde
excluding nodea.

Note that when calculating the first and second assortatigfficients, we ac-
tually use thexcess degreel[1[7], which is degree minus one. This is because, when
considering two connected nodésandB, the neighbourhood oA is defined to
excludeB. And likewise for the neighbourhood & See Fig[lL for examples.

Similarly we defineZayg as the second-order assortative coefficient based on
the neighbours average degrees by replakingnd K/ in the above equation as

Ki = lg-_a 2neNyp kn, andK/ = klb 2Ny Kny -

2.2 Results

We consider eleven networks, including five social netwotk® biological net-
works, two technology networks, and two synthetic netwdsased on random
connections[]9] and the Barabasi and Albéert [1] model, eesipely. Values of
both the first-order and the second-order assortative cigfts,r, Zavg andZmax
are provided in Tablg1.

2.2.1 Statistical significance

The expected standard deviatioron the value of assortative coefficiantan be
obtained by the jackknife method [8] & = S ,(ri —r)?, wherer; is the value
of r for the network in which thé-th link is removed and = 1,2,...L. And like-
wise for second-order assortative coefficiefigax andZavg. For all cases shown
in Table 1, the value o0& is very small & 0.03), which validates the statistical
significance of the coefficients.



Table 1: Properties of the networks under study. Propesties/n are the numbers of
nodes and links; the assortative coefficient¥ag and %Zmax with the corresponding
expected standard deviation, gag and grax; and the average clustering coefficient
of nodes in a networkC). (a) Film actor collaborations [1], where two actors are
connected if they have co-starred in a fill) Gcientist collaborations [16], where two
scientists are connected if they have co-authored a papemidense matter physics;
(c) Jazz musician network [10], where two musicians are cotadtthey have played
in a band; €) Secure email network[3], where a link represent a secuegl@xchange
between two trusted users using the Pretty Good Privacy Ri@Brithm; €) General
email network[[111], where email exchanges take place atwetsity, including a large
amount of unsolicited emailsf)(Western States Power Grid of the United States [22];
(9) C.elegans metabolic network([12], where two metabolites are conreedt¢hey
participate in a biochemical reactior)(the protein interactions of the yeeiccha-
romyces cerevisiae [14,[5]; (i) Internet [18] [(http://www.routeviews.oig/), where two
service providers are connected if they have a commerciakagent to exchange data
traffic; (j) the random graph&]9]; ané)the Barabasi-Albert (BA) graphs|[1].

Network Nodes Links r or Ravg Oag  Fmax  Omax (C)

(a) Film actor 82,593 3,666,738 0.206 0.013 0.836 0.027 3.81009 0.75
(b) Scientist 12,722 39,967 0.161 0.007 0.680 0.014 0.640050.0.65
(c) Musician 198 2,742 0.020 0.019 0.543 0.023 0.307 0.0282 O.
(d) Secure email 10,680 24,316 0.238 0.007 0.653 0.009 0.6807 0.27

(e) Generalemail 1,133 5,451 0.078 0.014 0.242 0.014 0.241400.22
(f) Power grid 4,941 6,594 0.004 0.014 0.205 0.015 0.258 ®.@108

(9) Metabolism 453 2,025 -0.226 0.011 0.265 0.032 0.263 3.WR65
(h) Protein 4,626 14,801 -0.137 0.008 -0.046 0.007 0.03309.0.09
(i) Internet 11,174 23,409 -0.195 0.001 -0.097 0.004 0.0360® 0.30

() Random graph 10,000 30,000 ~0 0.009 ~0 0.011 ~0 0.006 ~0
(k) BA graph 10,000 30,000 ~0 0.004 =~0 0.008 ~0 0.008 ~0
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2.2.2 Null hypothesis test

A high correlation score between two value sequences musshed against the
null hypothesis. For each network and each coefficient inef@bwe randomly

permuted the order of degree values in one of the two degopeesees and re-
computed the coefficient. This was repeated 100 times amdwtkecalculated the
mean and standard deviation. Our calculation shows thagdoh network and
each coefficient the mean value is close to zero and the sthddaiation is small.

