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Carbon nanotube quantum dots allow accurate control of electron charge, spin, and valley degrees of
freedom in a material which is atomically perfect and can be grown isotopically pure. These properties
underlie the unique potential of carbon nanotubes for quantum information processing, but developing
nanotube charge, spin, or spin-valley qubits requires efficient readout techniques as well as understanding
and extending quantum coherence in these devices. Here, we report on microwave spectroscopy of a carbon
nanotube charge qubit in which quantum information is encoded in the spatial position of an electron. We
combine radio-frequency reflectometry measurements of the quantum capacitance of the device with
microwave manipulation to drive transitions between the qubit states. This approach simplifies charge-state
readout and allows us to operate the device at an optimal point where the qubit is first-order insensitive to
charge noise. From these measurements, we are able to quantify the degree of charge noise experienced by
the qubit and obtain an inhomogeneous charge coherence of 5 ns. We use a chopped microwave signal
whose duty-cycle period is varied to measure the decay of the qubit states, yielding a charge relaxation time
of 48 ns.

DOI: 10.1103/PhysRevApplied.7.054017

I. INTRODUCTION

Carbon nanotube quantum dots are of interest for
quantum information processing because of the ability to
accurately control electron charge, spin, and valley degrees
of freedom in a material which is atomically perfect and has
a well-understood electronic spectrum [1–8]. The relative
ratio of 12C and 13C isotopes can be controlled during
growth, allowing detailed studies of decoherence due to
hyperfine coupling in 13C enriched nanotubes [4,5,9] or
studies of 12C purified nanotubes for which long spin
coherence times are expected [9]. The presence of spin-
orbit interaction—a result of the nanotube curvature—
allows electrical control of the electron spins [2,3], which
can be read out in nanotube double quantum dots using
spin-to-charge conversion [4,5,10]. The valley degree of
freedom offers further functionality, and coherent control of
a nanotube valley-spin qubit was recently demonstrated [6].
The reported inhomogeneous coherence (or dephasing)
times of the valley-spin qubits is limited to approximately
8 ns, however, which is tentatively attributed to hyperfine
interaction and the susceptibility to charge noise of the
devices. More generally, fast electrical manipulation and
coupling of spin or spin-valley qubits relies on a mixing of
charge and spin degrees of freedom—via a spin-orbit or
exchange interaction—and charge noise ultimately sets

their fidelity [6,7]. A direct measurement of charge coher-
ence in nanotube quantum dots and developing techniques
to extend charge coherence is thus important for the
application of carbon-nanotube charge, spin, or valley-spin
qubits in the field of quantum information processing.
In this work, we combine radio-frequency (rf) readout

techniques with microwave spectroscopy of a carbon nano-
tube charge qubit. By driving transitions between the two
charge-qubit states, we are able to measure both the
inhomogeneous charge coherence time T�

2 and the charge
relaxation time T1. We find that T�

2 ∼ 5 ns and T1 ∼ 48 ns,
limited by charge noise and dot-lead coupling, respectively.

II. RADIO-FREQUENCY REFLECTOMETRY

An important consideration for measurements of carbon
nanotube devices is their one-dimensional geometry. While
this geometry offers important advantages such as a natural
confinement and large “particle-in-a-box” energy scales, it
also complicates the use of standard charge-state readout
techniques such as proximal detectors. To overcome this
barrier, we use a different method in which we measure the
state-dependent quantum capacitance of a nanotube double
quantum dot [11] by coupling the device to a resonant
electrical circuit, as shown in Fig. 1. Key to the readout
scheme is that the phase of a reflected rf signal depends on
the quantum capacitance of the device, and phase mea-
surements thus provide a sensitive and noninvasive probe
of the system.
This technique is illustrated in Fig. 2(a), where we con-

sider a double quantum dot near an effective (1,0)-(0,1)
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charge transition, where the ordered pairs ðn;mÞ indicate
the charge occupancies of the two quantum dots. In the
presence of a tunnel coupling tc between the dots, these
states form an effective two-level system that is described
by the HamiltonianH ¼ 1

2
ϵσz þ tcσx, where ϵ is the energy

difference, or detuning, between the two charge states in the
absence of tunnel coupling. The quantum capacitance of
the two-level system is directly proportional to the
curvature—or second derivative—of the energy dispersion
and has the largest magnitude at zero detuning where
electrons move most easily between the two quantum dots.
Importantly, the quantum capacitance has equal magnitude
but opposite polarity for the bonding and antibonding

states. These two states are thus distinguishable from phase
measurements on the quantum dots using dispersive read-
out [11–13].

