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The yolk sac is phylogenetically the oldest of the extraembryonic
membranes. The human embryo retains a yolk sac, which goes
through primary and secondary phases of development, but its
importance is controversial. Although known to synthesize pro-
teins, transport functions are widely considered vestigial. Here, we
report RNA-Seq data for the human and murine yolk sacs, and com-
pare with data for the chicken. We also relate the human RNASeq
data to proteomic data for the coelomic fluid bathing the yolk sac.
Conservation of transcriptomes across the species indicates that
the human secondary yolk sac likely performs key functions early
in development, particularly uptake and processing of macro- and
micronutrients, many of which are found in coelomic fluid. More
generally, our findings shed light on evolutionary mechanisms
that give rise to complex structures such as the placenta. We iden-
tify genetic modules that are conserved across mammals and birds,
suggesting these are part of the core amniote genetic repertoire
and are the building blocks for both oviparous and viviparous
reproductive modes. We propose that although a choriovitelline
placenta is never established physically in the human, the placental
villi, the exocoelomic cavity and the secondary yolk sac function
together as a physiological equivalent.

yolk sac | placenta | evolution

Introduction
The yolk sac is phylogenetically the oldest of the extraembryonic
membranes, evolving in anamniotes to absorb nutrients from
their lipid-rich megalecithal eggs (1). Although the ova of euthe-
rianmammals aremicrolecithal, the yolk sac has been recruited to
transport maternal nutrients during earliest stages of embryonic
development. In the majority of species, it makes contact with
the chorion to form a transient choriovitelline placenta. This
functions during the critical period of organogenesis, at the end
of which its functions are generally subsumed by the definitive
chorioallantoic placenta. There is, however, considerable species
variation, and themost elaborate development is found in rodents
and lagomorphs. In these, the yolk sac continues to transport
nutrients and immunoglobulins throughout gestation in parallel
with the chorioallantoic placenta. For this reason, most of the
experimental data on transport have been obtained in the mouse,
rat and guinea pig (2-6), and data on the human yolk sac are
limited.

The human yolk sac goes through two developmental phases:
a primary yolk sac which develops between embryonic days 7 and
9 and is replaced by a secondary yolk sac which is active until day
49 (7). The role of the primary yolk sac is unknown. The impor-
tance of the secondary yolk sac remains controversial. Although
it is known to synthesize proteins, such as alpha fetoprotein, its
transport functions are widely considered vestigial. Primarily, this
is because the secondary yolk sac never makes contact with the
chorion to form a choriovitelline placenta. Instead, it floats in
the exocoelomic cavity, connected to the embryo by the vitelline
duct. Although we, and others, have speculated that the yolk

sac plays a critical role during organogenesis (3-5, 8-10), there
are limited data to support this claim. Obtaining experimental
data for the human is impossible for ethical reasons, and thus we
adopted an alternative strategy. Here, we report RNA-Seq data
derived from human and murine yolk sacs, and compare them
with published data from the yolk sac of the chicken.We postulate
that conservation of transcripts across these species indicates
retention of key transport and synthetic functions. We support
this hypothesis by comparing the human yolk sac transcriptome
with the proteome of the coelomic fluid.

Results and Discussion
Wedetermined the transcript profile for the first trimester human
yolk sac by RNA-Seq with a median sequencing depth of 39
million mapped reads per sample (n=9, SI Appendix Table S1).
We identified 12469 transcripts with a mean RPKM (Read Per
Kilobase Per Million Mapped Reads) ≥1 (Dataset S1). Similarly,
we identified 11628 transcripts in first trimester human placen-
tal villous samples (n=11, median sequencing depth 30 million
mapped reads, Dataset S2) and 11272 transcripts in the mouse
yolk sac (n=8, median sequencing depth 28 million mapped
reads, Dataset S3).

In addition, we investigated the protein composition of the
coelomic fluid using GELC-MS/MS. We focused on the 165
proteins identified in any 4 of the 5 samples having excluded
immunoglobulins (Dataset S4). Proteins were mapped to unique

Significance

The human yolk sac is often considered vestigial. Here, we
report RNA-Seq analysis of the human and murine yolk sacs,
and compare with that of the chicken. We relate the human
RNA-Seq data to coelomic fluid proteomic data. Conservation
of transcripts across the species indicates the human secondary
yolk sac likely performs key functions early in development,
particularly uptake and processing of macro- and micronutri-
ents, many of which are found in coelomic fluid. More gener-
ally, our findings shed light on evolutionary mechanisms giv-
ing rise to complex structures such as the placenta. We propose
that although a choriovitelline placenta is never established
physically in the human, the placental villi, exocoelomic cavity
and secondary yolk sac function together as a physiological
equivalent.
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Fig. 1. Chord plot illustrating the GO biological process terms that include
“cholesterol” and that are overrepresented in the 400 most abundant yolk
sac transcripts on the right, and the genes contributing to that enrichment
on the left arranged in order of their expression level.

Ensembl gene identifiers, which were used to identify over-
represented GO terms (Dataset S5).

Cholesterol
We selected the 400 most abundant human yolk sac tran-

scripts and identified enriched gene ontology (GO) terms using
Panther (complete reference database with Bonferroni correc-
tion, Dataset S6). Several terms associated with lipid transport
were enriched, for example “very-low-density lipoprotein particle”
(23 fold, P=4.5x10-7). Indeed, “cholesterol” featured in many of
the enriched “biological process” terms (Figure 1). Cholesterol
is required for development (3, 5) as it maintains integrity of
cell membranes (11), mediates metabolism through propaga-
tion of signaling pathways (12), and is the precursor for steroid
hormones. In addition, activity of sonic hedgehog (SHH) pro-
teins, which are responsible for the development of the central
nervous system (13-15) is determined by covalent modification
with cholesterol and other lipids (16). During organogenesis, the
embryo is reliant on maternal sources of cholesterol until its liver
is sufficiently mature for synthesis (4, 17). Our data show that
the human yolk sac contains abundantmRNAs encodingmultiple
apolipoproteins, the cholesterol efflux transporter ABCA1, as
well as lipoprotein receptors, including megalin, cubilin (18),
albeit at lower levels (Figure 1). Also present are transcripts en-
coding all classes ofABC transportors (A toG), which, in addition
to transporting cholesterol and lipids, facilitate excretion of toxins
and confer multidrug resistance (Table 1). The high abundance
(i.e. top 0.5%) of transcripts encoding apolipoproteins present in
lipoprotein particles and chylomicrons (ApoB, ApoA1, ApoA2
and ApoA4) is matched by the high levels of these proteins in the

Table 1. Categorisation of ABC transporters detected in human
yolk sac tissue

Family Transporters
detected in human
YS

Function

ABCA ABCA1*#, ABCA2,
ABCA3*#, ABCA5,
ABCA7*

Responsible for the
transportation of cholesterol and
lipids.

ABCB ABCB1*#,
ABCB10*#,
ABCB6*#,
ABCB7*#, ABCB8*#

Several of the B family members
are known to confer multidrug
resistance in cancer cells. Some
are located in the blood–brain
barrier, liver, mitochondria,
transports peptides and bile.

