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Models, Matter and Truth in doing and Learning science 

Mark Hardman 

 

Abstract 

Doing science involves the development and evaluation of models.  These models are not objective 

truths but can be understood as explanations, which scientists use to explore and reason about an 

aspect of the world.  Learning science involves students expressing and engaging with models in the 

classroom.  However, this learning should not be seen as the growth of subjective understanding 

towards a correct scientific view.  Students, like scientists, use myriad models to consider and explain 

the world.  In this paper, I will argue that recognising the role of models in both doing and learning 

science compels teachers to focus on the models that emerge in their classrooms. 

 

 

Intro  

In this article I will argue that models are integral to both doing and learning science, but they can 

also be a source of confusion to students.  Models emerge within specific contexts as scientists, 

students and teachers seek to explain phenomena in the world (and broader universe).  It is through 

these models that scientists and students reason about the world.   

To build this argument I will firstly consider how scientists use models and in so doing suggest that 

models can be usefully framed as forms of explanation.  This gives us a position from which to 

explore the relationship between scientific models and the phenomena they model.  When it comes 

to learning science however, students encounter the models which are used by scientists, but they 

also engage with words, gestures, pictures, videos, animations, physical models and symbolic 

representations.  These are all models in themselves, which represent and explain aspects of the 

phenomenon being taught.  The models that scientists use and the models that students learn 

through are connected: they are all explanations of the world, each embedded within the intentions 

and contexts of those who developed them.  Through recognising this I believe teachers can frame 

science as a way of explaining the world which draws on empirical evidence, but which is also bound 

to social processes and material context. 
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To develop this suggestion I will first of all consider how science itself relates models to the truth of 

the world.  I will then consider how students learn science through the modelling which they 

encounter in the classroom.  

Models and Forms of Truth  

After ten years of working with new science teachers I am still struck by how many of them portray 

their scientific careers as a series of stages in which they found out that everything they had been 

told previously was wrong.  A chemist might relate how at the age of 14, they realised the world 

wasn’t made up of particles, and at the age of 17 they were told that the idea of electrons in circular 

orbits is wrong.  For every student that does pursue further study in science, there must be 

countless many more who are put off by being treated like a child who couldn’t yet understand ‘real 

science’.   

This view of learning science as slowly being told the truth, is linked to the view that that scientific 

models provide a true picture of the world ‘as it is’.  This caricature of science is embedded within 

our culture and, as with all caricatures, is an exaggeration of key features.  The vast majority of 

scientists are realists, in that they believe that the universe exists independently of our observing it.  

However, scientific realism further attributes a relationship between the explanations developed by 

science and the world ‘as it is’.  A ‘strong’ view of realism is that models are very close to the reality 

of the world.  This does not mean that someone advocating strong realism necessarily considers 

science to be infallible; it could be that explanations need revision or further detail.  A ‘weak’ view of 

realism though, is that models are developed for a specific purpose, and that they represent reality 

only so far as they are useful.   

As Bridges (1999) suggests, empirical science draws heavily on a correspondence version of truth: a 

criteria for accepting a scientific explanation is how well an explanation is structurally similar to the 

phenomenon in question.  A strong realist position would be that this should be the main criteria for 

a model, that it is as close as possible to the phenomenon itself.  Such a strong position might well 

lead to students seeing schooling as the progression of different models, each ‘more true’ than the 

other.  However, strong realism is much critiqued in recent philosophy of science and is difficult to 

accept in the context of contemporary scientific practice. 

Even if we take correspondence to the natural world as a key criterion for scientific models, we 

cannot see this as a one-way street from empirical evidence to explanation.  Astronomer Royal, 

Frank Dyson, used Einstein’s theory of relativity to model how light is bent by the sun, which allowed 

Arthur Eddington to measure the position of stars in a solar eclipse of 1919.  More recently, the $13 
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billion spent on finding the Higgs boson and the $620 million upgrade to the LIGO machine to detect 

gravitational waves have been bets placed (and thankfully won) on the assumption that models are 

generative in predicting and explaining things that we have yet to see evidence of.  Kaldis (2013, p. 

