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“Always trust your gut – it knows what your head and liver has not yet figured out” 

 

Summary 

See suggestion Duncan 

 

Key points:  

-The gut-liver-axis has matured from a pathophysiological concept with experimental data on 

mechanisms and intrahepatic effects to clinical trials on therapeutic and preventive measures 

aiming to improve prognosis of multiple chronic liver diseases.     

- Absorbable antibiotics should not be used to target the microbiome whereas non-absorbable 

antibiotics, e.g. rifaximin are well suited to do so but most likely exert many effects 

independent from their bactericidal action. 

- Modulation of the microbiome by pre-/pro-and synbiotics can deliver significant positive 

hepatic effects without much concern on major side-effects. In contrast, safety and efficacy of 

fecal microbial transplantation or adsorbents are so far less clear. 

- Bile acids (BA) and associated signaling, mainly via the nuclear farnesoid X receptor (FXR) 

are key players in the gut-liver-axis affecting intestinal barrier function as well as lipid and 

glucose metabolism. Hence, multiple promising different pharmacological FXR-modulators 

are currently tested in various liver diseases. 

- Incretins and recombinant enterokines potently modulate food intake, nutrient absorption 

and metabolism by which first promising therapeutic results in metabolic liver disease are 

observed.  

 

 

Introduction [1] 

Open to the outer environment, the gut harbours a microbiome containing several-fold more 

genetic material than the human genome. It produces a myriad of metabolites, as well as 

hormones and peptides. The liver is at the nexus between this vast source of nutrients, toxins 

and hormones, and the rest of the body. Unsurprisingly, in experimental models and in vitro 

systems, the liver-gut-axis has been demonstrated to contribute to the pathogenesis of most 

liver diseases, such as alcoholic and non-alcoholic fatty liver disease (NAFLD), steatohepatitis 
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(NASH), cholestatic liver diseases, hepatocellular carcinoma (HCC), acute-on-chronic liver 

failure, progression to fibrosis/cirrhosis and complications of cirrhosis. Therapeutic 

approaches can be grouped into modulation of the microbiota, the bile acid (BA) pool and/or 

its signalling, gut lumen adsorptive strategies, bariatric procedures, incretins and 

miscellaneous (e.g. prokinetics). However, investigations in humans are key. Thus, this article 

will highlight the most recent human studies and clinical trials targeting the liver-gut-axis. A list 

of ongoing (not yet published) trials is presented in Table 1. Moreover, we take the liberty of 

encouraging clinical trials on unestablished concepts 

 

Background: Pathophysiology [1] 

“Whatever comes from the gut enters the liver; the portal circulation is the afferent and the 

biliary tree is the efferent of the gut-liver-axis” (Fig.1): The liver is the recipient and filter of 

nutrients, bacterial products/toxins and metabolites from the intestine. We are becoming 

increasingly aware of interactions between the gut, liver, immune system and metabolism. For 

instance, the term “metabolic endotoxemia” has been coined since Cani et al. discovered that 

the microbiome is involved in the onset of insulin resistance, low-grade inflammation and 

diabetes1. This stems from the observation that constituents of gram-negative bacteria, which 

are present in the blood stream at very low levels because of translocation from the gut, could 

trigger inflammation and alter glucose metabolism1. A complete list and overview of all the 

different components or metabolic products of gut bacteria, products, intestinal hormones, 

peptides and gut-derived neurotransmitters are beyond the scope of this article. Therefore, 

this article focusses on pathogen/microbe-associated molecular patterns (P/MAMPs), of 

which bacterial lipopolysaccharides (LPS), peptidoglycans, flagellin and bacterial DNA are 

prototypical.  

The immune system recognises P/MAMPs via pattern recognition receptors, such as 

toll-like-receptors and nucleotide-binding oligomerisation domain like receptors (NLR). To 

oversimplify, an increased inflow and/or susceptibility to P/MAMPs via pathological bacterial 

translocation induces a pro-inflammatory intrahepatic milieu driven by mononuclear cell-

released cytokines such as tumour necrosis factor (TNF), interleukin (IL)-1, and IL-6. In fact, 

lack of tolerance to LPS in human liver slices from cirrhotic livers, compared to healthy 

controls, creates a comparable inflammatory response (IL-1b, IL-6 and -8), induced by LPS 
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challenge2. This intrahepatic P/MAMP-aemia and pro-inflammatory milieu induces the 

production of reactive oxygen species by parenchymal and non-parenchymal liver cells, 

promoting liver injury and fibrosis. However, the liver is not only exposed to gut-derived 

P/MAMPs, but also absorbed products derived from bacterial metabolism and/or the 

interaction of the microbiota with the diet. Such products include ethanol, acetaldehyde, 

trimethylamine and short chain and free fatty acids, which can aggravate and perpetuate liver 

damage and fibrogenesis and contribute to steatosis/hepatitis. For instance, upregulated 

palmitic acid absorption with altered intestinal transporters has recently been reported in early 

NASH3. It has also been shown to associate with clinicopathological features3. Finally, 

adipokines and cytokines derived from visceral fat can contribute to intrahepatic inflammation4 

and have even been proposed to determine HCC risk5. In fact, at AASLD 2016 central fat 

(estimated as waist circumference and/or –hip ratio) was proposed to predict the presence of 

NASH more accurately than BMI{Balakrishnan, 2017 #839}, being an even stronger risk factor 

in lean patients than in the obese{Fracanzani, 2017 #840},8. Disruptions of the intestinal barrier, 

leading to increased permeability, qualitatively and quantitatively influence the P/MAMPs and 

bacterial metabolites to which the liver is exposed. Consequently, access to the portal-venous 

circulation is determined by the gut-vascular barrier, which has recently been characterised9. 

Indeed, the opening of the gut-vascular barrier is likely to be as fundamental to gut-liver-axis 

pathophysiology as the translocation process at the epithelial layer, since it prevents 

indiscriminate access of bacteria/products to the portal-venous circulation in healthy 

conditions. Whereas modulators of this new gut-vascular barrier are yet to be elucidated, 

known disruptors of the intestinal epithelial barrier are dietary factors (alcohol or overdosed 

nutrients), mucosal inflammation of any aetiology, drugs/medications (e.g. non-steroidal 

antirheumatics, proton-pump-inhibitors), infections and toxins as well as hypoperfusion10. 

The liver is not only a passive recipient and effector site of gut-derived agents, it also 

feeds back to the intestine through the secretion of bile, including BAs, as well as other 

mediators, such as IgA, affecting the gut-liver-axis 11. Secretory IgAs (sIgA) play a central role 

in regulating host-microbiota homeostasis 12. sIgA regulates the composition of the intestinal 

microflora and protects mucosal surfaces by ensuring immune exclusion. In fact, IgA 

agglutinates bacteria and participates in biofilm formation, preventing bacterial translocation13. 

Moreover, high IgA coating uniquely identifies colitogenic intestinal bacteria,14 since transferal 
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of those bacteria into germ-free mice provided increased susceptibility to colitis. Both 

intestinal and intrahepatic B-cells produce IgA, most interestingly the latter are derived from 

Peyer’s patches and are directed against intestinal antigens,15 truly reflecting the liver-gut-

axis. The well-known increases in serum IgA levels in chronic liver disease 16 and increased 

monomeric IgA deposits along the liver sinusoids in alcoholics, even before evolution to overt 

cirrhosis,17 underline the highly activated state of the liver-gut-axis in such patients. BAs 

interact with nuclear receptors and membrane G-protein-coupled receptors, mainly the 

farnesoid-X-receptor (FXR) and Takeda-G-protein-receptor 5 (TGR5), respectively (Fig.2). 

