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Quantitative analysis of magnetic resonance imaging (MRI) scans of the brain requires accurate auto-
mated segmentation of anatomical structures. A desirable feature for such segmentation methods is to be
robust against changes in acquisition platform and imaging protocol. In this paper we validate the
performance of a segmentation algorithm designed to meet these requirements, building upon gen-
erative parametric models previously used in tissue classification. The method is tested on four different

MRI datasets acquired with different scanners, field strengths and pulse sequences, demonstrating compar-
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able accuracy to state-of-the-art methods on T1-weighted scans while being one to two orders of
magnitude faster. The proposed algorithm is also shown to be robust against small training datasets, and
readily handles images with different MRI contrast as well as multi-contrast data.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

So-called whole-brain segmentation techniques aim to auto-
matically label a multitude of cortical and subcortical regions from
brain MRI scans. Recent years have seen tremendous advances in
this field, enabling, for the first time, fine-grained comparisons of
regional brain morphometry between large groups of subjects.
Current state-of-the-art whole-brain segmentation algorithms are
typically based on supervised models of image appearance in T1-
weighted scans, in which the relationship between intensities and
neuroanatomical labels is learned from a set of manually anno-
tated training images.

This approach suffers from two fundamental limitations. First,
segmentation performance often degrades when the algorithms
are applied to T1-weighted data acquired on different scanner
platforms or using different imaging sequences, due to subtle
changes in the obtained image contrast (Han and Fischl, 2007; Roy
et al., 2013). And second, the exclusive focus on only T1-weighted
images hinders the ultimate translation of whole-brain segmen-
tation techniques into clinical practice, where they hold great
potential to support personalized treatment of patients suffering
from brain diseases. This is because clinical imaging uses
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additional MRI contrast mechanisms to show clinically relevant
information, including T2-weighted or fluid attenuated inversion
recovery (FLAIR) images that are much more sensitive to certain
pathologies than T1-weighted scans (e.g., white matter lesions or
brain tumors). Although incorporating models of lesions into
whole-brain segmentation techniques is an open problem in itself,
a first necessary step towards bringing these techniques into
clinical practice is to make them capable of handling the multi-
contrast images that are acquired in standard clinical routine.

In this article, we present and validate the performance of a
fast, sequence-independent whole-brain segmentation algorithm.
The method, which is based on a mesh-based computational atlas
combined with a Gaussian appearance model, yields segmentation
accuracies comparable to the state of the art; automatically adapts
to different MRI contrasts (even if multimodal); requires only a
small amount of training data; and achieves computational times
comparable to those of the fastest algorithms in the field (Zikic
et al.,, 2014; Ta et al., 2014).

1.1. Current state of the art in whole-brain segmentation

Early methods for the segmentation of brain structures often
relied on parametric models, in which the available training data
were summarized in relevant statistics that were subsequently
used to inform the segmentation of previously unseen subjects.

1053-8119/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Because many distinct brain structures have similar intensity
characteristics in MRI, these methods were typically built around
detailed probabilistic models of the expected shape and relative
positioning of different brain regions, using surface-based (Kele-
men et al., 1998; Pizer et al., 2003; Patenaude et al., 2011; Cootes
et al., 1998) or volumetric (Fischl et al., 2002; Pohl et al., 2006b)
models. These anatomical models were then combined with su-
pervised models of appearance to encode the typical intensity
characteristics of the relevant structures in the training data, often
using Gaussian models for either the intensity of individual voxels
(Fischl et al., 2002; Pohl et al., 2006b) or for entire regional in-
tensity profiles (Kelemen et al., 1998; Pizer et al., 2003; Patenaude
et al., 2011; Cootes et al., 1998). The segmentation problem was
then formulated in a Bayesian setting, in which segmentations
were sought that satisfy both the shape and appearance
constraints.

