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Abstract

In a social network, the number of links of a node, or node degree, is often as-
sumed as a proxy for the node’s importance or prominence within the network. It
is known that social networks exhibit the (first-order) assortative mixing, i.e. if two
nodes are connected, they tend to have similar node degrees,suggesting that peo-
ple tend to mix with those of comparable prominence. In this paper, we report the
second-order assortative mixing in social networks. If two nodes are connected, we
measure the degree correlation between their most prominent neighbours, rather
than between the two nodes themselves. We observe very strong second-order as-
sortative mixing in social networks, often significantly stronger than the first-order
assortative mixing. This suggests that if two people interact in a social network,
then the importance of the most prominent person each knows is very likely to be
the same. This is also true if we measure the average prominence of neighbours
of the two people. This property is weaker or negative in non-social networks. We
investigate a number of possible explanations for this property. However, none of
them was found to provide an adequate explanation. We therefore conclude that
second-order assortative mixing is a new property of socialnetworks.

1 Background
A network or graph consists of nodes connected together via links. Networks are
utilised in many disciplines. The nodes model physical elements such as peo-
ple, proteins or cities, and the links between nodes represent connections between
them, such as contacts, biochemical interactions, and roads. In recent years study-
ing the structure, function and evolution of networked systems in society and na-
ture has become a major research focus [21, 23, 2, 4, 7, 19].

The degree,k, of a node is defined as the number of links the node possesses.
The probability distribution of node degrees is indicativeof a network’s global con-
nectivity. For example random graphs with a Poisson degree distribution [9] have
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most nodes with degrees close to the average degree. In contrast, many complex
networks in nature and society are scale-free graphs [1] exhibiting a power-law
degree distribution, where many nodes have only a few links and a small num-
ber of nodes have very large numbers of links. However, the degree distribution
alone does not provide a full description of a network’s topology. Networks with
exactly the same degree distribution can possess other properties that are vastly
different [15, 13, 24].

One such property, is the mixing pattern between the two end nodes of a
link [18, 17], i.e. the joint probability distribution of a node with degreek be-
ing connected to a node with degreek′. In general, biological and technological
networks aredisassortative mixing meaning that well-connected nodes tend to link
with poorly-connected nodes, and vice versa. In contrast, social networks, such as
collaborations between film actors or scientists, exhibitassortative mixing, where
nodes with similar degrees tend to be connected.

To quantify this mixing property, Newman [17] proposed the assortative coef-
ficient, r, where−1≤ r ≤ 1. It is derived by considering the Pearson correlation
between two sequences, where corresponding elements in thetwo sequences rep-
resent the degree of the nodes at either end of a link in the network. For a directed
network, the degree of the starting node of a link is contained in one sequence,
and the degree of the ending node is in the other sequence. Thenumber of ele-
ments in each sequence is the number of links. For an undirected network, as all
the networks studied in this paper, each undirected link is replaced by two directed
links pointing at opposite directions. Thus the number of elements in a sequence
is twice the number of links.

A network with assortative mixing is characterised by a possible value ofr;
wherer = 1 corresponds to a perfect assortative mixing, i.e., every link connects
two nodes with the same degree. A network with disassortative mixing has a neg-
ative value ofr; wherer =−1 corresponds to a perfect disassortative mixing, i.e.,
every link connects two nodes with difference degrees. Whenr equals or close to
0, there is no degree correlation, i.e., the network is random or neutral in terms of
degree mixing.

The mixing pattern has been studied as a fundamental property of networks,
and the assortative coefficientr has been widely used to measure this property.

2 Second-Order Mixing Pattern
We now introduce and define a related property which we refer to as thesecond-
order mixing pattern.

2.1 Definition of Rmax and Ravg

Following Newman’s definition of the (first-order) assortative coefficientr [17],
we defineRmax as the second-order assortative coefficient based on the neighbours
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Figure 1: Examples of node excess degrees, which is node degree minus one. Consider
the link between nodesA andB, the excess degree of nodeA is 5; and the neighbours
maximum excess degree of nodeA is 7, which is the excess degree of nodeC.
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whereL is the number of links in the network,Ki andK′
i are the neighbours maxi-

mum degrees of the two nodesa andb connected by the linki, i.e.Ki = max(kna :
na ∈ Na\b) and K′

i = max(knb : nb ∈ Nb\a); Na\b denotes the set of neighbours
of nodea, excluding nodeb; andNb\a denotes the set of neighbours of nodeb,
excluding nodea.