Through activation of these receptors BAs regulate lipid, glucose and energy homeostasis in 

addition to regulating their own synthesis, conjugation and detoxification, as well as 

modulating intestinal barrier function. Furthermore, BAs modulate the microbiome by exerting 

antimicrobial actions. Conversely, BA composition is largely determined by the microbiota, 

since the microbiota modulate the expression of several enzymes involved in BA synthesis 

and are responsible for biotransformation of primary BA into secondary BA via bile salt 

hydrolase and 7-/- -dehydroxylation18. Some secondary BAs have been reported to 

increase intestinal permeability and exert pro-carcinogenic action19. For instance, an 

abundance of deoxycholic-acid (DCA) can lead to dysbiosis, which is not only a link in the 

cancer-progression chain, but has also been connected to obesity and NAFLD/NASH20. 

Once liver cirrhosis has developed, it causes intestinal barrier dysfunction and 

pathological bacterial translocation that can contribute to complications such as hepatic 

encephalopathy, spontaneous bacterial infections, hepatorenal syndrome and aggravation of 

hemodynamic disturbances21. Moreover, the BA pool and signalling are vastly altered in 

cirrhosis.22 Therefore, liver cirrhosis, acute-on-chronic liver failure and late complications will 

be discussed separately in each of the following chapters. 

 

Microbiome [1]  

This “previously forgotten organ” has vast influence on human health and its role in initiating, 

perpetuating or aggravating liver disease is beginning to be understood. Multiple independent 

studies utilising deep sequencing techniques have shown a compositional change and/or 

dysbiosis in chronic liver diseases,23 including NAFLD/NASH24, alcoholism25,26, cholestatic 

liver disease27, cirrhosis28-30 and HCC31. Besides such descriptive observations, quantitative 
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and qualitative changes in the circulating microbiome (whole blood bacterial DNA) have 

recently been observed to associate with the development and severity of alcoholic hepatitis, 

data of which were presented at AASLD32. In fact, faecal microbiota transplantation from a 

patient with severe alcoholic hepatitis into mice renders them more susceptible to alcoholic 

liver damage, presenting with more severe liver inflammation and necrosis as well as 

increased bacterial translocation25. Similarly, increased small intestinal permeability has been 

linked to a reduced abundance of Faecalibacterium prausnitzii in the terminal ileal mucosa of 

patients suffering chronic liver disease33. However, even more important are changes in 

microbiota function and their pathophysiological contribution, which needs to be investigated 

in more detail. Accordingly, an EU-funded project currently aims to define specific gut 

microbiome and associated host genome, transcriptome and metabolome risk signatures that 

predict the development and progression of alcoholic liver fibrosis34. A recent study 

demonstrated that successful liver transplantation can restore gut microbial diversity, although 

it remains impaired relative to controls. Importantly, these changes in gut microbiota are 

linked with residual or new-onset cognitive dysfunction after transplantation35. Thus, 

therapeutic modulation of the microbiota is a burgeoning area for research. Approaches can 

be divided into antibiotics, pre-/pro-/synbiotics, dietary changes and faecal microbial 

transplantation. 
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Antibiotics [2] 

The traditional and most logical first approach to diminish translocation of microbial 

components and products is to reduce the enteric burden of the bacteria that contribute the 

most to this, e.g. gram-negative bacteria, with antibiotics.  

Absorbable antibiotics: Traditionally defined as antibiotics that effectively cross the 

intestinal barrier to achieve therapeutic serum concentrations, these are used in treatment 

and prophylaxis of infections. Antibiotics used in liver disease range from norfloxacin and 

ciprofloxacin for spontaneous bacterial peritonitis (SBP) prophylaxis, to broad-spectrum 

antibiotic use for those with suspected or confirmed infections. In addition, even pre-emptive 

efficacy of antibiotic treatment is currently tested in severe alcoholic hepatitis treated with 

prednisolone36,37 based on the presumed role of bacterial translocation as a driving force for 

liver failure in these patients. Moreover, vancomycin has been used in a small but randomised 

controlled trial (RCT) to treat patients with Primary Sclerosing Cholangitis (PSC), 

demonstrating a significant improvement in Mayo-Risk-Score, alkaline-phosphatase levels 

and clinical symptoms38. Ongoing trials are investigating the use of vancomycin in the setting 

of recurrent PSC after liver transplantation39, as well as in children with PSC, to evaluate the 

role of gut microflora and its modification40. 

Non-absorbable antibiotics: These are antibiotics which are largely contained within the 

gut milieu with <4% crossing the intestinal barrier. Traditionally, neomycin, paromomycin and 

rifaximin have been studied in cirrhosis and hepatic encephalopathy (HE), but of late rifaximin 

has been recommended owing to its favourable safety profile. Rifaximin, is a broad-spectrum 

compound, which exerts endotoxin-lowering and anti-inflammatory effects rather than 

changing the composition of microbiota. In vitro studies have shown that this effect is borne 

out by changes to the functionality of E.coli rather than a specific “cidal” activity41,42. The form 

of rifaximin used in clinical practice (550 mg or 200 mg) is hydrophobic and requires BA for its 

adequate solubilisation and effect. A short-term treatment of 1200 mg/d has been shown to 

exert beneficial effects in early clinical trials of patients with NAFLD/NASH, lowering 

endotoxaemia and reducing transaminases 43. Moreover, rifaximin has proven effective for 

secondary prophylaxis of overt HE, improvement in cognitive function, health-related quality of 

life, as well as driving simulator performance in minimal HE44-46. The mechanism of the 

traditional rifaximin compound is like the in vitro assay, in that the functionality, i.e. 
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endotoxaemia, is reduced with changes in medium/long-chain fatty acid and bacterial 

correlations47. This lack of major change in microbial composition has been confirmed in 

larger randomised trials of rifaximin in irritable bowel syndrome and recurrent HE with and 

without concomitant lactulose use48,49. Since patients with advanced cirrhosis, who are the 

patients most in need of rifaximin, have lower intestinal BA concentrations, the hydrophobicity 

of the traditional compound could be a hindrance. Therefore, a newer formulation, rifaximin 

soluble solid dispersion (SSD), which is water-soluble, was introduced. In an animal study, 

using germ-free mice with and without humanisation from stools from a MHE patient, rifaximin 

SSD could reduce ammonia production by suppressing intestinal glutaminase activity even in 

the germ-free state42. In the inflammatory milieu induced after humanisation, rifaximin SSD 

reduced this inflammation as well as the ammonia. A phase II study of rifaximin SSD in 

patients with early decompensated cirrhosis showed that the 40 mg immediate release 

formulation could reduce hospitalisations and death, because of reductions in all cirrhosis-

related complications, especially HE, in patients with cirrhosis50.  In view of this, rifaximin 

could be construed as more than an antibiotic and results from ongoing studies in chronic liver 

diseases are awaited51-61. These trials target different entities (from hepatectomy to NAFLD 

and cirrhosis) and disease state (non-diseased to decompensated cirrhosis) and aim at hard 

clinical endpoints (from liver function tests to mortality, see Table 1) 

 

Pre-, Pro-, Synbiotics [2] 

In most cases, absorbable antibiotics cause a lasting disruption to the composition of the gut 

microbiota, which then opens the doors to antibiotic resistance, as well as fungal and 

pathogen overgrowth (e.g. Clostridium difficile) with increased risk of morbidity and 

mortality*62. Therefore, the use of pre-, pro- and/or synbiotics has long been advocated. 