662) suggests that scientists perform “surrogative reasoning” with models.  That is, they infer things 

about a phenomenon based on manipulation and investigation of models, rather than the 

phenomenon itself.  This accounts for how models explain features and processes that we have yet 

to gather evidence about.  

Models both explain and predict therefore.  However, this does not fully diminish the criteria of 

correspondence: If a model is closer to the phenomenon being modelled, then surely it will explain 

and/or predict more?  In order to counter this view, I find it useful to draw on the growing interest in 

complex systems.  Complex systems are characterised by their sensitivity to the minutiae of 

elements within them.  The famous conjecture here is that the flapping of the wings of a butterfly 

may affect the formation of a storm on the other side of the world.  Whether considering weather, 

earthquakes, ecosystems or social groups, a small difference may (or may not) have a big influence 

on the system.  These systems pose a particular challenge to how we frame models, as the omission 

of even the slightest detail means that a model will potentially develop in a very different way to the 

modelled phenomenon.  Complexity theory shows us that it does not make sense to talk of models 

which are ‘more complex’ being closer to reality.  Whether complex systems are modelled through 

statistical relationships, network models or sophisticated agent-based models, there remains the 

issue that all models are reductions.  This is not to say that resemblance to the phenomenon being 

investigated is not important, but it does undermine discussion about making models ‘more 

accurate’.   

Scientists use models to reason, explain and predict, but when they are looking at how well a model 

reproduces the phenomenon being modelled, they are often looking at a particular feature or aspect 

of that phenomenon.  We might say that a photograph gives us a more accurate image of a 

landscape than a drawing, but a schematic map is likely to be of more use for orienteering.  The 

judgement that takes place is actually about how well the model explains an aspect of the world, for 

a particular purpose, and this judgement is bound within the social processes of making models. 

To develop this, we will consider an example: Hill, Logan, Sellers and Zapala (2011) developed an 

agent-based model of the decision making within a baboon population, with reference to empirical 

data of a troop of chacma baboons.  By modelling range size, daily travel, energy and time budgets, 

Hill et al. describe how computational actors move within a grid of resources, after ‘voting’ whether 

they should move on.  Research on primate behaviour, cognitive processes and social structures was 
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employed and the model was run with a range of starting conditions to assess the influence of the 

model variables on the way the computer baboons behaved.  The conclusion to Hill et al.’s paper 

discusses how the coarse way in which the environment is presented, the sampling approach within 

the empirical data and difficulties in knowing how decisions are actually made led to the disparities 

found between the empirical data and modelling output.  So, what is the model for and how might it 

be judged?  There is certainly an aspect of the model being developed in order to refine modelling 

processes, forming the motivation for the involvement of a computer scientist.  The authors also 

argue that the model adds to a “growing body of evidence” about how decisions are made in 

primate societies, but there are no stronger arguments presented for what is actually learned about 

baboon behaviour, despite two of the authors being a biologist and an anthropologist.  As Kohler 

(2000) suggests, models of this type are ‘generative’, in that they provide possible mechanisms for 

the phenomenon we see.  So the way that baboons make decisions in Hill et al.’s model, was tested 

as a hypothesis in that it did not produce the behaviour seen in baboon life.  Carole Kenrick’s article 

gives a great example of how this might be recreated in the classroom (see page x), and how 

students can learn about the process of science from this.  Here, we can see that models are useful 

for both developing and testing hypotheses, but their construction also helps in developing the tools 

for further modelling.  Evaluating models therefore is not just about correspondence; models are not 

ways of getting to the universe ‘as it is’. 

As well as correspondence versions of truth, Bridges (1999) discusses coherence forms of truth, 

pragmatic forms of truth, consensus forms of truth and warranted belief: how well an explanation 

holds up to critical interrogation.  All of these are relevant to how models are evaluated within 

scientific practice.  Many scientific models are created which bear no relation to real phenomena at 

all, and this could be for a number of reasons: to teach others, to develop a method or approach, to 

make a theoretical point, to find a way of working, to attract a particular kind of funding, simply 

because the researchers are interested, and a whole host of other reasons.  Within this, models are 

evaluated according to how well they fit existing understanding (coherence, consensus), how useful 

they are for particular purposes (pragmatic), how far they can be justified to other (warranted 

belief), but also due to aesthetics (how ‘elegant’ the model is) or power relations (whether a 

renowned professor or new student is proposing it).  Correspondence is only one element of the 

criteria that scientists use to evaluate models, and I will go so far as to suggest that the form of 

realism employed by much of science is very weak indeed.  Models themselves form the focus of 

many scientist’s attention, rather than the phenomenon being modelled.   