ABCC ABCC1*#,
ABCC10*#,
ABCC2*, ABCC3,
ABCC4*#,
ABCC5*#,
ABCC6*#,
ABCC6P1*,
ABCC6P2*

Ion-channel and toxin excretion
activity and reception on the cell
surface; toxin excretion (fungal
and bacterial toxins). Includes the
CFTR protein, mutations in which
cause cystic fibrosis.

ABCD ABCD1*#,
ABCD3*#,
ABCD4*#

Are all used in peroxisomes.

ABCE/F ABCE1*#, ABCF1*#,
ABCF2*#, ABCF3*#

Not proper transporters; members
contain ATP-binding domains
without the transmembrane
domain. Involved in regulating
protein synthesis or expression.

ABCG ABCG1*, ABCG2*#,
ABCG5*#, ABCG8*

Transports lipids, diverse drug
substrates, bile, cholesterol, and
other steroids.

* also present in the mouse yolk sac; # also present in the chick yolk sac

coelomic fluid (Dataset S4). Indeed, most of the proteins found in
coelomic fluid are highly ranked in the RNA-Seq data (although
some were undetectable, i.e. below the RPKM ≥ 1 threshold).
Many of these proteins have functions associated with cholesterol
or lipid transport and metabolism (Figure 2).

The fluid of the exocoelom shares many proteins in common
with maternal plasma, supplemented by the addition of specific
decidual, trophoblastic and yolk sac proteins. Analogous to ma-
ternal serum proteins (20), coelomic fluid proteins can be broadly
categorized into common circulating proteins, coagulation and
complement factors, blood transport and binding proteins, pro-
tease inhibitors, proteases and other enzymes, cytokines and hor-
mones, channel and receptor-derived peptides andmiscellaneous
(SI Appendix Table S2) (21, 22).

Transport
The secondary yolk sac comprises an outer mesothelial ep-

ithelium and an inner endodermal layer, separated by dilated
capillaries and a small amount of mesoderm (23). Both the
mesothelial and endodermal epithelia display ultrastructural fea-
tures typical of an absorptive epithelium, including numerous
microvilli, coated pits and pinocytotic vesicles. The GO term
“transport” (GO:0006810) was overrepresented in the top 400
yolk sac transcripts (2.87 fold, p=7.16 x 10-47). Many such an-
notated transcripts were present in the most abundant 20% of
transcripts (87) (Dataset S5). Most of these transporter genes are
members of the solute carrier (SLC) family of transporters (for
example: SLC38A2 (amino acids), SLC4A1 (anions), SLC20A1
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Fig. 2. Chord plot illustrating proteins present in the coelomic fluid
that relate to GO biological process terms involving “cholesterol” and “lipid
transport”. The presence of these proteins is consistent with the high level of
their transcripts in the human yolk sac illustrated in Figure 1.

(phosphate) and SLC25A37 (iron in the mitochondria)). Tran-
scripts encoding 259 SLC transporters were identified (mean
RPKM ranged from 134 to 1). We classified these transporters
into 11 main groups on the basis of substrate category (24),
i.e. amino acids, urea cycle, glucose, nucleoside sugars, metals,
vitamins, neurotransmitters, inorganic ions, thyroid, organic ions,
and miscellaneous, and matched them to their main substrates
that we and others (21, 22, 25-35) have identified in coelomic fluid
samples (Table 2). Zinc is the second most abundant trace ele-
ment, and is critical for embryonic development. It plays a role in
numerous biological processes, including cell division, growth and
differentiation and acts as a structural, catalytic and regulatory
component within transcription factors, enzymes, transporters
and receptors (36, 37). Absorbed zinc is mostly bound to albumin
and α2-macroglobulin, both of which are abundant in coelomic
fluid. In humans, zinc transport is mediated by 14 members of
the ZIP family (SLC39A) and 10 members of the ZnT family
(SLC30A). We detected mRNAs encoding 12 ZIP proteins and
8 ZnT proteins in the secondary yolk sac. Immunostaining for
the zinc transporter SLC39A7/ZIP7 was present in both the inner
endodermal and outer mesothelial epithelia, suggesting uptake
from the coelomic fluid and transport to the fetal circulation (Fig-
ure 3). The outer mesothelial layer also expresses α-tocopherol
transport protein to facilitate vitamin E transport (38). Thus,
our data suggest the human secondary yolk sac has a role in the
transport ofmultiple nutrients and vitamins, including iron (seven
iron-transporting SLC transcripts identified, Table 2) (39, 40),
vitamins A, B12, C, E, and folic acid (Table 2).

Total protein concentration is lower in coelomic fluid than
in maternal plasma. However, most amino acids are at higher
concentrations and must be derived from the villi and/or the
yolk sac. This suggests that the coelomic cavity is an important

route for metabolites required for embryonic development (25).
The secondary yolk sac floats within this nutrient-rich milieu.
It is therefore possible that uterine secretions supplemented by
maternal plasma from spiral arteries are taken up by the tro-
phoblast cells, passed via the villous stromal channels into the
exocoelomic cavity, from which they are taken up by the yolk sac
and transferred to the embryonic gut and the fetal circulation via
the vitelline duct (38). Thus, there appears to be free interchange
between these two compartments of the human gestational sac.

The passage across the trophoblast may require lysosomal
digestion ofmacromolecules, and indeed theGO term “lysosome”
(GO:0005764) is enriched 4-fold within the most abundant 400
villous transcripts (Bonferroni corrected P=7.99 x10-9). The ef-
flux amino acid transporters SLC43A2 and SLC7A8 are also
highly expressed (above the 95th and 83rd centiles, respectively).
In the rat it has been estimated that ∼95% of the amino acids
provided to the fetus in mid-gestation are obtained by lysosomal
digestion of endocytosedmaternal proteins (2). In themouse yolk
sac, transcripts encoding 5 lysosomal cathepsins (Ctsl, Ctsz, Ctsb,
Ctsd and Ctsh) are among the most abundant 400 transcripts,
the activity of which would allow for degradation and release
of free amino acids to the developing fetus. We have previously
shown that the mesothelial layer of the human yolk sac stains
for glycodelin, a product of the uterine glands and present in
high concentration in the coelomic fluid (41), indicating exposure
to intact maternal proteins and uptake (42). Glycodelin also
colocalizes with lysosomal Cathepsin D in human first trimester
villi (43). As in the mouse, several cathepsin transcripts (CTSB,
CTSZ, CTSL and CTSD) are extremely abundant in the human
secondary yolk sac. We found that the GO term “lysosome” is
enriched in the list of most abundant transcripts from yolk sacs
of human, mouse and chicken (2.79 fold P=1.35-3; 3.53 fold
P=9.72-5 and 3.6 fold P=2.13-3, respectively), indicating a similar
capacity for digestion of endocytosed macromolecules.