Currently more than 500 clinical trials are registered at nih.gov., clearly underlining the 

interest in this field. 

Many years ago, pre-biotics, such as inulin, were shown to reduce hepatic lipogenesis 

and serum triglycerides in humans, 63 attributable to their fermentation by gut microbiota and 

the associated increase in short chain fatty acids, such as propionate in the colon and portal 

vein23. However, the lack of high-quality clinical trials has recently been emphasised.64 

Ongoing well-designed trials may fill the void and evaluate the effects of prebiotic 
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supplementation, adjunct to those achieved with diet-induced weight loss, on hepatic injury 

and liver fat, the gut microbiota, inflammation, glucose tolerance, and satiety in patients with 

NAFLD65,66. 

 A recent meta-analysis of pro/symbiotic use in NAFLD/NASH, utilising different 8 to 30 

week regimens, concluded that this approach can produce positive effects67,68. Some 

probiotics lead to a significant reduction in liver transaminases, TNF and insulin-resistance68. 

Such improvements in cytokine profile, insulin action and hence glyceamic control have 

recently been underlined in another RCT in patients with NAFLD69. Additionally, three double-

blind randomised placebo-controlled trials were presented at the last AASLD. In a long-term 

investigation in 39 patients with biopsy-proven NAFLD, VSL3 (12 strains, 675 Billion colony 

forming units (CFU)/day) was administered for one year significantly improved the NAFLD 

activity score, with significant improvement in hepatocyte ballooning and hepatic fibrosis70. 

However, only 5/20 patients in the placebo group compared to 10/19 patients in the VSL3 

group underwent a second liver biopsy, introducing a risk of selection bias. Nonetheless, 

VSL3 treated patients presented with reduced serum alanine aminotransferase (ALT), TNF 

and leptin levels at one year supporting its efficacy70. 

The other two trials aimed at further improvements in NAFLD treatment on top of pre-

existing therapeutic interventions, namely sleeve gastrectomy or a very low caloric diet. Bio-

25/Subherb (11 strains, 25 Billion bacteria/day) did not significantly impact on hepatic, 

inflammatory and clinical outcomes, e.g. NAFLD remission rate in patients treated for six 

months after sleeve-gastrectomy71. Likewise, probiotic supplementation with Lactobacillus 

rhamnosus and Bifidobacterium animalis (14x109 CFU, twice daily) was non-effective in 

metabolic syndrome post liver transplantation, after four weeks of very low calorie intake 

(Optifast)72. Thirty such patients were randomised to this treatment or placebo for 24 weeks. 

Probiotics did not significantly alter liver fat content (controlled attenuation parameter [CAP] 

score), body-mass-index or serum lipids and glycaemia. However, the initial Optifast diet 

(600 kcal/day) lead to a mean change in total body weight (-6.1 kg), body-mass-index (-

2.1 kg/m2), HbA1c (-3.1 mmol/mol) and CAP score (-24.6 dB/m), in the study population. In 

summary, evidence for the benefits of pre-/pro- and synbiotics in NAFLD/NASH has 

accumulated. Hopefully, ongoing large scale RCTs will substantiate current data.73-77. 

However, in the setting of bariatric surgery and/or very low-calorie diet restriction the clinical 
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impact is less clear. 

In alcoholic liver disease, human data on the efficacy of probiotics are scarce but hint 

towards lowering endotoxemia. A seven day treatment of Lactobacillus subtilis/Streptococcus 

faecium (presumably indicating Bacillus subtilis and Enterococcus faecium78) in alcoholics 

undergoing strict abstinence, during the same observation period, reduced serum endotoxin 

levels79. The same authors are currently investigating Lactobacillus rhamnosus R0011 and 

acidophilus R0052 (Lacidofil) in a placebo-controlled trial, which aims to improve liver 

enzymes in alcoholic hepatitis80. In patients PSC, probiotics (Lactobacillus/Bifidobacillus) 

have only been tested in one small pilot trial so far, with no significant changes in liver 

biochemistry at the end of three months treatment81,82. In liver cirrhosis, utilisation of pro-

/synbiotics has traditionally been tested for its impact on HE. In fact, a recent meta-analysis of 

14 studies, including a total of 1,152 patients with cirrhosis, demonstrated that probiotics are 

effective at improving minimal HE (MHE) and preventing progression to overt HE, as well as 

reducing hospitalisation rate in patients with underlying MHE83. As for secondary prophylaxis, 

probiotics demonstrated non-inferiority to lactulose in one trial,84 but symbiotic treatment using 

VSL3 failed85. However, treatment with VSL3 for six months, in patients who had recovered 

from an episode of HE during the previous month, clearly reduced the rate of hospitalisation 

for HE or other complications of cirrhosis with an impressive number needed to treat (NNT) = 

five, to avoid one hospitalisation in six months. In fact, this efficacy is numerically equivalent 

to that reported for rifaximin plus lactulose44. In addition, VSL3 improved the quality of life and 

decreased both Child-Turcotte-Pugh-class and Model of End-Stage Liver Disease (MELD) 

scores 85. This further supports prior data pointing to improvements in liver function by pro-

/symbiotic strategies in cirrhosis 86,87. In terms of haemodynamic improvements VSL3-RCTs 

revealed a small trend to lower hepatic venous pressure gradient (HVPG) in compensated 

and early decompensated patients,88 and a significantly improved HVPG-response additive to 

propranolol in advanced cirrhosis89. However, with probiotics, the CFUs present in 

commercially available formulations may not be consistent, since they are marketed as 

dietary supplements in most countries. Therefore, only pharmaceutical grade probiotics, 

which have been used in the trials above, should be used in patient care. 

Finally, in the setting of liver transplantation, a meta-analysis of four controlled studies 

demonstrated that giving patients a combination of pre- and probiotics before or on the day of 
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transplantation reduces the rate of infections after surgery and shortens hospital and intensive 

care unit (ICU) stays, as well as antibiotic usage90. An additional placebo-controlled trial using 

a four-strain probiotic from enrollment till liver transplantation could demonstrate significantly 

reduced 30- and 90-day infection rates, lower post-liver transplant bilirubin concentration and 

more rapid decrease in transaminases, but no change in 90-day mortality (0% vs. 4.3%){Grat, 

2017 #842}. In terms of symbiotics, ongoing RCTs also assess post-liver transplant infection 

rates,92 as well as its effect on morbidity in patients with liver fibrosis (F3/4) undergoing liver 

resection for HCC.93 

Taken together, evidence for the potential clinical benefits achievable with pre-

/pro-/synbiotics in chronic liver diseases including NAFLD/NASH, alcoholic liver disease 

and liver cirrhosis accumulates. It should be underlined that no severe adverse effects 

have been reported in RCTs using pre-/pro-/synbiotics in this setting, which should 

broaden its application. However, the beneficial effects induced by pre-, pro-, synbiotics 

are largely individual, owing to vast differences in diet, host genetic background and 

micromilieu in the gut. This heterogeneity makes effects unpredictable in extent and 

duration. Hence, the next challenge will be to find factors that predict good responses 

and treatment individualisation.  

