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Abstract

Many modern estimation methods in econometrics approximate an objective function,

for instance, through simulation or discretization. These approximations typically affect

both bias and variance of the resulting estimator. We first provide a higher-order expan-

sion of such “approximate” estimators that takes into account the errors due to the use

of approximations. We show how a Newton-Raphson adjustment can reduce the impact

of approximations. Then we use our expansions to develop inferential tools that take into

account approximation errors: we propose adjustments of the approximate estimator that

remove its first-order bias and adjust its standard errors. These corrections apply to a

class of approximate estimators that includes all known simulation-based procedures. A

Monte Carlo simulation on the mixed logit model shows that our proposed adjusments

can yield significant improvements at a low computational cost.

JEL classification: C13; C15; C63.

Keywords: extremum estimators; Numerical approximation; simulation-based estima-

tion; higher-order expansion; bias adjustment.

1 Introduction

The complexity of econometric models has grown steadily over the past three decades. The

increase in computer power contributed to this development in various ways, and in particular

by allowing econometricians to estimate more complicated models using methods that rely on

approximations. Examples include simulated method of moments (McFadden (1989); Pakes

and Pollard (1989); Duffie and Singleton (1993); Creel and Kristensen (2012)), simulated

maximum likelihood (Lee (1992, 1995); Fermanian and Salanié (2004); Kristensen and Shin
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(2012)), and approximate solutions to structural models (Rust (1987); Tauchen and Hussey

(1991); Fernández-Villaverde, Rubio-Ramirez and Santos (2006); Norets (2012); Kristensen

and Schjerning (2015)). In all of these cases, the objective function defining the estimator

includes a component which is approximated using some type of numerical algorithm. We will

refer to this component as the approximator, and call the resulting estimator an approximate

estimator. Taking the approximation error to zero defines an infeasible estimator which we

call the exact estimator. In simulation-based inference, for instance, the exact estimator

would be obtained with an infinite number of simulations. In dynamic programming models

solved by discretization the exact estimator would rely on an infinitely fine grid.

The use of approximations usually deteriorates the properties of the approximate esti-

mator relative to those of the corresponding exact estimator: the former may suffer from

additional biases and/or variances compared to the latter. When the approximation error is

non-stochastic, its main effect is to impart additional bias to the estimator. On the other

hand, stochastic approximations not only create bias; they may also reduce efficiency. The

effect of the approximation on the estimator can usually be reduced by choosing a sufficiently

fine approximation; but this comes at the cost of increased computation time. In many ap-

plications this may be a seriously limiting factor; increased computer power helps, but it also

motivates researchers to work on more complex models. It is therefore important to quantify

the additional estimation errors that approximators generate, and also to account for these

additional errors in order to draw correct inference.

As a first step in this direction, we analyze the higher-order properties of the approximate

estimator in a general setting. These expansions apply to a very large class of models, and can

be used to develop a number of adjustments to estimators and/or standard errors that open

the way to better inference. To show this, we develop analytical bias and variance adjustments

for a large class of approximate estimators where the approximation is stochastic, including

most standard simulation-based estimators. We also propose a very generally applicable two-

step method; it consists of updating the approximate estimator obtained by one or several

Newton-Raphson iterations based on the same objective function, but with a much finer

degree of approximation. These different methods can of course be combined when they both

apply.

Our theoretical results applies to generalized method of moment estimators as well as

M-estimators, both when the approximation is stochastic and when it is not. The results

encompass and extend results in the literature on simulation-based estimators. Moreover, the

expansion can be used to analyze the behavior of estimators that rely on numerical solutions

to structural dynamic models as cited above. Our results also apply to many estimators used

in empirical IO, which combine simulation and numerical approximation. And it also covers

situations where numerical derivatives are used, either for computation of variance estimators
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or optimization algorithms based on Newton iterations1. To the best of our knowledge, this

is the first paper to provide results for such a general class of models.

To test the practical performance of our proposed adjustment methods, we run a simu-

lation study on a mixed logit model. The mixed logit is one of the basic building blocks in

much work on demand analysis, for example; and it is simple enough that we can compute the

true value of the biases and efficiency losses, as well as our estimated corrections. We show

that uncorrected SML has non-negligible bias, even for large sample sizes; and that standard

confidence intervals can be wildly off the mark. Our analytical adjustment removes most of

the bias at almost no additional computational cost; and it yields very reliable confidence

intervals. The Newton-Raphson correction also reduces the bias and improves confidence

intervals, but it does so less effectively than the analytical adjustment.

In a recent paper, Freyberger (2015) derived analytical adjustments for the Berry-Levinsohn-

Pakes (1995) model when the numbers of consumers and/or the number of simulation draws

are finite. His approach is similar to ours: his results are less general, but since he only deals

with a specific model his assumptions are more primitive and his formulæ more explicit. We

complement his work by providing the formulæ for our Newton–Raphson adjustment for this

model in section 6.2.

The paper is organized as follows. Section 2 presents our framework and some examples.

In Section 3, we derive a higher-order expansion of the approximate estimator relative to

the exact one. We describe our Newton-Raphson correction in section 4. Then in Section 5

we build on the expansion to propose adjusted estimators, standard errors, and confidence

intervals. Section 6 applies the general theory to two specific approximate estimators, while

Section 7 presents the results of a Monte Carlo simulation study using the simulated MLE of

the mixed logit model as an example. We discuss possible extensions of our results in Section

8. Appendix A and B contain proofs of the main results and lemmas, respectively. Appendix

C provides details for two examples of our theory, and Appendix D outlines how the theory

can be generalized to handle multiple approximators with different properties.

2 Framework

Given a sample Zn = {z1, ..., zn} of n observations, our aim is to estimate a parameter

θ0 ∈ Θ ⊆ Rk through an estimating equation that the “exact” estimator θ̂n is set to solve,

Gn(θ̂n, γ0) = oP
(
1/
√
n
)
, where Gn (θ, γ) =

1

n

n∑
i=1

g (zi; θ, γ) , (1)

1However, in most of our examples, we abstract away from issues with numerical maximization that some-
times arise when computing extremum estimators.
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and g (z; θ, γ) is a known functional that depends on data, z, the parameter of interest, θ, and

a nuisance parameter γ. We here and in the following let γ0 denote the true, but unknown

value of γ. The nuisance parameter γ could be finite-dimensional, but in most situations it is

a parameter dependent function, u 7→ γ (u; θ). The nature of the argument u of the function

γ will depend on the application; it could be covariates relative to one observation, the value

of a conditional moment, or more complex objects. This is irrelevant for our general theory.

Suppose that the object γ0 is not known in closed form to the econometrician, so that

the estimator θ̂ is infeasible. Instead, we approximate γ0 by γ̂S that depends on some appro-

ximation scheme of order S (e.g. S simulations, or a discretization on a grid of size S), and

compute the corresponding “approximate” estimator θ̂n,S satisfying

Gn(θ̂n,S , γ̂S) = oP
(
1/
√
n
)
. (2)

Our first aim is to analyze the impact of approximations: How do they impact the distribution

of θ̂n,S? This analysis is in turn used to propose methods that reduce the biases and variances

due to approximations, and adjust standard errors to take into account additional noise due

to approximations.

We restrict attention throughout to the case of smooth approximators where γ̂S(u; θ) is,

as a minimum, differentiable w.r.t. θ. Moreover, while γ may be a vector-valued function,

we will in the main text assume that the biases and variances due to approximations of

its different components vanish at the same rate. This is merely to save on notation, and

Appendix D provides results for the case of multiple approximators with possibly different

rates.

We now present a few examples that fall within the above setting:

Example 1: Approximate M-estimators. Consider an M-estimator θ̂ = arg maxθ∈ΘQn(θ, γ0),

where Qn(θ, γ) =
∑n

i=1 q (zi; θ, γ) /n. In this case, we set g (z; θ, γ) = ∂q (z; θ, γ) / (∂θ).

This covers simulated maximum likelihood estimator (SMLE) where q (z; θ, γ) = log γ (z; θ)

and γ0 is a density that is computed by simulations. It also includes simulated pseudo-

maximum likelihood (Laroque and Salanié, 1989) where q (z, γ; θ) = − (y − γ (x; θ))2 and

γ0 (x; θ) = E [y|x; θ] is a conditional moment which is computed by simulations.

Example 2: Approximate GMM-estimators. Suppose that θ̂ is defined as in Exam-

ple 1, but now Qn(θ, γ) = Mn(θ, γ)′WnMn(θ, γ) where Mn(θ, γ) =
∑n

i=1m (zi, γ; θ) /n is a

set of sample moments and Wn
P→ W > 0. Then we set g (zi; θ, γ) = H(θ, γ)Wm (zi; θ, γ)

where H(θ, γ) = E[∂m (zi; θ, γ) / (∂θ)]. This includes simulated method of moments (SMM),

where m (z, γ; θ) = m (y) − γ (x; θ) and γ (x; θ) = E [m (y) |x; θ], and indirect inference

(Gourieroux and Monfort, 1996) where the estimator of the auxiliary model’s parameters,

β, can be expressed as β̂ = β (θ0) +
∑n

i=1m (zi) /n + oP
(
n−1/2

)
and γ (θ) = E[β̂|θ] =

β (θ) + E [m (zi) |θ] + o
(
n−1/2

)
.
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Example 3: Estimation of dynamic structural models. Examples 1-2 also cover MLE

and GMM estimators of structural models, where γ0 is the value function of a dynamic

programme. In Discrete Choice Programming Models, simulations are combined with dis-

cretization or sieve methods (parametric approximations) to approximate the value function;

see Rust (1987), Keane and Wolpin (1994, 1997), Norets (2012), and Kristensen and Schjern-

ing (2015). Similarly, many models used in macroeconomics are so complex that estimation

is based on an approximate density (model), which is often obtained by so-called pertuba-

tion or projection methods; see Judd, Kubler and Schmedders (2003), Fernández-Villaverde,

Rubio-Ramirez and Santos (2006) and Ackerberg, Geweke and Hahn (2009).

Example 4: Numerical inversion and derivatives. Some estimators involve numerical

inversion of a function. One example of this is the estimator of discrete choice models

proposed in Berry, Levinsohn and Pakes (1995) which combines numerical inversion of a

simulated version of the so-called market share function. Here, γ0 is the inverse of the

simulated market share function. See also Judd and Su (2012) and Dubé, Fox and Su (2012)

and Freyberger (2015) for variations over and more results on this procedure. Similarly,

derivatives of the sample objective function are often approximated numerically, either to

maximize it or to estimate the asymptotic variance, e.g.
∑n

i=1 γ0,k (zi; θ) /n, where γ0,k (z; θ) =

∂q (zi; θ) / (∂θk) for k = 1, ...,dim (θ). We replace γ0,k (z; θ) with, for example, γ̂S,k (z; θ) =

[q (zi; θ + εSek)− q (zi; θ − εSek)] / (2εS), where ek is the kth column of the identity matrix

and εS → 0 as S →∞. Our theory applies to approximate variance estimators built around

numerical derivatives, as well as to estimators built around quasi-Newton iterations that use

numerical derivatives; see also Hong, Mahajan and Nekipelov (2015) and Bruyns et al (2015).

2.1 Estimating Equation

To analyze the impact of approximations, we assume that the function of interest γ0 : U×Θ 7→
Rp belongs to a linear function space Γ equipped with a norm ‖·‖. In most cases, the norm will

be either the sup-norm, ‖γ‖ = supu∈U

√
(γ (u)′ γ (u)), or some Lq-norm induced by the prob-

ability measure associated with the data generating process, ‖γ‖ = E
[
(γ (u)′ γ (u))q/2

]1/q
for

some q ≥ 1. Our analysis will involve the following sample and population averages,

Hn (θ, γ) =
1

n

n∑
i=1

h (zi; θ, γ) , G (θ, γ) = E [g (zi; θ, γ)] , H (θ, γ) = E [h (zi; θ, γ)] , (3)

where h (zi; θ, γ) = ∂g (zi; θ, γ) / (∂θ). We first impose conditions to ensure that the exact,

but infeasible estimator is well-behaved:

A.1 (i) θ̂n
P→ θ0 which lies in the interior of the parameter space Θ; (ii) {zi} is stationary and

geometrically α-mixing; (iii) E[‖g (ziγ0)‖2+δ] <∞ for some δ > 0; (iv) G (θ0, γ0) = 0.
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A.2 (i)H0 := H (θ0, γ0) is positive definite; (ii) for some δ > 0, E[sup‖θ−θ0‖<δ ‖h (zi; θ, γ0)‖] <
∞; (iii) E

[
sup‖θ−θ0‖<δ ‖h (zi; θ, γ)− h (zi; θ, γ0)‖

]
≤ H̄ ‖γ − γ0‖λ for all γ ∈ N , for

some δ, λ, H̄ > 0 and neighbourhood N of γ0.

Assumption A.1(i) requires that the infeasible estimator be consistent; Lemma 1 below

provides a set of sufficient conditions. A.1(ii) rules out strongly persistent data, thereby

allowing us to obtain standard rates of convergence for the resulting estimators. In particular,

A1(ii) and A.1(iii) together imply that a central limit theorem (CLT) applies to Gn (θ0, γ0).

The geometric mixing condition could be weakened, but would complicate the analysis; see

Kristensen and Shin (2012) for some results in this direction. Assumption A.2 imposes

differentiability of θ 7→ g (z; θ, γ). In particular, when γ depends on θ (as is the case for all of

our examples), it requires that the approximator be a smooth function of θ. Therefore A.2

rules out discontinuous and non-differentiable approximators, such as the simulated method

of moment estimators for discrete choice models proposed in McFadden (1989) and Pakes

and Pollard (1989) which involve indicator functions.2 The Lipschitz condition imposed on

h (z; θ, γ) is used to ensure that Hn (θ, γ̂S)
P→ H (θ, γ) uniformly in θ as γ̂S

P→ γ.

Since our focus is on higher-order properties of the approximate estimator, we also assume

consistency of this so that we can conduct our analysis locally around θ0:

A.3 θ̂n,S
P→ θ0 as n, S →∞.

A set of sufficient conditions for Assumptions A.1 (i) and A.3 to hold are provided in the

following lemma, the proof of which simply involves verifying the conditions of Newey and

McFadden (1994, Theorem 2.1) and so is left out.

Lemma 1 Suppose that θ̂n,S = arg maxθ∈ΘQn (θ, γ̂S) where: (i) Θ is compact; (ii) γ̂S
P→ γ0;

(iii) either supθ∈Θ,‖γ−γ0‖<δ |Qn (θ, γ)−Q (θ, γ)| P→ 0 or |Qn (θ, γ1)−Qn (θ, γ2)| ≤ Bn ‖γ1 − γ2‖
for all γ1, γ2 in a neighbourhood of γ0 where Bn = OP (1) and supθ∈Θ |Qn (θ, γ0)−Q (θ, γ0)| P→
0; (iv) θ 7→ Q (θ, γ0) is continuous and has a unique maximum at θ0. Then A.1(i) and A.3

hold.