More recently, non-parametric methods' have gained increas-
ing attention in the field of whole-brain segmentation, mostly in
the form of multi-atlas label fusion (Rohfling et al., 2004a; Heck-
emann et al., 2006; Isgum et al., 2009; Artaechevarria et al., 2009;
Sabuncu et al., 2010; Rohfling et al., 2004b; Wang et al., 2013;
Manjoén et al., 2011; Rousseau et al., 2011; Tong and Wolz, 2013;
Wau et al,, 2014; Asman and Landman, 2013; Zikic et al., 2014; Ig-
lesias and Sabuncu, 2015). In these methods, each of the manually
annotated training scans is first deformed onto the target image
using an image registration algorithm. Then, the resulting de-
formation fields are used to warp the manual annotations, which
are subsequently fused into a final consensus segmentation. Al-
though early methods used a simple majority voting rule (Rohfling
et al., 2004a; Heckemann et al., 2006), recent developments have
concentrated on exploiting local intensity information to guide the
atlas fusion process. This is particularly helpful in cortical areas, for
which accurate inter-subject registration is challenging (Sabuncu
et al., 2010; Ledig et al., 2012). Label fusion methods have been
shown to yield very accurate whole-brain segmentations (Land-
man and Warfield, 2012), but their accuracy comes at the expense
of a high computational cost as a result of the multiple non-linear
registrations that are required. Efforts to alleviate this issue in-
clude a local search using entire image patches, such that much
faster linear registrations can be used (Manjon et al., 2011; Ta et al.,
2014), as well as using rich contextual features so that only a single
non-linear warp is needed (Zikic et al., 2014).

1.2. Existing methods that handle changes in MRI contrast

With the exception of simple majority voting (Rohfling et al.,
2004a; Heckemann et al., 2006), all the methods reviewed above
use supervised intensity models, in the sense that they explicitly
exploit the specific image contrast properties of the dataset used
for training. This poses limitations on their ability to segment
images that were acquired with different scanners or imaging
sequences than the training scans.

A generic way of making such methods work across imaging
platforms is histogram matching (also known as intensity nor-
malization), in which the intensity profiles of new images are al-
tered so as to resemble those of the images used for training (Nyul
et al,, 2000; Roy et al., 2013). However, histogram matching can
only be used when the training and target data have been acquired
with the same type of MRI sequence (e.g., T1-weighted), and it
does not completely cancel the negative effects that intensity

! Note that the distinction between parametric vs. non-parametric methods
here only refers to the overall segmentation approach that is taken - the pair-wise
registrations in non-parametric segmentation methods can still be either para-
metric (e.g., B-splines, Rueckert et al. (1999)) or non-parametric (e.g., Demons,
Thirion (1998)).

mismatches have on segmentation accuracy (Roy et al., 2013).

Another approach is to have the training dataset include ima-
ges that are representative of all the scanners and protocols that
are expected to be encountered in practice. However, this ap-
proach quickly becomes impractical due to the large number of
possible combinations of MRI hardware and acquisition para-
meters. The situation is exacerbated for clinical data, due to the
lack of standardized protocols to acquire multi-contrast MRI data
across clinical imaging centers.

In contrast synthesis (Roy et al., 2013), the original scan is not
directly segmented, but rather used to generate a new scan with
the desired intensity profile, which is then segmented instead. The
premise of this technique is that a database of scans acquired with
both the source and target contrast is available, so that the re-
lationship between the two can be learned (Iglesias et al., 2013a;
Roy et al., 2013). This approach makes it unnecessary to manually
annotate additional training data for each new set-up that is
considered — a considerable advantage given that a manual whole-
brain segmentation often takes several days per scan (Fischl et al.,
2002). However, it still requires that additional example subjects
are scanned with both the source and target scanner and protocol,
which is not always practical.

Finally, a more fundamental way to address the problem is to
perform whole-brain segmentation in the space of intrinsic MRI
tissue parameters (Fischl et al., 2004b). However, this requires the
usage of specific MRI sequences for which a physical forward
model is available, which are not widely implemented on MRI
scanning platforms, and particularly not on clinical systems.