 

 

Faecal microbial transplantation (FMT) [2] 

Logically, transplantation should restore a “healthy” microbiome. FMT has not been observed 

to increase rates of adverse events in severe alcoholic hepatitis, NASH and cirrhosis, in 

clinical practice or published data.82,94-97 However, these data need to be interpreted 

cautiously, since the included cirrhotic patients either had MELD< 18 or presented with a 

mean Child-Pugh-Score of 897. In fact, only one decompensated patient with a Child-Pugh-

Score >10 underwent FMT for refractory clostridium difficile infection and did not achieve a 

response97. Therefore, these promising data need confirming in larger cohorts of patients with 

various aetiologies and advanced stages of cirrhosis, with long-term follow-up. 

In terms of efficacy, a well-designed RCT on FMT via rectal enema is available utilising 

stool from one ideal OpenBiome donor that has been selected using cross-sectional HE 

microbiome data and being applied after a five-day course of antibiotic pre-treatment in 
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patients with cirrhosis and≥2 HE episodes on lactulose ± rifaximin. During a median follow-up 

of 100 days FMT, but not standard of care, reduced hospitalisations (10 vs. 1) and improved 

cognitive function, evaluated by PHES and Stroop App. FMT increased beneficial taxa 

(Bifidobacteriaceae, Lactobacillaceae), accompanied by a favourable change in urine 

metabolomics with reduced microbial products, such as hippurate and phenylacetylglycine. 

Interestingly, antibiotic pre-treatment worsened MELD score and reduced autochthonous taxa 

with expansion of proteobacteria. FMT reverted MELD score to baseline and restored 

antibiotic-associated microbial changes. Although the number of patients who have 

undergone FMT is still low, these data outline potential benefits 98. FMT was compared with 

pentoxifylline (400 mg Q8H for 28 days), in an Indian RCT, where it was given via daily jejunal 

tube application, for seven days, in severe and steroid-refractory alcoholic hepatitis. FMT 

resulted in lower rates of complications (HE, ascites, renal dysfunction) with concomitant 

improvements in ammonia, TNF and bilirubin. It ultimately enhanced survival at three months 

compared to pentoxifylline96. Although not further detailed, the selection process with 121/151 

patients excluded could indicate that there is a risk of selection bias. Hence, these data could 

hint towards a particularly potent effect of FMT in the most severe course of acute alcoholic 

hepatitis.As for the changes in the microbiome induced by FMT. Increased Bacteroides and 

decreased pathogenic  Proteobacteria have been demonstrated but recipient microbiota 

showed only distinct community variation post-FMT in severe alcoholic hepatitis 96. Thus, the 

future needs to focus not only on “who” is transplanted and colonises (or not) but also on the 

transplanted microbial functionality. Although the methodology has improved and could 

deliver valuable knowledge, regulatory issues are increasingly cumbersome and create 

obstacles in performing such FMT clinical trials. Nonetheless, the huge interest in FMT and its 

great potential in liver disease is reflected in numerous ongoing trials in the transplant setting 

(for treatment of multi-drug-resistant organisms99), liver cirrhosis (feasibility100 and rate of 

complications101), NAFLD/metabolic syndrome102,103 as well as PSC104. Finally, more basic 

information as to whether pre-conditioning the patient/colon with bowel preparation and/or 

antibiotics is helpful and/or necessary, needs to be defined. 

 

Adsorbents [2] 
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A completely different approach involves using poorly absorbable, adsorptive material to bind 

gut-derived toxins and bacterial products, thus abrogating their inflow into the liver and 

systemic circulation. This material can then be excreted in the stool. In fact, ion exchange 

resins targeting hyperkalaemia and hyperphosphataemia have shown efficacy, providing 

proof of concept for adsorption as a therapeutic strategy105. Cholestyramine is effective as a 

treatment for pruritus by binding BA in the gut lumen 106. Lactulose, a non-absorbable 

disaccharide effectively reduces ammonia absorption in the gut and is an effective treatment 

for HE. 

Recent advances in activated carbon technology have led to the development of 

synthetic adsorptive nanoporous carbons. They have uniquely tailored porosity that is 

acquired during synthesis and activation. AST-120 (Kureha Corporation, Japan), a carbon 

bead that acts as a device in the gut lumen and can bind substances in the microporous 

range is used widely in patients with chronic kidney disease, particularly in Japan107. Studies 

using AST-120 in bile duct ligated rats showed that it effectively reduced ammonia 

concentration, resulting in a reduction in brain water. This has therapeutic potential in patients 

with hepatic encephalopathy108. However, a large study in patients with minimal HE did not 

demonstrate a clinical benefit, partly owing to a high learning effect of the testing strategy 

used. Further development of AST-120 for this indication has been halted109. To overcome 

the limitations of AST-120, a novel synthetic activated carbon, Yaq-001 (Yaqrit Ltd. UK), with 

tailored porosity in both the microporous and macroporous range was developed (Fig.3). Yaq-

001 is excreted unchanged in the stool. It is regulated as a device in Europe and its oral 

administration could reduce the trans-intestinal migration of bacterial endotoxins produced by 

organisms resident in the gut110. In vitro studies have shown that Yaq-001 preferentially 

removes hydrophobic substances and those with molecular weights up to approximately 

70kDa. Therefore, Yaq-001 can specifically adsorb gut-derived toxins such as ammonia, 

asymmetric dimethylarginine, acetaldehyde, hydrophobic BA, cytokines such as TNF alpha 

and interleukin-6, as well as bacteria derived products like LPS and exotoxins (Fig. 3). Proof-

of-concept studies administering Yaq-001 to bile duct ligated rats, confirmed its impact on the 

removal of these molecules and results in pleiotropic beneficial effects, characterised by a 

reduction in the severity of endotoxaemia, liver injury, markers of systemic and hepatic 

inflammation, portal hypertension, renal dysfunction and severity of hepatic 
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encephalopathy110. It is important to note that this effect is not associated with any 

antibacterial properties in vitro, but changes in the microbiome of the bile duct ligated rats was 

observed when administered in vivo111. Although the significance of these changes is not 

clear, the data indicated that alterations to the micro-environment, induced by Yaq-001, 

change the gut microbial flora112. Preliminary studies in rodents with NAFLD show a marked 

reduction in steatosis and hepatic inflammation112. These early observations provide the first 

indications of the potential of this non-antibiotic, adsorptive strategy. Clinical trials of Yaq-001 

are being implemented as a part of the European Commission Horizon 2020 programme 

(carbalive.eu). As Yaq-001 is regulated as a device in Europe, a safety and performance 

study is being performed, which should lead to a CE-mark (CARBALIVE-SAFETY)113. Two 

further efficacy studies are then planned. The first is in patients with cirrhosis, and acute 

decompensation (PREVENT-ACLF). The main endpoint of this study looks to determine 

whether the administration of Yaq-001 prevents the recurrence of cirrhosis-related 

complications and the associated hospitalisation. The second efficacy study is planned in 

patients with NAFLD (TREAT-NAFLD). As Yaq-001 is a non-specific adsorbent, novel delivery 

methods are being developed to prevent potentially deleterious effects resulting from binding 

of essential nutrients and drugs. 