As a first step in our higher-order analysis, we prove in Appendix B (Lemma 7) that

under Assumptions A.1-A.3,

θ̂n,S − θ̂n = −H−1
0 {Gn(θ0, γ̂S)−Gn(θ0, γ0)}+ oP

(
1/
√
n
)
. (4)

We then wish to expand the leading right-hand side term w.r.t. γ̂S around γ0. To this end

we assume that m is pathwise differentiable w.r.t. γ, so we can employ a functional Taylor

expansion:

2These cases could be handled by introducing a smoothed version of the approximators; see McFadden
(1989), Fermanian and Salanié (2004), or Bruyns et al (2015). Alternatively, one could resort to empirical
process theory, as done in Armstrong et al (2015).
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A.4(m) There exist functionals ∇kg (z, θ, γ) [dγ1, ..., dγk] for (θ, γ) in a neighbourhood of

(θ0, γ0), and constants δ > 0 and Ḡk > 0, k = 0, . . . ,m, such that: (i) each ∇kg is

linear in each of its components dγi ∈ Γ, i = 1, ..., k; (ii)

E

[∥∥∥∥∥g (z, θ, γ0 + dγ)− g (z, θ, γ0)−
m∑
k=1

1

k!
∇kg (z, θ, γ) [dγ, ..., dγ]

∥∥∥∥∥
]
≤ Ḡ0 ‖dγ‖m+1 ,

(5)

where E
[
‖∇g (z, θ, γ) [dγ]‖2

]
≤ Ḡ1 ‖dγ‖2 and, for some ν > 0 and for k = 2, ...,m,

E
[∥∥∇kg (z, θ, γ) [dγ1, ..., dγk]

∥∥2+ν
]
≤ Ḡk (‖dγ1‖ · · · ‖dγk‖)2+ν .

Assumption A.4(m) restricts g (z, θ, γ) to be m times pathwise differentiable w.r.t. γ with

differentials ∇kg (z) [dγ1, ..., dγk] that are Lipschitz in dγ1, ..., dγk, k = 1, ...,m. For a given

choice of m, this allows us to use an mth order expansion of Gn (θ, γ) w.r.t. γ to evaluate the

impact of γ̂S . In particular, the difference between the approximate and the exact objective

functions can be written as

Gn(θ0, γ̂S)−Gn(θ0, γ0) =

m∑
k=1

1

k!
∇kGn(θ0, γ0)[γ̂S − γ0, ..., γ̂S − γ0] +Rn,S , (6)

where Rn,S = OP (‖γ̂S − γ0‖m+1) is the remainder term, and ∇kGn(θ, γ) [dγ1, ..., dγk] =∑n
i=1∇kg (zi, θ, γ) [dγ1, ..., dγk] /n. To evaluate the higher-order errors due to the appro-

ximation, we will study the mean and variance of each of the terms in the sum on the right

hand side of (6).

2.2 Approximators

To analyze the impact of approximations, we need to further specify how the approximator

behaves. Let us first introduce two alternative ways of implementing the approximation:

Either one common approximator is used across all observations, or a new approximator

is used for each observation. To differentiate between the two approximation schemes, we

will refer to the approximate estimator based on the first scheme as an estimator based on

common approximators (ECA) and to the second one as an estimator based on individual

approximators (EIA):

ECA : Gn (θ, γ̂S) =
1

n

n∑
i=1

g (zi; θ, γ̂S) , EIA : Gn (θ, γ̂S) =
1

n

n∑
i=1

g (zi; θ, γ̂i,S) . (7)

In the first case, a single approximator γ̂S is used in the computation of the moment condi-

tions across observations, while in the second one n approximators γ̂1,S , ....γ̂n,S are used in

the computation. We stress that the ECA and EIA are both targeting the same infeasible
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estimator; the only difference lies in how the approximators are used in the computation of

the objective function.

Earlier papers on simulation-based methods (e.g. Laroque and Salanié, 1989; McFadden,

1989) used EIAs, and most papers on cross-sectional or panel data still do. ECAs were

proposed by Lee (1992) for cross-sectional discrete choice models, but have mostly been used

for dynamic models (Duffie and Singleton, 1993; Altissimo and Mele, 2010). To provide a

streamlined set of regularity conditions that apply to both of these approximation schemes,

we let J ≥ 1 denote the number of approximators used in the computation of θ̂n,S . For ECAs

and EIAs, J = 1 and J = n, respectively.

Next, we impose regularity conditions on the bias component of the approximator (which

is common amongst the J approximators) and its stochastic component defined by:

bS (u; θ) := E[γ̂i,S (u; θ) |u]− γ0 (u; θ) , ψi,S (u; θ) := γ̂i,S (u; θ)− E [γ̂i,S (u; θ) |u] , (8)

for i = 1, ..., J .

A.5(p) The approximator(s) lies in Γ and satisfies:

(i) The J (= 1 or = n) random functions γ̂1,S (u; θ) , ...., γ̂J,S (u; θ) are identically

distributed, mutually independent and independent of Zn.

(ii) Their common bias bS is of order β > 0, bS (u; θ) = S−β b̄ (u; θ) + o(S−β).

(iii) For 2 ≤ q ≤ p, the stochastic component satisfies E [‖ψi,S (u; θ)‖q] = S−αqvq (u; θ)+

o(S−αq), i = 1, ..., J , for some constant αq > 0.

A.5(iii) requires the approximator to have p moments and that each of these vanish at a

given rate as S →∞. We will choose p in conjunction with the order of the expansion m of

Assumption A.4, since we wish to evaluate the mean and variance of each of the higher-order

terms. For example, in order to ensure that the variance of ∇kGn [γ̂S , ..., γ̂S ] exists and to

evaluate its rate of convergence, we will require A.5(p) to hold with p = 2k.

If γ̂S is non-stochastic, as with numerical integration (Lee, 2001), discretization (Tauchen,

1986), or numerical inversion of a function, ψi,S (u; θ) = 0 so that αp = +∞ for all p ≥ 2,

and only a bias component is present. Stochastic approximation schemes, on the other

hand, can involve both a bias and variance component. Monte Carlo schemes are the most

prominent and we therefore specialize some of our results to the following class of Monte

Carlo approximators:

A.6(p) The approximator γ̂i,S (u; θ) takes the form γ̂i,S (u; θ) =
∑S

s=1wS (u, εi,s; θ) /S, i =

1, ..., J , where: (i) {εi,s}Ss=1 is stationary and geometrically β-mixing; (ii) {εi,s}Ss=1 and

{εj,s}Ss=1 are independent for i 6= j, and they are all independent of the sample; (iii)
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the function wS (u, εi,s; θ) satisfies, with expectations being taken w.r.t. εi,s,

w̄S (u; θ) := E [wS (u, εi,s; θ) |u] = γ0 (u; θ) + S−β b̄ (u; θ) + o
(
S−β

)
;

and for every 2 ≤ q ≤ p, there exists µq < q/2 such that E [‖wS (u, εi,s; θ)− w̄S (u; θ) ‖q|u] =

O(Sµq).

To our knowledge, A.6 includes all simulation-based approximators proposed in the liter-

ature, including Markov Chain Monte Carlo methods. The assumption of β-mixing is only

used in the proof of Theorem 6, and could be weakened to “strongly mixing” elsewhere. Bias

and variance rates of approximators satisfying A.6 follow from the assumptions imposed on

wS : Using Jensen’s inequality, E [‖X‖q] ≤ E [‖X‖p]q/p for q ≤ p, we see that µq ≤ qµp/p for

2 ≤ q ≤ p. Given this inequality, it is easily verified that Assumption A.6 implies A.5 with

the same rate β for the bias term and with αq = p/2− µq > 0 in A.5(iii).

In parametric simulation-based estimation, the approximator has no bias: bS ≡ 0 and so

β = ∞. Moreover, Assumption A.6(iii) typically holds with µp = 0, and A.5(iii) with αp =

p/2. Methods where a bias component is present include nonparametric SMLE (NPSMLE)

(Fermanian and Salanié, 2004; Kristensen and Shin, 2012), nonparametric SMM (Creel and

Kristensen, 2012), and sieve approximated value functions (Kristensen and Scherning, 2012;

Norets, 2009, 2012).

3 Effects of Approximations

We are now ready to derive the leading bias and variance terms of the estimator due to

approximation errors. In the following, when we discuss biases and variances, we refer to the

means and variances of the leading terms of a valid stochastic expansion of the estimators.

This is a standard approach in the higher-order analysis of estimators; see, for example,

Rothenberg (1984) and Newey and Smith (2004, section 3).

Let gi := g(zi, θ0, γ0); ∇gi[dγ] := ∇g (zi, θ0, γ0) [dγ] and∇2gi[dγ, dγ] := ∇2g (zi, θ0, γ0) [dγ, dγ]

for any function dγ. The leading terms in the bias of the approximate estimator then take

the form

BS,1 = −H−1
0 E [∇gi[bS ]] and BS,2 = −1

2
H−1

0 E
[
∇2gi[ψi,S , ψi,S ]

]
, (9)

where bS and ψi,S are defined in eq. (8). The first bias term BS,1 is zero for unbiased

approximators, as in parametric simulation-based inference. The second one, BS,2, is zero

for non-stochastic approximators of the type found in numerical approximation schemes.

The leading variance term due to the presence of approximations is ∇Gn(θ0)[γ̂S − γ]. It

can be decomposed into two terms. The first one is Dn,S =
∑n

i=1 di,S/n, where di,S =
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∇gi[bS ] − E∇gi[bS ], which is common to the two approximation schemes. The asymptotic

properties of the second variance component, En,S =
∑n

i=1∇gi[ψi,S ]/n depend on whether

we use EIA or ECA, however. The variance components ψi,S vary across observations for

EIAs; as a consequence, one can directly apply a CLT for stationary and mixing sequences

to En,S . On the other hand, ECAs only have one ψS , which is common across observations,

and getting a CLT takes more work and additional assumptions. We start by rewriting En,S

as

En,S =
1

n

n∑
i=1

{∇gi[ψS ]−∇G [ψS ]}+∇G [ψS ] , with ∇G [ψS ] := E [∇gi[ψS ]|ψS ] .

The first term is OP
(
S−α2/2/

√
n
)
, and so is dominated by the second term ∇G [ψS ] =

OP
(
S−α2/2

)
. In general, the large-sample distribution of ∇G [ψS ] is not known in closed-

form. However, if we strengthen Assumption A.5 to A.6, we can write

∇G [ψS ] =
1

S

S∑
s=1

∇G[es,S ], with es,S (εs) := wS (u, εs; θ0)− E [wS (u, εs; θ0)] , (10)

and a CLT can be applied as S →∞. The above terms make up the first-order expansion of

the effects of approximations on the estimators:

Theorem 2 Assume A.1-A.3, A.4(2), and A.5(4). Then:

θ̂n,S − θ0 = BS,1 +BS,2 +H−1
0 {Gn +Dn,S + En,S}+OP

(
S−3β

)
+OP

(
S−α3

)
+ oP

(
1/
√
n
)
,

(11)

where Gn := Gn (θ0, γ0) and the two sequences (Gn, Dn,S) and En,S are asymptotically mu-

tually independent. Moreover, the following limit results hold as n, S →∞:

• For both EIA and ECA approximators,

√
n(ΩG+D

S )−1/2{Gn +Dn,S}
d→ N (0, Ik) , with ΩG+D

S = lim
n→∞

1

n
Var

(
n∑
i=1

gi + di,S

)

and ΩG+D
S = ΩG +O(S−2β) with ΩG = 1

nVar (
∑n

i=1 gi).

• The bias terms have orders BS,1 = O(S−β) and BS,2 = O(S−α2).

• For EIA approximators, Var(En,S) = OP
(
S−α2n−1

)
; for ECA approximators, Var(En,S) =

OP (S−α2).

A first application of the theorem is to provide rates on the degree of approximation

under which the approximate estimator is asymptotically first-order equivalent to the exact

10



estimator; that is, which choices of the sequence S = Sn guarantee ‖θ̂n,Sn− θ̂n‖ = oP
(
n−1/2

)
?

In general, asymptotic equivalence for ECAs obtain if n/Smin(α2,2β) → 0; for EIA’s we have a

weaker condition, replacing α2 with 2α2. For parametric simulation-based estimators (β =∞
and α2 = 1), this gives the standard result that n/Sn should go to zero for ECA’s (Duffie and

Singleton, 1993; Lee, 1995, Theorem 1), while
√
n/Sn should go to zero for EIA’s (Laroque

and Salanié, 1989; Lee, 1995, Theorem 4). Section 6.1 takes up the more complicated case of

nonparametric kernel methods, as used in NPSML.

For the family of approximators satisfying Assumption 6, we can obtain a more precise

characterization of the variance term En,S by using eq. (10):

Corollary 3 Assume that A.1-A.3, A.4(2), and A.6(4) hold, and w = wS does not depend

on S. Then α2 = 1 and

EIA :
√
nSEn,S

d→ N(0,ΩE
EIA), with ΩE

EIA = lim
S→∞

1

S
Var

(
S∑
s=1

∇g0[es]

)
,

ECA :
√
SEn,S

d→ N(0,ΩE
ECA), with ΩE

ECA = lim
S→∞

1

S
Var

(
S∑
s=1

∇G[ẽs]

)
,

where es(u) = es,S(u) = w (u, εs; θ0)− E [w (u, εs; θ0)] is defined in eq. (10).

This corollary allow us to analyze the effects due to approximation errors in more detail.

In particular, both EIA’s and ECA’s are normally distributed as n, S →∞ with leading bias

and variance terms due to approximations given by:

E[θ̂n,S − θ0] ' BS,1 +BS,2, Var(θ̂n,S − θ0) ' H−1
0

{
ΩG+D
S /n+ Var(En,S)

}
H−1

0 . (12)

The bias and the variance of the approximator enter the two leading bias terms of the

approximate estimator separately: the bias bS drives BS,1, and the stochastic components

ψj,S drive BS,2. When the approximator is a simple unbiased simulated average, BS,1 = 0

and the leading bias term BS,2 = O (1/S); this is a well-known result for specific simulation-

based estimators in cross-sectional settings—see e.g. Gouriéroux and Monfort (1996) and

Lee (1995). Our theorem shows that this result holds more generally under weak regularity

conditions.

EIA’s and ECA’s differ regarding the second variance term En,S . In the computation of

the ECA, one common approximator is used across all observations; this introduces additional

correlations across observations. In contrast, for EIA, ψi,S and ψj,S are independent for i 6= j.

As a consequence, the variance due to a given number S of simulations is larger for ECA’s;

and in leading simulation-based inference cases with β =∞ and α2 = 1, we need S to go to

infinity faster than n to keep the variance from exploding. This seems to suggest that one

11



should prefer EIA to ECA; but statistical efficiency must be traded off with computational

efficiency. If for instance γ̂S is costly to implement, it may be convenient to use the same

approximator across all observations.

The sharpness of the rates in Theorem 2 depends on the type of approximator being

used and how it enters into the objective function; that is, the precise nature of the mapping

γ 7→ g (z, θ, γ).

Theorem 4 Under the assumptions of Theorem 2, if the rates in Assumption A.5 are sharp

then: (i) For non-stochastic approximators, all rates listed in the Theorem are sharp. (ii)

For EIA’s with ∇2gi[dγ, dγ] 6= 0, the rates of BS,1 and BS,2 and Dn,S and En,S are sharp. If

additionally Assumption A.6(4) holds with wS ≡ w, the same is true for ECA’s.