Models as Explanations in the Classroom 
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If we wish to present an authentic view of science in the science classroom, then we cannot let 

students believe that science is the progression of increasingly accurate models, approaching the 

truth of the world.  However, it may not be wise to fully expose young scientists to what Feyerabend 

(1975) calls the ‘anarchy’ of scientific method: scientists use whatever methods they need to 

advance science.  As is evident from much of this edition of the journal, it falls to the teacher to 

decide how they will develop an understanding of the nature of science with their classes.  

Nevertheless, I suggest that we need to present a clear view of what science is and, given the 

prominence of models, this might be achieved by framing models as explanations.  This suggestion 

draws on the work of a broad group of researchers who have been working on the presentation and 

use of models within science classrooms for over 30 years now.   

In framing models, Gilbert, Boulter & Rutherford (2000) helpfully delineate five different forms of 

explanation:     

1. Intentional Explanation.  For example, in identifying the mode of operation of the AIDS virus 

with the intention of enabling prevention and cure. 

2. Descriptive explanation. This is where measurements of a phenomenon are presented, for 

example in considering variation in height between members of a class. 

3. Interpretive explanation.  Here we consider what a phenomenon is composed of, and much 

of chemistry consists of these abstractions. 

4. Causal explanation.  A description of why a phenomenon behaves as it does, for example 

why there is variation in the heights of class members. 

5. Predictive explanation. Considering how the phenomenon will behave under specified 

conditions. 

Models are thus simplified representations of phenomena which scientists use to explain, predict 

and reason about aspects of the world.  This characterisation is still a rather idealised form of the 

nature of science and a cynic may claim that models are sometimes developed to attract funding, or 

to develop the tools of modelling itself.  However, these might be seen as forms of ‘intentional 

explanation’, or a teacher might discuss the how science should be vs how it is. 

What is also required though is an account of how models develop over time.  Gilbert, Boulter and 

Elmer (2000) specify terms which are helpful here.  They label expressed models as those 

representations placed within the public domain by an individual or group.  Different social groups 

may then agree that a model is of value, at which point it may be labelled as consensus model.  If 

such a model is tested experimentally, peer reviewed and accepted by scientists it may then become 

a scientific model.  The exact nature of how scientific models develop and become replaced (thus 
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becoming historic models) is contested within the philosophy and history of science.  Nevertheless, 

clarifying relationship between expressed, consensus and scientific models goes some way to 

providing a coherent account of the social and scientific processes involved in using models. 

In my own practice, I have also found it useful to make a distinction between a model and a theory 

(you may have noticed above my claim that Dawson developed a ‘model’ based on Einstein’s 

‘theory’ of relativity).  This is not something that scientists themselves provide a clear distinction of, 

with many using the terms interchangeably.  However, I have found a distinction from mathematical 

model theory to be of assistance: 

 “A theory admits a variety of models.  The theory is not a theory of any one model in 

particular, but theorizes an aspect of anything that happens to be a model for that theory.” 

(Holdsworth, 2006, pp. 146-7)  

That is, a model provides a description of a particular phenomenon, and multiple models support 

and develop a theory.  For example, a particle model of matter provides us with an explanation of 

how a solid turns into a liquid when heated.  A different particle model of matter can explain the 

relationship between pressure, volume and temperature in a gas.  These might be seen as fitting 

particle theory.  When we move on to explaining rates of reaction and surface area then, we may 

develop a model of interactions between particles to explain this.  This framing goes some way to 

invoking the role of coherence and consensus in scientific modelling also: a model is informed by 

established theory at the time it is developed. 