1.3. Contribution: validation of a fast, sequence-adaptive whole-
brain segmentation algorithm

In contrast to the aforementioned approaches to whole-brain
segmentation, which rely on supervised models of the specific
intensity profiles seen in the training data, in this paper we vali-
date an unsupervised approach that automatically learns appro-
priate intensity models from the images being analyzed. At the
core of the method is an intensity clustering algorithm (a Gaussian
mixture model) that derives its independence of specific image
contrast properties by simply grouping together voxels with si-
milar intensities. This approach is well-established for the purpose
of tissue classification (aimed at extracting the white matter, gray
matter and cerebrospinal fluid) where it is typically augmented
with models of MRI imaging artifacts (Wells et al., 1996a; Van
Leemput et al., 1999a; Ashburner and Friston, 2005) and spatial
models such as probabilistic atlases (Ashburner and Friston, 1997;
Van Leemput et al., 1999a; Ashburner and Friston, 2005) or Mar-
kov random fields (Van Leemput et al., 1999b; Zhang et al., 2001).

Here we validate a method for whole-brain segmentation that
is rooted in this type of approach, building on prior work from our
group including a proof-of-concept demonstration in whole-brain
segmentation (Van Leemput, 2009), as well as the automated
segmentation methods for hippocampal subfields (Iglesias et al.,
2015a) and subregions of the brainstem (Iglesias et al., 2015b) that
are distributed with the FreeSurfer software package (Fischl et al.,
2002). The method we validate here uses a mesh-based prob-
abilistic atlas to provide whole-brain segmentation accuracy at the
level of the state of the art, both within and across scanner plat-
forms and pulse sequences. Unlike many other techniques, the
method does not need any preprocessing such as skull stripping,
bias field correction or intensity normalization. Furthermore, be-
cause the method is parametric, only a single non-linear regis-
tration (of the atlas to the target image) is required, yielding a very
fast overall computational footprint.

An early version of this work, with a preliminary validation,
was presented in Puonti et al. (2013). The current article adds a
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more detailed explanation of our modeling approach, quantitative
comparisons with additional state-of-the-art label fusion algo-
rithms, and more extensive experiments — particularly regarding
test-retest reliability, segmentation of multi-contrast and non-T1-
contrast data, and the sensitivity of the method to the size of the
training dataset.

2. Modeling framework

Let D = (d, ..., d;) denote a matrix collecting the intensities in a
multi-contrast brain MRI scan with I voxels, where the vector
d; =}, ..., dM)' contains the intensities in voxel i for each of the
available N contrasts. Furthermore, let 1= (I, ..., I;) be the corre-
sponding segmentation, where I; € {1, ..., K} denotes the one of K
possible segmentation labels assigned to voxel i.

In order to estimate 1 from D, i.e., to compute automated
segmentations, we use a generative modeling approach: a forward
probabilistic model of MRI images is defined, and subsequently
“inverted” to obtain the segmentation. The model consists of two
parts: a prior and a likelihood. The prior is a probability distribu-
tion over segmentations p(l) that encodes prior knowledge on
human neuroanatomy. The likelihood is a probability distribution
over image intensities that is conditioned on the segmentation
p (DIl), which models the imaging process through which a certain
segmentation yields the observed MRI scan. This type of model is
generative because it provides a mechanism to generate data
through the forward model: in our case, we could generate a
random brain MRI scan by first sampling the prior to obtain a
segmentation, and then sampling the likelihood conditioned on
the resulting segmentation.

Within this framework, the posterior distribution of image
segmentations given an input brain MRI scan is given by Bayes'
rule:

p(1ID) o p(D)p(1). M

Maximizing Eq. (1) with respect to 1 then yields the maximum a
posteriori (MAP) estimate of the segmentation.

In the rest of this Section, we will describe in depth the prior
(Section 2.1) and likelihood (Section 2.2); we will propose an in-
ference algorithm to approximately maximize Eq. (1) (Section 2.3);
and finally we will describe the details of the implementation of
this algorithm (Section 2.4).