The proof of Theorem 4 follows from the arguments in the proof of Theorem 2 together

with rate results for sample averages. Note that it does not cover nonparametric simulators,

for which wS depends on S through the bandwidth. If for instance γ̂S is a kernel estimator

and ECA is used, one can show that Var(En,S) = O(S−1). Since α2 < 1 in this case, this

bound is sharper than the rate stated in the theorem; see Creel and Kristensen (2012) and

Kristensen and Shin (2012).

In some special cases, a term in the expansion is zero. In SMM for instance, the function

g is linear in the approximator γ. Then ∇2gi[dγ, dγ] = 0, so that BS,2 = 0; and our rates are

obviously not sharp. On the other hand, for nonparametric approximation methods, such as

NPSML, all of the terms may be simultaneously nonzero if γ enters non-linearly. This follows

directly from the coexistence of bias and variance in nonparametric smoothers; see Section

6.1.

4 Newton-Raphson and Jackknife Adjustment

We here propose two methods that remove some of the additional biases and variances in esti-

mation due to approximations. The first is a Newton-Raphson type adjustment that reduces

both bias and variance of the approximate estimator, while the second aims at removing bi-

ases only. Hajivassiliou (2000, section 3) proposed using Newton–Raphson for SML, but it has

not been used much. Bruyns et al (2015, section 4) also recommend both Newton–Raphson

and jackknifing.

The Newton-Raphson adjustment works for both stochastic and non-stochastic approx-

imations. Our proposal builds on the well-known result that a consistent estimator can

be made asymptotically efficient by applying one Newton-Raphson (NR) step of the log-

likelihood function to it. E.g. if θ̂n is a
√
n-consistent estimator of θ0, then a single NR-step

yields a consistent and asymptotically efficient estimator. We extend this idea to our setting

by starting from some initial approximate estimator based on a degree of approximation S,

12



say θ̄n,S . We then define the corrected estimator through one or possibly several Newton-

Raphson iterations of an approximate objective function that uses a much finer approxima-

tion, S∗ � S. With Hn (θ, γ) = ∂Gn (θ, γ) /(∂θ), we define iteratively

θ̂
(k+1)
n,S = θ̂

(k)
n,S −H

−1
n (θ̂

(k)
n,S , γ̂S∗)Gn(θ̂

(k)
n,S , γ̂S∗), k = 1, 2, 3, ... (13)

where θ̂
(1)
n,S = θ̄n,S , and we use the S∗th order approximator, γ̂S∗ , in the iterations. It should

be noted that instead of the inverse of the exact Hessian, H−1
n (θ, γ), one could employ an

estimate of this, say, Wn (θ, γ), in the above Newton-Raphson adjustment. This could, for

example, be due to the use of numerical (instead of analytical) derivatives or, as in the so-

called BHHH algorithm, the use of the cross-product of the vector of first derivatives in place

of the second-order derivatives. This however will slow down the convergence rate and the

result of Theorem 5 below has to be adjusted, c.f. Robinson (1988, Theorem 5). In particular,

more iterations are required to obtain a given level of precision.

If Gn(θ, γ) = ∂Qn(θ, γ)/ (∂θ), then the cost of computing each new iterate from the

previous one is (very) roughly S∗/S times the cost of one iteration in the minimization of

Qn(θ, γ̂S∗). Since the minimization itself can easily require a hundred iterations or so, we can

therefore take S∗ ten or twenty times larger than S without adding much to the cost of the

estimation procedure. If Gn(θ, γ) is a set of moment conditions, the above Newton–Raphson

method can be modified to avoid having to compute second-order derivatives. Using the

notation of Example 2, the modified version of the above Newton–Raphson algorithm takes

the form

θ̂
(k+1)
n,S = θ̂

(k)
n,S + (ĤnWnĤn)−1ĤnWnMn(θ̂

(k)
n,S , γ̂S∗), (14)

where Ĥn is a consistent estimator of H (θ0, γ0) = ∂M (θ0, γ0) / (∂θ), c.f. Newey and McFad-

den (1994, p. 2150-2151).

To evaluate the performance of θ̂
(k+1)
n,S relative to θ̄n,S∗ , we first note that ‖θ̂(k+1)

n,S − θ̂n‖ ≤
‖θ̂(k+1)
n,S − θ̄n,S∗‖+ ‖θ̄n,S∗ − θ̂n‖. Combining this with Robinson (1988, Theorem 2), we obtain

the following theorem:

Theorem 5 Assume that A.1-A.3, A.4(3) and A.5(6) hold. Let the initial estimate θ̄n,S be

consistent. Then the NR-estimator θ̂
(k+1)
n,S defined in (13) satisfies ‖θ̂(k+1)

n,S − θ̂n‖ = OP (‖θ̄n,S−
θ̂n‖2

k
) +OP (‖θ̄n,S∗ − θ̂n‖) as n, S and S∗ go to infinity with S∗ > S.

This result formalizes the intuition that a large enough number of NR-steps with the

score and Hessian evaluated at γS∗ yields an estimator that is equivalent to the extremum

estimator obtained from full optimization of the objective function based on γS∗ . This holds

irrespective of the convergence rate of the initial estimator. However, the number of NR

iterations, k, needed to obtain this result does depend on the precision of the initial estimator.

For unadjusted parametric simulation-based estimators in the EIA scheme for instance, we
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know from Theorem 2 that ‖θ̄n,S−θ̂n‖ = OP (1/S). Then the first term on the right-hand side

of the inequality in Theorem 5 is asymptotically dominated by the second term if S∗ = o(S2k).

Taking k = 1 and having S∗/S converge to some positive number would be enough in this

case.

Jackknifing could be used as an alternative or a complement to Newton-Raphson iter-

ations. Recall from Theorem 2 that E[θ̂n,S − θ̂n] ' b1S
−β + b2S

−α2 . First compute two

approximators of order S∗ which we denote γ̂
[1]
S∗ and γ̂

[2]
S∗ . Let θ̂

[m]
n,S∗ be the estimator based

on the same data sample Zn but using the mth approximator γ̂
[m]
S∗ , m = 1, 2. Then consider

the following jackknife (JK) type estimator:

θ̂JK
n,S := 2θ̂n,S −

1

2
{θ̂[1]
n,S∗ + θ̂

[2]
n,S∗}. (15)

It is easy to see that

E[θ̂JK
n,S − θ̂n] = 2E[θ̂n,S − θ̂n]− 1

2
{E[θ̂

[1]
n,S∗ − θ̂n] + E[θ̂

[2]
n,S∗ − θ̂n]}

' b1{2S−β − (S∗)−β}+ b2{2S−α − (S∗)−α2},

where we ignored higher-order terms. We would now ideally choose S∗ such that both of the

above bias terms cancel out. However, we can only remove either of the two: By choosing

either S∗ = S/21/β or S∗ = S/21/α2 , we will remove the first or the second term respectively.

Obviously, S∗ should be chosen so as to remove the bias component that dominates in the

expansion. In a previous version we also reported results for this resampling method; and

we tested it on the mixed logit model that we explore in section 7. We found that the

improvements from resampling were dominated by those obtained with the other methods.

5 Analytical Adjustments

The expansions derived in section 3 naturally suggest correcting the approximate estimators

and standard errors to take into account the biases and variances due to approximations.

The corrections are obtained by constructing consistent estimators of the leading terms in

the formulæ of Theorem 2, and Corollary 3 when applicable.

5.1 Bias Adjustment

The leading bias terms are BS,1 and BS,2. We mainly focus on the case where β > α2.

Recall that this includes parametric simulation-based estimation methods, but it excludes

most purely non-stochastic approximators. Then BS,1 is of lower order and the leading bias

component is BS,2 = −1
2H
−1
0 ∇2GS , where ∇2GS := E

[
∇2g(zi; θ0, γ0)[ψi,S , ψi,S ]

]
.
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We wish to adjust the approximate estimator to remove this bias component. The two

main approaches to bias adjustment in the econometric literature are “corrective” and “pre-

ventive”. The corrective method first computes the unadjusted estimator, θ̂n,S , obtains a

consistent estimator of the bias, B̂S,2, and then combines the two to obtain a new, bias-

adjusted (BA) estimator, θ̃BA
n,S = θ̂n,S − B̂S,2. One example of this approach can be found

in Lee (1995) for the special case of SMLE and SNLS in limited dependent variable models.

A natural estimator of B̂S,2 would be B̂S,2 = −1
2Ĥ
−1
n ∇2Ĝn,S for some consistent estimator

∇2Ĝn,S of ∇2GS . We propose two different estimators depending on whether A.6 holds or

not. If A.6 does not apply, the following estimator is available for EIA:

EIA : ∇2Ĝn,S =
1

n

n∑
i=1

∇2g(zi; θ̂n,S , γ̂S)[ψ̂i,S , ψ̂i,S ], ψ̂i,S := γ̂i,S −
1

n

n∑
i=1

γ̂i,S . (16)

For the ECA version, one cannot estimate the variance component of γ̂S without further sim-

ulations. One possibility would be to simulate m extra, mutually independent versions, γ̂k,S ,

k = 1, ...,m, of γ̂S , and then compute ∇2Ĝn,S = 1
nm

∑n
i=1

∑m
k=1∇2g(zi; θ̂n,S , γ̂S)[ψ̂k,S , ψ̂k,S ],

where ψ̂k,S = γ̂k,S− 1
m

∑m
k=1 γ̂k,S . Here, m has to be chosen large enough so that the variance

component of ∇2Ĝn (θ) does not dominate the bias that we are trying to remove. This means

that the computational cost of this first ECA bias estimator can be large, expecially if γ̂S is

not easy to compute.

When A.6 also holds, the following alternative estimator is available; and it can be used

for both ECA’s and EIA’s:

∇2Ĝn,S =
1

nS (S − 1)

n∑
i=1

S∑
s=1

∇2g(zi; θ̂n,S , γ̂i,S)[êi,s,S , êi,s,S ]; (17)

here, in the case of EIA’s, êi,s,S (u; θ) = wS (u, εi,s; θ) − γ̂i,S (u; θ) while in the case of ECA,

êi,s,S (u; θ) = wS (u, εs; θ)− γ̂S (u; θ) and so does not change across observations i = 1, . . . , n.

Instead of adjusting the estimator, we can do preventive correction where we adjust the

estimating equation Gn (θ, γ̂S) to remove the component leading to the bias BS,2. By inspec-

tion of the proof of Theorem 2, it is easily seen that the relevant adjustment of Gn (θ0, γ̂S) is

∇2GS/2. This suggests a bias-adjusted estimator θ̂BA
n,S that solves

Gn(θ̂BA
n,S , γ̂S)− 1

2
∇2Ĝn,S(θ̂BA

n,S) = oP (1/
√
n), (18)

where ∇2Ĝn,S(θ) is taken either from eq. (16) or (under A6) from eq. (17), with θ̂n,S replaced

by θ. This approach was pursued in the context of SNLS (see Example 1) by Laffont et al

(1995).
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After either preventive or corrective adjustment, the bias component BS,2 is replaced by

B̃S,2 := −1

2
H−1

0 (∇2GS − E[∇2Ĝn,S ]). (19)

The following theorem analyzes the properties of the bias adjusted estimator based on∇2Ĝn,S

given in eq. (17). We expect similar results to hold for any bias adjusted EIA estimator that

uses eq. (16).

Theorem 6 Assume that A.1-A.3, A.4(3), and A.6(8) hold together with∥∥∇2g(z; θ0)[eis, eit]
∥∥ ≤ b(z) ‖eis(z)‖ ‖eit(z)‖ ,

where E
[
b8(z)

]
<∞. Then any θ̂BA

n,S solving eq. (18) satisfies as n, S →∞:

θ̂BA
n,S − θ0 = BS,1 + B̃S,2 +H−1

0 {Gn +Dn,S + En,S}

+OP

(
S−3β

)
+OP

(
S−2+µ4

)
+O

(
S−2+µ3

)
+ oP

(
1/
√
n
)
,

where B̃S,2 given in eq. (19) satisfies B̃S,2 = O(S−2+µ2) and µp, p ≥ 2, is defined in A.6. All

other terms in the expansion are as in Theorem 2.

Note that under the assumptions of Theorem 6, −2 + µ4 < 0, −2 + µ3 < −1/2 and

−2 + µ2 < −1. The theorem therefore shows that under slightly stronger conditions3 than

in Theorem 2, B̃S,2 has a faster rate of convergence than BS,2, while the rate of the other

leading terms is unchanged. More precisely, compared to Theorem 2, the bias term BS,2 =

O (S−α2) = O
(
S−1+µ2

)
has been replaced by B̃S,2 = O(S−2+µ2). Also note that the higher-

order variance component of order OP (S−α3) that appeared in Theorem 2 has been replaced

by OP
(
S−2+µ4

)
+ O

(
S−2+µ3

)
. In the proof, we show that the variance of ∇2ĜS , that we

use to estimate BS,2, is of order OP (n−1/2S−1+µ8/4) +OP
(
n−1/2S−1+α4/2

)
= oP (1/

√
n). In

particular, the additional variances that we introduce when estimating the bias are of smaller

order than the bias being adjusted for and so the bias adjusted estimator dominates the

unadjusted one.

With unbiased simulators, we have µ2 = 0 and β = ∞, and by Theorem 2 the leading

bias term of the unadjusted estimator is of order O
(
S−1

)
. Theorem 6 shows that for the

adjusted estimator the leading term of the bias is of order O
(
S−2

)
. The improvement is

by a factor S and may be quite large. More generally, the proposed adjustment will remove

the largest bias component as long as α2 < β. Otherwise the bias term OP
(
S−β

)
is of a

larger order than OP (S−α2) and the proposed bias adjustment does not remove the leading

3The higher order on A.6 is required to ensure that in the asymptotic expansion, the remainder term Rn,S
is still dominated.
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term anymore. In particular, when non-stochastic approximations are employed the above

adjustment does not help. If we could estimate bS , then BS,1 could be taken care of easily by

adjusting either estimator or estimating equation using ∇Ĝn,S :=
∑n

i=1∇gi(θ̂n,S , γ̂S)[b̂S ]/n.

However, estimating bS can be a difficult task.

5.2 Adjusting Standard Errors

If the approximator is stochastic, the approximate estimator will not only be biased; it will

also contain additional variance terms, c.f. eq. (12). We should adjust inferential tools (such

as standard errors and t-statistics) to account for these additional variances. This turns out

to be quite straightforward in many cases. To keep the notation simple, we assume in the

following that data and simulations are i.i.d.4.

The different terms appearing in the variance expansion in eq. (12) implicitly depend on

θ0 and γ0. In standard estimation procedures, one would usually estimate the above variance

components by simply replacing θ0 and γ0 by θ̂n,S and γ̂S , respectively, in the expressions of

ΩG+D, Var(En,S) and H0, and by replacing any population means by their sample counter-

parts. The variance term ΩG+D
S involves the bias component of the approximator, bS . This

is unknown in most cases, but we know from Theorem 2 that ΩG+D
S = ΩG +O(S−2β) where

ΩG = E[g (z, γ0) g (z, γ0)′]. For large S, a simple estimator would therefore be

Ω̂G+D
S = Ω̂G =

1

n

n∑
i=1

ĝiĝ
′
i, where ĝi = g(zi; θ̂n,S , γ̂S).