III. CARBON-NANOTUBE CHARGE QUBIT

The device we consider is a single-walled carbon nano-
tube on an undoped Si=SiO2 substrate contacted by Au
contacts. A central gate electrode is used to introduce a
tunable tunnel barrier, separating the nanotube into two
quantum dots, which can be individually addressed by two
additional side gates; see Fig. 1(a). A charge stability
diagram is obtained from the rf phase response of the
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FIG. 1. (a) Schematic of the carbon nanotube device and the radio-frequency detection circuit. (Left panel) Scanning electron
micrograph of a typical carbon-nanotube double-quantum-dot device. The carbon nanotube is contacted by Au source and drain
electrodes and capacitively coupled to an Al2O3=Ti=Au gate electrode that controls the tunnel barrier (VT) between the quantum dots
and three plunger gate electrodes that provide control of the left (Vg1) and right (Vg2) quantum dots, respectively, and overall control
(VS). (Right panel) The nanotube device is embedded in an LC resonant circuit which both simplifies device fabrication and allows for
high sensitivity and high bandwidth measurements. Room-temperature demodulation (LO, local oscillator and IF, intermediate
frequency) provides a measurement of both quadratures. (b) Measured amplitude and phase response of a resonant circuit (background
subtracted) with a resonant frequency of about 315 MHz. The precise resonant frequency depends on the quantum capacitance of the
nanotube quantum dots, which can, therefore, be read out using this technique.
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FIG. 2. (a) Energy band diagram (top panel) and corresponding quantum capacitance (bottom panel) as a function of level detuning for
a double quantum dot with one electron. The indices denote the left and right dot occupancies. (b) Measured phase response of a carbon
nanotube double quantum dot coupled to an electrical resonator showing the charge stability diagram. The ordered pairs (n, m) indicate
the effective charge occupancy. (Inset) Measured response along an effective (0,1)-(1,0) transition line in (top panel) the absence and
(bottom panel) the presence of a 15-GHz microwave signal. (c) Phase response as a function of microwave amplitude across the charge
transition—as indicated by the dashed red line in the inset of (b)—for a microwave frequency of (left panel) 6 and (right panel) 15 GHz.
Multiphoton resonances (γ ¼ 0, 1, 2) are observed for large amplitudes. The line trace shows the phase response at low microwave
power, as indicated by the arrow. The depth of the central dip is approximately 5 mrad.
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device as a function of the two side gates measured in a
dilution refrigerator with an electron temperature of about
80 mK as shown in Fig. 2(b). In these measurements and
those presented below, the rf frequency is set to the
resonance frequency of the resonator where the phase
sensitivity is largest; see Fig. 1(b). The rf power at the
device after attenuation is Prf ∼ −130 dBm. From an
analysis of the stability diagram (see Appendix B), we
are able to extract individual charging energies of about
6 meV for both dots and an electrostatic-coupling energy
between the dots of approximately 1.8 meV. The single-
particle-level spacing for nanotube quantum dots with a
length of 500 nm is on the order of 2 to 3 meV. To lift the
spin and valley degeneracies, we apply a magnetic field of
4 Twith both perpendicular and parallel components to the
nanotube axis. Here, we focus on an effective (0,1)-(1,0)
transition where the double quantum dot can be described
as a quantum two-level system—the charge qubit [14–17].

A. Charge coherence time

The phase signal measured at the charge transition line in
the stability diagram [see the inset of Fig. 2(b)] has a width
and a height which are directly related to the tunnel
coupling tc between the quantum dots [11,18]. To probe
charge coherence, we apply—in addition to the rf
readout—a microwave signal with frequency f to one of
the plunger gates, such that the qubit is periodically driven
across the anticrossing in the energy diagram. If the driving
is sufficiently fast, there is the probability of a nonadiabatic
transition from the ground to the excited state, which can be
understood as a Landau-Zener transition [19–22]. As the
system evolves, the ground and excited states acquire a
phase difference and constructively interfere only if the
energy difference between the states—which depends on
the detuning—equals nhf, where n is an integer and h is

Planck’s constant. In other words, the qubit is resonantly
driven between the ground and excited states only when
their energy difference equals an integer number of the
microwave-photon energy hf. In the stability diagram, this
process is observed as lines parallel to the main transition
line, as shown in the inset of Fig. 2(b) for f ¼ 15 GHz. We
note that sidebands are observed for both positive and
negative detuning, and asymmetric features associated with
(0,2)-(1,1) charge transitions [23,24] are not observed here.
The response of the device to the microwave drive is

further illustrated in Fig. 2(c), where we show the interfer-
ence pattern that is obtained when varying both the detuning
[the dashed red line in the inset of Fig. 2(b)] and the applied
microwave amplitude for frequencies of 6 and 15 GHz in the
left and right panels, respectively. For large driving ampli-
tudes, multiple-photon absorption is visible, with the lines
most clearly separated in the 15-GHz data. These measure-
ments also allow us to calibrate the microwave voltage at the
device which can be obtained from the outline of the pattern
(the dashed black lines). Importantly, the width of the
resonances observed in Fig. 2(c) provide a measure of the
inhomogeneous charge coherence time at finite detuning.
We obtain a minimum width of approximately 8 μeV of the
microwave-photon sidebands along the detuning axis, which
corresponds to a frequencyΔf ∼ 2 GHz [as can also be seen
directly in the measurements shown in Fig. 3(a), right panel].
This yields an inhomogeneous charge coherence time
T�
2 ¼ 2

ffiffiffiffiffiffiffi
ln 2

p
=πΔf ∼ 300 ps.