This result again confirms the statistical significance effttst and second-order
assortative coefficients.

2.2.3 Social networks

Four social networks (a)-(d) show positive values of fingtes assortative coeffi-
cient, and notably they show significantly higher valuessaiod-order assortative
coefficients. This indicates that in these social netwquksple judge on other in-
dividual's social status based on not only the individualen prominence (e.g.
the number of co-starred films or co-authored publicatiohsj more crucially,
the prominence of is collaborators.

Interestingly, théVusi ci an network exhibits very low first-order assortative
mixing although it shows one of the strongest second-orsieorgative mixing. In
other words, although musicians in this network do exhilsirang social parity, it
cannot be revealed by measuring the prominence of musitiansselves; instead
we must measure the prominence of other musicians that easttian has ever
performed with.

TheSecur e emai | network’s strong second-order assortative mixing is due
to the security feather of this network where a person’s régcaredit relies on
endorsement from its contacts - the more credit a contaetdyr has the more
valuable its endorsement.

2.2.4 Non-social networks

Other forms of networks do not exhibit the very strong seeortter correlations
exhibited by social networks.

TheGener al enmi | network is not considered as a typical social network,
because it contains a large amount of unsolicited, one-waymunications, such
as notices and advertisements forwarded from departmsetattaries to all stu-
dents. Not surprisingly, this network’s second assoratiixing is as weak as the
Met abol i smandPower gri d networks.

Thel nt er net andPr ot ei n networks, the second order assortative coeffi-
cients are either zerdfax) or negative Ravg).

As expected, neutral random networks generated by graplelsmade com-
pletely uncorrelated, i.Rmax = Ravg = 0.

2.3 Frequency distributions of links

Fig.[4 provides a more detailed look into the assortativemgiin theSci ent i st
network. Fig[2(A) shows there is a strong first-order catieh between node
degrees whehk < 20, and the correlation rapidly decreases with increastuget,
as expected for a scale-free network.
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Figure 2: The first and second-order assortative mixingé&Shi ent i st network.

We show the link frequency distribution as functions of (&pdeek andk’ of the two
end nodes of a link, witk > k'; (B) the neighbours maximum degrees of the two nodes,
Kiax and Kfay, With Kmax > Ky and (C) the neighbours average degrégg; and
ngg, with Kayg > K,;Vg, respectively. (D) is the same as (B), where links are rarlgom
rewired while preserving the degree distribution. The nmaxin degree of the network
is 97.



For the second-order assortative mixing, Eig. 2(B) showsrg strong corre-
lation for almost all values of the neighbours maximum dedtgax, Where the
link distribution along the diagonal does not decrease withincrease OKma.
Of course the correlation in Figl 2(B) is not perfect, and@ose process appears
to be uniform noise. The noise might be better modelled ass&an which is
probably due to the summation of many nodes and the centridthieorem. If the
neighbours average degree rather than the maximum is evadidve still observe
a strong correlation in Fif] 2(C).

3 Seeking Possible Explanations

Here we examine whether the second-order mixingrisvatopological property,
i.e. whether it can be explained by other known propertigb®hetworks.

3.1 Increased Neighbourhood

One may wonder whether the strong correlation scores adsdcivith second-
order assortative mixing could simply be due to the incréastghbourhood (from
distance of one hop to two hops), as a node always has moredsecder neigh-
bours than first-order neighbours. To exclude this possibite also examined
the Xth-order assortative coefficient®max andZayg, which are calculated using
the maximum or average degree within the neighbourhood @b uphops from
each end node of a link. Of course, if the neighbourhood naes to increase,
we observed that eventually the coefficients would increaskapproach to one.
This is to be expected since eventually, the neighbourhaodrepasses the entire
network.

However, we observed that fa networks under study, the values of the third-
order coefficients were actually smaller than the 2nd-ocdefficients. This sug-
gest that the second-order assortative mixing cannot biierp by increased
neighbourhood.