However, replacing γ0 by γ̂S will generate biases. Similarly, if θ̂n,S has not been bias adjusted,

replacing θ0 by θ̂n,S will add biases to the variance estimator. Specifically, under suitable

regularity conditions and by the same arguments as employed in the proof of Theorem 2,

E[Ω̂G] = ΩG +O(S−β) +O(S−α2). (20)

Recall that either Var(En,S) = OP
(
S−α2n−1

)
(EIA) or Var(En,S) = OP (S−α2) (ECA), and

so the biases in eq. (20) will often be of the same order as the variance components that we

are trying to adjust for.

We therefore propose a bias-adjusted estimator of Ω̂G to improve on the basic variance

estimators in the same way that we bias-adjusted Gn (θ, γ̂S). We assume in the following

that θ̂n,S has already been bias adjusted so that we only need to adjust any biases due to γ̂S .

This adjustment takes the form Ω̃G
BA = Ω̂G − ∆̂Ω

n,S where either, in the case of EIA’s with

4Otherwise long-run variance estimators have to be used.
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ψ̂i,S := γ̂i,S − γ̄S ,

EIA : ∆̂Ω
n,S =

1

n

n∑
i=1

{
∇2ĝi[ψ̂i,S , ψ̂i,S ]ĝ′i + 2∇ĝi[ψ̂i,S ]∇ĝi[ψ̂i,S ]′ + ĝi∇2ĝi[ψ̂i,S , ψ̂i,S ]′

}
,

or, under Assumption A.6 for both EIA and ECA,

∆̂Ω
n,S =

1

nS (S − 1)

n∑
i=1

S∑
s=1

{
∇2ĝi[êi,s,S , êi,s,S ]ĝ′i + 2∇ĝi[êi,s,S ]∇ĝi[êi,s,S ]′ + ĝi∇2ĝi[êi,s,S , êi,s,S ]′

}
;

here êi,s,S is defined as right after eq. (17). The analysis of this estimator proceeds as in the

proof of Theorem 6.

Next consider Var(En,S). As we know from Theorem 2, the behaviour of this term depends

on whether EIA or ECA are used. In the case of EIA, Var(En,S) ' Var(∇gi[ψi,S ])/n which

can be estimated by V̂ar(En,S) =
∑n

i=1∇gi[ψi,S ]∇gi[ψi,S ]′/n2.

When ECA is employed, Var(En,S) ' Var (∇G [ψS ]) which can be estimated by V̂ar(En,S) =∑m
k=1∇Ĝ [ψS,k]∇Ĝ [ψS,k]

′ /m, where ψS,k = γ̂S,k−
∑m

k=1 γ̂S,k/m, γ̂S,k, k = 1, ...,m, are m ≥ 1

independent versions of γ̂S distribution of ψS , and ∇Ĝ [dγ] =
∑n

i=1∇ĝi[dγ]/n. This can be

time consuming if γ̂S is a costly to compute.

The proposed estimators will suffer from biases similar to the ones in Ω̂G, but these biases

are of smaller order compared to the variance adjustment that we are making.

If Assumption A.6 holds, better estimates can be obtained since in this case Corollary 3

yields either Var(En,S) ' ΩE
EIA/ (nS) (EIA) or Var(En,S) ' ΩE

ECA/S (ECA) where ΩE
EIA =

Var (∇gi[w̄i,s]) and ΩE
ECA = Var (∇G[w̄s]), and we have assumed for simplicity that the

simulations are independent across s = 1, ..., S. This suggests the following simple estimators,

Ω̂E
EIA =

1

nS

n∑
i=1

S∑
s=1

∇ĝi[êi,s,S ]∇ĝi[êi,s,S ]′ and Ω̂E
ECA =

1

S

S∑
s=1

∇Ĝ[es,S ]∇Ĝ[ês,S ]′,

where ∇Ĝ[γ] =
∑n

i=1∇g(zi, θ̂n,S , γ̂S)[γ]/n. The estimator Ω̂E
ECA is similar to the one pro-

posed in Newey (1991) for semiparametric two-step estimators.

For EIA, two terms cancel out when we combine ∆̂Ω
n,S with Ω̂E

EIA, giving

∆̂Ω
n,S − Ω̂E

EIA =
1

nS2

n∑
i=1

S∑
s=1

{
∇2ĝi[êi,S , êi,S ]ĝ′i +∇ĝi[êi,S ]∇ĝi[êi,S ]′ + ĝi∇2ĝi[êi,S , êi,S ]′

}
.

Finally, the naive estimator of H0 takes the form Ĥ = Hn(θ̂n,S , γ̂S). One could bias-adjust

this estimator as we did for Ω̂G. However, note that the approximate estimator satisfies

oP (1/
√
n) = Gn (θ0, γ̂S) + Hn

(
θ̄n,S , γ̂S

)
(θ̂n,S − θ0), for some θ̄n,S on the line segment con-

necting θ̂n,S and θ0. So in order to get a precise approximation of the distribution of θ̂n,S−θ0,
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we want to use an estimator that mimics the behaviour of Hn

(
θ̄n,S , γ̂S

)
. This is exactly what

Ĥ does.

To sum up, for EIA, we propose the following bias-adjusted variance estimator for θ̂n,S ,

Ĥ−1 1

n

n∑
i=1

(
ĝiĝ
′
i −

1

S2

S∑
s=1

(
∇2ĝi[êi,S , êi,S ]ĝ′i +∇ĝi[êi,S ]∇ĝi[êi,S ]′ + ĝi∇2ĝi[êi,S , êi,S ]′

))
Ĥ−1,

while for ECA it takes the form Ĥ−1(Ω̂G − ∆̂Ω
n,S + Ω̂E

ECA)Ĥ−1.

6 Applications

We here show the applicability of our general results, by analyzing two particular approximate

estimators.

6.1 Simulated maximum likelihood

For SML we approximate the density p (z; θ) (= γ0) so that g (z; θ, p) = pθ (z; θ) /p (z; θ),

where pθ (z; θ) = ∂p (z; θ) / (∂θ), is the score of the log-likelihood. Then, suppressing depen-

dence on (z; θ),

∇g [dp] =
dpθ
p
− pθ
p2
dp and ∇2g [dp, dp] =

2pθ
p3

(dp)2 − 2

p2
dpdpθ, (21)

so that Ḡ0 in A.4 involves higher-order moments of 1/p. If the density p (z; θ0) → 0 as

‖z‖ → ∞, these moments may not be finite. One can introduce trimming, replacing the

simple simulator p̂S (z; θ) described above with p̂a,S (z; θ) = p̂S (z; θ) τa (p̂S (z; θ)) where τa (w)

is a smooth trimming function that satisfies τa (w) = 1 for w ≥ 2a and τa (w) = 0 for

w ≤ a. Then Ḡa,0 = O
(
a−(m+1)

)
is finite for any a > 0, and the remainder term satisfies

Rn,S = OP (a−(m+1) ‖p̂a,S − p‖m+1). By letting a = aS → 0 at a suitable rate as S →∞, it is

now possible to control the remainder term while the expansion remains valid; see Creel and

Kristensen (2012) and Kristensen and Shin (2012) for more details in the context of SMM

and SMLE, respectively.

The analytical adjustments are easy to compute when the approximator p̂S satisfies A.6

with β = ∞. Assume for instance that it uses independent simulations (the EIA case.)

Denoting ri,s = wS (zi, εi,s; θ) − p̂i, p̂i = p̂S (zi; θ), p̂θ,i = ∂p̂S (zi; θ) / (∂θ), and so forth, we

obtain the following expression for the bias adjustment,

∇2ĜS(θ) =
2

nS

n∑
i=1

(
p̂θ,i
p̂3
i

1

S

S∑
s=1

r2
i,s −

1

p̂2
i

1

S

S∑
s=1

ri,sṙi,s

)
.

Our proposed analytical adjustment to the variance of the estimators replaces the standard

19



variance estimator, n−1
∑n

i=1 pθ,ip
′
θ,i/p

2
i , by

1

n

n∑
i=1

(
p̂θ,ip̂

′
θ,i

p̂2
i

− 1

S2

S∑
s=1

(
r2
θ,i,s

p̂2
i

+ 9
r2
i,sp̂θ,ip̂

′
θ,i

p̂4
i

− 4
ri,s(r

′
θ,i,sp̂

′
θ,i + p̂′θ,ir

′
θ,i,s)

p̂3
i

))
.

It is sometimes not possible to obtain an unbiased simulator of a density; then the

NPSML estimator offers an attractive alternative. Suppose that the model takes the form

y = m(x, ε, θ0) and we compute ys (x, θ) = m(x, εs, θ0), s = 1, ..., S. The nonparametric

simulated density then satisfies A.6 with wS (y, x, εs; θ) = Kh (ys (x, θ)− y) where the band-

width h = h (S)→ 0 as S →∞. Let d = dim (y) and suppose that we use a kernel of order

r. The bias component satisfies w̄S (y, x; θ) − p (y|x; θ) = hr ∂
rp(y|x;θ)
∂yr + o (hr). Furthermore,

it is easily checked that E [|Kh (ys (x, θ)− x)|p |x] = O
(
−hd(p−1)

)
for all p ≥ 2 under suitable

regularity conditions. Thus, with a bandwidth of order h ∝ S−δ for some δ > 0, A.6(p) holds

with β = rδ and µp = δd (p− 1) for p ≥ 2. We only need to choose δ < p/(2d(p− 1)) so that

µp < p/2.

As is well-known, the asymptotic mean integrated squared error is smallest when the

bias and variance component are balanced. This occurs when δ∗ = 1/ (2r + d), leading to

β = r/ (2r + d). It is easy to check that these values satisfy A6(p) if r > d(p− 2)/(2p), which

allows for the standard choice of r = 2 except in implausibly high-dimensional cases. We

recover of course the standard nonparametric rate.5

Let us now return to first-order efficiency. Using standard arguments from the litera-

ture on semiparametric estimation, one can show in great generality that ΩE
ECA = O(S−1)

(see Kristensen and Shin, 2012 for further details). Given this result, it easily follows from

Theorem 2 that for the NPSMLE based on ECA’s to be equivalent to the MLE, we need
√
nhr → 0, n/S → 0 and

√
n/
(
Shd

)2 → 0. For EIA’s, ΩE
EIA =O

(
1/
(
nShd+2

))
and so

n/S → 0 has to be replaced by
√
nShd+2 →∞.

We derive in Appendix C.1 the analytical adjustments for such an NPSML estimator

when y is scalar (d = 1) and the data is i.i.d. Given some additional regularity conditions,

we obtain

BS,1 ' −hr κr
r!
H−1

0 E [b1,i (θ0)] , (22)

BS,2 ' 1

Sh

∫
K2 (z) dz ×H−1

0 E

[
pθ,i (θ0)

p2
i (θ0)

]
− 1

Sh2

∫
K (z)K ′ (z) dz ×H−1

0 E

[
mθ,i (θ0)

pi (θ0)

]
,

5While the standard nonparametric rate is optimal for the approximation of the individual densities that
make up the likelihood, this rate does not yield the best NPSML estimators. This is akin to results for semi-
parametric two-step estimators where undersmoothing of the first-step nonparametric estimator is normally
required for the parametric estimator to be

√
n-consistent; see Kristensen-Salanié (2010) for details.
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with κr =
∫
K (z) zrdz, H0 = E

[
pθ,i (θ0) pθ,i (θ0)′ /p2

i (θ0)
]
,

b1,i (θ) :=
pθ,i (θ)

p2
i (θ)

∂rpi (θ)

∂yri
− 1

pi (θ)

∂rpθ,i (θ)

∂yri
, (23)

and mθ,i (θ) = ∂m (xi, r (xi, yi) ; θ) / (∂θ). Here, we use “'” to indicate that only leading

terms are included. More generally (d > 1), we obtain that the kernel smoother distorts

the NPSMLE by an order of magnitude O (hr) while the simulations, in conjunction with

the smoothing, generate additional biases of order O
(
1/
(
Shd+1

))
and O

(
1/
(
Shd

))
. If a

symmetric kernel is employed,
∫
K (z)K ′ (z) dz = 0 and the second term in the expression

of BS,2 drops out. Standard bandwidth selection rules in general imply Shd → ∞, but

this is it not enough for the bias to vanish with rate
√
n; we need to undersmooth so that

√
n/
(
Shd+1

)
→ 0.

The variance components satisfy Dn,S ' −κr
r! (hr/n)

∑n
i=1 {b1,i (θ0)− E [b1,i (θ0)]} and

Var(En,S) '
(
nShd+2

)−1
E
[
σ2
θ,i (θ0) /pi (θ0)

] ∫
K ′ (z)2 dz, where σ2

θ,i (θ) =Var(mθ,i (θ) |xi).
Note that when EIA is employed, the rate of the correction to the variance is non-standard

compared to standard SML, which has an efficiency loss of order 1/S.

6.2 Newton–Raphson on SMM estimators

To illustrate the use of the Newton–Raphson algorithm in the case of GMM estimators, as

given in eq. (14), we here provide the necessary formulæ for the case of the standard empirical

IO model of Berry, Levinsohn and Pakes (1995). In this model, agent k on market i chooses

between J alternatives (products) based on utilities

ukji = xji(β +Aεki) + ξji + vkji, j = 1, ..., J,

where vkji are iid standard type-I EV errors, xji ∈ Rp, β ∈ Rp, A = [aqr]q,r is a (p×d) scaling

matrix, and εki are iid with known multivariate cdf F and pdf f . We collect the unknown

parameters in θ = (β,A). Let γ0,j(x, ξ; θ) ∈ [0, 1] be market share function of market j

defined as γ0,j(x, ξ; θ) =
∫
νj(θ, x, ξ, ε)f(ε)dε where

νj(x, ξ, ε; θ) =
exp(x′j(β +Aε) + ξj)

1 +
∑J

k=1 exp(xk(β +Aε) + ξk)
, j = 1, ..., J.

We observe covariates xi, market shares mi ∈ RJ , and a set of instruments wi, i = 1, ..., n,

satisfying

mi = γ0(xi, ξi; θ0) and E [wi ⊗ ξi] = 0,

where γ0 = (γ0,1, ..., γ0,J) is the vector of market share functions, and then wish to estimate

θ by GMM.
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The market share functions cannot be written in analytical form, and the literature ap-

proximates them by

γ̂S,i(x, ξ; θ) =
1

S

S∑
s=1

ν(x, ξ, εi,s; θ),

where εi,1, ..., εi,S are i.i.d. draws from F , i = 1, ..., n. We here employ the EIA scheme with

independent draws across markets. Our simulated moment conditions are then given by

Mn(θ, γ̂S) =
1

n

n∑
i=1

wi ⊗ γ̂−1
S,i (xi,mi; θ), (24)

where γ̂−1
S,i (x,m; θ) is the inverse of the function γ̂S,i(x, ξ; θ) w.r.t. ξ.