Note that when calculating the first and second assortative coefficients, we ac-
tually use theexcess degree [17], which is degree minus one. This is because, when
considering two connected nodes,A andB, the neighbourhood ofA is defined to
excludeB. And likewise for the neighbourhood ofB. See Fig. 1 for examples.

Similarly we defineRavg as the second-order assortative coefficient based on
the neighbours average degrees by replacingKi andK′

i in the above equation as
Ki =

1
ka

∑na∈Na\b
kna andK′

i =
1
kb

∑nb∈Nb\a
knb .

2.2 Results
We consider eleven networks, including five social networks, two biological net-
works, two technology networks, and two synthetic networksbased on random
connections [9] and the Barabási and Albert [1] model, respectively. Values of
both the first-order and the second-order assortative coefficients,r, Ravg andRmax

are provided in Table 1.

2.2.1 Statistical significance

The expected standard deviationσ on the value of assortative coefficientr can be
obtained by the jackknife method [8] asσ2 = ∑L

i=1(ri − r)2, whereri is the value
of r for the network in which thei-th link is removed andi = 1,2, ...L. And like-
wise for second-order assortative coefficientsRmax andRavg. For all cases shown
in Table 1, the value ofσ is very small (< 0.03), which validates the statistical
significance of the coefficients.
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Table 1: Properties of the networks under study. Propertiesshown are the numbers of
nodes and links; the assortative coefficientsr, Ravg andRmax with the corresponding
expected standard deviationσr, σavg andσmax; and the average clustering coefficient
of nodes in a network,〈C〉. (a) Film actor collaborations [1], where two actors are
connected if they have co-starred in a film; (b) Scientist collaborations [16], where two
scientists are connected if they have co-authored a paper incondense matter physics;
(c) Jazz musician network [10], where two musicians are connected if they have played
in a band; (d) Secure email network [3], where a link represent a secure email exchange
between two trusted users using the Pretty Good Privacy (PGP) algorithm; (e) General
email network [11], where email exchanges take place at a university, including a large
amount of unsolicited emails; (f) Western States Power Grid of the United States [22];
(g) C. elegans metabolic network [12], where two metabolites are connected if they
participate in a biochemical reaction; (h) the protein interactions of the yeastSaccha-
romyces cerevisiae [14, 5]; (i) Internet [18] (http://www.routeviews.org/), where two
service providers are connected if they have a commercial agreement to exchange data
traffic; (j ) the random graphs [9]; and (k) the Barabási-Albert (BA) graphs [1].

Network Nodes Links r σr Ravg σavg Rmax σmax 〈C〉

(a) Film actor 82,593 3,666,738 0.206 0.013 0.836 0.027 0.813 0.009 0.75

(b) Scientist 12,722 39,967 0.161 0.007 0.680 0.014 0.647 0.005 0.65

(c) Musician 198 2,742 0.020 0.019 0.543 0.023 0.307 0.029 0.62

(d) Secure email 10,680 24,316 0.238 0.007 0.653 0.009 0.6800.007 0.27

(e) General email 1,133 5,451 0.078 0.014 0.242 0.014 0.247 0.014 0.22

(f) Power grid 4,941 6,594 0.004 0.014 0.205 0.015 0.258 0.016 0.08

(g) Metabolism 453 2,025 -0.226 0.011 0.265 0.032 0.263 0.023 0.65

(h) Protein 4,626 14,801 -0.137 0.008 -0.046 0.007 0.033 0.009 0.09

(i) Internet 11,174 23,409 -0.195 0.001 -0.097 0.004 0.036 0.008 0.30

(j) Random graph 10,000 30,000 ≃ 0 0.009 ≃ 0 0.011 ≃ 0 0.006 ≃ 0

(k) BA graph 10,000 30,000 ≃ 0 0.004 ≃ 0 0.008 ≃ 0 0.008 ≃ 0
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2.2.2 Null hypothesis test

A high correlation score between two value sequences must betested against the
null hypothesis. For each network and each coefficient in Table 1, we randomly
permuted the order of degree values in one of the two degree sequences and re-
computed the coefficient. This was repeated 100 times and then we calculated the
mean and standard deviation. Our calculation shows that foreach network and
each coefficient the mean value is close to zero and the standard deviation is small.
This result again confirms the statistical significance of the first and second-order
assortative coefficients.