These findings indicate that the exocoelomic cavity is a phys-
iological liquid extension of the early placenta (44), and that the
yolk sac is an important route of access for high molecular weight
proteins to the embryonic circulation (45).

Hematopoiesis
In all vertebrates, primitive embryonic and definitive fe-

tal/adult blood cells form successively within the yolk sac, fetal
liver and bone marrow (46). The human secondary yolk sac is the
sole site of hematopoiesis for the first two weeks of pregnancy,
and the fetal liver commences blood cell production at week 6
of gestation (47, 48). The term “hemoglobin complex” was sig-
nificantly enriched among abundant yolk sac transcripts (33 fold,
P=2.95 x10-6). The yolk sac produces predominantly nucleated
erythrocytes, which synthesize embryonic hemoglobin (HBZ).
There is morphological evidence of the first blood islands in the
secondary yolk sac at about day 18 of gestation (49). Yolk sac-
derived primitive erythrocytes have been detected in the cardiac
cavity as early as the 3-somite stage (21 days), indicative of an
established functional network between the yolk sac and embryo
(50). The human yolk sac, like that of the mouse, also produces
macrophage and multipotential hematopoietic progenitors (48).

Transcription factors
Within the most abundant 400 transcripts in the human

yolk sac, 19 genes are annotated as "regulation of transcription,
DNA-templated" (GO:0006355), including several transcription
factors (ATF4, FOS, JUN, JUNB and JUND.) In the mouse
data set, 8 genes are similarly annotated (SI Appendix Table
S3). Candidate motifs recognized by these transcription factors
(where known) were identified in the 1kb and 5kb upstream
of the TSS of genes which were the highly correlated with the
transcription factor transcripts (Datasets S7-10). The FOS and
JUN families and AFT4 are closely related, functionally inter-
act, have multiple target genes and are widely expressed. There
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Table 2. Categorization of SLC transporters detected in human yolk sac tissue

Substrate Category SLC transporters detected in human YS Known substrates Substrates detected in human
coelomic fluid

Amino acids SLC38A2*#, SLC7A7*, SLC7A2, SLC1A5*, SLC38A3,
SLC3A2*, SLC3A1#, SLC25A38*, SLC38A4*, SLC38A10*,
SLC25A13*#, SLC7A8*, SLC7A6*#, SLC43A1*, SLC7A4,
SLC7A9*, SLC1A4*, SLC38A7*#, SLC7A1*, SLC15A4*#,
SLC38A5*, SLC7A6OS*#, SLC43A3*#, SLC38A9*#,
SLC43A2*#, SLC36A4*, SLC38A6*#, SLC38A11,
SLC6A17, SLC7A10

Ala, Asn, Cys, Gln, Gly, His,
Met, Pro, Ser, Glu, Trp, Asp

Thr, His, Arg, Val, Met, Ile, Leu, Phe,
Lys, Ser, Gln, Glu, Tau, Ala, Pro, Tyr,
Orn, Trp (21-22, 25-27)

Urea cycle SLC25A15*#, SLC2A9# Lys, Orn, Cit, Asp, Glu, uric
acid

Urea (28-29)

Glucose and sugars SLC2A1*#, SLC2A3*#, SLC2A4RG, SLC50A1*,
SLC2A2*#, SLC1A1#, SLC2A10#, SLC2A14, SLC5A9*,
SLC45A4*, SLC2A8*, SLC2A12, SLC2A6, SLC2A13#,
SLC37A1, SLC2A5#, SLC37A2#, SLC2A7*, SLC45A1,
SLC2A11, SLC2A1-AS1

glucose, galactose, fructose,
mannose, glucosamine

Glucose, galactose, fructose,
mannose, glucosamine,
galactosamine, erythritol, ribitol,
mannitol, inositol, glycerol, sorbitol
(22, 30)

Nucleoside sugars SLC35D2*, SLC17A9*, SLC35E2B#, SLC29A1*,
SLC35C2*#, SLC35A4*#, SLC35A2*, SLC35E1*#,
SLC25A36*#, SLC35D1*#, SLC35A5*#, SLC35F5*#,
SLC37A4*#, SLC35F6*, SLC35A3*#, SLC37A3*#,
SLC35B1*#, SLC35C1*, SLC52A2*, SLC29A2*,
SLC29A3*, SLC35B4*#, SLC35G1*, SLC35E3*#,
SLC29A4, SLC35F2*#, SLC35F3, SLC25A19*, SLC35G2*,
SLC28A1*

UDP-glucuronic acid,
UDP-galactose, UDP-N-
acetyl-galactosamine,
GDP-fructose

Metals SLC30A5*#, SLC30A9*#, SLC40A1*#, SLC39A7,
SLC39A14*#, SLC25A37*#, SLC39A6*, SLC39A5*,
SLC39A1*, SLC30A1*#, SLC31A1*#, SLC25A28*#,
SLC39A13*#, SLC39A9*#, SLC39A8*#, SLC11A2*#,
SLC30A6*#, SLC30A7*, SLC41A1*, SLC41A3*,
SLC39A11*#, SLC30A10*#, SLC31A2*, SLC39A10*,
SLC41A2#, SLC30A2*, SLC39A4*, SLC11A1, SLC39A3*,
SLC30A4*#

Zinc, iron, magnesium,
copper, cadmium, cobalt,
manganese, nickel, lead,
barium, strontium

Zinc, iron, cadmium, magnesium,
copper, manganese, lead, selenium
(28, 31, 32)

Vitamins SLC19A2*, SLC46A3*#, SLC25A32*#, SLC23A2*,
SLC5A6*, SLC46A1*#, SLC23A1*, SLC19A3*, SLC19A1*,
SLC23A3*

Thiamine (vitamin B1),
folate, ascorbic acid, biotin,
lipoate panthothenate,
thiamine

Vitamins A, E, B12, folate,
cobalamin, retinol binding protein
4, vitamin D binding protein (21,
27, 29, 33-35)

Neuro-transmitters SLC44A2*, SLC44A4*, SLC6A6*#, SLC44A1*#,
SLC36A1*#, SLC6A9*#, SLC1A3*, SLC6A13*, SLC44A3#,
SLC17A2, SLC25A22*#, SLC25A18, SLC25A12*#,
SLC17A4, SLC6A12

noradrenaline, serotonin,
dopamine, glutamate,
glycine, aspartate, choline

Glutamine, glutamic acid (21, 25)

Inorganic ions SLC25A3*#, SLC9A3R1*, SLC4A1*#, SLC20A1*,
SLC12A7*#, SLC4A2*#, SLC9A3R2*, SLC34A2*#,
SLC12A4*#, SLC26A6*, SLC9A1*, SLC20A2*, SLC9A6*#,
SLC4A1AP*, SLC9A9#, SLC26A11*#, SLC9B2, SLC26A2*,
SLC24A3, SLC9A8*, SLC12A8, SLC8B1*, SLC12A2*#,
SLC24A1, SLC4A7*, SLC12A6*, SLC4A3, SLC26A10,
SLC26A1*, SLC5A5, SLC9A7P1, SLC9A5*, SLC8A1,
SLC4A4*