B. Measurements at optimal point

The most likely source of the short decoherence times
observed at finite detuning is low-frequency charge noise in
the detuning parameter. An advantage of the measurement
technique used here is that we are able to directly measure
at zero detuning where the qubit is first-order insensitive to
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FIG. 3. (a) Phase response as a function of microwave frequency across the effective (0,1)-(1,0) charge transition. The sidebands are
clearly visible at large applied frequencies. (b) At a frequency of approximately 2.65 GHz, the system is resonantly driven between the
ground and excited states at zero detuning and a pronounced dip is observed in the phase response plotted as ΔΦ0 − ΔΦ, where
ΔΦ0 ¼ −4.9 mrad is the signal at zero detuning in the absence of microwave excitation. (c) Measurement of the charge relaxation time
T1 using chopped microwaves. The microwave signal is set to 2.65 GHz so that the qubit is driven resonantly between its ground and
excited states. A sweep is taken along the line of detuning, and the length of the microwave pulse τ is stepped. A sweep across the zero-
detuning line can be fitted to Eq. (2) to extract T1 ¼ 48� 6 ns. (Inset) Chopped microwaves with a 50% duty cycle.
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charge noise [25,26]. These measurements are presented in
Fig. 3 and, indeed, show an increase of T�

2 by more than 1
order of magnitude. The response of the phase signal in the
presence of a microwave excitation for a wide frequency
range up to 25 GHz is shown in the right panel of Fig. 3(a).
Visible is the phase signal at zero detuning, as well as the
γ ¼ 1 photon sidebands. The separation of the sidebands
increases with frequency and can be fitted accurately by the
relation

αVg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhfÞ2 − ð2tcÞ2

q
; ð1Þ

yielding an estimate of the tunnel coupling between the
quantum dots of tc ≈ 1.3 GHz, and a conversion between
gate voltage and detuning, ϵ ¼ αVg, with α ≈ 0.01jej.
A finely resolved measurement is shown in the left panel

of Fig. 3(a), and in a corresponding line trace at zero
detuning in Fig. 3(b) for an applied microwave power
Pmw ∼ −85 dBm. A pronounced dip is observed at zero
detuning at a frequency f ∼ 2.65 GHz. The asymmetry of
the dip is consistent with second-order charge noise at an
optimal point: charge noise in the detuning parameter can
only increase the energy splitting between the two eigen-
states at zero detuning, resulting in a broader tail at higher
frequencies [26]. We empirically fit the data assuming a
Gaussian-noise distribution with standard deviation σϵ ≈
2.5 μeV in the detuning parameter—consistent with esti-
mates of σϵ at finite detuning—which we convolve with a
Lorentzian, the width of which is taken as a fit parameter, to
account for charge relaxation (see Appendix C 1 for further
details).
A best fit to the data yields a Lorentzian linewidth of about

30 MHz, which is consistent with the measured T1 (see
below). From the overall line shape [see the red solid line in
Fig. 3(b)], we obtain T�

2 ∼ 5 ns. The observed inhomo-
geneous charge coherence time is an order of magnitude
longer than observed in other nanotube experiments [8]—a
result of the suppression of first-order charge noise and a
relatively long charge relaxation time, which would other-
wise obscure the asymmetry seen in Fig. 3(b). We note that
increasing the tunnel coupling tc between the quantum dots
makes the qubit less susceptible to charge noise, but at the
expense of a decrease in readout sensitivity [11,18].

C. Charge relaxation time

To directly measure the charge relaxation time T1 of the
carbon nanotube charge qubit, we use chopped microwaves
with a 50% duty cycle [14]. The chopped microwave signal
is created by combining a continuous microwave signal set
to 2.65 GHz with a variable-width pulse provided by
an arbitrary waveform generator. By varying the period
τ—starting at τ ¼ 15 ns—we are able to measure charge
relaxation, as shown in Fig. 3(c). During the first half of a
cycle, the microwave signal is present and the qubit is

resonantly driven between the two qubit states—followed
by decay to the ground state during the second half when
the microwave signal is switched off.
For very short time scales where τ ≪ T1, the system has

no time to relax and the averaged phase signal receives
equal contributions from both qubit states (saturation). As
these states have opposite polarity, the phase signal is close
to the background value, which is set to zero here (see
Appendix C 2 for further details). For large time scales
where τ ≫ T1, the system has time to relax when the
microwave signal is switched off. In this limit, the phase
signal is expected to approach ΔΦ ¼ ΔΦ0=2, where ΔΦ0

is the amplitude of the phase signal at zero detuning in the
absence of any microwave excitation, i.e., the system at
thermal equilibrium.
We fit the data measured at zero detuning by an

exponential decay with a single fit parameter T1:

ΔΦðτÞ
ΔΦ0

¼ 1

2
−
T1ð1 − e−τ=2T1Þ

τ
; ð2Þ

and obtain a good fit with theory yielding T1 ¼ 48� 6 ns.
The charge relaxation mechanism can be both intrinsic—
e.g., via electron-phonon coupling—or extrinsic to the
carbon nanotube, such as relaxation via the leads [27].
We believe that, in our device, the mechanism is extrinsic
and T1 is limited by dot-lead coupling. A rough estimate of
the coupling of the quantum dot to the leads is obtained
from standard dc measurements: when a dc bias voltage is
applied over the double quantum dot, we are able to
measure a small cotunneling current in the picoampere
range which corresponds to a rate consistent with the
observed charge relaxation time (see Appendix C 2). The
observed T1 should, therefore, be considered as a lower
bound for intrinsic charge relaxation times in carbon
nanotube quantum dots.