The fact that the third-order coefficients are smaller thasecond-order coef-
ficients has rich meanings. For technology networks, cengtte Internet, where
a network service provider only cares about the prominefice customer (dis-
assortative first-order mixing), it does not know and careudlvho else the cus-
tomer has linked with (neutral second-order mixing), aneé exen less about those
one step further away. For social networks, one tends tohitgcollaborator’s
prominence (first-order assortative mixing) and the pr@amae of the collabora-
tor's contacts (stronger second-order assortative mjximgf it does not know or
care about contacts of the collaborator’'s contacts whonedliaborator does not
know directly. In other words, the value of social prominen@anishes rapidly
after the second-order.

3.2 High-Degree Nodes

Another possible explanation for the high values of secomtr assortative co-
efficients considered, is that there are a few hub nodes teagxdremely well

connected and dominate the network structure. To test thissmoved the best-
connected node (together with the links attaching to it amdrasulting isolated
nodes) from the networks and re-computed the coefficientsalb calculate the



coefficients after removing the top 5 best-connected nd&lesults show that in all
cases, the coefficients change very little. For some nesyatich as th8ecur e
emuai | , Musi ci an andMet abol i smnetworks, the second-order coefficients
became stronger after the best-connected nodes are renfthisguggest that the
second-order assortative mixing cannot be explained bgxiséent of high-degree
nodes.

3.3 Power-Law Degree Distribution

While high degree nodes do not explain the high second ostsrtative mixing
scores, the underlying heterogenous power-law strucfuhe metworks was also a
possible explanation. To exclude this possibility we usedrandom link rewiring
algorithm [15[ 24] to produce surrogate networks by rangaeviring links while
preserving the exact degree distribution of the networlkieustudy.

Fig.[2(D) illustrates the distribution of links as a funatiof Kmax and K}y
in a randomly rewired version of thBci enti st network. The second-order
assortative mixing in the original network disappears cletety in the randomised
case..

This result shows that the second-order mixing is deterdhimea network’s
degree distribution, because two networks (the origindltae randomised case)
with the identical degree distribution show hugely diffgrenixing patterns, both
in the first-order([15, 24] and in the second-order (see[Bjig. 2

This result again demonstrates the limitation of charaitey network topol-
ogy by degree distribution alone, and highlights the altimportance of charac-
terising a network’s topology using multiple propertiesrfr different aspects.

3.4 Clustering Coefficient

We also examined whether the second-order assortativegnigia consequence
of the clustering behaviour observed in many social netajoshere one’s friends
are also friends of each other. This is quantified by the etusg coefficientC;,
which is defined a€; = W wherek; is the degree of nodeandg is the
number of connections between the node’s neighbbuts [28] .aVerage clustering
coefficient,(C), is the arithmetic average over all nodes in the network. @om
ison of (C) againstZayg and Zmax in Tabld1 and Fid.I3 shows that high values
of the second-order coefficients occur for both high and lalues of clustering
coefficient. There is no correlation between them.

Figure4 reveals that théci ent i st network and theSecur e emai | net-
work are fundamentally different in the relation betwearstring coefficient and
node degree, yet they have simifdg,g and%Zmax. Whereas th&ci ent i st net-
work and theVet abol i smexhibit very similar clustering coefficient properties,
but their second-order coefficients are significantly défe.

The above results suggest that the second-order assertaking is something
quite unexpected, particularly considering the work onhtegarchical organisa-
tion of complex networks [6, 20].

3.5 Common most prominent neighbour

It is interesting to consider how often the most prominenttact at each end of
a link is the same person, and therefore they form a triangét.X denote the
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Table 2: Link ratio values of the networks under study.

Network L<4/L L<2/L L<1/L LA/L Rn.ax

(a) Film actor 34.2% 34.2% 34.1% 34.1% 0.813
(b) Scientist 50.2% 45.4% 42.9% 41.6% 0.647
(c) Secure email 43.2% 37.8% 35.5% 34.6% 0.680
(d) Email 26.8% 20.2% 15.0% 12.8% 0.247

(e) Musician 56.3% 56.0% 55.7% 55.7% 0.307
(f) Metabolism  51.3% 51.1% 50.8% 50.7% 0.263