Na+, K+, Cl-, HCO3
-, Ca2+,

phosphate
Na+, K+, Cl-, HCO3

-, Ca2+, phosphate
(28-29)

Thyroid SLC16A2#, SLC7A5*#, SLC16A10*# iodide, iodothyronines Tyrosine, thyroxine (26)
Organic ions SLCO2B1#, SLC22A7, SLC10A1, SLC10A3*, SLC22A23*#,

SLC51A*, SLC22A9, SLC22A17*, SLCO4C1*, SLCO2A1*,
SLC22A31, SLC22A18*#, SLC22A4*, SLC22A5*#,
SLC10A7*#, SLC51B, SLCO1B3, SLC22A15, SLC22A18AS,
SLCO1B1, SLCO3A1*#, SLC17A3, SLC22A3*

oestradiol, glucuronide,
bilirubin

bilirubin

Miscellaneous SLC25A5*, SLC5A12, SLC25A39*#, SLC25A1*#,
SLC16A3*, SLC35B2*, SLC25A20*, SLC17A5*#,
SLC16A1*#, SLC16A4#, SLC13A5, SLC35B3*, SLC6A8*,
SLC27A2*#, SLC25A24*#, SLC25A23*, SLC25A11*,
SLC25A44*, SLC25A25*, SLC45A3*, SLC15A1*,
SLC25A46*, SLC25A27, SLC25A42*, SLC27A3*,
SLC25A17*#, SLC25A43*#, SLC35A1*#, SLC12A9*#,
SLC16A5, SLC25A29#, SLC18B1*, SLC16A13*#,
SLC25A30*#, SLC27A4*#, SLC16A9*#, SLC48A1*#,
SLC33A1*#, SLC25A4*, SLC25A14*#, SLC25A33*,
SLC25A16*#, SLC25A40*, SLC25A34*, SLC27A1*#,
SLC25A26*, SLC47A1*#, SLC15A3, SLC16A12*#,
SLC25A45*, SLC5A11*, SLC25A51*, SLC13A3*#,
SLC16A14, SLC25A21-AS1, SLC16A7#, SLC16A6*,
SLC15A2, SLC27A5*, SLC17A1

ATP-ADP, carnitine,
creatinine, acetyl-CoA, sialic
acid, pyruvate, lactate,
ketone bodies, bile acids,
oxoglutarate, succinate,
citrate, ketoglutarate,
ornithine, acylcarnitine,
melanin, prostaglandin,
long-chain and very
long-chain fatty acids,
haem, ammonia, adenosine,
taurocholic acid

lactate, creatinine (29-30)

* also present in the mouse yolk sac; # also present in the chick yolk sac
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Fig. 3. Immunolocalization of ABCA1 and
SLC39A7/ZIP7 transporter proteins in the human yolk
sac at 11 weeks gestational age. Sections were im-
munostained with anti-ABCA1 or anti-ZIP7 antibod-
ies. In both cases, staining was present in the inner
endodermal and outer mesothelial layers, although it
was stronger in the former.

Fig. 4. Venn diagram comparing the most abundant 400 transcripts in the
human yolk sac, with first trimester placental villi and adult liver, lung and
kidney. Transcripts shared by all five tissues (83) encoded principally house-
keeping proteins, whereas those shared uniquely with liver (35) encoded
proteins involved in cholesterol and lipid metabolism, suggesting the yolk
sac may perform these functions while the fetal liver develops. By contrast,
there are few transcripts shared uniquely with the kidney (5) suggesting the
yolk sac plays little role in excretion.

are numerous candidate binding sites in the highly expressed
human yolk sac genes (181 genes with sites for the FOS and
JUN families and ATF4, Datasets S7, 8) and 18 genes in the
mouse with candidate Atf4 binding sites (Datasets S9, 10). The
evidence used for the assignment of GO terms varies and for 2
genes (IGF2 andBHLHE40) depends on aNon-traceableAuthor
Statement (NAS, Dataset S3). Furthermore, binding motifs are
not available for all candidate factors even in the most recent
JASPAR database.

Yolk sac and villi compared to adult lung, liver and kidney
The inaccessibility of the human yolk sac severely constrains

any functional investigation of these candidate transcription bind-
ing sites. We therefore compared the human yolk sac transcript
profile with tissues where function has been better defined exper-
imentally. The placental villi serve similar functions to the adult
lung, liver and kidney, and we therefore compared the overlap

Fig. 5. Chord plot connecting GO Biological Process terms associated
with “lipid metabolism” and genes encoding transcripts that are shared by
the human yolk sac and adult liver. The overlap suggests the yolk sac may
perform hepatic functions while the fetal liver differentiates.

among the 400 most abundant transcripts from these tissues and
the yolk sac (Figure 4). The transcripts that are unique to each tis-
sue and those shared among these tissues are listed in the Dataset
S11. As expected, the transcripts shared by all 5 tissues encoded
abundant house-keeping proteins, such as ribosomal proteins
and those involved in mitochondrial energy generation with GO
terms such as “cytosolic small ribosome subunit”, “cytosolic large
ribosome subunit” and “mitochondrial respiratory chain” being
significantly overrepresented (P< 8.5x10-8 after Bonferroni cor-
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Fig. 6. Venn diagrams illustrating the overlap among
overrepresented GO terms associated with the 400
most abundant transcripts in each of the human,
mouse and chicken yolk sacs: A, “biological process”; B,
“cellular component” and C, “molecular function”. The
considerable overlap among the species in all three
categories suggests conservation of functions.

Fig. 7. Diagrammatic comparison of the nutrient pathway during early pregnancy in the mouse (A), and the speculated pathway in the human (B). In the
mouse, histotrophic secretions (green) released from the endometrial glands (EG) are phagocytosed (1) by the endodermal cells (E) of the visceral layer of
the inverted yolk sac (YS). Following fusion with lysosomes (2), digestion of maternal proteins leads to release of amino acids that are transported (3) to the
fetal circulation (FC). In the human, histotrophic secretions are released from the endometrial glands through the developing basal plate of the placenta into
the intervillous space (IVS), and are phagocytosed (1) by the syncytiotrophoblast (STB) (ref. 42). We speculate that following digestion by lysosomal enzymes
(2), free amino acids are transported (3) by efflux transporters to the coelomic fluid (CF) where they accumulate. Nutrients in the CF may be taken up by the
mesothelial cells (M) of the yolk sac and transported (4) into the fetal circulation (FC). Alternatively, they may diffuse into the cavity of the yolk sac and be
taken up by the endodermal cells (5). Some intact maternal proteins may also be released into the CF by exocytosis of residual bodies (6), and be engulfed by
the mesothelial cells (7). CTB; cytotrophoblast cells.

rection, Dataset S12). The enriched GO terms associated with
the 35 transcripts shared only by the yolk sac and liver include
“high-density lipoprotein particle receptor binding”, “cholesterol
transporter activity”, “lipid transporter activity” (all greater than

28-fold enrichment and P< 2x10-4 after Bonferroni correction,
Dataset S13).
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Mouse Yolk Sac RNA-Seq data
On a comparative basis, the yolk sac provides an important

pathway for nutrient uptake in many species during early preg-
nancy (52, 53), and its role has been well documented in experi-
mental rodents, such as the rat and mouse (54). At the ultrastruc-
tural level, the endodermal layers of the human and rodent yolk
sacs display many similar morphological characteristic typical of
an absorptive epithelium (10, 55). However, their orientation is
different as the human yolk sac floats in the exocoelom with the
endodermal cell layer lining the interior of the sac, whilst the
rodent yolk is inverted with the endodermal layer facing outwards
following degeneration of the parietal layer (56, 57).