We show in Appendix C.2 that the matrix Ĥn = ∂Mn(θ̄n,S , γ̂S∗)/ (∂θ) in eq. (14) can be

evaluated with the following simple and cost-effective procedure for a given estimator θ̄n,S :

1. compute the choice probabilities ν̂is ≡ ν(xi, ξ̂i, εsi; θ̄n,S) for all markets i = 1, ..., n and

s = 1, . . . , S∗, where ξ̂i = γ̂−1
S∗,i(xi,mi; θ̄n,S)

2. on each market i, compute the derivatives of γ̂i ≡ γ̂S∗,i by

∂γ̂S∗,i
∂ξ

(xi, ξ̂i; θ̄n,S) =
1

S∗

S∗∑
s=1

(diag(ν̂is)− (ν̂is ⊗ ν̂is)) ,

and for j = 1, ..., J ,

∂γ̂S∗,i,j
∂β

(xi, ξ̂i; θ̄n,S) =
1

S∗

S∗∑
s=1

ν̂jisx̂jis,
∂γ̂S∗,ij
∂A

(xi, ξ̂i; θ̄n,S) =
1

S∗

S∗∑
s=1

ν̂jis (x̂jis ⊗ εsi) ,

with x̂jis the vector with components xji,q −
∑J

l=1 ν̂l,sixli,q for q = 1, . . . , p.

3. Compute

∂γ̂−1
S∗,i

∂θ

(
xi,mi; θ̄n,S

)
= −

[
∂γ̂S∗,i
∂θ

(
xi, γ̂

−1
S,i

(
xi,mi; θ̄n,S

)
; θ̂n,S

)]−1 ∂γ̂S∗,i
∂θ

(
γ̂−1
S,i

(
xi,mi; θ̄n,S

)
; θ̄n,S

)
and substitute it into

Ĥn =
1

n

n∑
t=1

wi ⊗
∂γ̂−1

S∗,i

∂θ
(xi,mi; θ̄n,S).

22



7 Simulation Study

To explore the performance of our proposed approaches, we set up a small Monte Carlo study

of the following mixed logit model (see Train, 2009, for more details and its applications):

The econometrician observes i.i.d. draws of zi = (xi, yi) for i = 1, . . . , n, with xi a centered

normal of variance τ2 and

yi = 11(b+ (a+ sui)xi + ei > 0)

where ei is standardized type I extreme value while ui is N(0, 1) and independent of ei.

We take the true model to have parameters a = 1, s = 1, b = 0. In this specification, the

mean probability of y = 1 is one-half. For τ = 1 (resp. τ = 2) the generalized R2 is 0.11

(resp. 0.21); in the corresponding simple logit model, which has s = 0, the R2 would be 0.17

(resp. 0.39.)

We wish to estimate the model by MLE. Since the implied choice probabilities, given by

Pr(y = 1|x) =

∫
φ(u)

1 + exp (−(b+ (a+ su)x))
du. (25)

are not available on closed form, we implement the SMLE instead, c.f. Section 6.1

7.1 Theoretical Fisher bounds and biases

This is still a very simple model; thus we can use (adaptive) Gaussian quadrature to com-

pute the conditional choice probabilities. Since Gaussian quadrature achieves almost correct

numerical integration in such a regular, one-dimensional case, we can rely on it to do (al-

most) exact maximum likelihood estimation. By the same token, it is easy to compute the

asymptotic variance of the exact ML estimator θ̂n, and the leading term BS,2 of the bias of

the SML estimator. Simple calculations give the numbers in Table 1.

The columns labeled
√
nσ̂ give the square roots of the diagonal terms of the inverse of

the Fisher information matrix. As can be seen from the values of
√
nσ̂, it takes a large

number of observations to estimate this model reliably. To take an example, assume that

the econometrician would be happy with a modestly precise 95% confidence interval of half-

diameter 0.2 for the mean slope a. With τ = 1 it would take about (7.2 ∗ 1.96/0.2)2 ' 5, 200

observations; and still about 4, 500 for τ = 2, even though the generalized R2 almost doubles.

With such sample sizes, the estimate of the size of the heterogeneity s would still be very

noisy: its 95% confidence intervals would have half-diameters 0.48 and 0.32, respectively for

τ = 1 and τ = 2. We also found that the correlation between the estimators of a and of s is

always large and positive—of the order of 0.8. Thus the confidence region for the pair (a, s)

is in fact a rather elongated ellipsoid. On the other hand, the estimates of b are reasonably
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precise, which is not very surprising as b shifts the mean probability of y = 1 strongly.

The figures in the columns labeled “S times bias” refer to the expansions of θ̂nS − θ̂n
in our theorems. We will be using SML under the EIA scheme (independent draws across

observations). Then we know that the leading term of the bias due to the simulations is

BS,2 and is of order 1/S. The figures give our numerical evaluation of SBS,2, using our

formulæ and Gaussian quadrature again. As appears clearly from Table 1, once again the

heterogeneity coefficient s is the harder to estimate, followed by a, while there is hardly any

bias on b. With S = 100 simulations and τ = 1 for instance, the bias on a is −0.09, and the

bias on s is −0.23.

7.2 Experiments

We ran experiments for several sets of parameter values, sample sizes n, explanatory power

(through τ), and numbers of draws S. Since the results are similar, we only present here those

we obtained for a sample of 10, 000 observations when the true model has a = 1, s = 1, b = 0,

and the covariate has standard error τ = 1 or τ = 2.

We present below the results for S = 50, 100, 200, and 500 simulations. We ran 5,000

simulations in each case, starting from initial values of the parameters drawn randomly

from uniform distributions: a ∼ U [0.5, 1.5], b ∼ U [−0.5, 0.5], and s ∼ U [0.5, 1.5]. For each

simulated sample with S ≤ 200, we estimated the model using (i) uncorrected SML, (ii) SML

with Newton-Raphson (NR), and (iii) SML with analytic adjustment (AA) for both bias and

variance. The AA was done on the objective function. For the NR correction, we use only

k = 1 step, with S∗ = 10× S draws6.

For each method, we also used several ways of computing the standard errors of the

estimates: from the most commonly used, which consists of inverting the outer product of

the scores without correcting for the simulations, to the better-grounded sandwidch formula

which we introduced in Section 6.

In order to maximize the simulated log-likelihood, we used the C++ version of the Minuit

optimizer of Cern7, with the BFGS algorithm. We evaluated all gradients numerically, with

one step of the Ridders-Richardson extrapolation method8. We proceeded in the same way

with the Hessians for the standard errors. We faced very few numerical difficulties. The

optimization algorithm sometimes stopped very close to the bounds we had imposed for the

heterogeneity parameter, 0.1 ≤ s ≤ 5. In some cases it failed to find an optimum, especially

for uncorrected SML with 50 draws. Finally, the second derivative of the simulated log-

likelihood was sometimes not invertible in one of our sandwich formulæ. Altogether, we had

6We did not run the NR correction for S = 500 as it would have been quite time-consuming, with little
benefit.

7http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit/index.html.
8We experimented with up to four steps, but the gains in precision were negligible and the results were

unchanged.
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to discard 0.2% to 3% of the 5,000 samples, depending on the run. When a sample fails, it

is most often because the uncorrected SML does not converge, or it is hard to evaluate the

corresponding standard errors. The corrected SML method appears to be much more robust.

The tables and graphs below only refer to the remaining samples.

Two considerations are worth mentioning:

• Ease of implementation: the analytical bias adjustment wins on that count, since it

is usually easy to get a formula for the ∆ term and to program it. The Newton

method may be more troublesome in models with more than a few parameters, as it

requires a reasonably accurate evaluation of the matrix of second derivatives. In our

experiment, we relied on the fact that the minimization algorithm itself proceeds by

Newton-Raphson steps; after multiplying by ten the number of simulations, we let the

algorithm do exactly one iteration of its line search. This appears to work very well,

and is very easy to implement.

• Computer time: it is important to compare methods that have similar run times. Ta-

ble 2 reports the mean times per sample. The numbers in the table show that the

analytical bias adjustment requires negligible computer resources. To evaluate the cor-

rected objective function we only need to compute the variances of the simulated choice

probabilities as well as their derivatives—a very small computational cost. Newton ad-

justment is clearly more demanding. The table shows that in our experiment, the

Newton step itself was about two to three times as costly as uncorrected SML. For

both values of τ , “SML+Newton” with S = 50 (and S∗ = 500) takes the same time as

“SML” with S = 200; and “SML+Newton” with S = 200 (and S∗ = 2, 000) takes about

20% longer than “SML” with S = 500. We will use these two pairs in our evaluation

of the Newton–Raphson method.

We should stress here that time comparisons can only be indicative, and here perhaps

even more than usual since they depend on the structure of the model, on the difficulty

of optimizing the log-likelihood, and on the care needed to approximate the Hessian.

Note from the table that it is twice less expensive to (a) use S = 50 simulations to get

an estimator and then take a Newton step with S∗ = 500 simulations than to (b) work

with S∗ = 500 simulations from the start. A simple calculation suggests that option a

should in fact be even more attractive in more complex models9. To see this, take any

model whose computing cost mostly consists in evaluating the objective function. With

p parameters to estimate, maximizing the objective function takes a number of function

calculations F (p) that is (roughly) constant with the number of simulations; and the

time requested to evaluate one function value is roughly proportional to the number of

9We are grateful to a referee for prompting this discussion.

25



simulations S. This puts the cost of optimizing the objective function at F (p)S. Taking

one Newton step has a cost c(p)S∗ if c(p) function evaluations are needed. Unless the

model has a large number of parameters (so that c(p) may be large) and yet it is very

easy to estimate (so that F (p) is small), c(p) is likely to be a small fraction of F (p);

and option a will be cheaper than option b, as their respective computer costs are

(F (p)S + c(p)S∗) and F (p)S∗.

Section 6.2 illustrates this: the formulæ for the Newton–Raphson adjustment can be

written in closed form in empirical IO applications, making option a much cheaper than

reestimating the model with a larger number of simulations.

7.3 Results

We focus on a and s as there is little to correct for in the SML estimates of b. We report

(Huber) robust means, standard errors and RMSEs. “AA” refers to our analytical bias

adjustment.

Tables 3 and 4 report our results for the mean error of our various SML methods. Each

row corresponds to a value of the number of simulations S. All numbers in the last three

columns of these tables were computed by averaging the “ error terms” (θ̂n,S − θ0) over the

5,000 samples (minus the small number that were eliminated due to numerical issues.) The

standard error of these averages is about 0.001, so that several of the biases from the corrected

estimates are statistically insignificant.

The “SML” columns in the tables report the biases of the uncorrected SML estimator.

The leading term appears to be a good approximation to the actual size of the bias in these

simulations, and the measured bias is close to proportional to 1/S. This suggests that our

analytical bias adjustment, which focuses on correcting for the leading term of the bias,

should work very well. As the last columns show, AA in fact does eliminate most of the

bias. The Newton step with ten times more simulations reduces the bias, as expected; but it

does not do it as effectively as our analytical bias adjustment. In fact, comparing the SML

estimator with S = 500 to the Newtonized estimator (S = 50, S∗ = 500) shows that the

Newton method only delivers part of the benefits suggested by the theory. Note that with

S = 500, there is not that much bias to correct, but what there is AA corrects quite well

again.

The discussion above only bears on bias, but one may legitimately be concerned about

the possibility that our adjustment procedures introduce more noise into the estimates and

perhaps even increase their mean square errors. Tables 5 and 6 show that this concern is

unfounded. Correcting the estimates using analytical adjustment or a Newton step reduces

the RMSE in all cases. Most often, the reduction in bias dominates and AA works better than

Newton. However, for larger number of simulations when τ = 2, bias reduction matters less;
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and since the Newton method is more effective at reducing dispersion, its RMSE becomes

smaller than that of the AA method. This suggests that combining AA and a Newton step

could yield an even larger reduction in the RMSE.

Both the bias and the increased variance imparted by the simulations affect the properties

of standard tests. Figures 1 and 2 document this for t-tests that a and s, respectively, equal

their true values. For such a large sample, we would expect the distributions of the t-statistics

to be very close to a standard centered normal; and 95% of the mass should lie between −1.96

and 1.96. What we observe for the uncorrected SML estimator (“SML”) is quite different:

the bias in the estimate skews the distribution to the left, spectacularly so for small number

of simulations; and the increased variance flattens the distribution.

Resorting to one Newton-Raphson step (the “SML+Newton” curves) corrects part of the

bias and reduces the variance; but except for large number of simulations, the distribution of

the resulting t-statistics is still markedly different from N(0, 1). Using the AA bias-correction

and using the proper formula for the variance-covariance matrix (the “SML+AA” curves),

on the other hand, produces distributions that are essentially undistinguishable from N(0, 1).

Tables 7 and 8 give the actual coverage probabilities implied by figures 1 and 2. When

using uncorrected SML, the nominally 95% confidence intervals undercover very badly, so

that the null hypothesis is rejected up to three-quarters of the time when it is in fact true.

Our corrections, on the other hand, yield tests that have close to exact coverage.

Like any Monte Carlo study, ours can only be illustrative; yet our results are very encour-

aging. Our analytical corrections for both bias and variance spectacularly improve inference.

Using one Newton step, while less effective, can also be a good way to reduce errors.

8 Conclusion

We developed in this paper a unifying framework for the analysis of approximate estimators.

We derived a higher-order expansion of the estimators that takes into account additional bi-

ases and variances due to approximations; and we built on this expansion to develop methods

that reduce the bias and the efficiency loss that result from the approximation. Simulations

on the mixed logit model confirm that the proposed methods work well in finite samples.

We restricted ourselves to estimators where objective function and approximator (as func-

tions of θ) were both smooth. In principle, one could import the arguments of Chen et al

(2003) to handle non-smooth cases as is done in Armstrong et al (2013). Another approach

would be to employ a slight generalization of Robinson (1988, Theorem 1) which in our setting

would yield ||θ̂n,S − θ̃n|| = OP

(
sup‖θ−θ0‖≤δ ‖Gn (θ, γ̂S)−Gn (θ, γ)‖

)
+ oP (1/

√
n), for some

δ > 0. By strengthening the pointwise bias and variance assumptions to hold uniformly over

‖θ − θ0‖ ≤ δ, we expect our results to remain valid in the non-smooth case. Also, we require

the approximators to be mutually independent, which rules out certain recursive approxima-
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tion schemes such as particle filtering. Establishing results for this more complicated case

would be highly useful.

We only allowed for one source of approximation in γ. More general situations could

have several such terms, possibly with quite different properties. This is for example the

case in Kristensen and Scherning (2011), which considers the estimation of dynamic discrete

choice models: There, one set of simulations are combined with series regression techniques to

approximate the value function (γ1), and then another set of simulations are used to compute

the conditional choice probabilities (γ2). To cover such situations, Appendix D contains a

generalization of Theorem 2 to the case where multiple approximators are employed in the

estimation. This is straightforward but tedious, as long as the number of such approximators

stays finite; it only requires fairly obvious changes in the assumptions. The expansion can be

employed to adjust biases and variances as in the single-approximator case: The analytical

bias adjustment will still work when multiple approximators are present, except that we

now have to estimate the bias component for each individual approximator. Similarly, the

adjustment of standard errors when multiple approximation methods are employed is also

relatively straightforward. The Newton–Raphson method would also remain valid. The

Jackknife bias adjustment would on the other hand not be easy to extend to the case where

biases vanish at different rates.
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A Proofs of Main Results

Proof of Theorem 2. Substituting the expansion given in eq. (6) with m = 2 into eq.