2.2.3 Social networks

Four social networks (a)-(d) show positive values of first-order assortative coeffi-
cient, and notably they show significantly higher values of second-order assortative
coefficients. This indicates that in these social networks,people judge on other in-
dividual’s social status based on not only the individual’sown prominence (e.g.
the number of co-starred films or co-authored publications), but more crucially,
the prominence of is collaborators.

Interestingly, theMusician network exhibits very low first-order assortative
mixing although it shows one of the strongest second-order assortative mixing. In
other words, although musicians in this network do exhibit astrong social parity, it
cannot be revealed by measuring the prominence of musiciansthemselves; instead
we must measure the prominence of other musicians that each musician has ever
performed with.

TheSecure email network’s strong second-order assortative mixing is due
to the security feather of this network where a person’s security credit relies on
endorsement from its contacts - the more credit a contact already has the more
valuable its endorsement.

2.2.4 Non-social networks

Other forms of networks do not exhibit the very strong second-order correlations
exhibited by social networks.

TheGeneral email network is not considered as a typical social network,
because it contains a large amount of unsolicited, one-way communications, such
as notices and advertisements forwarded from departmentalsecretaries to all stu-
dents. Not surprisingly, this network’s second assortative mixing is as weak as the
Metabolism andPower grid networks.

TheInternet andProtein networks, the second order assortative coeffi-
cients are either zero (Rmax) or negative (Ravg).

As expected, neutral random networks generated by graph models are com-
pletely uncorrelated, i.e.Rmax = Ravg = 0.

2.3 Frequency distributions of links
Fig. 2 provides a more detailed look into the assortative mixing in theScientist
network. Fig. 2(A) shows there is a strong first-order correlation between node
degrees whenk < 20, and the correlation rapidly decreases with increasing degree,
as expected for a scale-free network.
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Figure 2: The first and second-order assortative mixing in theScientist network.
We show the link frequency distribution as functions of (A) degreesk andk′ of the two
end nodes of a link, withk ≥ k′; (B) the neighbours maximum degrees of the two nodes,
Kmax andK′

max, with Kmax ≥ K′
max; and (C) the neighbours average degrees,Kavg and

K′
avg, with Kavg ≥ K′

avg, respectively. (D) is the same as (B), where links are randomly
rewired while preserving the degree distribution. The maximum degree of the network
is 97.
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For the second-order assortative mixing, Fig. 2(B) shows a very strong corre-
lation for almost all values of the neighbours maximum degree Kmax, where the
link distribution along the diagonal does not decrease withthe increase ofKmax.
Of course the correlation in Fig. 2(B) is not perfect, and a second process appears
to be uniform noise. The noise might be better modelled as Gaussian which is
probably due to the summation of many nodes and the central limit theorem. If the
neighbours average degree rather than the maximum is considered, we still observe
a strong correlation in Fig. 2(C).

3 Seeking Possible Explanations
Here we examine whether the second-order mixing is anew topological property,
i.e. whether it can be explained by other known properties ofthe networks.

3.1 Increased Neighbourhood
One may wonder whether the strong correlation scores associated with second-
order assortative mixing could simply be due to the increased neighbourhood (from
distance of one hop to two hops), as a node always has more second-order neigh-
bours than first-order neighbours. To exclude this possibility we also examined
theX th-order assortative coefficients,Rmax andRavg, which are calculated using
the maximum or average degree within the neighbourhood of upto X hops from
each end node of a link. Of course, if the neighbourhood continues to increase,
we observed that eventually the coefficients would increaseand approach to one.
This is to be expected since eventually, the neighbourhood encompasses the entire
network.