 

Bile acids [1] 

BA can be considered the common language of communication along the liver-gut-axis. The 

interplay between BA and microbiota in the gut changes BA composition and influences BA 

homeostasis and different metabolic processes in the host, through FXR and TGR5 receptor 

signalling 114,115. The nuclear receptor FXR, the major regulator of BA homeostasis, is 

expressed in hepatocytes, ileal enterocytes and kidneys.Its most potent ligands are the 

primary BA, chenodeoxycholic acid (CDCA) and cholic acid (CA). Activation of FXR in ileal 

enterocytes induces the expression of the enterokine fibroblast growth factor (FGF)15 (in 

mice)/19 (in humans), which reaches the liver through the portal vein, activates the FGFR4/b-

klotho complex on hepatocytes, and inhibits the expression of CYP7A1, the rate limiting 

enzyme in the classical pathway of BA synthesis (Fig. 2). In hepatocytes, binding of BA to 

FXR induces a small heterodimer partner (SHP) that also downregulates CYP7A1, 

decreasing BA synthesis. Recent evidence also indicates that ileal FXR activation leads to 
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stronger suppression of CYP7A1-mediated BA synthesis than hepatic FXR activation116. 

Therefore, the gene expression program activated by FXR reduces intracellular BA levels by 

increasing the transport of BA out of cells, decreasing BA uptake and lowering BA synthesis. 

Activation of enterocyte or hepatocyte FXR also has several downstream metabolic effects, 

including increased glycogen synthesis, reduced gluconeogenesis and increased free fatty 

acid oxidation. FXR activation on hepatocytes also leads to inhibition of lipogenesis and 

increased insulin sensitivity, decreasing hepatic steatosis. Notably the FXR-agonist 

obeticholic acid (OCA, 6α -ethyl-chenodeoxycholic acid) decreased intestinal glucose 

absorption in healthy volunteers117 although the mechanisms are still unclear. 

Considering the marked effects of FXR activation on glucose and lipid metabolism, it is 

conceivable that molecules that modulate these receptors (i.e. FXR-agonists) or levels of 

endogenous BA (i.e. BA transporters) might have beneficial effects on NAFLD/NASH. The 

most clinically developed FXR-agonist is OCA (Intercept Pharmaceuticals, New York, USA), a 

steroidal semisynthetic BA-derivative, which has been used in two published trials, one in 

PBC118 and one in NASH (The FLINT trial)119. In a double-blind, placebo-controlled trial, 183 

patients with NASH without cirrhosis were randomised to receive either 25 mg of OCA or 

placebo for 72 weeks. The study was stopped early, since OCA significantly improved the 

primary histological outcome (i.e. NAFLD activity score) and reduced liver fibrosis compared 

with placebo. However, the FLINT trial raised several safety issues, including i) pruritus in 

about 20% of OCA-treated patients, ii) dyslipidaemia, with increased total- and low-density 

lipoprotein (LDL)-cholesterol and mild, but significant, reductions in high-density lipoprotein 

(HDL)-cholesterol, and iii) concerns regarding the carcinogenic potential of increased 

circulating FGF19, since overexpression of FGF19 has been associated with HCC in animal 

models 120. A phase III trial evaluating the effect of OCA on mortality and liver-related 

outcomes, including HCC at five years, is currently recruiting patients with non-cirrhotic 

NASH121. Additionally, the efficacy of OCA in alcoholic hepatitis and PSC is currently being 

investigated in two phase II double-blind placebo-controlled trials122,123. 

The results of the FLINT trial have encouraged the search for more efficient and safer 

FXR-agonists than OCA. FXR-agonists have been developed with two basic structures: 

steroidal semisynthetic ligands and non-steroidal fully synthetic ligands. A proof-of-concept 

phase II study with the non-steroidal FXR-agonist, PX104, in patients with NAFLD showed the 
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relevance of these compounds for the treatment of metabolic liver disease (Phenex 

Pharmaceuticals AG, Heidelberg, Germany)124. The authors observed that a four-week 

course of PX-104 improved insulin sensitivity (evaluated by clamp like index) and decreased 

serum gamma-glutamyltransferase (GGT) and ALT in 12 non-diabetic patients with NAFLD, 

without changes in serum lipids and FGF19. However, treatment had no impact on hepatic 

steatosis (evaluated 1H-MRS and PDFF-MRI), probably because of low-dosage and the short 

study period. The study was prematurely interrupted because of intervals of cardiac 

arrhythmia in two patients.           

   Gilead Sciences (USA) has developed GS9674, the follow-up compound 

to PX-104, which has an improved efficacy and safety profile. In contrast to OCA, GS9674 

and similar agents are less likely to undergo enterohepatic circulation, which confers more 

predictable pharmacokinetics and gut-preferential activity. GS9674 reduces hepatic steatosis, 

increases FGF19, reduces serum BA, and reverses dyslipidaemia, without changing HDL 

levels in preclinical models of diet-induced obesity, providing support for its investigation in 

patients with NASH125-127. The preclinical data have been confirmed in a randomised placebo-

controlled study in healthy volunteers receiving different oral doses of GS9674 for two 

weeks128-130. In this study, oral GS9674 increased FGF19, reduced serum BA, without 

changing serum lipid levels. Administering GS9674 with food lowered systemic 

exposure128,129. Ongoing trials will address the safety and efficacy of GS9674 alone in 

patients with NASH,131 or combined with selonsertib in patients with steatosis and elevated 

liver stiffness132. Selonsertib (formerly GS4997) is an inhibitor of the apoptosis signal-

regulation kinase that, alone or in combination with the monoclonal antibody simtuzumab, has 

been shown to reduce liver fibrosis and liver fat content in patients with NASH and moderate 

to severe liver fibrosis (stages F2 and F3)133. Finally, Intercept Pharmaceuticals is about to 

launch a phase I trial with INT-767, a BA analogue that acts as a dual agonist on FXR and on 

TGR5. In mice models of NASH, INT-767 improves plasma and hepatic lipid profiles, and 

reduces systemic and hepatic inflammation134-136. The functions of TGR5 extend beyond 

metabolic regulation, and include modulation of the inflammatory response, peristalsis and 

liver regeneration137. However, individual TGR5-focused trial programmes have been 

hampered by identified risks (e.g. gallbladder distension), adverse effects and questions 

about the translation of animal data to humans138. 
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LJN452 (Novartis, Basel, Switzerland) is another non-BA FXR-agonist currently 

entering a phase II trial to assess efficacy, safety and tolerability in patients with NASH139. 

The first in human experience with LJN452 was recently described. A two-week course of 

single and multiple ascending doses of LJN452 in healthy volunteers was found to be safe 

and to cause a transient dose-dependent increase in FGF-19, a marker of intestinal FXR 

engagement, without increasing LDL or cholesterol or eliciting itch140. A different approach to 

modulate BA signalling could be to block ileum reabsorption of BA, favouring its excretion in 

faeces and forcing the liver to synthesise new BA from cholesterol in the liver and serum. 