Drawing on the work of John Gilbert and colleagues, I have here presented models as explanations 

which serve specific purposes, and claimed that those models gather evidence and support within 

communities of scientists as they are tested and discussed.  This is undoubtedly a simplified account 

of the messy and often incoherent ways in which models are used by scientists.  However, such a 

framing provides a coherent view of models whilst still allowing for discussion of the multifaceted 

questions that models are developed to answer, and the social influences that affect communities of 

scientists.  This allows the teacher to gauge just how much messiness to introduce into the 

discussion, and when! 

Modelling-based Teaching 

So far I have presented a case for framing models as explanations, and suggested that this links 

professional science and the science in classrooms.  In many ways though, teachers have a much 

more difficult job than scientists when it comes to models.  Teachers engage with a huge variety of 
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models every day, and are concerned not just with how models relate to the phenomena being 

discussed, but also how students will learn from those models. 

Something as seemingly simple as introducing the heart may involve a plethora of models of 

different types (Boulter & Buckley, 2000): we might show a plastic heart (concrete representation), 

draw a diagram (visual), show a heart monitor display (mathematical), clench our fist and place it 

near our chest (gestural), or describe the heart as two pumps (verbal).  What is more these models 

might be static or dynamic, and often involved mixed modes of representation, for example an 

animation with labels and commentary.  Students learn from these models, but they learn both 

about the consensus view of scientific understanding, and the relation of models to scientific 

practice.  Sadly, the latter is often ignored, despite being an important part of the curriculum  

In England and Wales, The National Strategy Framework for Teaching Science (DfES, 2002) 

advocated 11-14 years olds engaging with, developing and critically evaluating models in relation to 

different phenomena.  In the 2007 version of the curriculum, this translated into models being a key 

part of the ‘How Science Works’ agenda, with progression through levels clearly mapped to the 

capacity of students to use, develop and critique models within explanations.  We now know that 

the labelling of students as particular ‘levels’ often restricted their progress, but nevertheless the 

development of modelling has been a key part of science curricula for some time.  The latest 

national curriculum for 11-14 year olds (DfE, 2013, p.3) states that students should “use modelling 

and abstract ideas to develop and evaluate explanations”.  It goes on to then explicitly mention 

models of pressure, chromosomes, DNA, the particle model, atomic model and light rays.  It may 

surprise teachers in England to know that those who designed the latest curriculum intended the list 

of content to provide space for teachers to support the broader development of students’ subject 

understandings (see Tim Oates talking about this: http://bit.ly/1xj893h).  In most schools this has 

simply not come to pass, with schemes of work focusing on content being delivered, rather than an 

understanding of the skills, processes and nature of science.  Poor communication around the latest 

curriculum, pressures around tests for 16 year olds (often leading to Key Stage 3 being compressed), 

and a lack of understanding in this area means that students are simply not engaging with models 

explicitly, as an integral part of science education. 

Gilbert & Justi (2016) have recently brought together decades of research in this area to outline and 

support an approach to ‘modelling-based teaching’.  Here I will draw on and develop one of their 

examples (Gilbert & Justi, 2016, pp. 72–74) in order to exemplify an approach to engaging students 

with models, but also to explore how students learn through models.  The creation, expression, 

testing and evaluation of a model does not take place in a simple and linear way, so the stages below 

http://bit.ly/1xj893h
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should not be seen as prescription which ignores the constant interaction between thought, the 

expressed model and evaluation of it in relation to particular aims.  To aid the reader I will present 

the possible stages of engaging with a model though: 

 Firstly, students might research or conduct an experiment to understand a phenomenon, for 

example the evaporation of water from a saltwater solution.  The first stage of a modelling 

approach might be to then pose a particular aim for a model, such as producing a model of 

the salt after evaporation.  Gilbert & Justi say that students use their existing understanding 

to pose a mental proto-model through engaging their current understanding, information 

and experiences, in relation to the aims of the model.  They may use an analogy or 

mathematical to do this.   

 In the next stage, expression of the model, the students work in small groups to produce a 

model, a representation.  Many students develop a NaCl molecule model, which could be 

expressed verbally or visually, or physically using two bound balls.   

 The next stage is to test these models, for example by asking students why sodium chloride 

has such a high melting point.  Some students respond to this by making claim that ‘the’ 

bond between sodium and chlorine ions is very strong.  So, a second test might be to ask 

why salt crystals can be cleaved along specific planes.  The teacher is here able to present 

the testing of models as part of scientific development, but also pose tests which introduce 

elements that are missing from student models.  The balance between student autonomy 

and creativity and teacher interjection should develop over time.   