Cross-species comparison
To compare the most abundant transcripts in the human,

mouse and chicken yolk sac we identified the homologous genes
by mapping the human Ensembl gene identifiers to the corre-
sponding mouse and chicken Ensembl gene IDs using biomart
(release ENSEMBL Genes 85) Dataset S20. The raw and pro-
cessed chicken yolk sac data were obtained directly from the
authors (58). Gene ontology analysis was carried out as described
above, using the 400 most abundant chicken yolk sac transcripts
observed at E17 (Dataset S22). The intersection between the
over-represented GO terms in the human, mouse and chicken
yolk sacs was determined as described above (SI Appendix Table
S4). Venn diagrams showing the overlaps are shown in Figure
6. The P values for all the observed intersections are highly
significant (P< 1.70x10-22 and are summarized in Dataset S23).
The depth of the GO annotation varies between species and is
more limited in the chicken, which necessarily precludes detecting
a high degree of overlap with the human genes. Nonetheless,
shared biological process terms include “translation”, “ribosome
biogenesis”, “oxidation-reduction process” and “small molecule
metabolic process” reflecting cellular processes associated with
metabolically active tissue. Transcripts reflectingmore specialized
cellular function, such as lipid and cholesterol transport, which
are shared by the human yolk sac and liver (APOA1, APOA4,
APOB,RBP4, SEPP1, TTR) are also present among the 400most
abundant mouse and chicken yolk sac transcripts (P=2.3 x10-13).

Conclusion
Overall, our data show that the human secondary yolk sac

appears far from vestigial with little or no biological role, and that
it may perform many key functions in the early weeks of devel-
opment. In particular, it contains abundant transcripts encoding
an array of transporter proteins involved in the uptake of macro-
andmicronutrients. Our data showing the presence of transporter
proteins in both of the yolk sac epithelia, and their substrates in
coelomic fluid, support this concept and are consistent with the
morphological appearances of absorptive surfaces (23, 59, 60).
Our data also confirm significant synthetic activity, especially of
apolipoproteins, a function most likely performed in the endo-
dermal cells given their high content of endoplasmic reticulum
and Golgi cisternae (23, 59, 60). The handling of cholesterol,
which is essential for synthesis of cell and organelle membranes
as well as being a co-factor in signaling pathways involved in
axis determination and other fundamental developmental events,
appears of particular significance. Furthermore, the high level
of conservation of transcripts compared with the mouse and
the chicken, where the yolk sac is known to be essential for
development, suggests maintenance of function.

The secondary yolk sac is thus likely to be essential for the
survival of the embryo during the first weeks of development.
Morphological abnormalities of the secondary yolk sac have been
reported in 70% of first trimester human miscarriages (61), but
separating cause from effect is impossible.

More generally, our findings shed light on the evolutionary
mechanisms that give rise to complex structures such as the
placenta. The placenta has evolved repeatedly from an oviparous
background in mammals, reptiles and fish, sometimes over very
short timescales (62, 63). Development of a yolk sac for direct
maternal provisioning of the developing fetus is a common fea-
ture of such evolutionary transitions to the extent that the yolk sac
may be regarded as a "fundamental vertebrate fetal nutritional
system" (64). The yolk sacs studied in this paper constitute a
broad, albeit incomplete, sampling of the variation present in the
vertebrates. The inverted yolk sac placenta of the mouse is found
in several rodents and lagomorphs (1), but also in the distantly
related nine-banded armadillo (65). The "free floating" secondary
yolk sac of the human is found in the other haplorhine primates
(Macaca mulatta) (66) but also, surprisingly, in distantly related
Afrotherian species. The yolk sac floats freely in the exocoelom
in at least one tenrec species, the Nimba otter shrew (Microp-
otamogale lamottei) (67), in another Afrotherian insectivore, the
eastern rock elephant shrew (Elephantulus myurus) (68) and in
two species of bat (Myotis lucifugus (little brown bat) (69) and
Tadarida brasiliensis (70)). These observations suggest that both
mouse and human yolk sacs reflect convergent evolution toward
similar forms found elsewhere in the mammalian phylogenetic
tree. The yolk sac of the chicken, of course, is characteristic of
oviparous species: all birds and the majority of reptiles.

Under a classic Darwinian model of macroevolution, small
genetic mutations gradually occur and are accompanied by corre-
spondingly small phenotypic changes until, over time, a high de-
gree of morphological and functional diversification accumulates
between species that are distantly related. The results presented
here suggest, however, that the genetic systems underlying the
function of the yolk sac are robust. We identify a number of
genetic modules, including those involved in cholesterol process-
ing, lipid transport, redox processes and nutrient delivery which
were presumably reorganized and redeployed during evolution-
ary change while being internally conserved. These findings are
in line with an extended evolutionary-developmental model in
which it is the gene regulatory networks and underlying tran-
scriptional control elements which change (71). The repeated
convergent evolution of yolk sac placentas in all major groups of
vertebrates other than birds is characteristic of what has come
to be known as deep homology which describes the origin of
complex structures through modification and reorganization of
pre-existing genetic systems (72). Given that the modular con-
servation of systems active in the yolk sac is shown to extend
across mammals and birds, the common ancestor of which was a
reptile, it is possible that genetic modules of the yolk sac are part
of the core amniote genetic repertoire. That is, conserved genetic
systems of yolk sac function, for example cholesterol and lipid
metabolism, form part of the common heritage shared by all
mammals, reptiles and birds, and are the building blocks for both
oviparous and viviparous reproductive modes.

Our findings indicate that extensive high level morpholog-
ical diversification of the extraembryonic membranes masks a
surprising degree of functional conservation at the molecular
genetic level. Evolutionary conservation at the level of nucleotide
sequence, gene regulation and modularity of gene expression is
widely regarded as evidence of functional significance in both
healthy development and in disease (73-75). Therefore, we pro-
pose, that although a choriovitelline placenta is never established
physically in the human, the early placental villi, the exocoelomic
cavity and the secondary yolk sac combine to function as a physi-
ological equivalent (Figure 7).