(4), which holds by Lemma 7, yields∥∥∥θ̂n,S − θ̂n∥∥∥ = OP

(∥∥∥∥∇Gn(θ0) [∆γ̂S ] +
1

2
∇2Gn(θ0) [∆γ̂S ,∆γ̂S ] +Rn,S

∥∥∥∥)+oP
(
1/
√
n
)
, (26)

where ∆γ̂i,S = γ̂i,S − γ0. We first derive the rate of the remainder term Rn,S :

E [‖Rn,S‖] = E

∥∥∥∥Gn(θ0, γ̂S)−Gn(θ0, γ0)−∇Gn(θ0) [∆γ̂S ]− 1

2
∇2Gn(θ0) [∆γ̂S ,∆γ̂S ]

∥∥∥∥
≤ 1

n

n∑
i=1

E

∥∥∥∥gi(θ0, γ̂i,S)− gi(θ0, γ0)−∇gi(θ0) [∆γ̂i,S ]− 1

2
∇2gi(θ0) [∆γ̂i,S ,∆γ̂i,S ]

∥∥∥∥
≤ Ḡ0

n

n∑
i=1

E
[
‖∆γ̂i,S‖3

]
,

where we have used A.4(2). Applying first Minkowski’s inequality and then the inequality

(a+ b)p ≤ 2p−1ap + 2p−1bp (which holds for all a, b > 0 and p ≥ 1), we obtain—dropping the

i index:

E
[
‖∆γ̂S‖3

]
= E

[
‖ψS + bS‖3

]
≤ (E [‖ψS‖] + E [‖bS‖])3 ≤ 4E

[
‖ψS‖3

]
+ 4E

[
‖bS‖3

]
= O

(
S−α3

)
+O

(
S−3β

)
.

The rates of the first and second order functional differentials of Gn(θ0, γ) are given in

Lemmas 10 and 11 depending on whether ECA or EIA, as given in eq. (7), is used. These
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rates together with the rate of Rn,S and (26) yield the higher-order stochastic expansion of

the EIA and ECA in equation (11). The rates of the leading bias and variance terms as

S →∞ also follow from Lemmas 10 and 11.

Finally, the weak convergence of Dn,S follows by standard CLT for stationary and mixing

triangular arrays. We can, for example, employ Francq and Zaköıan (2005) whose conditions

are easily verified given the mixing conditions imposed on data and simulations, which are

mutually independent, and the fact that Var(
√
n {Gn +Dn,S}) = ΩG+D

S + o (1) = ΩG +

O
(
S−β

)
where ΩG > 0.

Proof of Corollary 3. In the EIA case, En,Sn =
∑n

i=1∇gi[ψi,Sn ] where (zi, ψi,Sn), for

i = 1, ..., n and n ≥ 1, is a stationary and mixing triangular array. Under A.6,

Var(
√
nSnEn,Sn) =

1

nSn

n∑
i,j=1

Sn∑
s,t=1

E [∇gi[ei,s]∇gj [ej,t]] =
1

nSn

n∑
i=1

Sn∑
s,t=1

E [∇gi[ei,s]∇gi[ei,t]]

=
1

Sn

Sn∑
s,t=1

E [∇g0[e0,s]∇g0[e0,t]] = ΩE
EIA + o (1) ,

where we have used that E [∇gi[ei,s]∇gj [ej,t]] = 0 for i 6= j, and so the claimed result follows

from Francq and Zaköıan (2005). For ECA’s satisfying A.6,
√
SEn,S =

∑S
s=1∇G{ẽs]/

√
S +

oP (1)→d N(0,ΩE
ECA), where a CLT for stationary and mixing sequences has been employed.

Proof of Theorem 6. We only give a proof for the case of EIA’s; the proof for ECA’s

follows along the same lines. One can easily show that supθ∈Θ ||∇2Ĝn (θ) || = oP (1) as

n, S →∞, and it now follows by the same arguments as in the proof of Theorem 2 that θ̂BA
n,S

is consistent. Next, we take a Taylor expansion:

oP

(
n−1/2

)
=

{
Gn(θ0, γ̂S)− 1

2
∇2Ĝn (θ0)

}
+

{
Hn(θ̄n,S , γ̂S)− 1

2
∇2Ĥn

(
θ̄n,S

)}
(θ̂BA
n,S − θ0),

where ∇2Ĥn (θ) = ∂∇2Ĝn (θ) / (∂θ). From the proof of Theorem 2, Hn(θ̄n,S , γ̂S) = H0 +

oP (1), while it is easily shown that ∇2Ĥn

(
θ̄n,S

)
= oP (1) as n, S → 0, so that, by the same

arguments as in the proof of Theorem 2,

θ̂BA
n,S − θ̂n = H−1

0

{
Gn(θ0, γ̂S)− 1

2
∇2Ĝn(θ0)−Gn(θ0, γ)

}
+ oP

(
1/
√
n
)
.

Suppressing any dependence on θ0, use (6) to write

Gn (γ̂S)− 1

2
∇2Ĝn −Gn (γ) =

1

2

{
∇2Gn[ψS , ψS ]−∇2Ĝn

}
+∇Gn[γ̂S − γ] (27)

+
1

2

{
∇2Gn[γ̂S − γ, γ̂S − γ]−∇2Gn[ψS , ψS ]

}
+Rn,S .
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The rates of the second and third terms of (27) are derived in Lemma 11. To ensure that

Rn,S is negligible, we build on Lemma 12, which uses A.6 to deliver a better rate than that

obtained in the proof of Theorem 2.

The crucial term is the first term of (27). Recall γ̂i (x) = S−1
∑S

s=1wis (x), and the

definition of ∇2Ĝn in eq. (17). Using the bilinearity of (dγ, dγ′) 7→ ∇2gi [dγ, dγ′], and

denoting w̄i (x) = E [wi,s (x)] and eis (x) = wis (x)− w̄i (x),

∇2Gn[ψn,S , ψn,S ]−∇2Ĝn

=
1

nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

nS2

n∑
i=1

S∑
s=1

∇2gi[eis, eis]−
1

nS2

n∑
i=1

S∑
s=1

∇gi[wis − γ̂i, wis − γ̂i]

=
1

nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

nS2

n∑
i=1

S∑
s=1

{
∇2gi[eis, eis]−∇gi[wis − γ̂i, wis − γ̂i]

}
=

1

nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

nS2

n∑
i=1

S∑
s=1

{
∇2gi[γ̂i − w̄i, eis] +∇2gi[eis, γ̂i − w̄i]

}
=

1

nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

2

nS

n∑
i=1

∇2gi[γ̂i − w̄i, γ̂i − w̄i],

where the last equality uses the fact that S−1
∑S

s=1 eis = γ̂i − w̄i. Start with the first term,

and note that E
[
∇2gi[eis, eit]

]
= 0 when s 6= t. Then apply Lemma 8 with r = 1 to

Wi,S := S−2
∑

s 6=t∇2gi[eis, eit], getting

Var

 1

2nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit]

 ≤ C

n
E
[
‖Wi,S‖2+δ

]2/(2+δ)
.

NowWi,S is a degenerate U -statistic since E
[
∇2g(zi)[eis, eit]|zi, eit

]
= E

[
∇2g(zi)[eis, eit]|zi, eis

]
=

0. Given the conditions imposed on {ei,s : 1 ≤ s ≤ S} in (A.6), we can employ U -statistic re-

sults for absolutely regular sequences: Yoshihara (1976, Lemma 3) states that E
[
‖Wi,S‖4 |zi

]
=

O
(
S−4

)
. By inspection of the proof of Yoshihara (1976, Lemma 3), it is easily checked

that in fact, for some constant C > 0 we have E
[
‖Wi,S‖4 |zi

]
≤ CS−4MS (zi), where

MS (zi) := sups<tE
[∥∥∇2g(zi)[eis, eit]

∥∥4+ε |zi
]4/(4+ε)

, for some ε > 0. Thus, with δ = 2
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and using the Lipschitz condition on ∇2g, we obtain

E
[
‖Wi,S‖4

]
≤ CS−4E [MS (zi)]

≤ CS−4E

[
sup
s<t

E
[∥∥∇2g(zi)[eis, eit]

∥∥4+ε |zi
]4/(4+ε)

]
≤ CS−4E

[
b4(zi) sup

s<t
E
[
‖eis (z)]‖4+ε ‖eit(z)]‖4+ε |zi

]4/(4+ε)
]

≤ CS−4E

[
b4(zi)E

[
‖eis(z)]‖8+ε |zi

]4/(8+ε)
]

≤ CS−4
√
E [b8(zi)]E

[
‖eis‖8+2ε

]4/(8+2ε)

= O
(
S−4+µ8/2

)
.

It follows that
∑n

i=1

∑
s 6=t∇2gi[eis, eit]/

(
nS2

)
= OP (n−1/2S−1+µ8/4). As for the second term,

by definition γ̂i−w̄i = ψi,S ; and it follows from Lemma 9 that E
[
∇2gi[ψi,S , ψi,S ]

]
= O (S−α2)

and 1
n

∑n
i=1

(
∇2gi[ψi,S , ψi,S ]− E

[
∇2gi[ψi,S , ψi,S ]

])
= OP

(
n−1/2S−α4/2

)
. Summing up, B̃2 =

H−1
0 E

[
∇2Gn[ψn,S , ψn,S ]−∇2Ĝn

]
/2 = O

(
S−2+µ2

)
while

Var
(
∇2Gn[ψn,S , ψn,S ]−∇2Ĝn

)
= O(n−1S−2+µ8/2) +O

(
n−1S−2+α4

)
.

This completes the proof.

Proof of Theorem 5. To apply the general result in Robinson (1988, Theorem 2), we

need to check that his conditions A.1 and A.3 are satisfied in our application. His condition

A.1 requires consistency of the approximate estimator for a suitable choice of S, which our

assumptions imply. Robinson’s condition A.3 also holds given the smoothness conditions

imposed on Gn(θ, γ̂S) in our Assumption A.2.

B Lemmas

Lemma 7 Under Assumptions A.1–A.3, eq. (4) holds.

Proof. We first take a Taylor expansion of Gn(θ, γ0) and Gn(θ, γ̂S) w.r.t. θ:

oP

(
n−1/2

)
= Gn(θ̂n, γ0) = Gn(θ0, γ0) +Hn(θ̄n, γ0)(θ̂n − θ0), (28)

oP

(
n−1/2

)
= Gn(θ̂n,S , γ̂S) = Gn(θ0, γ̂S) +Hn(θ̃n,S , γ̂S)(θ̂n,S − θ0), (29)
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for some θ̄n (θ̃n,S) between θ̂n (θ̂n,S) and θ0. Since θ̂n (θ̂n,S) is consistent, θ̄n,S (θ̃n,S)
P→ θ0.

By standard arguments together with Assumption A.2,

||Hn

(
θ̃n,S , γ̂S

)
−H0|| ≤ ||Hn(θ̃n,S , γ̂S)−Hn(θ̃n,S , γ0)||+ ||Hn(θ̃n,S , γ0)−H(θ̃n,S , γ0)||

+||H(θ̃n,S , γ0)−H (θ0, γ0) ||

≤ sup
‖θ−θ0‖≤δ

‖Hn(θ, γ̂S)−Hn (θ, γ0)‖+ sup
‖θ−θ0‖≤δ

‖Hn (θ, γ0)−H (θ, γ0)‖

+||H(θ̃n,S , γ0)−H (θ0, γ0) ||

= oP (1) ,

and similar for Hn(θ̄n, γ0). Going back to eqs. (28)-(29), we have now shown that

θ̂n,S − θ0 = −H−1
0 Gn(θ0, γ̂S) + oP

(
1/
√
n
)
, θ̂n − θ0 = −H−1

0 Gn(θ0, γ0) + oP
(
1/
√
n
)
.

Subtracting the second expansion from the first gives the result.

The following auxiliary results will be used in the analysis of the first and second order

differentials:

Lemma 8 Let {Wi} be a sequence of α-mixing random variables with E [Wi] = 0, E
[
‖Wi‖2r+δ

]
<

∞ for some r ≥ 1 and δ > 0 and its mixing coefficients αi, i = 1, 2, ..., satisfying αi ≤ Ai−a

for some A > 0, and a > 2r+4r (r − 1) /δ−2. Then there exists a constant C = C (r, a,A) <

∞ such that:

E

[∥∥∥∥ 1

n

∑n

i=1
Wi

∥∥∥∥2r
]
≤ n−r × CE

[
‖Wi‖2+δ

]2r/(2+δ)
+ o

(
n−r

)
.

Proof. From Rio (1994), we have for r ≥ 1,

E

[∥∥∥∥ 1

n

∑n

i=1
Wi

∥∥∥∥2r
]
≤ Cr

[
n−rM r

2,α,n + n1−2rM2r,α,n

]
, (30)

where the numbers Mp,α,n are defined in Rio (1994). By Nze and Doukhan (2004, p. 1040),

Mp,α,n ≤
[
E ‖Wi‖p+δ

]p/(p+δ)
× (p+ δ) (p− 1)

δ

∞∑
n=0

(n+ 1)p+p(p−1)/δ−2 αn.

Given the bound we imposed on the mixing coefficients, there exists a constant C(A, a) such

that
∞∑
n=0

(n+ 1)p+p(p−1)/δ−2 αn ≤ C (A, a)
∞∑
n=0

(n+ 1)p+p(p−1)/δ−2−a <∞.
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In particular, there exist constants C(r,A, a) such that

M r
2,α,n ≤ C (r,A, a)

[
E ‖Wi‖2+δ

]2r/(2+δ)
, and M2r,α,n ≤ C (r,A, a)

[
E ‖Wi‖2r+δ

]2r/(2r+δ)
.

(31)

The result follows by noting that n1−2r = o (n−r) for r > 1, and that for r = 1 both terms in

equation (30) are of order n−1 = n−r.

Lemma 9 Assume that {zi} satisfies Assumption A.1, and that γ̂i,S satisfy Assumption

A.5(4) for i = 1, ..., J . Let m (z; dγ) be a functional satisfying:

E
[
‖m (z; dγ)‖2r+δ

]
<∞, E

[
‖m (z; dγ)‖2+δ

]
≤ M̄ ‖dγ‖

k(2+δ)

, (32)

for some r, k ≥ 1 and δ > 0. Then, with bS and ψS given in A.5, the following hold:

(i) For EIA’s, with MV
S := E [m (zi;ψi,S)] and MB

S := E [m (zi; bi,S)],

E

[∥∥∥∥ 1

n

∑n

i=1

{
m (zi; bi,S)−MB

S

}∥∥∥∥2r
]

= O
(
n−r

)
×
[
E ‖bS‖k(2+δ)

]2r/(2+δ)
,

E

[∥∥∥∥ 1

n

∑n

i=1

{
m (zi;ψi,S)−MV

S

}∥∥∥∥2r
]

= O
(
n−r

)
×
[
E ‖ψS‖k(2+δ)

]2r/(2+δ)
.