Palmer et al. presented the results of a phase I placebo-controlled study of a 12-day course of 

volixibat, a minimally absorbed, oral, inhibitor of the apical sodium-dependent BA transporter 

(ASBT), in 84 overweight/obese subjects141,142. Volixibat increased daily faecal BA excretion 

in a dose-dependent manner, reduced total and LDL-cholesterol and increased bowel 

movements, providing support for the ongoing trial of this compound in patients with NASH 

143. One way to directly substitute primary BA orally is Aramchol, a novel synthetic small 

molecule produced by conjugating two natural compounds, the fatty acid arachidic acid, and 

the BA, CA, by a stable amide bond. Aramchol reduces liver fat by partial inhibition of the liver 

stearoyl-CoA desaturase-1, an enzyme which leads to hepatic insulin resistance and reduces 

neoglucogenesis, and ABCA1 transporter-mediated cholesterol efflux stimulation. Aramchol 

has been tested in a small phase 2 study in biopsy-proven NAFLD patients, where it reduced 

liver fat, as measured by MRS, without any safety concern144. There is an ongoing phase IIb 

clinical trial in patients with histologically proven NASH, high liver fat content and features of 

metabolic syndrome, where reduction in liver fat by MRS is the main endpoint145. Finally, 

microbial biotransformation of bile salts via deconjugation and dehydroxylation can greatly 

affect their FXR agonistic properties. Probiotics (i.e. VSL#3) have recently been shown to 

modulate the enterohepatic FXR/Fgf15/CYP7A1 axis. Enrichment of microbiota in mice with 

the bile salt hydrolase retaining Lactobacilli and Bifidobacteria promotes BA deconjugation 

and faecal excretion, repression of the enterohepatic FXR/Fgf15 axis, increased hepatic BA 

neosynthesis and negative BA reuptake146. This approach could be relevant in pathological 

conditions such as bacterial translocation, secondary to intrahepatic cholestasis or 

inflammatory colitis. 
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Available preclinical and clinical data indicate that modulators of the FXR pathway are 

promising for the treatment of metabolic liver disease. However, research in this area faces 

several challenges, including safety issues and selectivity of targeting at the level of 

hepatocytes, intestine or other sites. A recent study using an intestinal-restricted FXR agonist, 

fexaramine, resulted in activation of FXR in the ileum, which was associated with less weight 

gain, lower insulin resistance, and decreased hepatic steatosis in mice on a high-fat-diet147. 

These data point to the intestine as the optimal target tissue to treat liver disease. In fact, 

OCA has been shown to reduce bacterial translocation and stabilise the intestinal barrier, and 

is associated with a reduction in liver fibrosis in experimental cirrhosis148-150. These data are in 

accordance with the observation that FXR-agonists augment synthesis of intestinal 

antimicrobial peptides and lectins150,151 and significantly decrease TNF-secretion in purified 

CD14 monocytes and dendritic cells, as well as in lamina propria mononuclear cells from 

patients with irritable bowel disease152. Finally, BA stimulates intestinal enterochromaffine 

cells to secrete 5HT/serotonin hence positively regulating persistalsis. Taken together, these 

findings underline the beneficial action of FXR-agonists on the intestinal barrier and warrant 

further investigation in human advanced fibrosis and cirrhosis. 

 

 

Gut-derived Hormones [1] 

Gut-derived hormones play a key role in controlling energy intake and homeostasis, since 

they are released in response to nutrients. Thus, they provide the opportunity for rapid 

metabolic feedback loops. In addition to nutrients, microbiobial products and metabolites 

modify hormone release. Incretins such as glucagon-like peptide-1 (GLP-1) augment glucose-

mediated insulin secretion, inhibit glucagon release, slow nutrient absorption by reducing 

gastric emptying and reduce food intake, making them attractive therapeutic targets for 

NAFLD/NASH. The GLP-1 analogue, liraglutide, reduced NAFLD activity score and fibrosis 

stage and improved metabolic parameters in a diet-induced obese mouse model of NASH153. 

Notably, liraglutide de-activates hepatic stellate cells (HSC) and exerts antifibrotic effects, and 

it improves sinusoidal microvascular dysfunction in rats and precision-cut human liver slices. 

However, HSCs do not appear to express the GLP-1 receptor, pointing towards potentially 

important off-target effects{de Mesquita, 2017 #843}, which may contribute to the effects observed in 
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recent clinical studies. Liraglutide has recently been shown to be safe, well tolerated, and led 

to histological resolution of NASH, although the anti-fibrotic effects in this small study were 

rather disappointing155. Similar studies have explored the effects of exenatide in NASH156,157. 

An ongoing study is comparing  the effects of liraglutide and bariatric surgery on weight loss, 

liver function, body composition, insulin resistance, endothelial (dys)function and biomarkers 

of NASH in obese Asian adults158. In addition, a range of more mechanistically oriented 

studies currently explore and compare the effects of various incretin minimetics on hepatic 

lipid and lipoprotein metabolism159-161. Interestingly, the clinical results obtained with dipeptidyl 

peptidase-4 inhibitors such as sitagliptin in NAFLD/NASH, have been somewhat 

disappointing162,163: Sitagliptin was safe but no better than placebo at reducing liver fat in 

prediabetic or diabetic patients with NAFLD. Interestingly BA also stimulated the release of 

GLP-1 via TGR5 on intestinal L-cells. In fact, stimulation of local GLP-1 release by BA or 

TGR-5 analogues has been suggested to be superior to exogenous GLP-1 receptor agonists 

for controlling type 2 diabetes and obesity164. 

Progression of NAFLD to NASH and more advanced fibrosis has always been tightly 

linked to the severity of metabolic dysregulation. Interestingly, postprandial hyperglycaemia 

and hyperinsulinaemia are associated with advanced fibrosis in patients with diabetes and 

NASH163. This raises the critical question whether direct control of hyperglycemia may also 

have a positive impact on fibrosis progression of NASH. Sodium-dependent-glucose-

transporter (SGLT)-2 inhibitors are newly FDA-approved oral medications used to treat type 2 

diabetes, and have been shown to reduce production and deposition of fat in the liver in 

animal experiments. In a small Japanese pilot trial, an SGLT-2 inhibitor (ipragliflozin) 

improved hepatic inflammation and fibrosis of NAFLD patients with type 2 diabetes{Ohki, 2016 

#844}. Two RCTs with Empagliflozin, another SGLT-2 inhibitor, in patients with type 2 diabetes 

and NAFLD are currently ongoing166,167. 

As outlined before BA/FXR-mediated release of the enterokine FGF15 (in mice)/19 (in 

humans) in ileal enterocytes plays a key role in the regulation of BA synthesis, lipid and 

glycogen metabolism in the liver (recently reviewed168). Hence, FGF19 mimetics have been 

engineered but exert potentially carcinogenic effects, since FGF19 induces hepatocyte 

proliferation through FGFR4 receptor activation. Thus, an important concern may exist in 

precancerous conditions such as NASH, since overexpression/amplification of FGF19 or its 

https://clinicaltrials.gov/ct2/show/NCT02654665?term=liraglutide+NASH&rank=1
https://clinicaltrials.gov/ct2/show/NCT02654665?term=liraglutide+NASH&rank=1
https://clinicaltrials.gov/ct2/show/NCT02654665?term=liraglutide+NASH&rank=1
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receptor FGF4R has been observed in HCC and contributes to progression and resistance of 

HCC169. In contrast, NGM-282 is a recombinant variant of FGF-19 that was found to retain the 

metabolic, but not the tumourigenic effect of FGF-19 in preclinical models. Indeed, preliminary 

reports from a recent study demonstrated that human FGF19, but not NGM282, caused HCC 

in a diet-induced mouse model of NASH170. NGM282 has been successfully tested in phase II 

studies in primary biliary cholangitis (PBC), demonstrating effective suppression of BA 

synthesis and improvement of cholestasis.171 Studies in PSC172 and NASH173are still ongoing. 