Methods
Human tissue collection

Tissue and fluid samples were collected with informed written patient
consent and approval of the Joint UCL/UCLH Committees on the Ethics of
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Human Research (05/Q0505/82) from 7-12 weeks in uncomplicated preg-
nancies. Gestational age was confirmed by ultrasound measurement of the
crown rump length of the embryo. All samples were collected from patients
undergoing surgical pregnancy termination under general anesthesia for
psycho-social reasons. Coelomic fluid samples were obtained by transvaginal
puncture under sonographic guidance as previously described (27). Villous
samples were obtained under transabdominal ultrasound guidance from
the central region of the placenta using a chorionic villus sampling (CVS)
technique. Intact secondary yolk sacs were obtained by gentle aspiration
guided by ultrasound. All samples were snap frozen in liquid nitrogen and
stored at -80°C until analysis.

Mouse tissue collection

Yolk sacs were collected from time-mated virgin C57BL/6J mice. Exper-
iments were carried out in accordance with the United Kingdom Animals
Scientific Procedures Act 1986 which mandates ethical review. A single
randomly selected yolk sac was collected from each pregnant female at E9.5
(day of plug = E0.5). Tissue was dissected free from decidua and amnion, snap
frozen and stored at -80°C until processing.

RNA extraction and RNA-Seq

RNA from human and mouse yolk sacs and human first trimester
placental villi was extracted using RNeasy plus universal mini kit (Qiagen,
Cat No 73404). Libraries were made using the Illumina TruSeq Stranded
mRNA library kit according to the manufacturer’s instructions. Libraries were
quantified (kappa qPCR) and equimolar pools sequenced (single end 50 base
reads, SE50) in several lanes of the Illumina HiSeq2500. Additional details are
provided in the Supplemental Information.

Data availability

The data sets generated during the current study are available in the Eu-
ropean Nucleotide Archive (ENA http://www.ebi.ac.uk/ena) under the acces-
sion number PRJEB18767, http://www.ebi.ac.uk/ena/data/view/PRJEB18767.

Proteomic analysis of coelomic fluid samples
Coelomic fluid samples were run on 1D gels, enzymatically digested and

analyzed using LC-MS/MS (Dionex Ultimate 3000 RSLC nanoUPLC, Thermo
Fisher Scientific Inc, Waltham, MA, USA) system and a QExactive Orbitrap
mass spectrometer (Thermo Fisher Scientific Inc, Waltham, MA, USA). De-
tailed methods are described in the Supplemental file.

Immunohistochemistry
Immunohistochemistry was performed as previously described (76) using

the following primary antibodies: anti-SLC39A7 (ZIP7, Abcam, ab117560) and
anti-ABCA1 (Abcam, ab7360).

Supporting Information.
Additional methods and references (57, 77-87) are in the online supple-

mental methods.

Acknowledgements
This study was supported by the Medical Research Council

(MR/L020041/1). We would like to thank Prof Kathryn Lilley (University of
Cambridge) for the proteomic analysis and Dr. Erica Watson (University
of Cambridge) for assistance with the mouse yolk sac samples. M.G.E. is
the recipient of a Research Fellowship from St John’s College, Cambridge.
Author contributions. T.C-D., E.J., G.J.B. and D.S.C.-J. designed the study.
T.C.-D., E.J. and S.G. performed the experiments. T.C.-D., G.J.B. and D.S.C.-J.
wrote the manuscript with contributions from E.J., M.G.E. and S.G. All
authors analyzed data. All authors edited and approved the final manuscript
Competing financial interests The authors declare no competing financial
interests. Corresponding author: Prof. D. Stephen Charnock-Jones

1. Mossman, H. (1987) Vertebrate fetal membranes: comparative ontogeny and morphology: evo-
lution; phylogenetic significance; basic finctions, research opportunities (Macmillan, London).

2. Brent, R. L. & Fawcett, L. B. (1998) Nutritional studies of the embryo during early organo-
genesis with normal embryos and embryos exhibiting yolk sac dysfunction. J Pediatr 132:S6-16.

3. Woollett, L. A. (2008) Where does fetal and embryonic cholesterol originate and what does
it do? Annu Rev Nutr 28:97-114.

4. Baardman, M. E., Erwich, J. J., Berger, R. M., Hofstra, R. M., Kerstjens-Frederikse, W. S., et
al. (2012) The origin of fetal sterols in second-trimester amniotic fluid: endogenous synthesis
or maternal-fetal transport? Am J Obstet Gynecol 207:202 e219-225.

5. Baardman, M. E., Kerstjens-Frederikse, W. S., Berger, R. M., Bakker, M. K., Hofstra, R. M.,
et al. (2013) The role ofmaternal-fetal cholesterol transport in early fetal life: current insights.
Biol Reprod 88:24.

6. King, B. F. & Enders, A. C. (1970) Protein absorption and transport by the guinea pig visceral
yolk sac placenta. Am J Anat 129:261-287.

7. Moore, K. (1988)The Developing Human Clinically Oriented Embryology (WBSaunders Com-
pany, Harcourt Brace Jovanovich, Inc., Philadelphia, London, Toronto, Montreal, Sydney,
Tokyo).

8. Zohn, I. E. & Sarkar, A. A. (2010) The visceral yolk sac endoderm provides for absorption of
nutrients to the embryo during neurulation. Birth Defects Res A Clin Mol Teratol 88:593-600.

9. Jauniaux, E., Gulbis, B., & Burton, G. J. (2003) The human first trimester gestational sac
limits rather than facilitates oxygen transfer to the foetus--a review. Placenta 24 Suppl A:S86-
93.

10. Jones, C. (1997) inEmbryonic medicine and therapy, eds. Jaunaiux, E., Barnea, E., &Edwards,
R. (Oxford University Press, Oxford).

11. Porn, M. I., Ares, M. P., & Slotte, J. P. (1993) Degradation of plasma membrane phos-
phatidylcholine appears not to affect the cellular cholesterol distribution. J Lipid Res 34:1385-
1392.

12. Fielding, C. J. & Fielding, P. E. (2004) Membrane cholesterol and the regulation of signal
transduction. Biochem Soc Trans 32:65-69.

13. Porter, J. A., Young, K. E., & Beachy, P. A. (1996) Cholesterol modification of hedgehog
signaling proteins in animal development. Science 274:255-259.

14. Cooper, M. K., Wassif, C. A., Krakowiak, P. A., Taipale, J., Gong, R., et al. (2003) A defective
response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 33:508-
513.

15. Marti, E. & Bovolenta, P. (2002) Sonic hedgehog in CNS development: one signal, multiple
outputs. Trends Neurosci 25:89-96.

16. Long, J., Tokhunts, R., Old, W. M., Houel, S., Rodgriguez-Blanco, J., et al. (2015) Identifi-
cation of a family of fatty-acid-speciated sonic hedgehog proteins, whose members display
differential biological properties. Cell Rep 10:1280-1287.

17. Witsch-Baumgartner, M., Gruber, M., Kraft, H. G., Rossi, M., Clayton, P., et al. (2004)
Maternal apo E genotype is a modifier of the Smith-Lemli-Opitz syndrome. J Med Genet
41:577-584.