 A further stage of the modelling process is to evaluate models.  Here the teacher may ask 

groups to justify their model, and the class may come up with a consensus model based on 

these discussions.  If models are framed as explanations which serve specific purposes, as I 

have claimed above, then the limitations and scope of those models should be bought to the 

fore in relation to those purposes.  This might be extended to see how far the model can be 

generalised though, such as by seeing how far their model of NaCl is able to explain the 

properties of MgO (which has even higher melting points but is not very soluble). 

 Furthermore, a teacher may then add further evidence to guide the model towards scientific 

consensus.  For example, lattices may have no distinct structure in student models, so 

evidence from X-ray spectra might be brought in to support lattice shapes, which students 

can integrate into their models. 

Gilbert & Justi frame models as ‘epistemic artefacts’ in the classroom, from which students develop 

understanding of both established scientific models but also the process of modeling.  From multiple 

studies across the world, they have established that teaching science in this way greatly enhances 
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both student understanding of scientific content and skills but also provides a vehicle for developing 

an understanding of nature of science.  The latter depends on teachers actively engaging students 

with this however. 

Learning through Models - Beyond Concepts 

Modelling-based teaching allows students to learn from the process of engaging with models in a 

way which approximates the work of scientists, such that students learn both content and the 

processes of modelling.  I want to develop here the stronger argument that students, like scientists, 

actually reason through the models that they engage with. 

To develop this point let us reconsider the different ways that a heart may be modelled in the 

classroom.  Imagine that a group of students build a model for the heart using plastic bottles and bits 

of tubing, and that they use it to discuss energy transfer from respiration and pressure in explaining 

how blood is pumped around the body.  National curricula documents frame energy transfer, 

respiration and pressure as scientific concepts and therefore such a model may involve utilising and 

learning multiple concepts.   

But how do students actually learn from these models and concepts?  There is a tradition within 

science education of considering learning as the development of concepts within student’s minds.  

This has its roots in constructivist learning theory, and was developed in earnest in the 1980s and 

90s when a lot of research focused on the misconceptions that students have and how they might be 

detected and addressed.  Despite the wealth of research into the conceptual development of 

students, there still remain philosophical difficulties in defining where and what concepts actually 

are: how do they relate to brains, bodies and broader context?  However, here I want to focus on 

how constructivism has been interpreted in many science classrooms, namely as the development of 

mental concepts.   

Focus on concepts often implies to teachers that students are somehow acquiring an understanding 

of the phenomenon itself through the activities they engage with in classrooms.  As someone who 

spends much of my time in other teacher’s classrooms, I have lost count of the number of times I 

have seen students use guess work, whispers and the coaxing of answers out of a teacher to 

complete a worksheet labelling the parts of a cell, heart, atom or power station.  Some teachers are 

then surprised that the students are not able to label a completely different diagram in the next 

lesson, or to explain the function of the components they have labelled.  The point is that the 

students in such cases have interacted with a particular model, and this does not entail the 

transmission of conceptual understanding about the phenomenon itself.   
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Gilbert and Justi are keen to move the terms concepts and models away from the sense of denoting 

mental representations of the world ‘as it is’, and instead consider them as ‘artefacts’ which have 

material presence in the classroom.  As such, when laying out modelling-based teaching, they 

suggest that: 

“mental models are epistemic creations, human-made artefacts, usually materialised in 

some way for sharing with others, that attempt to depict the world-as-experience by 

imagining what it is like.” (Gilbert & Justi, Rosaria, 2016, p. 83) 

The models expressed in a classroom are not the manifestation of coherent mental representations, 

but emerge from the brains, bodies and material circumstances involved in expressing them.   Whilst 

Gilbert and Justi see this as congruent with what they call ‘the broad church of constructivism’, I 

believe that the terminology and common interpretation of conceptual change research is a barrier 

to teachers.  Despite a focus on learning from each other and the world around us, constructivism 

has been interpreted as being about the development of mental concepts towards consensus views 

of the world.  This interpretation leads to teachers characterising learning as the intangible 

development of mental concepts/models, and in turn to them not focusing on the specifics of what 

is being presented and developed within the classroom. 