 

Another member of the “endocrine” FGF subfamily is FGF21, which is released from the liver 

in a PPAR-alpha regulated fashion. FGF21 stimulates glucose uptake, browning of adipocytes 

and energy expenditure in rodents. Thereby, FGF21 protects them from diet-induced obesity 

and diabetes, and represents an attractive therapeutic target in NAFLD/NASH. The first data 

obtained with pegylated recombinant forms of human FGF21 (BMS-986036) in preclinical 

mouse models of NASH174, phase I studies in healthy volunteers 175 and obese subjects 176, 

as well phase II results obtained in obese adults with type 2 diabetes and presumed 

NAFLD177 are encouraging. However, meaningful hepatological endpoints have not yet been 

reported and a phase II study in NASH is ongoing178. Some groups are taking this strategy 

even further by testing long-acting GLP-1/FGF21 dual agonists. As such, preliminary data 

have demonstrated improvement of hepatic steatosis/repression of lipogenesis, inflammation 

and fibrosis with YH25724 (a novel long-acting dual agonist, which is an immunoglobulin Fc-

fused protein comprising a GLP-1 variant and an FGF21 variant) in three mouse models of 

NASH179. The fusion strategy can also be applied to other chimera: MEDIO382, a dual GLP-

1/glucagon receptor agonist has beneficial effects on mitochondrial content and function in 

primary hepatocytes from lean and NASH mice,180 and improved metabolic and hepatic 

indices of NASH in mice 181. In view of this, multiple drugs implementing the enterokine 

pathways are in the pipeline;. preclinical and early clinical experiences are promising in 

metabolic liver diseases. 
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Nerves, Peristalsis and beyond [1] 

Since the gut and the liver are densely innervated by parasympathetic and sympathetic 

nerves this also represents a potential target. Intestinal sympathetic hyperactivity, with 

increased release of norepinephrine is present in liver cirrhosis182,183. Non-selective beta 

blockers (NSBBs) are the fundamental pharmacological approach for prevention of variceal 

haemorrhage184. NSBBs ameliorate pathological bacterial translocation in experimental 

cirrhosis185, most likely by reducing intestinal permeability186, improving intestinal transit time, 

inhibiting bacterial overgrowth and improving cellular host defense in the gut-associated 

lymphatic tissue187. In fact, NSBBs are associated with reduced severity of systemic 

inflammation and improved survival of patients with acute-on-chronic liver failure188. They 

have been proposed to reduce the risk of HCC by lowering the M/PAMP-aemia in the portal 

circulation189. Although sympathetic nervous system catecholamines are upregulated in 

human NAFLD190 and amplify experimental LPS-induced liver injury191, no trials on the 

potential effect of beta-blockers in alcoholic or non-alcoholic fatty liver disease are available. 

Intestinal vagal nerves are involved in regulating nutrient absorption, food intake, 

glucose homeostasis and body weight192. Moreover, cholinergic anti-inflammatory action193 is 

well-accepted and should also guide treatmentin liver diseases. Experimentally, vagal nerve 

stimulation has been demonstrated to lower portal pressure194. New tools for vagal nerve 

stimulation are now available and are being actively evaluated to substantiate their anti-

inflammatory potential in healthy individuals195, as well as in chronic inflammatory bowel 

disease 196and to counteract obesity197 creating a novel strategy in chronic liver disease. 

Long-term treatment with the prokinetic 5-HT4-agonist cisaprid, in patients with liver 

cirrhosis, reversed small intestinal dysmotility and bacterial overgrowth. It also improved liver 

function198, most likely via weeping the gut, thereby lowering pathological bacterial 

translocation199. However, cisapride has been abandoned because of its adverse cardiac 

effects. The new generation 5-HT4-agonist masopride appears safe and besides accelerating 

gastro-duodenal transit, it also exerts anti-inflammatory effects 200and promotes 

neurogenesis201. This warrants its assessment in cirrhosis, with the aim of reducing 

pathological bacterial translocation. 
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The majority of mammalian serotonin is synthesised from the essential amino acid 

tryptophan in intestinal enterochromaffine cells of the gastrointestinal tract. This synthesis is 

regulated by metabolites derived from the microbiota, particularly spore-forming bacteria202, 

once more underscoring the fundamental role of the microbiome in regulating gut function. 

Serotonin is involved in a variety of pathological conditions of the liver, including chronic 

cholestasis203, NASH204, liver fibrosis205 and regeneration206,207. The beneficial effect of 5-HT 

in promoting liver regeneration is particularly attractive considering that reduced preoperative 

intraplatelet 5-HT is associated with an increased incidence of postoperative liver dysfunction 

and morbidity and poor clinical outcome207. An ongoing observational trial will delineate the 

role of platelet-derived factors, e.g. 5-HT/serotonin, in liver regeneration after liver resection in 

more detail208. Conversely,serotonin may facilitate growth of HCC, since 5 HT has been 

shown to promote proliferation in hepatic cancer cells and human HCC tumours 209,210. In fact, 

a recent investigation in patients undergoing liver resection links increased intraplatelet 5HT-

levels prior to surgery to early tumour recurrence211. Thus, serotonin is a double-edged sword 

for the liver. More translational data are necessary to unravel the role of gut-derived serotonin 

and its specific intrahepatic action before therapeutic trials can take advantage of this 

information. 

 

 

Bariatric Procedures [1] 

The strong causal association between obesity and NAFLD implicates the potential benefits of 

bariatric measures on the liver.Since bariatric procedures usually achieve weight loss greater 

than 10% after one year, which is associated with metabolic improvements and is almost 

unobtainable by lifestyle interventions alone, indications for bariatric surgery are clear212. 

However, bariatric surgery is not currently recommended for NAFLD/NASH, since mortality in 

those patients is dictated by cardiovascular events213. Nonetheless, it is accepted that gastric 

bypass can affect the gut microbiota favourably by lowering the proportion of firmicutes214, 

remodelling the bile acid pool and modulating secretions of incretins (GLP-1/-2)215. Hence, 

this affects all the previously outlined pathways usedto target the liver-gut-axis. 

In fact, gastric bypass has been shown to induce the disappearance of NASH in nearly 

85% of patients (particularly in those with mild disease) and to reduce fibrosis in stages F1/2 
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216. Although this trial has been criticised for being a single centre study, without a control 

group and rates of NASH that are too low,217,218 it outlines the potential benefits. According to 

guidelines for adolescents, bariatric interventions are recommended even in children with 

severe obesity, with NASH and significant fibrosis (>F1), when other treatments have 

failed.Additionally, the use of sleeve gastrectomy in a prospective pilot trial in obese 

adolescents with NASH has just been published{Manco, 2017 #845}. Sleeve gastrectomy was more 

effective than lifestyle interventions for reducing NASH and liver fibrosis after one year of 

treatment. Ongoing randomised trials compare gastric bypass and sleeve-gastrectomy220 and 

will help to establish their role in NAFLD with type 2 diabetes 221. Until then, at least severely 

or morbidly obese patients (BMI 40 or BMI 35 to 40 with other comorbidities) with 

NAFLD/NASH , should be offered bariatric surgery unless advanced fibrosis is present. 