IV. DISCUSSION AND CONCLUSION

The results presented here show measurements of charge
coherence and relaxation in a carbon nanotube charge qubit
using a noninvasive readout technique that does not require
proximal detectors. We are able to significantly extend
charge coherence by operating the device at an optimal
point, where it is first-order insensitive to charge noise. We
observe T�

2 ∼ 5 ns, which provides a benchmark for charge
coherence in carbon nanotubes and which is comparable to,
or longer than, charge coherence observed in GaAs- and Si-
based devices [14–17]. To extend coherence times further
requires the improvement of device fabrication. A specific
advantage of carbon nanotubes in this respect is that they
can be grown or placed on a wide range of substrate
materials. Since impurities in—or polar adsorbates on—the
SiO2 or Al2O3 dielectrics are a likely source of charge
noise, it would be of considerable interest to extend our
measurements to substrates such as hexagonal boron nitride
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[28] or to ultraclean suspended carbon nanotube quantum
dots [29,30]. The latter system would also be of interest as a
model system for investigating coupling of charge and
vibrational degrees of freedom [31] and qubit coupling via
the exchange of virtual phonons [32].
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APPENDIX A: DEVICE FABRICATION
AND EXPERIMENTAL METHODS

Single-walled carbon nanotubes are grown by chemical
vapor deposition on nominally undoped SiO2 substrates with
280-nm thermal oxide. The room-temperature resistivity of
the Si wafers is ρ > 100 Ω cm. The carbon nanotubes have a
naturally abundant carbon isotope ratio (98.9% 12C), and
they are distributed at a concentration of approximately one
nanotube per 10 μm2 on the substrate. Device fabrication
consists of three proximity-corrected electron-beam lithog-
raphy and metal-evaporation stages using 5% (by weight) of
495 000-molecular-weight polymethyl methacrylate dis-
solved in anisole as a resist. During the first stage, alignment
marks and bond pads are fabricated on the substrates using
5=55 nm of Ti=Au. The carbon nanotubes are subsequently
located with respect to the alignment marks using atomic
force microscopy and scanning electron microscopy. During
the second lithography stage, the source and drain electrodes
as well as the two plunger gates are defined using 50-nm Au.
During the third lithography stage, the central gate electrode
is defined. Metal evaporation consists of the deposition of
1- to 2-nm Al, followed by exposure to air for 5 min to
oxidize the Al. A further evaporation–air-exposure cycle is
carried out and, finally, 5=40 nm of Ti=Au is evaporated
onto the sample. This process results in a thin insulating
layer of Al2O3 between the carbon nanotube and the top
gate. Awedge bonder is used to connect the large bond pads
of the sample to the sample holder dc and rf gates using
Au wires.
Experiments are carried out in a dilution refrigerator with

an electron temperature of about 80 mK. The measurement
circuit includes several dc lines which are thermally
anchored and extensively filtered at various stages. The
radio-frequency detection circuit is connected to the device
as shown in the schematics of Fig. 1(a). Briefly, an
attenuated radio-frequency signal is directed to the device
source electrode through the coupled port of a directional
coupler. Using the directional coupler, the reflected signal
is extracted. The signal is first amplified by a cryogenic

preamplifier anchored at 4 K, followed by room-
temperature amplification. Demodulation is achieved by
mixing the reflected signal with the reference signal. Both
quadratures of the signal are detected, allowing measure-
ments of both the amplitude and the phase response. The
value of the chip inductor L mounted on the sample holder
is chosen for a resonance frequency f0 ¼ 1=ð2π ffiffiffiffiffiffiffi

LC
p Þ in

the (300–500)-MHz range, the operating range of the
cryogenic amplifier. The noise temperature of the amplifier
is TN ∼ 2.8 K at 350 MHz. The capacitance C ∼ 0.5 pF is
dominated by the parasitics of the sample holder and the
device substrate, which could be significantly reduced
using undoped Si=SiO2, as compared to doped Si=SiO2

substrates, at the expense of back-gate tuning. For all
measurements presented, the rf signal is turned on and set
to be on resonance (f0) where the response is most sensitive
to changes in phase.
A bias tee allows for both rf and dc signals to be applied

to the device source electrode. The bias tee consists of a
resistor, a capacitor, and an inductor, with the values
RB ¼ 1 kΩ, CB ¼ 100 pF, and LB ¼ 470 nH. The sample
holder incorporates subminiature push-on connectors
directed to the device plunger gates via microstrip lines
for fast gating, enabling microwave spectroscopy. The
microwave generator produces continuous-wave signals
of up to 40 GHz which are added to the dc gate signal
via a broadband (Anritsu K251) bias tee. The chopped
microwave signal is created by combining the continuous-
wave signal with a variable-width pulse provided by an
arbitrary-waveform generator using a microwave switch.
For short pulse lengths, the experiment is limited by the
approximately 5-ns rise time of the switch. All other
electrodes used for dc gating are rf grounded at the sample
holder using 100-pF capacitances.