2.1. Prior

For the prior p(l) we use a generalization of the probabilistic
brain atlases often used in brain MRI segmentation (Ashburner
and Friston, 1997; Van Leemput et al., 1999b, 1999a, 2001; Zij-
denbos et al.,, 2002; Fischl et al., 2002; Ashburner and Friston,
2005; Prastawa et al., 2005; Pohl et al., 2006b; D'Agostino et al.,
2006; Awate et al., 2006; Bouix et al., 2007). This model, detailed
in Van Leemput (2009), is based on a deformable tetrahedral
mesh, the properties of which are learned automatically from a set
of manual example segmentations made on MRI scans of training
subjects. Each of the vertices of the mesh has an associated set of
label probabilities specifying how frequently each of the K labels
occurs at the vertex. The resolution of the mesh is locally adaptive,
being sparse in large uniform regions and dense around the
structure borders. This automatically introduces a locally varying
amount of spatial blurring in the resulting atlas, aiming to avoid
over-fitting of the model to the available training samples (Van
Leemput, 2009). During training, the topology of the mesh and the
position of its vertices in atlas space (henceforth “reference posi-
tion”) is computed along with the label probabilities in a non-
linear, group-wise registration of the labeled training data. An
example of the resulting probabilistic brain atlas, computed from
manual parcellations in 20 subjects, is displayed in its reference
position in Fig. 1; note the irregularity in the shapes and sizes of
the tetrahedra.

The positions of the mesh nodes x can change according to
their prior distribution p(x):

T
P x exp( -8 Y b, xref)]

t=1

@

where T and X, denote the number of tetrahedra and the re-
ference position of the mesh, respectively; ¢, (X, Xy) is a penalty
for deforming tetrahedron t from its reference to its actual posi-
tion; and g > 0 is a scalar that controls the global stiffness of the
mesh. We use the penalty term proposed in Ashburner et al.
(2000), which goes to infinity when the Jacobian determinant of
the deformation approaches zero. This choice prevents the mesh
from tearing or folding onto itself, thus preserving its topology.
Given a deformed mesh with node positions X, the probability
p; (kix) of observing label k at a voxel i is obtained by barycentric
interpolation of the label probabilities at the vertices of the tet-
rahedron containing the voxel. Moreover, we assume conditional

Fig. 1. Left: T1-weighted scan from the training data. Center: corresponding manual segmentation. Right: atlas mesh built from 20 randomly selected subjects from the

training data.
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independence of the labels of the different voxels given the mesh
node positions, such that

1

p(Ix) = ] pi(i[x).

E ' 3)
The expression for the prior distribution over segmentations is
finally:

p = /x pdix)px)dx. @

2.2. Likelihood

The likelihood p(DIl) models the relationship between seg-
mentation labels and image intensities. For this purpose, we as-
sociate a mixture of Gaussian distributions with each label (Ash-
burner and Friston, 2005), and assume that the bias field imaging
artifact typically seen in MRI can be modeled as a multiplicative
and spatially smooth effect (Wells et al., 1996a). For computational
reasons, we use log-transformed image intensities in D, and model
the bias field as a linear combination of spatially smooth basis
functions that is added to the local voxel intensities (Van Leemput
et al.,, 1999a).

Specifically, letting ¢ denote all bias field and Gaussian mixture
parameters, with uniform prior p (@) « 1, the likelihood is defined
by

p(DIl) = fa p(DIL, 9)p©)do, -

where

1
p®@IL 6) = []pi@ill; 6),

i=1

Gk
pi(dik, 0) = Y wigN(d - Chlluy g, Zig),
g=1 (6)

and

_1

N(di, =) = m eXP( >

(d-w'=(d-p)

Here, Gy is the number of Gaussian distributions in the mixture
associated with label k; and g4, Zig, and wgg are the mean,
covariance matrix, and weight of component g € {1, ..., G¢} in the
mixture model of label k (satisfying wy, > 0 and Zg Wig=1).
Furthermore,

i
T 4
C Cn1 ¢i
C=|:] c=]|: and ¢'=|"2]|,
Cﬁ Cn,p :i
#p

where P denotes the number of bias field basis functions, ¢, is the
basis function p evaluated at voxel i, and c, holds the bias field
coefficients for MRI contrast n.

The entire forward model is summarized in Table 1.

Table 1
Equations for the forward probabilistic model of MRI brain scans.