Endoscopic approaches are developed to substitute for bariatric surgery. At the AASLD 

2016, intragastric balloon placement was reported to not only lower body weight and BMI 

(mean reduction 4.1), with improvements in homeostatic model assessment of insulin 

resistance (HOMA-IR), but also to significantly improveme liver transaminase levels in 

morbidly obese patients (mean BMI 42 + 6)222. Non-endoscopic insertion of gastric balloons, 

by swallowing and inflating, is also available, which could easily expedite this approach. A 

device mimicking gastric bypass by shielding the duodenum and upper jejunum from contact 

with the chyme is inserted and anchored endoscopically (Endobarriere). Its use in severely 

obese patients (mean BMI 38+9), with NAFLD and type 2 diabetes, decreased BMI, waist 

circumference, HbA1c and lipid profile after six months 223. Moreover, liver fibrosis stage, liver 

fat content and steatohepatitis improved significantly, as evaluated by shear-wave 

elastography, steatotest and Nashtest/Fibromax. 

A more targeted approach without implantation of any device is hydrothermal duodenal 

mucosal resurfacing. The proximal duodenal mucosa is denuded before mucosal restitution of 

“healthy” neo-epithelium. First data in abstract form on 52 patients with moderate obesity and 

type 2 diabetes revealed a significant drop in HbA1c of about 1.0 % at six months and a 

significant 25% decrease in transaminases, sustained at 12 months follow-up224. This method 

does not depend on implantation of any device and reflects more direct interference with 

pathophysiological relevant gut-hormone derangement and restoration. 
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Conclusions and outlook [1] 

It is well recognised that the gut-liver axis plays an important role in the etiology of many liver 

diseases. Consequently, it is logical to seek to manipulate this axis. Indeed, the last years 

have turned the page from basic and animal research to clinical trials, aiming to translate this 

knowledge into therapeutic and/or preventative measures, in human liver diseases. The best 

example is the developmental pipeline of pharmacological approaches mimicking bile acid or 

enterokine signalling e.g. via FXR-agonists or GLP1-agonists. Based on the well-accepted 

role of BA in intestinal barrier function, as well as glucose and lipid metabolism, 

pharmaceutical companies have realised the outstanding hepatological and systemic health 

benefit that this class of drugs can provide,. Initial clinical trials, mainly phase I and individual 

phase II investigations, underline the prospect of this approach in lowering liver fat, 

inflammation and fibrosis in metabolic liver disease. We feel strongly that the gut is the 

optimal primary target and that FXR-agonists that do not undergo enterohepatic circulation in 

terms of pharmacokinetics, such as intestinal-restricted FXR-agonists are particularly 

promising. Likewise, recombinant enterokines have shown encouraging results in metabolic 

liver diseases. Despite these, somewhat foreseeable, beneficial metabolic effects, large scale 

phase II/III clinical trials with hard clinical endpoints and long-term follow-up are needed. 

These investigations are underway and will clarify the effect size and particularly safety 

issues. In fact, detailed knowledge of FXR-signalling in different tissues and reproducible 

pharmacological modulation should enable the generation of high-quality clinical data for all 

groups of patients with liver disease. 

In contrast, the microbiome is highly individual. It is exclusively complex and intensely 

difficult to modulate in any predictable or  sustainable way, thus hampering performance of 

clinical trials. Nonetheless, the microbiome can be considered the “core facility“ for the 

production of a myriade of bacterial metabolites and products to which the gut-vascular barrier 

and each member of the gut-liver-axis are exposed. Traditional antibiotics seem unlikely to be 

an effective means of promoting a helpful host-microbiota relationship, and are ultimately 

hampered by adverse effects and the emergence of antibiotic resistant bacteria. Pre-/pro- and 

synbiotics however, can be considered safe and evidence of their positive effects in alcoholic, 

non-alcoholic liver disease, cirrhosis and liver transplantation is accumulating. Considering 

the experimental evidence that probiotics, besides multiple beneficial effects on the intestinal 
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barrier and immune function, are also modulating FXR-signalling further strengthens the 

rationale behindthis treatment strategy. The efficacy and safety of FM is less well defined. 

Nonetheless, the potential effects and mechanisms are starting to be understood, which 

should lead to a more targeted approach.  

In times of almost epidemic rates of obesity and associated liver diseases, hepatology 

needs to consider bariatric measures within its armamentarium.For instance, non-surgical 

techniques delivered by endoscopy, such as duodenal mucosal resurfacing, could substitute 

for surgery. However, so far only early clinical data in small numbers of patients, with various 

disease degree and severity, are available. It will be fascinating to see the results of future 

clinical trials. 

Considering the various treatment concepts available, such as adsorbents (Yaq-001), 

utilisation of vagal nerve stimulators and new prokinetic 5-HT4-agonists the armamentarium 

to target the gut-liver-axis will continue to expand. We hope that you share our gut-feeling that 

the preventative and therapeutic strategies, translated from our current knowledge of the liver-

gut-axis, provide an exciting future in liver treatment, which will benefit our patients. 
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Table 1: Ongoing Clinical Trials targeting the Liver-Gut-Axis 

 

 

CP, Child-Pugh-Score; FMT, faecal microbial transplantation; FU, follow up; HOMA, 

Homeostasis model assessment of insulin resistance; HVPG, hepatic-venous-pressure-

gradient; MD, Maddrey discriminative score; SSD, soluble solid dispersion; T2D, Typ-II-

diabetes; D, day; W, week; Mo, month; Y, year; the table only considers ongoing, recruiting 

trials with an update available at least within one year at www.clinicaltrials.nih.gov. For 

bariatric trials see text. Trial phase for pre-/pro-/synbiotics is mostly not presented hence not 

stated. 

  

http://www.clinicaltrials.nih.gov/
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Figure legends 

 

Fig. 1: Pathophysiology of Gut-Liver-Axis: 

The microbiome sets the stage for the gut-liver-axis, representing an excessive source of 

bacterial products and metabolites in terms of both quantity and diversity. In conditions of 

increased intestinal permeability, the epithelial barrier is crossed more than in healthy 

conditions by bacterial products (lipopolysaccharides, peptidoglycans, bacterial DNA, flagellin 

etc.), which stimulate the gut-associated lymphatic tissue to release pro-inflammatory 

cytokines (TNF, IL1, IL6 etc.), chemokines, as well as eicosanoids, leading to portal-venous 

M/PAMP- and cytokinemia. Moreover, bacterial metabolites (trimethylamine, ethanol and 

other volatile organoids, fatty acids, acetaldehyde etc.) increasingly permeate the epithelial 

barrier. Anything crossing the epithelial barrier faces the gut-vascular barrier, which 

determines the likely rate and size of molecules entering the portal-venous circulation. The 

intrahepatic effects of this portal-venous inflow of stimulants, as well as platelets on kupffer 

cells and hepatic stellate cells, drives inflammation, fibrogenesis and carcinogenesis. 

 

Fig. 2: Bile acid (BA) enterohepatic circulation, signalling and related drugs 

BAs secreted from hepatocytes (e.g. primary BA such as cholic acid [CA]) are undergoing 

enterohepatic circulation. They are absorbed in the terminal ileum by apical sodium-

dependent bile acid transporter (ASBT), leading to fibroblast growth factor (FGF)19-synthesis 

via farnesoid-X-receptor (FXR)-stimulation. FGF19 on hepatocytes leads to feedback 

inhibition of de novo synthesis of primary BA, via inhibition of the rate limiting enzyme 

Cyp7A1. The microbiota modulates the BA pool luminally by generating secondary BAs such 

as deoxycholic acid (DCA), which in the colon passively cross the epithelial barrier. This gives 

rise to its potential intrahepatic actions, such as secretion of inflammatory and 

procarcinogenic mediators. 

 

 

 

Fig. 3: Physical appearance of Yaq-001 and binding capacity 
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