18. Burke, K. A., Jauniaux, E., Burton, G. J., & Cindrova-Davies, T. (2013) Expression and
immunolocalisation of the endocytic receptors megalin and cubilin in the human yolk sac
and placenta across gestation. Placenta 34:1105-1109.

19. Xiao, C., Hsieh, J., Adeli, K., & Lewis, G. F. (2011) Gut-liver interaction in triglyceride-rich
lipoprotein metabolism. Am J Physiol Endocrinol Metab 301:E429-446.

20. Adkins, J. N., Varnum, S. M., Auberry, K. J., Moore, R. J., Angell, N. H., et al. (2002) Toward
a human blood serum proteome: analysis by multidimensional separation coupled with mass
spectrometry. Mol Cell Proteomics 1:947-955.

21. Jauniaux, E., Gulbis, B., Jurkovic, D., Campbell, S., Collins, W. P., et al. (1994) Relationship
between protein concentrations in embryological fluids and maternal serum and yolk sac size
during human early pregnancy. Hum Reprod 9:161-166.

22. Jauniaux, E. &Gulbis, B. (2000) Fluid compartments of the embryonic environment. Human

Reproduction Update 6:268-278.
23. Jones, C. J. P. & Jauniaux, E. (1995) Ultrastructure of the materno-embryonic interface in

the first trimester of pregnancy. Micron 26:145-173.
24. Lin, L., Yee, S. W., Kim, R. B., & Giacomini, K. M. (2015) SLC transporters as therapeutic

targets: emerging opportunities. Nat Rev Drug Discov 14:543-560.
25. Jauniaux, E., Gulbis, B., Gerlo, E., & Rodeck, C. (1998) Free amino acid distribution inside

the first trimester human gestational sac. Early Hum Dev 51:159-169.
26. Contempre, B., Jauniaux, E., Calvo, R., Jurkovic, D., Campbell, S., et al. (1993) Detection of

thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J Clin
Endocrinol Metab 77:1719-1722.

27. Jauniaux, E., Sherwood, R. A., Jurkovic, D., Boa, F. G., & Campbell, S. (1994) Amino acid
concentrations in human embryological fluids. Hum Reprod 9:1175-1179.

28. Campbell, J., Wathen, N., Macintosh, M., Cass, P., Chard, T., et al. (1992) Biochemical
composition of amniotic fluid and extraembryonic coelomic fluid in the first trimester of
pregnancy. Br J Obstet Gynaecol 99:563-565.

29. Jauniaux, E., Jurkovic, D., Gulbis, B., Gervy, C., Ooms, H. A., et al. (1991) Biochemical
composition of exocoelomic fluid in early human pregnancy. Obstet Gynecol 78:1124-1128.

30. Jauniaux, E., Hempstock, J., Teng, C., Battaglia, F. C., & Burton, G. J. (2005) Polyol
concentrations in the fluid compartments of the human conceptus during the first trimester
of pregnancy: maintenance of redox potential in a low oxygen environment. J Clin Endocrinol
Metab 90:1171-1175.

31. Gulbis, B., Jauniaux, E., Decuyper, J., Thiry, P., Jurkovic, D., et al. (1994) Distribution of iron
and iron-binding proteins in first-trimester human pregnancies. Obstet Gynecol 84:289-293.

32. Wathen, N. C., Delves, H. T., Campbell, D. J., & Chard, T. (1995) The coelomic cavity--a
reservoir for metals. Am J Obstet Gynecol 173:1884-1888.

33. Campbell, J., Wathen, N., Perry, G., Soneji, S., Sourial, N., et al. (1993) The coelomic cavity:
an important site of materno-fetal nutrient exchange in the first trimester of pregnancy. Br J
Obstet Gynaecol 100:765-767.

34. Campbell, J., Wathen, N. C., Merryweather, I., Abbott, R., Muller, D., et al. (1994) Concen-
trations of vitamins A and E in amniotic fluid, extraembryonic coelomic fluid, and maternal
serum in the first trimester of pregnancy. Arch Dis Child Fetal Neonatal Ed 71:F49-50.

35. Iles, R. K., Wathen, N. C., Sharma, K. B., Campbell, J., Grudzinskas, J. G., et al. (1994)
Pregnancy-associated plasma protein A levels in maternal serum, extraembryonic coelomic
and amniotic fluids in the first trimester. Placenta 15:693-699.

36. Vallee, B. L. & Falchuk, K. H. (1993) The biochemical basis of zinc physiology. Physiol Rev
73:79-118.

37. Kambe, T., Hashimoto, A., & Fujimoto, S. (2014) Current understanding of ZIP and ZnT
zinc transporters in human health and diseases. Cell Mol Life Sci 71:3281-3295.

38. Jauniaux, E., Cindrova-Davies, T., Johns, J., Dunster, C., Hempstock, J., et al. (2004)
Distribution and transfer pathways of antioxidant molecules inside the first trimester human
gestational sac. J Clin Endocrinol Metab 89:1452-1459.

39. Gulbis, B., Jauniaux, E., Cotton, F., & Stordeur, P. (1998) Protein and enzyme patterns in
the fluid cavities of the first trimester gestational sac: relevance to the absorptive role of
secondary yolk sac. Mol Hum Reprod 4:857-862.

40. Evans, P., Cindrova-Davies, T., Muttukrishna, S., Burton, G. J., Porter, J., et al. (2011)
Hepcidin and iron species distribution inside the first-trimester human gestational sac. Mol
Hum Reprod 17:227-232.

41. Wathen, N. C., Cass, P. L., Campbell, D. J., Kitau,M. J., &Chard, T. (1992) Levels of placental
protein 14, human placental lactogen and unconjugated oestriol in extraembryonic coelomic
fluid. Placenta 13:195-197.

42. Burton, G. J., Watson, A. L., Hempstock, J., Skepper, J. N., & Jauniaux, E. (2002) Uterine
glands provide histiotrophic nutrition for the human fetus during the first trimester of
pregnancy. J Clin Endocrinol Metab 87:2954-2959.

43. Hempstock, J., Cindrova-Davies, T., Jauniaux, E., & Burton, G. J. (2004) Endometrial glands

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

8 www.pnas.org --- --- Footline Author

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088



Submission PDF

as a source of nutrients, growth factors and cytokines during the first trimester of human
pregnancy: a morphological and immunohistochemical study. Reprod Biol Endocrinol 2:58.

44. Jauniaux, E., Gulbis, B., Hyett, J., & Nicolaides, K. H. (1998) Biochemical analyses of
mesenchymal fluid in early pregnancy. Am J Obstet Gynecol 178:765-769.

45. Castellucci, M. & Kaufmann, P. (1982) A three-dimensional study of the normal human
placental villous core: II. Stromal architecture. Placenta 3:269-285.

46. Baron, M. H., Vacaru, A., & Nieves, J. (2013) Erythroid development in the mammalian
embryo. Blood Cells Mol Dis 51:213-219.

47. Tavian, M. & Peault, B. (2005) The changing cellular environments of hematopoiesis in
human development in utero. Exp Hematol 33:1062-1069.