X ~ pX) (Eq. (2))
1 ~ pdix) (Eq. (3))
/] ~ p@) «1

D ~ pDIl, 6) (Eq. (6))

2.3. Inference

Using the model described above, the MAP segmentation for a
given MRI scan is obtained by maximizing Eq. (1) with respect to 1:
1=arg rrllaxp(llD) = arg max p(DIlp(1), 7
which is intractable due to the integrals over the parameters x and
0 that appear in the expressions for p(l) (Eq. (4)) and p(DIl) (Eq.
(5)), respectively. This difficulty can be side-stepped if the pos-
terior distribution of the model parameters in light of the data is
heavily peaked around its mode:

p(x, 6ID) ~ 5(x -X,0- é\)

where §(-) is Dirac's delta and the point estimates { R, é\} are given
by:

{)’i, é\} = arg max p(x, ¢|D).
{x0} 8)

In that scenario, we can approximate:

p(ID) = f /0p(l|D, X, 0)p(x, 0ID)dxde
X
~ p(l|D, X, 9), 9)

which no longer involves intractable integrals. The resulting in-
ference algorithm then involves two distinct phases, detailed be-
low: first, computing the point estimates by maximizing Eq. (8);
and subsequently computing the segmentation by maximizing
Eq. (9) with respect to 1.

Computation of point estimates. Applying Bayes' rule to Eq. (8),
we obtain:

pX, 0ID) x p(DIX, O)p(X)p ()

« [Z p(DIl, 0>p<llx)]p<x>
1

=11

1
i=1

K
[ > pidilk, 0)p; <klx>]p<x).

k=1

Taking the logarithm, we can rewrite the problem as the max-
imization of the following objective function:

I K
{ X, 0} = ar{gg}ax[Z log[ > pi(d;

i=1 k=1

k, a)p,»(klx)] + log p(x)].
10)

We solve this problem with a coordinate ascent scheme, in which
the mesh node positions X and likelihood parameters @ are
iteratively updated, by alternately optimizing one while keeping
the other fixed.

To optimize the mesh node positions x with fixed 8, we use a
standard conjugate gradient optimizer (Shewchuk, 1994). To op-
timize the likelihood parameters ¢ with fixed x, we use a gen-
eralized expectation-maximization (GEM) algorithm (Dempster
et al., 1977) similar to the one proposed in Van Leemput et al.
(1999a). In particular, the GEM optimization involves iteratively
computing the following soft assignments of each voxel to each of
the Gaussian distributions, based on the current parameter esti-
mates:

_ Wk,gN( d; - c¢i|ﬂl<,g- Zk,g)pj (kix)
X ik, opkix) an

kg
i

and subsequently updating the parameters accordingly:
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Hrg < Zgﬂ qi’:g(di,_ C¢i)' Wkeg < I Zgzlcqik'gf,y
Xia4* i X g\
Sy < T 65 — g - Co) (i — g — Y
Y0
c ATS; A ...

EERN

ATS; yA) ' [ AT(S1aria+ ... + Sinrin)

« ’

Cn ATSN‘]A ATSN‘NA AT(SNJI'N'] + ...+ SN,NrN,N)

where
b ]

A=|: = | Spmn=diag(s™")
b o]

T .
and Ty, =(r", .., ™), with

K Gg
mn _ m,n mn _ k,g( —1)
sm= 2 D slke Sk = 4% (Zig o
k=1 g=1 '
K Gl m,n( )
pmn _ gn _ Z1:1 z:gzl si,k,g ”k,g n

[ K Gk <mn
=1 Zg:l Si.k,g

It can be shown that this process is guaranteed to increase the
objective function of Eq. (10) with respect to 6 in each GEM
iteration (Dempster et al., 1977; Van Leemput et al., 1999a).

Computation of the final segmentation. Given the point estimates
of the model parameters, the conditional posterior distribution of
the segmentation 1 factorizes over voxels:

p(lID, %, 6): i]ip,.(md,», %, 6), p,»(kldi, 'y é) - :Z_:Il gke.