APPENDIX B: DOUBLE-QUANTUM-DOT
STABILITY DIAGRAM

We first consider a purely electrostatic model of the
double quantum dot. The capacitor network of the model is
shown in Fig. 4. In our analysis, we follow the work of van
der Wiel et al. [33], but we include cross-capacitances
between gate 1(2) and quantum dot 2(1) which account for
the skewing observed in the measured stability diagrams.
The labeling of the various capacitances in the system is as
indicated in the figure. The electrostatic energy of this
system with n andm electrons on dots 1 and 2, respectively,
is then, up to an offset independent of n and m, given
by [33–35]

En;m ¼ EC1=2n2 þ EC2=2m2 þ ECmnmþ E1nþ E2m;

ðB1Þ

where EC1ð2Þ represents the charging energies of the two
dots, ECm is the electrostatic coupling energy, and E1 and

MICROWAVE SPECTROSCOPY OF A CARBON NANOTUBE … PHYS. REV. APPLIED 7, 054017 (2017)

054017-5



E2 are the single-particle energies of the dots provided by
the two gate electrodes [35]. Defining the sum of the
capacitances directly coupled to each quantum dot as
C1ð2Þ ¼CLðRÞ þCg1ð2Þd1ð2Þ þCg2ð1Þd1ð2Þ þCm, the energies
are given by

EC1 ¼ e2
C2

C1C2 − C2
m
; EC2 ¼ e2

C1

C1C2 − C2
m
;

ECm ¼ e2
Cm

C1C2 − C2
m
: ðB2Þ

Note that EC1 and EC2 correspond to charging energies
e2=CΣ for dots 1 and 2, where CΣ equals C1ð2Þ of the
individual dots with a correction factor due to the coupling;
i.e., CΣ1ð2Þ ¼ C1ð2Þ − C2

m=C2ð1Þ. The energies E1 and E2

are [33,34]

E1 ¼ AVg1 þ BVg2 ¼ −ðCg1d1EC1 þ Cg1d2ECmÞVg1=jej
− ðCg2d2ECm þ Cg2d1EC1ÞVg2=jej;

E2 ¼ CVg1 þDVg2 ¼ −ðCg1d1ECm þ Cg1d2EC2ÞVg1=jej
− ðCg2d2EC2 þ Cg2d1ECmÞVg2=jej; ðB3Þ

where A, B, C, and D are conversion factors between gate
voltage and energy for use in Eq. (B8) below. The boundaries
of the stability diagram then follow from the electrochemical
potentials of the two quantum dots:

μ1ðn;mÞ ¼ En;m − En−1;m ¼ ðn − 1=2ÞEC1 þmECm þ E1;

μ2ðn;mÞ ¼ En;m − En;m−1 ¼ ðm − 1=2ÞEC2 þ nECm þ E2;

ðB4Þ

which allows us to calculate the various capacitances from
measurements of the gate-voltage spacing between different
triple-point pairs, as indicated in Fig. 5(a). The relations
μ1;2ðn;m;Vg1;Vg2Þ¼μ1;2ðnþ1;m;Vg1þΔVg1;Vg2−ΔVc

g2Þ
and μ1;2ðn;m;Vg1;Vg2Þ¼ μ1;2ðn;mþ1;Vg1−ΔVc

g1;Vg2 þ
ΔVg2Þ, using Eqs. (B3) and (B4), then yield the capacitances
between gate 1(2) and dot 1(2) and the cross-capacitances
between gate 1(2) and dot 2(1):

Cg1ð2Þd1ð2Þ ¼
ΔVg2ð1Þ

ΔVg1ΔVg2 − ΔVc
g1ΔVc

g2
jej;

Cg1ð2Þd2ð1Þ ¼
ΔVc

g2ð1Þ
ΔVg1ΔVg2 − ΔVc

g1ΔVc
g2
jej: ðB5Þ

Measurements of the gate-voltage spacing between triple
points within a pair ΔVm

g1;2 allow us to calculate the
ratio between C1ð2Þ and Cm, using μ1ðn;m; Vg1; Vg2Þ ¼
μ1ðn;mþ 1; Vg1 þ ΔVm

g1; Vg2Þ and μ2ðn;m; Vg1; Vg2Þ ¼
μ2ðnþ 1; m; Vg1; Vg2 þ ΔVm

g2Þ, as follows:

C1ð2Þ
Cm

¼ jej
Cg2ð1Þd2ð1ÞΔVm

g2ð1Þ
−
Cg2ð1Þd1ð2Þ
Cg2ð1Þd2ð1Þ

: ðB6Þ

Finally, all capacitance values can be obtained by applying
a finite source-drain bias voltage Vbias across the double
dot [see Fig. 5(b)] using the relations

jejδVg1 ¼
C1C2 − C2

m

Cg1d1C2 þ Cg1d2Cm
jeVbiasj;

jejδVg2 ¼
C1C2 − C2

m

Cg2d2C1 þ Cg2d1Cm
jeVbiasj: ðB7Þ

1. Measured stability diagram

A section of the stability diagram of the double-dot
device discussed in the main text is shown in Fig. 6(a), in

Vg1 Vg2

Cg1d1 Cg 2d 2

Cg1d 2 Cg 2d1

CmCL CR

C1, Q1 C2, Q2S D

FIG. 4. Schematic capacitor model of the double-quantum-dot
system with the various capacitances between quantum dots and
electrodes indicated. The quantum dots are coupled to the source
(S) and drain (D) electrodes via tunnel junctions.