(ii) For ECA’s, with m̄ (γ) = E [m (z; γ)] for any fixed γ,

E

[∥∥∥∥ 1

n

∑n

i=1
{m (zi; bS)− m̄ (bS)}

∥∥∥∥2r
]

= O
(
n−r

)
×
[
E ‖ψS‖k(2+δ)

]2r/(2+δ)
,

E

[∥∥∥∥ 1

n

∑n

i=1
{m (zi;ψS)− m̄ (ψS)}

∥∥∥∥2r
]

= O
(
n−r

)
×
[
E ‖ψS‖k(2+δ)

]2r/(2+δ)
.

(iii) The means satisfy
∥∥MB

S

∥∥ ≤ M̄E[‖bi,S‖k],
∥∥MV

S

∥∥ ≤ M̄E[‖ψi,S‖k], and E[‖m̄ (ψS)‖2r] ≤
M̄E[‖ψS‖2kr].

Proof. Define Wi,S := m (zi;ψi,S)−MS (ψi,S). By assumptions (A.1) and (A.5), {Wi,S} is a

geometrically mixing process for any given value of S and so its mixing coefficients satisfy the

mixing conditions imposed in Lemma 8. Furthermore, (32) implies that E
[
‖Wi,S‖2r+δ

]
<∞.

We can therefore apply Lemma 8

E

[∥∥∥∥ 1

n

∑n

i=1
{m (zi;ψi,S)−MS (ψi,S)}

∥∥∥∥2r
]
≤ Cn−r

[
E ‖m (zi;ψi,S)−MS (ψi,S)‖2+δ

]2r/(2+δ)
+o
(
n−r

)
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where C = C (r, a,A) only depends on r and the mixing coefficients of {zi} and {ψi,S}. By

(32), E
[
‖m (z;ψi,S)‖2+δ

]
≤ M̄E

[
‖ψi,S‖k(2+δ)

]
n−r and ‖MS (ψi,S)‖ ≤ E [‖m (zi;ψi,S)‖] ≤

M̄E
[
‖ψi,S‖k

]
. It is easily seen that the above inequalities still go through when replacing

ψi,S with bi,S . This prove (i) and (iii).

To derive the second inequality of (ii), now redefine Wi,S as Wi,S := m (zi;ψS)− m̄ (ψS).

It is easily seen that conditionally on ψS , (Wi,S) satisfies the conditions of Lemma 8, so that

E

[∥∥∥∥ 1

n

∑n

i=1
Wi,S

∥∥∥∥2r

|ψS

]
≤ CE

[
‖Wi,S‖2+δ |ψS

]
n−r + o

(
n−r

)
,

where C = C (r, a,A) does not depend on ψS . Next, observe that

E
[
‖Wi,S‖2+δ

]
≤ CE

[
‖m (z;ψS)‖2+δ

]
≤ CM̄E

[
‖ψS‖k(2+δ)

]
;

we conclude that

E

[∥∥∥∥ 1

n

∑n

i=1
Wi,S

∥∥∥∥2r
]

= E

[
E

[∥∥∥∥ 1

n

∑n

i=1
Wi,S

∥∥∥∥2r

|ψS

]]
≤ CE

[
‖ψS‖k(2+δ)

]
n−r + o

(
n−r

)
.

Finally, E
[
‖m̄ (ψS)‖2r

]
≤ E

[
‖m (z;ψS)‖2r

]
≤ M̄E

[
‖ψS‖2rk

]
. The proof of the first in-

equality of (ii) follows along the same lines.

In the next three lemmas, dependence on θ is suppressed since it is kept fixed at θ0.

Lemma 10 Under A.1-A.3, A.4(2), and A.6(4), the first and second order differentials of

Gn (θ0, γ̂S) for the ECA yield the rates given in Theorem 2.

Proof. For ECA, the functional differentials of Gn are given by

∇Gn [dγ] =
1

n

n∑
i=1

∇gi [dγ] , ∇2Gn
[
dγ, dγ′

]
=

1

n

n∑
i=1

∇2gi
[
dγ, dγ′

]
,

and dγ and dγ′ are the same for all observations i = 1, . . . , n. Given A.6(4), the application

of the first-order differential to the bias component can be rewritten as

∇Gn[bS ] = S−β
1

n

n∑
i=1

∇gi
[
b̄
]

+
1

n

n∑
i=1

∇gi
[
bS − S−β b̄

]
.

Now, E
[∑n

i=1∇gi
[
b̄
]
/n
]

= E
[
∇gi

[
b̄
]]
, and

E

[
1

n

n∑
i=1

∥∥∥∇gi [bS − S−β b̄]∥∥∥] ≤ G1

∥∥∥bS − S−β b̄∥∥∥ = o
(
S−β

)
.
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By Lemma 9(i) with m (z; dγ) = ∇g (z) [dγ], k = 1 and r = 1, Var (∇Gn[bS ]) ≤ 1
nC ‖bS‖

2 =

O
(
S−2β/n

)
. Since dγ 7→ ∇gi [dγ] is linear, the conditional mean of the stochastic component

of the first-order term is E [∇Gn[ψS ]|Zn] = 1
n

∑n
i=1∇gi [E [ψS |zi]] = 0. Moreover, define

∇G [γ] = E[∇gi[γ]] (where expectations are taken w.r.t. the observation zi); then ∇Gn[ψS ] =

∇G[ψS ] + 1
n

∑n
i=1 {∇gi [ψS ]−∇G[ψS ]}. Recalling the definition of ∇G [ψS ], it follows from

Lemma 9(ii) withm (z; dγ) = ∇g(z) [dγ] and k = 2 that the first term satisfies Var(∇G[ψS ]) ≤
ME[‖ψS‖2] = O (S−α2) while the second term is OP (n−1/2S−α2).

Regarding the second order differential, its application to the bias component satisfies

∇2Gn[bS , bS ] = S−2β 1

n

n∑
i=1

∇2gi
[
b̄, b̄
]

+ oP

(
S−2β

)
;

moreover, E
[∑n

i=1∇2gi
[
b̄, b̄
]
/n
]

= E
[
∇2gi

[
b̄, b̄
]]

and, applying Lemma 9(ii) withm (z; dγ) =

∇2g(z) [dγ, dγ], k = 2 and r = 1, Var
(
∇2Gn[bS , bS ]

)
≤ 1

nC ‖bS‖
4 = O

(
n−1S−4β

)
. To bound

the variance component, define ∇2G [γ, γ] = E
[
∇2gi [γ, γ]

]
, and write

∇2Gn[ψS , ψS ] = ∇2G [ψS , ψS ] +
1

n

n∑
i=1

(
∇2gi [ψS , ψS ]−∇2G [ψS , ψS ]

)
.

Applying Lemma 9(ii) with m (z; dγ) = ∇2g(z) [dγ, dγ] and r = 1, k = 2, we obtain that

E
∥∥∇2Gn [ψS , ψS ]

∥∥ = OP
(
S−2α2

)
.

Finally, by the same arguments as before, E
[
∇2Gn[ψS , bS ]

]
= 0 while Var

(
∇2Gn[ψS , bS ]

)
=

O(n−1S−α4) and Var
(
∇2Gn[ψS , bS ]

)
= O(n−1S−α2−2β).

Lemma 11 Under A.1-A.3, A.4(2) and A.5(4), the first and second order differentials of

Gn(θ0, γS) for the EIA in (7) yield the rates given in Theorem 2.

Proof. For the EIA, the first and second order differentials are ∇Gn [dγ] =
∑n

i=1∇gi [dγi] /n

and∇2Gn) [dγ, dγ′] =
∑n

i=1∇2gi [dγi, dγ
′
i] /n, for any dγ = (dγ1, ..., dγn) and dγ′ = (dγ′1, ..., dγ

′
n).

It is easily seen that the bias components are the same as those we derived for the ECA in

Lemma 10, and so we only consider the variance components. With Zn = (z1, ..., zn), the

mean of the first-order variance component is zero, E [∇Gn[ψS ]|Zn] =
∑n

i=1∇gi [E [ψi,S |zi]] /n =

0, while its variance satisfies, using Lemma 9.(i) with m (z, γ) = ∇g(z) [γ] (in particular,

MV
S = 0), Var (∇Gn[ψS ]) ≤ 1

nCE
[
‖ψS‖2

]
= O

(
n−1S−α2

)
. Applying Lemma 9(i) and (iii)

with m (z; dγ) = ∇2g(z) [dγ, dγ] and k = 2, the mean and the variance of the second order

differential satisfy

E
[
∇2Gn[ψS , ψS ]

]
= E

[
∇2gi [ψi,S , ψi,S ]

]
≤ CE

[
‖ψi,S‖2

]
= O

(
S−α2

)
,
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and Var
[
∇2Gn[ψS , ψS ]

]
= O(n−1S−α4). The cross term satisfies E

[
∇2Gn[ψS , bS ]

]
= 0 while

Var
(
∇2Gn[ψS , bS ]

)
= O(n−1S−α2S−2β), and so we can ignore this term since it is of lower

order.

Lemma 12 Assume that A.1-A.3, A.4(3) and A.6(6) hold. Then the rate of the remainder

term Rn,S can be sharpened to:

Rn,S = OP

(
S−3β

)
+OP

(
S−(2−µ4)

)
+O

(
S−(2−µ3)

)
+O

(
n−1/2S−(3−µ6)/2

)
.

Proof. Since the third-order differential exists, the remainder term in (6) can be further

expanded to obtain Rn,S = ∇3Gn [∆γ̂S ,∆γ̂S ,∆γ̂S ] /6 + R̄n,S where, by A.4(3) and the same

arguments used in the proof of Theorem 2, E
[∥∥R̄n,S∥∥] ≤ Ḡ0E

[
‖∆γ̂i,S‖4

]
= O

(
S−4β

)
+

O
(
S−(2−µ4)

)
. Regarding the third order term, it is easy to check that the bias component is

of order OP
(
S−3β

)
+OP

(
n−1/2S−3β

)
, by arguments similar to those used in Lemma 10.

This leaves the variance component. In the case of EIA, the variance component can be

written as ∇3Gn [ψS , ψS , ψS ] =
∑n

i=1∇3gi [ψS , ψS , ψS ] /n. By Lemma 9, we obtain:

∇3Gn [ψS , ψS , ψS ]− E
[
∇3Gn [ψS , ψS , ψS ]

]
= O

(
n−1/2S−(3−µ6)/2

)
;

given the independence between simulations,

∣∣E [∇3Gn [ψS , ψS , ψS ]
]∣∣ ≤ 1

S3

S∑
s,t,u=1

∣∣E [∇3gi [ei,s, ei,t, ei,u]
]∣∣ =

∣∣E [∇3gi [ei,s, ei,s, ei,s]
]∣∣

S2

≤ C

S2
E
[
e3
i,s

]
= O(S−(2−µ3)).

In the case of ECA, define ∇3ḡ [γ, γ, γ] = E
[
∇2gi [γ, γ, γ]

]
and write

∇3Gn[ψS , ψS , ψS ] = ∇3ḡ [ψS , ψS , ψS ] +
1

n

n∑
i=1

{
∇3gi [ψS , ψS , ψS ]−∇3ḡ [ψS , ψS , ψS ]

}
.

Applying Lemma 9.(ii) withm (z; dγ) = ∇3g(z) [dγ, dγ, dγ], the two terms areOP
(
S−(3/2−µ3)

)
and OP (n−1/2S−(3−µ6)/2) respectively.

C Details on Applications

C.1 Expansion of NPSMLE

NPSMLE is identical to SMLE except that p (= γ0) is approximated by a kernel density

estimator based on simulated ys’s, p̂S (y, x; θ) =
∑S

s=1Kh (y − ys(x, θ)) /S where ys(x, θ),
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s = 1, ...., S are i.i.d. draws from p (·|x; θ). With ∇g [dp] and ∇2g [dp, dp] given in eq. (21),

we here derive explicit expressions for the terms entering the expansion in eq. (11). First

note that this expansion is only valid if Eq. (5) holds. It is easily checked that this is the

case with m = 2 and Ḡ0 := E
[
supθ∈Θ

{
6 ‖ṗi (θ0)‖ /p3

i (θ0) + 2/p2
i (θ0)

}]
. To ensure Ḡ0 <∞,

we either have to assume that the density of covariates is bounded away from zero, or to

resort to trimming. Assume for simplicity in the following that the density is bounded away

from zero and, moreover, that it is r times differentiable w.r.t. y with its derivatives being

integrable, and a rth order kernel is being employed so that
∫
ziK (z) dz = 0, i = 1, ..., r − 1

and
∫
zrK (z) dz <∞ for some r ≥ 2; finally,

∫
K ′ (z)2 dz <∞ and

∫
K2 (z) dz <∞.

For the analysis of BS,1, note that by standard arguments for kernel estimators, with

5gi(θ) [bS ] =
hr

r!
κr

{
pθ,i (θ)

p2
i (θ)

∂rpi (θ)

∂yri
− 1

pi (θ)

∂rṗi (θ)

∂yri

}
+ o (hr) ,

and so, we obtain from eq. (9) that

BS,1 = −κr
r!
H−1

0

hr

n

n∑
i=1

b1 (yi, xi) + o (hr) = −κr
r!
H−1

0 hrE [b1 (yi, xi)] + o (hr) ,

with b1 (yi, xi) defined in eq. (23). This also implies that

Dn,S =
1

n

n∑
i=1

di,S = −κr
r!

hr

n

n∑
i=1

{b1 (yi, xi)− E [b1 (yi, xi)]}+ o (hr) .

The above analysis is valid irrespectively of whether a single simulation batch (ECA) or n

(EIA) simulation batches are used.

Next, we analyze the variance component En,S . First, consider the EIA: By Lemma

9, we obtain that Var(5Gn[ψS ]) = O
(
1/
(
nShd+2

))
. More precisely, En,S = 5Gn[ψS ] =

1
n

∑n
i=1 {aS,1,i + aS,2,i}, where aS,1,i and aS,2,i, i = 1, ..., n, are i.i.d. sequences given by, with

yi,s = ys(xi, θ0), yθ,i,s = ∂yi,s/ (∂θ), pi = pi (θ0) and so forth

aS,1,i =
1

S

S∑
s=1

pθ,i
p2
i

{Kh (yi,s − yi)− ES [Kh (yi,s − yi)]} ,

aS,2,i =
1

S

S∑
s=1

1

pi

{
K ′h (yi,s − yi) yθ,i,s − ES

[
K ′h (yi,s − yi) yθ,i,s

]}
,
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Applying standard results for kernel regression estimators,

Var (aS,1,i) =
1

S
E

[
ṗiṗ
′
i

p2
i

E
[
{Kh (yi,s − yi)− ES [Kh (yi,s − yi)]}2 |yi

]]
=

1

Shd
E

[
ṗiṗ
′
i

pi

] ∫
K (z)2 dz,

Var (aS,2,i) =
1

S
E

[
1

p2
i

E
[{
K ′h (yi,s − yi) ẏi,s − ES

[
K ′h (yi,s − yi) ẏi,s

]}2 |yi
]]

=
1

Shd+2
E

[
σ2
θ,i

pi

]∫
K ′ (z)2 dz.