So how might teachers be helped to focus on models as integral to learning and reasoning in science 

classrooms?  A first step is to recognise that learning is often evaluated on the basis of a student 

being able to respond to a question, problem or circumstance in a certain way.  This is relatively easy 

to define with recall of information to a simple question, for example, how many ventricles does the 

heart have?  Here a student recognises the word ventricle in relation to the word heart and 

produces a very simple model though stating that there are two, even if that is all they know about 

ventricles.  If what is being evaluated is a student’s capacity to explain how the heart evolved to 

pump blood around the body, then the student might use words, diagrams, hold their fist to their 

chest or make a model; they may do all of this.  This involves a ‘mental model’ insofar as the brain of 

the student is able to utilise the resources available in the context (including her own body) to 

express models that explain how the heart pumps blood.   

This is subtly different to framing learning as the development of intangible mental representations 

of phenomena; the shift in focus is towards expressed models, which emerge from the interplay of 

brains and material context.  This framing allows us to consider the influence of the specifics of 

context, and this in turn will allow us to bring growing insights from educational neuroscience to 

bear on learning.  Moreover, recognising that students both learn through and are assessed on their 

use of models in explaining phenomenon, promotes teachers considering carefully the models which 
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emerge within classrooms.  In this article, I have taken a broad definition of models as including the 

words, diagrams, physical models and animations we use to explain things, but also the gestures 

that teachers deploy in the classroom.  I have also argued that students learn through the models 

they see, express and evaluate.  This means that as students learn they do so through the models 

which emerge in classrooms. 

Models, Truth and Teaching Science 

Here I wish to bring together two threads within this article to argue that a great deal of what both 

professional scientists and student do is engage with models, and this is what links learning and 

doing science.  This link also gives us a perspective on what science is about, and how the portrayal 

of ‘truth’ in science is bound up in how scientists develop and use models.  Individual scientists have 

different roles of course, and might be engaged in developing an experiment, gathering evidence or 

classifying information.  All these processes involve the use and development of models however. 

I have suggested that although correspondence to empirical evidence should be a key criterion for 

how we evaluate our explanations of the world, we cannot use this criterion alone.  The ‘truth’ of a 

model is bound with coherence, pragmatism, consensus, warranted belief, aesthetics and power 

relations.  Models, by which I mean all explanations in science, are not objective truths, despite what 

some pupils may think.  I have also suggested that we need to move beyond characterising student’s 

‘mental models’ as coherent understandings which develop and have correspondence to the models 

that students express.    

Putting these arguments together we can see that models, manifest in the material of the world, 

cannot be perfect replications of a phenomenon.  Models exist in a different space and time to the 

‘original’ phenomenon, and they are usually made of very different stuff, as David Hay expounds in 

the next article.  In Hay’s account, models are seen to take shape in relations between ‘things’ (non-

human stuff) like beetles, paper, plastic, plasticine, computer code or any other stuff, as well as in 

the human body with its kinaesthetic sensitivities, its feelings and its thought.  We use models to 

communicate, reason, predict, explain and do things in the world, but we also make and use models 

just to get to grips with stuff before we ever have words to talk about it.  My advocating models as 

forms of explanation should not be seen as claiming that there is a progression from empirical 

experience of a phenomena to explanation.  Hay’s article engages with the other side of the 

performative idiom in science, and our two articles should be read as two sides of the same coin, 

which together give that coin due value in the matter of its weight. 
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I finish my account by emphasising two important issues.  Firstly, the account which I provide ought 

to encourage science teachers to reconsider the models that they deploy in the classroom.  Students 

learn through the models that they express and engage with, and this is not just about the concepts 

listed in curricula, it is also about how the process of doing science is modelled.  Secondly, if we are 

to present science as a coherent and authentic subject, we must recognise that science is the 

process of explaining features of the world through the development and evaluation of models.  This 

process is messy, as is the way that students learn in classrooms.  However, relating how scientists 

learn about the world and how students learn about science, encourages teachers to place 

modelling at the heart of science classroom. 
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