ΔV g2

ΔVg1

ΔV g1
c

δVg1

(a) (b)

ΔVg1
m

ΔVg 2
m

V bias

ΔVg2
c

δVg 2

FIG. 5. (a) Schematic stabil-
ity diagram showing the
gate-voltage spacings used
to determine the double-dot
capacitances in Eqs. (B5)–
(B7). (b) Bias triangles in
the stability diagram in the
presence of a source-drain
voltage Vbias.
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which we plot the phase response as a function of the two
gate voltages Vg1 and Vg2. Using Eqs. (B5)–(B7) above, we
are able to extract the various capacitances of the
system: Cg1d1¼0.52 aF, Cg1d2¼0.21aF, Cg2d2 ¼ 0.55 aF,
Cg2d1 ¼ 0.18 aF, C1¼28.67 aF, C2 ¼ 25.97 aF, and
Cm ¼ 7.71 aF. These capacitance values correspond to
charging energies EC1 ¼ 6.06 meV, EC2 ¼ 6.69 meV,
and ECm ¼ 1.8 meV. Using the matrix parameters A-D
defined in Eq. (B3) we are now able to provide a conversion
from gate voltage to energy which yields

�
E1

E2

�
¼

�
0.0219 0.0130

0.0147 0.0249

�� jejVg1

jejVg2

�
ðB8Þ

and allows us to plot the experimental data as a function of
E1 and E2; see Fig. 6(b). We note that the experimental data
show a variation in the size of the cells in the stability
diagram reflecting the discrete energy spectrum of the
quantum dots, which is not taken into account in the
electrostatic model above. For nanotubes with a length
L ∼ 500 nm, the single-particle energy spacing hvF=4L is
on the order of 2 meV if valley degeneracy is broken; using
a Fermi velocity vF ¼ 8 × 105 m=s. The variation in the
size of the cells (e.g., an even-odd periodicity reflecting
spin degeneracy at zero field) nevertheless allows us to
determine the charging energies and capacitances and
provides an estimate of the single-particle energy spacing
consistent with the length of the nanotube quantum dots.
Figure 6(a) also shows three different types of artifacts

observed in the experiments:
(1) Additional lines in the stability diagram apparent in

the measured rf response but not in the dc transport
data. These resonances are superposed on the
double-quantum-dot resonances and do not show
signatures of interaction such as anticrossing. These
additional lines could be due, e.g., to other nano-
tubes or oxide charge traps coupled to the rf
electrode but not the nanotube quantum-dot device.

(2) Sudden, but mostly reproducible, shifts in the
stability diagram at specific gate voltages. These
shifts are most likely due to charge traps in the SiO2

or AlOx oxides not coupled to the rf electrode.

(3) Sudden shifts in the background phase signal at
random times. These nonreproducible shifts—not
observed for the data discussed in the main text—are
unrelated to the double-dot device but are due to the
measurement circuitry and do not affect the analysis.

2. Tunnel coupling

The presence of a tunnel coupling tc between the two
quantum dots results in the formation of bonding and
antibonding states, which modifies the stability diagram:
the triple points develop into curved lines, or wings, as
evident in the data of Figs. 6 and 8. The basic features of the
experiment are well described by a simple model of a
quantum two-level system for a single electron in the
double quantum dot, neglecting spin and interaction with
electrons at lower energy levels [33]. Including the tunnel
coupling tc between the quantum dots, the eigenstates of
the quantum two-level system—our charge qubit—are
solutions of the Hamiltonian

H ¼
�
E10 tc
tc E01

�
; ðB9Þ

with eigenvalues E� ¼ 1=2ðE10 þ E01Þ ∓
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE10 − E01Þ2 þ 4t2c

p
, as shown schematically in

Fig. 7(a). More generally, setting the electrochemical
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FIG. 6. (a) Measured stability diagram
showing the phase response as a function
of the gate voltages Vg1 and Vg2. The
magnetic field B ¼ 0 T. The numbers
1–3 indicate different types of measure-
ment artifacts described in the text. (Inset)
The phase response of bias triangles for
Vbias ¼ 1 mV. (b) Measured stability di-
agram of the data in (a) shown as a
function of E1 and E2, using Eq. (B8)
to correct for the skewing.
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potential of the leads at μ ¼ 0 and defining ΔE1¼E1 þ
ðnþ1=2ÞEC1þmECm and ΔE2 ¼ E2 þ ðmþ 1=2ÞEC2 þ
nECm, this can be expressed as

E� ¼ En;mðE1; E2Þ þ 1=2ðΔE1 þ ΔE2Þ
∓ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔE1 − ΔE2Þ2 þ 4t2c

q
: ðB10Þ

The two wings observed in the stability diagram then
correspond to Eþ − Enm ¼ 0 and Enþ1;mþ1 − Eþ ¼ 0,
respectively. By changing the variables to Δ ¼
ΔE1 þ ΔE2 and ϵ ¼ ΔE1 − ΔE2 [see Fig. 7(b)], the
separation between the wings EΔ for a given detuning ϵ
then follows from solving EþðΔ; ϵÞ − EnmðΔ; ϵÞ ¼ 0 and
Enþ1;mþ1ðΔþ EΔ; ϵÞ − EþðΔþ EΔ; ϵÞ ¼ 0, which yields