However, we observed that forall networks under study, the values of the third-
order coefficients were actually smaller than the 2nd-ordercoefficients. This sug-
gest that the second-order assortative mixing cannot be explained by increased
neighbourhood.

The fact that the third-order coefficients are smaller than the second-order coef-
ficients has rich meanings. For technology networks, consider the Internet, where
a network service provider only cares about the prominence of a customer (dis-
assortative first-order mixing), it does not know and care about who else the cus-
tomer has linked with (neutral second-order mixing), and care even less about those
one step further away. For social networks, one tends to match its collaborator’s
prominence (first-order assortative mixing) and the prominence of the collabora-
tor’s contacts (stronger second-order assortative mixing), but it does not know or
care about contacts of the collaborator’s contacts whom thecollaborator does not
know directly. In other words, the value of social prominence vanishes rapidly
after the second-order.

3.2 High-Degree Nodes
Another possible explanation for the high values of second-order assortative co-
efficients considered, is that there are a few hub nodes that are extremely well
connected and dominate the network structure. To test this we removed the best-
connected node (together with the links attaching to it and any resulting isolated
nodes) from the networks and re-computed the coefficients. We also calculate the
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coefficients after removing the top 5 best-connected nodes.Results show that in all
cases, the coefficients change very little. For some networks, such as theSecure
email, Musician andMetabolism networks, the second-order coefficients
became stronger after the best-connected nodes are removed. This suggest that the
second-order assortative mixing cannot be explained by theexistent of high-degree
nodes.

3.3 Power-Law Degree Distribution
While high degree nodes do not explain the high second order assortative mixing
scores, the underlying heterogenous power-law structure of the networks was also a
possible explanation. To exclude this possibility we used the random link rewiring
algorithm [15, 24] to produce surrogate networks by randomly rewiring links while
preserving the exact degree distribution of the networks under study.

Fig. 2(D) illustrates the distribution of links as a function of Kmax andK′
max

in a randomly rewired version of theScientist network. The second-order
assortative mixing in the original network disappears completely in the randomised
case..

This result shows that the second-order mixing is determined by a network’s
degree distribution, because two networks (the original and the randomised case)
with the identical degree distribution show hugely different mixing patterns, both
in the first-order [15, 24] and in the second-order (see Fig. 2).

This result again demonstrates the limitation of characterising network topol-
ogy by degree distribution alone, and highlights the critical importance of charac-
terising a network’s topology using multiple properties from different aspects.

3.4 Clustering Coefficient
We also examined whether the second-order assortative mixing is a consequence
of the clustering behaviour observed in many social networks, where one’s friends
are also friends of each other. This is quantified by the clustering coefficient,Ci,
which is defined asCi =

ei
ki(ki−1)/2 , whereki is the degree of nodei andei is the

number of connections between the node’s neighbours [23]. The average clustering
coefficient,〈C〉, is the arithmetic average over all nodes in the network. Compar-
ison of 〈C〉 againstRavg andRmax in Table 1 and Fig. 3 shows that high values
of the second-order coefficients occur for both high and low values of clustering
coefficient. There is no correlation between them.

Figure 4 reveals that theScientist network and theSecure email net-
work are fundamentally different in the relation between clustering coefficient and
node degree, yet they have similarRavg andRmax. Whereas theScientist net-
work and theMetabolism exhibit very similar clustering coefficient properties,
but their second-order coefficients are significantly different.

The above results suggest that the second-order assortative mixing is something
quite unexpected, particularly considering the work on thehierarchical organisa-
tion of complex networks [6, 20].

3.5 Common most prominent neighbour
It is interesting to consider how often the most prominent contact at each end of
a link is the same person, and therefore they form a triangle.Let X denote the
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Figure 3: Second-order mixing coefficients vs average clustering coefficient

Figure 4: Average clustering coefficient ofk-degree nodes.
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Table 2: Link ratio values of the networks under study.