The optimal segmentation for each voxel is therefore given by:
A Sk
li = argmax )’ g/*%.

k g=1

2.4. Implementation

In practice, we have found that modeling substructures with
similar intensity properties (e.g., all white matter structures) with
the same Gaussian mixture model improves the robustness of the
algorithm while giving faster execution times. Letting f denote a
set of structures that share the same mixture model, this is ac-
complished by altering the GEM update equations for the Gaussian
mixture parameters as follows:

- Z,’L] qif'g d; — CpH

My Vke f,

¢ ZL] q/*

Zf—l qif'g
Wig « ———c——= VKef,
i Zg[=1 e
I afed - — CoH(d: — — Co))T
Zk,g - ZI=1 q; (d; ﬂk,gl c¢f)( i — Hig CohH v k Ef,
Xi G*

where
gfs= Y gke.

kef

The details of which structures share the same mixture models
will be given in Section 3.3.
To initialize the algorithm, we first affinely align the atlas to the

target image using the registration method described in D'Agos-
tino et al. (2004), which uses atlas probabilities — rather than an
intensity template — to drive the registration process. After the
initial registration we mask out non-brain tissues by excluding
voxels that have a prior probability lower than 0.01 of belonging to
any of the brain structures.

The image intensities are then log-transformed to accom-
modate the additive bias field that is employed (cf. Section 2.2).
For the bias field modeling, we use the lowest frequency compo-
nents of the 3D discrete cosine transform (DCT) as basis functions
(for the number of components see Section 3.3).

The subsequent optimization is done at two resolution le-
vels. In the first level, the atlas probabilities are smoothed
using a Gaussian kernel with a standard deviation of 2.0 mm in
order to fit large scale mesh deformations. No smoothing is
used in the second level, which refines the registration on a
smaller scale.

The stopping criteria for the different components of the al-
gorithm are as follows: the likelihood parameters  are updated
until the relative change in the objective function (Eq. (10)) falls
under 10~ 3; the mesh node positions are updated until the max-
imum deformation across vertices falls under 10~> mm; and the
GEM and conjugate gradient optimizers are iteratively interleaved
until the decrease in the cost function falls under 106,

The algorithm is implemented in Matlab except for the
computationally demanding optimization of the mesh node
positions, which is implemented in C+ +, and which involves
computing the mesh node deformation prior p(x) (Eq. (2)), the
interpolated prior probabilities p(ix) (Eq. (3)) and the gradient
of the objective function (Eq. (10)) with respect to the mesh
node positions.

3. Experiments

In this section, we first describe the brain MRI datasets used in
this study (Section 3.1). Then, we outline four methods that our
algorithm is benchmarked against (Section 3.2). Next, we detail
how the free parameters of each method are set (Section 3.3).
Finally, we describe the setups for four different experiments in
which the different methods are tested (Section 3.4).

3.1. MRI data

In the experiments, we use five different sets of scans: one
exclusively for training the segmentation methods, and the other
four for testing the performance on unseen data. For training, we
use a dataset of 39 T1-weighted MRI scans and corresponding
expert segmentations. The expert segmentations were obtained
using a validated semi-automated protocol developed at the
Center for Morphometric Analysis (CMA), MGH, Boston (Caviness
et al., 1989, 1996; Kennedy et al., 1989). All raters had to pass tests
measuring intra- and inter-rater reliability before they were al-
lowed to perform segmentations. The resulting training data
consists of 28 healthy subjects and 11 subjects with questionable
or probable Alzheimer's disease with ages ranging from under 30
years old to over 60 years old (Sabuncu et al., 2010). The scans
were acquired on a 1.5T Siemens Vision scanner using an
MPRAGE sequence with parameters: TR=9.7 ms, TE=4 ms,
TI=20ms, flip angle=10° and voxel size=1.0 x 1.0 x 1.5 mm?
(128 sagittal slices), where the scan parameters were empirically
optimized for gray-white matter contrast (Buckner et al., 2004).
This is the same dataset used for training in the publicly available
software package FreeSurfer (Fischl et al., 2002). An example scan
and a corresponding manual segmentation are shown in Fig. 1.