EΔ ¼ 2
�
ECm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 4t2c

q �
: ðB11Þ

Figure 8 shows the measured wing separation EΔ as a
function of detuning ϵ for three different charge configu-
rations and top-gate voltages. The insets show the corre-
sponding data in the stability diagrams as a function of ϵ
and Δ using the conversion factors of Eq. (B8). Fitting
these curves to Eq. (B11), we are able to extract ECm and tc,
which are the fit parameters. Note that, for the rightmost

plot, the tunnel coupling is very large and the system is
effectively a single quantum dot. These measurements also
demonstrate our ability to tune the coupling between the
quantum dots.
For very small tunnel couplings, as for the data in the

main text, it is difficult to accurately measure tc from
the curvature of the wing in the stability diagram. Instead,
the tunnel coupling is determined more precisely from
microwave data, as in Fig. 3. This is further illustrated by
Fig. 9, which shows the position of the observed sidebands
as a function of microwave frequency f as the detuning is
varied [e.g., along the dashed red line in the inset of
Fig. 2(b)]. The vertical axes in Fig. 9 show the gate-voltage
spacings ΔVg1, ΔVg2 of the sidebands measured from the
central resonance (i.e., zero detuning). We fit the data to

αΔVg2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhfÞ2 − 4t2c

q
ðB12Þ

using α and tc as fit parameters, yielding tc ¼ 5.44 μeV (or,
expressed in frequency as in the main text, approximately
1.3 GHz). For the gate conversion factor, we obtain
α ∼ 0.01jej, which yields the ϵ ¼ αΔVg2 value used in
Figs. 2(c) and 3(a)—and which is consistent with the
conversion factors measured from the stability diagrams
[the precise values of A-D in Eq. (B8) depend on the top-
and side-gate voltages used to tune the dot-dot and dot-lead
couplings; for the settings here, the best fits for A-D yield
0.0200, 0.0125, 0.0131, and 0.0192, respectively].
The tunnel coupling can also be estimated from the width

of the (effective) ð0; 1Þ ↔ ð1; 0Þ transition measured at
zero detuning. The quantum capacitance is proportional to
the curvature or second derivative of the energy dispersion
in Fig. 7(a), for which we find

∂2Eþ=∂ϵ2 ∝ 4t2c
ðϵ2 þ 4t2cÞ3=2

; ðB13Þ

which can also be expressed as a ratio of (Larmor)
frequencies f02=f3, where we define hf0 ¼ 2tc and hf ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 4t2c

p
as the energies of microwave photons to drive
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transition between the two quantum states at zero and
finite detuning, respectively. Equation (B13) yields a
full width at half maximum (FWHM) of ΔEFWHM ¼
4tc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22=3−1

p
≈3.07tc. For a tunnel coupling tc¼5.44μeV,

we thus obtain ΔEFWHM ¼ 16.7 μeV, which is consistent
with the data [see, e.g., Fig. 3(a)]. Since the width of the
phase signal ∝ tc and the magnitude of the phase signal
∝1=tc, it follows that the transition line is most visible
when the tunnel coupling is small [11,18].

APPENDIX C: DEPHASING AND RELAXATION

1. Line shape at optimal point

The line shape shown in Fig. 3(b) is characterized
by a pronounced asymmetry and a broad tail at the
high-frequency side. This observation is consistent with
dephasing at an optimal point, where noise in the detuning
parameter can only increase the energy splitting between
the eigenstates. To understand and model the observed line
shape, we make the following two assumptions:
(a) The charge relaxation time is longer than the rf

measurement period 1=f0.
(b) The charge noise is quasistatic and has a Gaussian

distribution.
The first assumption implies that the ground- and

excited-state populations do not relax into their equilibrium
values during a rf measurement swing—on the order of 3 ns
in our experiments. The observed phase shift due to the
microwave drive will then be directly proportional to the
quantum capacitances and time-averaged populations of
the bonding and antibonding states [36]. As illustrated in
Fig. 10, the quantum capacitances of the bonding and
antibonding states are detuning dependent and have oppo-
site polarity.
The applied microwave signal drives transitions between

the two quantum states, which are measured experimentally
by the phase shift ΔΦ of the reflected rf signal. The
resonance line shape depends on the degree of charge
relaxation and dephasing. In the Bloch equations, dephas-
ing is taken into account by introducing a phenomeno-
logical parameter T2 in the equations. Here, we take a
different approach to include the dephasing that more
accurately accounts for the low-frequency noise observed
in the experiment [26]. To model the data analytically, we
assume the noise in the detuning parameter δϵ to have a
Gaussian distribution:

PðδϵÞ ¼ 1

σϵ
ffiffiffiffiffiffi
2π

p e−δϵ
2=2σ2ϵ ; ðC1Þ

where σϵ is the standard deviation. Using the dependence of
the energies of the states on detuning [see Fig. 10(a)] and
assuming the noise to be quasistatic, we calculate the
transformed probability density function as a function of
energy, which is convolved with a Lorentzian of width

1=T1—corresponding to an exponential decay factor
e−t=2T1 in the time domain—to take charge relaxation
into account. For continuous microwave excitation in the
linear-response (or unsaturated) regime, the observed phase
shift serves as a probe of this energy distribution.
Figures 11(a) and 11(b) show how the line shapes vary
with T1 and σϵ, respectively. For all of the curves, we use a
tunnel coupling tc ¼ 5.44 μeV, which corresponds to the
experimental data, as described in Appendix B. As
expected, increasing σϵ has the effect of extending the
high-frequency tail of the line shape, while increasing
relaxation broadens it.
To directly compare the calculated resonances with the