48. Palis, J. & Yoder, M. C. (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and
man. Exp Hematol 29:927-936.

49. Luckett,W. P. (1978)Origin and differentiation of the yolk sac and extraembryonicmesoderm
in presomite human and rhesus monkey embryos. Am J Anat 152:59-97.

50. Tavian, M., Hallais, M. F., & Peault, B. (1999) Emergence of intraembryonic hematopoietic
precursors in the pre-liver human embryo. Development 126:793-803.

51. Burk, R. F. &Hill, K. E. (2005) Selenoprotein P: an extracellular protein with unique physical
characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215-235.

52. Wooding, F. & Flint, A. (1994) in Marshall's Physiology of Reproduction, ed. Lamming, G.
(Chapman & Hall, London).

53. Wooding, F. P. & Burton, G. J. (2008) Comparative Placentation. Structures, Functions and
Evolution (Springer, Berlin).

54. Lloyd, J. B., Beckman, D. A., & Brent, R. L. (1998) Nutritional role of the visceral yolk sac
in organogenesis-stage rat embryos. Reprod Toxicol 12:193-195.

55. Carter, A. M. (2016) IFPA Senior Award Lecture: Mammalian fetal membranes. Placenta 48
Suppl 1:S21-S30.

56. Burton, G. J., Hempstock, J., & Jauniaux, E. (2001) Nutrition of the human fetus during the
first trimester--a review. Placenta 22 Suppl A:S70-77.

57. Pereda, J., Correr, S., & Motta, P. M. (1994) The structure of the human yolk sac: a scanning
and transmission electron microscopic analysis. Arch Histol Cytol 57:107-117.

58. Yadgary, L., Wong, E. A., & Uni, Z. (2014) Temporal transcriptome analysis of the chicken
embryo yolk sac. BMC Genomics 15:690.

59. Hoyes, A. D. (1969) The human foetal yolk sac. An ultrastructural study offour specimens.
Z Zellforsch Mikrosk Anat 99:469-490.

60. Hesseldahl, H. & Larsen, J. F. (1969) Ultrastructure of human yolk sac: endoderm, mes-
enchyme, tubules and mesothelium. Am J Anat 126:315-335.

61. Nogales, F., Beltran, E., & Gonzales, F. (1993) in The human yolk sac and yolk sac tumors
(Springer, Berlin, Heidelberg).

62. Blackburn, D. G. (1992) Convergent Evolution of Viviparity, Matrotrophy, and Specializa-
tions for Fetal Nutrition in Reptiles and Other Vertebrates. Amer. Zool. 32:313-321.

63. Dulvy, N. & Reynolds, J. (1997) Evolutionary transition among egg-laying, live-bearing and
maternal inputs in sharks and rays. Proceedings of the Royal Society B: Biological Sciences
264(1386):1309-1315.

64. Stewart, J. (1993) Yolk Sac Placentation in Reptiles: Structural Innovation in a Fundamental
Vertebrate Fetal Nutritional System. J Exp Zool 266:431-449.

65. Enders, A. C. (1960) Development and structure of the villous haemochorial placenta of the
nine-banded armadillo (Dasypus novemcinctus). J Anat 94:34-45.

66. King, B. F. & Wilson, J. M. (1983) A fine structural and cytochemical study of the rhesus
monkey yolk sac: endoderm and mesothelium. Anat Rec 205:143-158.

67. Carter, A. M., Blankenship, T. N., Enders, A. C., & Vogel, P. (2006) The fetal membranes of

the otter shrews and a synapomorphy for afrotheria. Placenta 27:258-268.
68. Oduor-Okelo, D., Katema, R. M., & Carter, A. M. (2004) Placenta and fetal membranes of

the four-toed elephant shrew, Petrodromus tetradactylus. Placenta 25:803-809.
69. Enders, A. C., Wimsatt, W. A., & King, B. F. (1976) Cytological development of yolk sac

endoderm and protein-absorptive mesothelium in the little brown bat, Myotis lucifugus. Am
J Anat 146:1-30.

70. Stephens, R. J. & Cabral, L. J. (1971) Cytological differentiation of the mesothelial cells of
the yolk sac of the bat, Tadarida brasiliensis cynocephala. Anat Rec 171:293-312.

71. Carroll, S. B. (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of
morphological evolution. Cell 134:25-36.

72. Shubin, N., Tabin, C., & Carroll, S. (2009) Deep homology and the origins of evolutionary
novelty. Nature 457:818-823.

73. Boffelli, D., Nobrega, M. A., & Rubin, E. M. (2004) Comparative genomics at the vertebrate
extremes. Nat Rev Genet 5:456-465.

74. Stewart, J. B., Freyer, C., Elson, J. L., & Larsson, N. G. (2008) Purifying selection of mtDNA
and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet
9:657-662.

75. Woolfe, A., Goodson, M., Goode, D. K., Snell, P., McEwen, G. K., et al. (2005) Highly
conserved non-coding sequences are associated with vertebrate development.PLoS Biol 3:e7.

76. Cindrova-Davies, T., Yung, H. W., Johns, J., Spasic-Boskovic, O., Korolchuk, S., et al. (2007)
Oxidative Stress, Gene Expression, and Protein Changes Induced in the Human Placenta
during Labor. Am J Pathol 171:1168-1179.

77. Martin, M. (2016) Cutadapt removes adapter sequences from high-throughput sequencing
reads. doi 10.14806/ej.17.1.200.

78. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., et al. (2013) TopHat2: accurate
alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
Genome Biol 14:R36.

79. Anders, S., Pyl, P. T., & Huber, W. (2015) HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics 31:166-169.

80. Love, M. I., Huber, W., & Anders, S. (2014) Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.

81. Fagerberg, L., Hallstrom, B.M., Oksvold, P., Kampf, C., Djureinovic, D., et al. (2014) Analysis
of the human tissue-specific expression by genome-wide integration of transcriptomics and
antibody-based proteomics. Mol Cell Proteomics 13:397-406.

82. Mi,H.,Muruganujan, A., &Thomas, P.D. (2013) PANTHER in 2013:modeling the evolution
of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids
Res 41:D377-386.

83. Walter, W., Sanchez-Cabo, F., & Ricote, M. (2015) GOplot: an R package for visually
combining expression data with functional analysis. Bioinformatics 31:2912-2914.

84. Wang, M., Zhao, Y., & Zhang, B. (2015) Efficient Test and Visualization of Multi-Set
Intersections. Sci Rep 5:16923.

85. Benjamini, Y. & Hochberg, Y. (1995) Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. J Royal Stat Society Series B 57(1):289-300.

86. Mele, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., et al. (2015) Human
genomics. The human transcriptome across tissues and individuals. Science 348:660-665.

87. Jauniaux, E., Jurkovic, D., Henriet, Y., Rodesch, F., & Hustin, J. (1991) Development of the
secondary human yolk sac: correlation of sonographic and anatomical features. Hum Reprod
6:1160-1166.

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

Footline Author PNAS Issue Date Volume Issue Number 9

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224