(g) Protein 105% 8.0% 6.4% 5.7% 0.033
(h) Power grid 68.1% 38.3% 19.1% 7.8% 0.258
(i) Internet 20.5% 20.3% 20.2% 20.2% 0.036

degree difference between the most prominent neighbouneofwo end nodes
of a link, i.e.X = |Kmax — K}ax|, @ndL<x denote the number of links witk <

X. Tabld2 shows the ratio df.4, L. andL.; to the total number of linksl.,
respectively. Note thdt_; represents the case wheéfgax = K/pax- Also shown
isLa/L, whereL, is the number of links for which the most prominent neighbour
of the two end nodes are one and the same node and therefiniedca triangle,

La € L.1. Clearly the common most prominent neighbour does not geoein
adequate explanation for our observations.

3.6 Bipartite Network

A bipartite network is a network with two non-overlappingssef nodesA and

', where all links must have one end node belonging to eachFsatexample,
actors star in films, scientist write papers, and musiciay pi bands. Thé&i | m
actor,Sci enti st andMusi ci an networks under study are constructed from
bipartite networks, e.g. two actors are linked if they carsh a film and two
scientists are linked if they co-author a paper.

TheFi | m act or, Sci enti st andMusi ci an networks all exhibit strong
second-order assortative mixing. It is therefore reasentiask whether the
second-order assortative mixing can be attributed to thereaf bipartite net-
works? For example, all actors of one film constitute a cotepseibgraph, in
which everyone connects with the highest-degree node igrth.

However, we found no support for this hypothesis. Firsthg Vet abol i ¢
network is also constructed from a bipartite network whleettvo types of hodes
are metabolites and reactions. Two metabolites are linkétey participate in
a reaction. Thévet abol i ¢ network, however, does not show a strong second-
order assortative mixing.

Secondly, th&ecur e emmi | network is a non-bipartite network, where two
email users are linked by direct email communications. Hilgits one of the
strongest second-order assortative mixing.

10



r T oe
02 e Rmax Secure email 5
- : i
i o Ravg Film actor
o i Scientist ® O B
—
5
2 01} . |
2 ® Email
= I i
8 e Musician o
O r [ ]
g Power grid
=
= I i
5
[} -U. B |
& 0.1 Protein
< e
02 = e |
Internet ® Metabolism
Il

-0.2 0 0.2 04 0.6 0.8 1
2nd-order coefficients Rmax and Ravg

Figure 5. Second-order assortative coefficidtig, andRayg Vs first-order assortative
coefficientr.

3.7 Relation Between First and Second-Order Mixing Co-
efficients

Figue[® compares the assortative coefficiemind the second-order coefficients
Rmax andRqyg for the networks under study. They are seemingly loosebteel

However, there are exceptions. Consider et abol i ¢ network and the
Emai | network, the former is strongly disassortative with- —0.226, whereas
the later is assortative with= 0.078. Yet both networks exhibit similar values of
the second-order mixing coefficients.

4 Conclusion

Our experimental results demonstrated very strong-seooaetr assortative mix-
ing in social networks where human are in charge of formingneations; but
weaker, or even negative values for biological and tectgioéd networks where
there is a lack of social preference.

We examined a larger variety of other network propertiesniretiort to es-
tablish whether second-order assortative mixing was ieddmom other network
properties such as its power law distribution, clusterficieht, and bipartite graphs.
However, although some of them might be a contributing faatone of these
properties was found to provide an adequate explanationth@/efore conclude
that second-order assortative mixing is a new propertyclvhéveals a new di-
mension to the hierarchical structure present in socialoms.

For social networks, the degree of a node is often consideigaxy for the
prominence or importance of a person. First order assegtatixing has then been
interpreted as indicating that if two people interact in aiabnetwork then they
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are likely to have similar prominence. The much strongeoséerder assortative
mixing suggests that there could be an even stronger scaiéy pvhen measur-
ing the prominence of a person’s contacts. Whether our nrostipent contacts
serve to introduce us or we simply prefer to mix with peoplewhow similarly
important people, remains an open question.

We expect that our work will provide new clues for studying gtructure and
evolution of social networks as well as complex networksanegal.
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