experimental data—which measures phase shifts—we need
to take into account that the quantum capacitance depends
on detuning [see Fig. 10(a)] and decreases as ðf0=fÞ3 for
f ≥ f0 from its maximum value at zero detuning, as
described by Eq. (B13). In addition, the magnitude of
the observed phase shift will depend on the ratio of the
driving amplitude and frequency [19]. As a result, the
observed phase shift ΔΦ → 0 for f ≫ f0, but it is a small
correction to the observed line shape in the frequency range
of interest here; see Fig. 12 (top panel, red line). We have
also verified experimentally that the line shapes are not
broadened by the rf probe signal. The amplitude of the rf
signal at the device source electrode is difficult to deter-
mine precisely due to uncertainties in cable attenuation
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and reflections, but it is estimated to be less than
−130 dBm. Given a resonator quality factor of about 30
and a lever arm of approximately 0.45, this amplitude
yields a fluctuating detuning due to the rf signal
δϵ < 1 μeV.
The resonances shown in Fig. 11 can also be understood

as—that is, are equivalent to—the Fourier transform of a
free-evolution decay (Ramsey-type) measurement where
the time evolution is described by

fðtÞ ¼ Re

0
B@e−½ð1=2T1Þ−ið2tc=ℏÞ�tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − i
ℏ
σ2ϵ
2tc

t
q

1
CA: ðC2Þ

Here, the exponential decay factor e−t=2T1 is due to charge
relaxation. The term in the denominator is due to pure
dephasing and can be understood as follows: at the optimal
point, the qubit is first-order insensitive to charge noise in
the detuning parameter δϵ, and therefore second-order
contributions dominate. The decay function due to charge
noise is then described by the integral [26]

fdecayðtÞ ¼
Z

dðδϵÞPðδϵÞe½ði=ℏÞ∂2E=2∂ϵ2�δϵ2t; ðC3Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 4t2c

p
is the energy difference between the

qubit states. Assuming a Gaussian-noise distribution PðδϵÞ
[see Eq. (C1)] and given that at the optimal point
∂2E=∂ϵ2 ¼ 1=2tc, this simplifies to

fdecayðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − i
ℏ
σ2ϵ
2tc

t
q ðC4Þ

Dephasing is therefore dependent on the ratio σ2ϵ=2tc,
such that the charge qubit is less susceptible to charge
noise for a larger tc, but a larger tc also comes at the
expense of a decrease in readout sensitivity, as evident from
Eq. (B13). In our experiments, the standard deviation σϵ
can be estimated from the phase signal at finite detuning,
where there is an approximately linear E − ϵ relation. For a
Gaussian distribution, we expect the width to depend on the
standard deviation, 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
σϵ. The observed linewidths at
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finite detuning are on the order of 1.5–2.0 GHz [see, e.g.,
Fig. 3(a), right panel], which yields σϵ ∼ 2 to 3 μeV. This
standard deviation is consistent with the best fit that
reproduces the line shape at the optimal point—that is,
the data in Fig. 3(b)—which is obtained for σϵ ∼ 2.5 μeV.
Note that the amplitude of the phase signal is taken as an
additional fit parameter. The deduced T�

2 is taken to be the
time for which coherence has decayed to 1=e of its
initial value for these parameters, as shown in Fig. 12,
bottom panel.
The measured charge relaxation time T1 ¼ 48� 6 ns

obtained from the chopped microwave experiments as
presented in Fig. 3(c) provides an upper bound for the
T1 parameter in the line-shape fits. This value is consistent
with our findings. Figure 11(a) shows how the calculated
line shapes vary with a decreasing T1, and a best fit to the
experimental data yields a T1 parameter in the (5–10)-ns
range. We have verified that the measurements are not
affected by the applied microwave power, which had been
adjusted to values optimized for the largest signal-to-noise
ratio while still low enough to not affect the intrinsic line
shape in the linear-response regime. We speculate that the
additional broadening (yielding a slightly lower T1 in the
line-shape fits) is the result of a charge noise contribution to
the tunnel-coupling parameter tc of order 0.1 μeV.

2. Charge relaxation: rf and dc data

The charge relaxation time T1 of our charge qubit is
determined by using a chopped microwave signal with a
50% duty cycle and a variable period τ. For short periods
where τ ≪ T1, the system has no time to relax during the
second half of a period when the microwave signal is
switched off. In this case, the phase signal at zero detuning
is close to the background value, as apparent from the
data in the inset of Fig. 13(a), which shows the phase
response as a function of τ and the detuning ΔE. As τ is
increased, the signal shows an exponential decay,

approaching ΔΦðτÞ=ΔΦ0 → 1=2 when τ ≫ T1, as shown
in Fig. 13(a)—reproduced from Fig. 3(c).
We believe that the limiting factor for T1 in our device is

tunneling to the leads. Figure 13(b) shows both the phase
response (left panel) and dc transport data (right panel) in
the stability diagram. Cotunneling is evident in the dc
transport data as an extended current region along the
horizontal resonances, as indicated by the dashed red lines,
with the magnitude decreasing as the distance from the
triple points increases. In the rf data, cotunneling is evident
as a phase shift to positive values (the “white” lines in the rf
data). While we do not attempt to provide a quantitative
analysis of cotunneling here, we note that a relaxation time
of T1 ¼ 48� 6 ns would correspond to rates of about
20 MHz. This value is indeed consistent with the magni-
tude of the dc current in the (1–5)-pA range observed in the
data (away from the triple points). Relaxation via the leads
(electron exchange) is thus the most likely limiting factor
for T1 in our device.
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