240 O. Puonti et al. / Neurolmage 143 (2016) 235-249

Fig. 2. On the left an example slice from the intra-scanner dataset and on the right
a corresponding manual segmentation.

For testing, we use four different datasets acquired on scanners
from different manufacturers, with different field strengths and
pulse sequences. For three of the datasets, including a total of 35
subjects, we have access to expert manual segmentations, en-
abling quantitative comparisons of automated segmentation ac-
curacy. All these manual segmentations were performed using the
same protocol as was used for the training data. The fourth test
dataset consists of 40 subjects scanned at two time points; it does
not have expert segmentations but will be used to assess test-
retest reliability instead. Below we provide details on each of these
four test datasets.

The first test dataset consists of T1-weighted scans of 13 in-
dividuals with age and disease status matching those of the
training dataset, acquired on a 1.5T Siemens Sonata scanner with
the same sequence and parameters as the training data (Han and
Fischl, 2007). Given the similarity with the training data (vendor,
field strength, pulse sequence), we will refer to this dataset as the
“intra-scanner dataset”. An example scan and a corresponding
manual segmentation are shown in Fig. 2.

The second test dataset consists of T1-weighted scans of 14
individuals with age and disease status matching those of the
training dataset, acquired on a 1.5T GE Signa Scanner using an
SPGR sequence with parameters: TR=35ms, TE=5ms, flip
angle=45° and voxel size = 0.9375 x 0.9375 x 1.5 mm?3 (124 cor-
onal slices) (Han and Fischl, 2007). This dataset will be referred to
as the “cross-scanner dataset”. An example scan and a corre-
sponding manual segmentation are shown in Fig. 3.

The third test dataset consists of multi-echo FLASH scans from
8 healthy subjects acquired on a 1.5T Siemens Sonata scanner. The
acquisition parameters were: TR=20 ms, TE=min, flip angle=3°,
5°, 20° and 30°, and voxel size=1.0 mm? isotropic (Fischl et al.,
2004b; Iglesias et al., 2012). The different flip angles correspond to
different contrast properties, with the smallest angle having

Fig. 3. On the left an example slice from the cross-scanner dataset and on the right
a corresponding manual segmentation.

Fig. 4. An example of the T1- (flip angle=30°) and PD-weighted (flip angle=3°)
scans of the same subject from the multi-echo dataset.

contrast similar to proton density (PD) weighting and the largest
one having a contrast similar to T1-weighting. These data will be
referred to as the “multi-echo dataset”. A sample slice from this
dataset, with flip angles 30° and 3¢, is shown in Fig. 4.

The fourth and final test dataset consists of 40 healthy subjects
scanned at two different time points at different facilities, with
scan intervals ranging from 2 days to six months, amounting to a
total of 80 T1- and T2-weighted scans for the whole dataset
(Holmes et al., 2012). The scans were all acquired with 3T Siemens
Tim Trio scanners using identical multi-echo MPRAGE sequences
for the T1 and 3D T2-SPACE sequences for the T2, with voxel
size=1.2 x 1.2 x 1.2 mm>. Note that the acquisition protocol was
highly optimized for speed, with a total acquisition time for both
scans of under 5 minutes. This dataset will be referred to as the
“test-retest dataset”. One of the scans had to be excluded because
of motion artifacts. Moreover, some of the T2-weighted scans have
minor artifacts not present in the T1-weighted scans. These scans
were however included in the experiments. Manual segmenta-
tions were not available for this dataset; however, these scans are
still useful in test-retest experiments quantifying the differences
between the two time points. Ideally, as all the subjects are
healthy, the biological variations should be small and the seg-
mentations between the two time points should be identical. An
example of the T1- and T2-weighted scans is shown in Fig. 5.

3.2. Benchmark methods

In order to gauge the performance of the proposed algorithm
with respect to the state of the art in brain MRI segmentation, we
compare its performance against four representative methods:

Fig. 5. An example of the T1- and T2-weighted scans of the same subject from the
test-retest dataset.
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e BrainFuse” (Sabuncu et al., 2010) is a multi-atlas segmentation
method that u