Network L<4/L
L<2/L

L<1/L
L∆/L Rmax

(a) Film actor 34.2% 34.2% 34.1% 34.1% 0.813
(b) Scientist 50.2% 45.4% 42.9% 41.6% 0.647
(c) Secure email 43.2% 37.8% 35.5% 34.6% 0.680
(d) Email 26.8% 20.2% 15.0% 12.8% 0.247
(e) Musician 56.3% 56.0% 55.7% 55.7% 0.307
(f) Metabolism 51.3% 51.1% 50.8% 50.7% 0.263
(g) Protein 10.5% 8.0% 6.4% 5.7% 0.033
(h) Power grid 68.1% 38.3% 19.1% 7.8% 0.258
(i) Internet 20.5% 20.3% 20.2% 20.2% 0.036

degree difference between the most prominent neighbour of the two end nodes
of a link, i.e.X = |Kmax −K′

max|, andL<x denote the number of links withX <
x. Table 2 shows the ratio ofL<4, L<2 andL<1 to the total number of links,L,
respectively. Note thatL<1 represents the case whereKmax = K′

max. Also shown
is L∆/L, whereL∆ is the number of links for which the most prominent neighbour
of the two end nodes are one and the same node and therefore forming a triangle,
L∆ ∈ L<1. Clearly the common most prominent neighbour does not provide an
adequate explanation for our observations.

3.6 Bipartite Network
A bipartite network is a network with two non-overlapping sets of nodes∆ and
Γ, where all links must have one end node belonging to each set.For example,
actors star in films, scientist write papers, and musician play in bands. TheFilm
actor, Scientist andMusician networks under study are constructed from
bipartite networks, e.g. two actors are linked if they co-star in a film and two
scientists are linked if they co-author a paper.

TheFilm actor, Scientist andMusician networks all exhibit strong
second-order assortative mixing. It is therefore reasonable to ask whether the
second-order assortative mixing can be attributed to the nature of bipartite net-
works? For example, all actors of one film constitute a complete subgraph, in
which everyone connects with the highest-degree node in thegroup.

However, we found no support for this hypothesis. Firstly, theMetabolic
network is also constructed from a bipartite network where the two types of nodes
are metabolites and reactions. Two metabolites are linked if they participate in
a reaction. TheMetabolic network, however, does not show a strong second-
order assortative mixing.

Secondly, theSecure email network is a non-bipartite network, where two
email users are linked by direct email communications. It exhibits one of the
strongest second-order assortative mixing.
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Figure 5: Second-order assortative coefficientsRmax andRavg vs first-order assortative
coefficientr.

3.7 Relation Between First and Second-Order Mixing Co-
efficients
Figue 5 compares the assortative coefficientr and the second-order coefficients
Rmax andRavg for the networks under study. They are seemingly loosely related.

However, there are exceptions. Consider theMetabolic network and the
Email network, the former is strongly disassortative withr = −0.226, whereas
the later is assortative withr = 0.078. Yet both networks exhibit similar values of
the second-order mixing coefficients.

4 Conclusion
Our experimental results demonstrated very strong-secondorder assortative mix-
ing in social networks where human are in charge of forming connections; but
weaker, or even negative values for biological and technological networks where
there is a lack of social preference.

We examined a larger variety of other network properties in an effort to es-
tablish whether second-order assortative mixing was induced from other network
properties such as its power law distribution, cluster coefficient, and bipartite graphs.
However, although some of them might be a contributing factor, none of these
properties was found to provide an adequate explanation. Wetherefore conclude
that second-order assortative mixing is a new property, which reveals a new di-
mension to the hierarchical structure present in social networks.

For social networks, the degree of a node is often considereda proxy for the
prominence or importance of a person. First order assortative mixing has then been
interpreted as indicating that if two people interact in a social network then they
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are likely to have similar prominence. The much stronger second-order assortative
mixing suggests that there could be an even stronger social parity when measur-
ing the prominence of a person’s contacts. Whether our most prominent contacts
serve to introduce us or we simply prefer to mix with people who know similarly
important people, remains an open question.

We expect that our work will provide new clues for studying the structure and
evolution of social networks as well as complex networks in general.
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