Thus, En,S has mean zero and variance Var(En,S) ' E
[
σ2
θ,i/pi

] ∫
K ′ (z)2 dz/

(
nShd+2

)
. In

the case of ECA, Kristensen and Shin (2012) showed that Var(En,S) =Var(5G[es]) /S +

O
(
1/
(
nShd+1

))
.

Finally, consider BS,2: First note that

52gi [ψS , ψS ] =
2

p2
i

{
∂p̂i,S
∂θ
− E

[
∂p̂i,S
∂θ

]}
{p̂i,S − ES [p̂i,S ]} −

2pθ,i
p3
i

{p̂i,S − ES [p̂i,S ]}2 .

With m (x, εs) = ys(x, θ0) and εs being i.i.d. draws from some density fε (ε) we obtain

p (y|x) = p (y|x; θ0) = fε (r (x, y)) |ry (x, y)|, where r (x, y) denotes the inverse of m (x, ε) so

that ε = r (x, y). Then, for both ECA and EIA, with ”'” indicating that only leading terms

are included,

ES

[{
∂p̂i,S
∂θ
− E

[
∂p̂i,S
∂θ

]}
{p̂i,S − ES [p̂i,S ]}

]
' 1

S
ES
[
K ′h (m (xi, εs)− yi)Kh (m (xi, εs)− yi) ṁ (xi, εs)

]
=

1

S

∫
K ′h (y − yi)Kh (y − yi) ṁ (xi, r (xi, y)) p (y|xi) dy

=
1

Shd+1

∫
K (z)K ′ (z) dz × ṁ (xi, r (xi, yi)) p (yi|xi) ,

while, by similar arguments,

ES

[
{p̂i,S − ES [p̂i,S ]}2

]
' 1

S
E
[
K2
h (m (xi, εs)− yi)

]
=

1

Shd

∫
K2 (z) dz × pi.

Substituting the resulting expression of E
[
52gi [ψS , ψS ]

]
into eq. (9), we obtain the claimed

expression in eq. (22).
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C.2 Newton–Raphson in empirical IO

For notational simplicity, we drop the market subscript i from the notation—calculations

are done separately on each market until the last summation. We start with the identity

γ(x, γ−1 (x,m; θ) ; θ) ≡ m to obtain

∂γ

∂ξ
(x, γ−1 (x,m; θ) ; θ)

∂γ−1

∂θ
(x,m; θ) +

∂γ

∂θ
(x, γ−1 (x,m; θ) ; θ) = 0 (33)

and therefore

∂γ−1

∂θ
(x,m; θ) = −

[
∂γ

∂ξ
(x, γ−1 (x,m; θ) ; θ)

]−1 ∂γ

∂θ
(x, γ−1 (x,m; θ) ; θ).

To find expressions for the two functions on the right-hand side of the last equation, define

Qj (R) = exp(Rj)/
(

1 +
∑J

k=1 exp(Rk)
)

. Its differential is

dQj
Qj

= dRj − d log

(
1 +

J∑
l=1

exp(Rl)

)
= dRj −

J∑
l=1

QldRl. (34)

In particular, ∂νj,s/ (∂ξl) = νj,s (δjl − νl,s), where δjl is the Kronecker symbol 11(j = l).

Therefore

∂γ̂S,j
∂ξl

(x, ξ; θ) = γ̂S,j(x, ξ; θ)δjl −
1

S∗

S∗∑
s=1

νj,s(x, ξ, ε; θ)νl,s(x, ξ, ε; θ)

which can be rewritten as

∂γ̂S
∂ξ

(x, ξ; θ) =
1

S∗

S∗∑
s=1

(diag(νs(x, ξ, ε; θ))− (νs(x, ξ, ε; θ)⊗ νs(x, ξ, ε; θ)))

where diag(a) is the square matrix with the vector a on the diagonal, and ⊗ is the Kronecker

(outer) product.

To compute derivatives with respect to θ, we start with another application of (34):

∂νj,st
∂βq

(ξ; θ) = νj,s(x, ξ, ε; θ)

(
xj,q −

J∑
l=1

νl,s(x, ξ, ε; θ)xl,q

)
,

∂νj,s
∂ar

(ξ, θ) = νj,s(x, ξ, ε; θ)εs

(
xj,q −

J∑
l=1

νl,s(x, ξ, ε; θ)xl,q

)
.

Now denote, for any matrix with J rows (Xj)
J
j=1, X̂j,s = Xj −

∑J
k=1 νk,s(x, ξ, ε; θ)Xk. It
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follows that taking X to be the matrix (xjq),

∂γ̂j
∂β

(x, ξ; θ) =
1

S∗

S∗∑
s=1

νj,s(x, ξ, ε; θ)x̂j,s,
∂γ̂j
∂A

(x, ξ; θ) =
1

S∗

S∗∑
s=1

νj,s(x, ξ, ε; θ) (x̂j,s ⊗ εs) .

This gives all elements of the procedure delineated in section 6.2.

D Expansion with multiple approximators

We here generalize the theory to handle the case where multiple approximation methods are

employed. Let θ̂n satisfy a first order condition of the form

Gn(θ̂n, γ0,1, ..., γ0,M ) = oP
(
1/
√
n
)
, (35)

for some random functional Gn(θ, γ1, ..., γM ). The corresponding approximate estimator θ̂n,S

satisfies

Gn(θ̂n,S , γ̂S1,1, ..., γ̂SM ,M ) = oP
(
1/
√
n
)
.

Here, we allow for γm, m = 1, ...,M , being approximated using different methods and with

different degrees of approximations, Sm, m = 1, ...,M , which we collect in S = (S1, ..., SM ).

Collect the approximated functions in γ = (γ1, ....γM ) and assume that Gn (θ, γ) takes the

form of a sample average, Gn (θ, γ) = 1
n

∑n
i=1 g (zi; θ, γ). We assume that γ0,m belongs to

a linear function space Γm equipped with a norm ‖·‖m, m = 1, ...,M , so that γ ∈ Γ =

Γ1 × · · ·ΓM with norm ‖γ‖ =
∑M

m=1 ‖γm‖. We maintain the same notation as in the case of

one function being approximated and, for example, let Hn (θ, γ) = 1
n

∑n
i=1 h (zi; θ, γ), with

h (zi; θ, γ) = ∂g (zi; θ, γ) / (∂θ), denote the first-order derivative of the sample moments. With

the same notation, Assumptions A.1-A.3 provided in the main text remain unchanged. Next,

we generalize Assumptions A.4-A.5 to:

A.4*(m) Assumption A.4 holds with∇g (z; θ) [dγ] =
∑M

k=1∇mg (z; θ) [dγk] and∇2g (z; θ) [dγ, dγ] =∑M
j,k=1∇2

j,kg (z; θ) [dγj , dγk].

A.5*(p) For m = 1, ...,M : The approximator γ̂S,m lies in Γm and satisfies:

(ii) Its bias bS,m (z; θ) = E [γ̂S,m (x; θ)]− γ0,m (x; θ) is of order βm > 0:

bS,m (x; θ) = S−βm b̄m (x; θ) + o(S−βm).

(iii) For some p ≥ 2 and all 2 ≤ q ≤ p, there exists αm,q > 0 so that ψS,m (x; θ) =
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γ̂S,m (x; θ)− E [γ̂S,m (x; θ)] satisfies:

E [‖ψS,m (x; θ)‖q] = S−αm,qvm,q (x; θ) + o(S−αm,q).

The leading bias and variance terms take the form

BS,1 = −H−1
0

M∑
m=1

E [∇mgi[bSm,m]] , BS,2 = −1

2
H−1

0

M∑
k,m=1

E
[
∇2
k,mgi[ψSk,k, ψSm,m]

]
,

Dn,S =
1

n

n∑
i=1

di,S , di,S =
M∑
m=1

{∇mgi[bSm,m]− E [∇mgi[bSm,m]]} ,

En,S =
1

n

n∑
i=1

M∑
m=1

∇mgi[ψSm,m].

We now obtain the following expansion of the approximate estimator, which generalizes the

“univariate” version.

Theorem 13 Assume A.1-A.3, A.4*(2), and A.5*(4). Then,

θ̂n,S−θ0 = BS,1+BS,2+H−1
0 {Gn +Dn,S + En,S}+OP

(
M∑
m=1

{
S−3βm
m + S

−αm,3
m

})
+oP

(
1/
√
n
)
,

(36)

where Gn = Gn (θ0, γ0) and the two sequences (Gn, Dn,S) and En,S are asymptotically mutu-

ally independent. Moreover, the following limit results hold as n, S →∞:

•
√
n(ΩG+D

S )1/2{Gn +Dn,S}
d→ N (0, Ik) with ΩG =

∑∞
i=−∞Cov (g0, gi) and

ΩG+D
S =

∞∑
i=−∞

Cov (g0 + d0,S , gi + di,S) = ΩG +O(
M∑
m=1

S−2βm
m ).

• The bias terms have orders BS,1 = O(
∑M

m=1 S
−βm
m ) and BS,2 = O(

∑M
k,m=1

√
S
−αk,2
k S

−αm,2
m ).

• Var(En,S) = OP

(∑M
m=1 S

−αm,2
m /n

)
(EIA) or Var(En,S) = OP

(∑M
m=1 S

−αm,2
m

)
(ECA).

• If in addition Assumption A.6*(4) holds with wS,m ≡ wm not depending on S, then
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αm,2 = 1, m = 1, ...,M , and

EIA :

{
1√
nSm

n∑
i=1

∇mgi[ψSm,m,i]

}M
m=1

→d N
(
0,ΩE

EIA

)
,

EIA :

{
1√
Sm

n∑
i=1

∇mgi[ψSm,m]

}M
m=1

→d N
(
0,ΩE

ECA

)

where ΩE
EIA =

[
ΩE

EIA,km

]M
k,m=1

and ΩE
ECA =

[
ΩE

ECA,km

]M
k,m=1

with

ΩE
EIA,km = lim

S→∞

1√
SkSm

Cov

(
Sk∑
s=1

∇kg0[ek,s],

Sm∑
s=1

∇mg0[em,s]

)
,

ΩE
ECA,km = lim

S→∞

1√
SkSm

Cov

(
Sk∑
s=1

∇kG[ẽk,s],

Sm∑
s=1

∇mG[ẽm,s]

)
.

If the approximators are mutually independent, the second bias component simplifies to

BS,2 = −1

2
H−1

0

M∑
m=1

E
[
∇2
m,mgi[ψSm,m, ψSm,m]

]
= OP

(
M∑
m=1

S
−αm,2
m

)
,

and the off-diagonal elements of the covariance matrices ΩE
EIA and ΩE

ECA become zero.

Proof. By Lemma 7,

θ̂n,S − θ̂n = −H−1
0 {Gn(θ0, γ̂S)−Gn(θ0, γ0)}+ oP

(
1/
√
n
)
.

The expansion (m = 2) given in eq. (6) then yields∥∥∥θ̂n,S − θ̂n∥∥∥ = OP

(∥∥∥∥∇Gn(θ0) [∆γ̂S ] +
1

2
∇2Gn(θ0) [∆γ̂S ,∆γ̂S ] +Rn,S

∥∥∥∥)+oP
(
1/
√
n
)
, (37)

where∇Gn(θ0) [dγ] =
∑M

m=1∇mGn(θ0) [dγm],∇2Gn(θ0) [dγ,∆γ] =
∑M

k,m=1∇2
k,mGn(θ0) [dγk, dγm],

and ∆γ̂m,Sm = γ̂m,Sm − γm,0. The rate of the remainder term Rn,S follows by the same argu-

ments as before, E [‖Rn,S‖] ≤ Ḡ0
n

∑n
i=1E[‖∆γ̂S‖3], where

E[‖∆γ̂S‖3] ≤ 4
M∑
m=1

{
E
[
‖ψSm,m‖

3
]

+ 4E
[
‖bSm,m‖

3
]}

= O

(
M∑
m=1

{
S
−αm,3
m + S−3βm

m

})
.

The rate of∇mGn(θ0) [∆γ̂Sm,m] follow directly from Lemma 10 while∇2
k,mGn(θ0) [∆γ̂Sk,k,∆γ̂Sm,m]

is analyzed by a simple extension of the arguments employed in the single-approximator

case. More specifically, Lemma 9 still applies and yields Var
(
∇2
k,mGn(θ0)[bSk,k, bSm,m]

)
=
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O(n−1S−βkk S−βmm ), for k,m = 1, ...,M . To bound the variance component, apply Lemma 9 to

obtain that E[||∇2
k,mG(θ0)[ψSk,k, ψSm,m]]||] = OP

(
S
−αk,2
k S

−αm,2
m

)
, E
[
∇2
k,mGn[ψSm,m, bSk,k]

]
=

0 while Var
(
∇2Gn[ψSk,k, bSm,m]

)
= O(n−1S

−αk,2
k S−2βm

m ), for k,m = 1, ...,M . The weak con-

vergence results follow by the same arguments as in the proof of Theorem 2.

The analytical bias adjustments proposed in Section 5 straightforwardly generalize to the

above set-up by simply setting

∇2g(zi; θ, γ̂S)[ψ̂i,S , ψ̂i,S ] =

M∑
k,m=1

∇2
k,mg(zi; θ, γ̂S)[ψ̂i,Sk,k, ψ̂i,Sm,m],

∇2g(zi; θ, γ̂S)[êi,s,S , êi,s,S ] =
M∑

k,m=1

∇2
k,mg(zi; θ, γ̂S)[êi,s,Sk,k, êi,s,Sm,m]

in eqs. (16) and (17), respectively. If the M approximators are mutually independent, the

cross terms in the above double sums can be left out. The adjustments of the standard errors

also remain valid when using the definitions of ∇g (z; θ0) [dγ] and ∇2g (z; θ0) [dγ, dγ] given in

A.4*. Finally, the Newton-Raphson procedure will still work with S∗ = (S∗1 , ..., S
∗
M ) where

S∗m > Sm, m = 1, ...,M .

E Tables and Figures

τ
√
nσ̂ S times bias

a s b a s b

1 7.2 17.1 2.4 −9.0 −23.2 −0.0
2 6.7 10.8 2.8 −8.2 −13.3 −0.0

Table 1: Rescaled asymptotic standard errors and simulation biases

τ S SML SML+Newton SML+AA

50 2.3 6.7 2.3
1 100 3.8 11.9 3.9

200 6.6 21.6 6.8
500 17.3 – 17.7

50 2.1 6.5 2.2
2 100 3.6 11.7 3.8

200 6.3 21.3 6.6
500 16.7 – 17.2

Table 2: Mean CPU time (seconds per sample)
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τ S SML SML+Newton SML+AA

50 −0.133 −0.089 0.004
1 100 −0.078 −0.039 0.000

200 −0.041 −0.014 0.000
500 −0.017 – 0.000

50 −0.133 −0.051 0.010
2 100 −0.069 −0.016 −0.016

200 −0.033 0.003 0.006
500 −0.010 – 0.006

Table 3: Mean error on a

τ S SML SML+Newton SML+AA

50 −0.364 −0.217 0.011
1 100 −0.206 −0.093 0.000

200 −0.109 −0.033 0.001
500 −0.045 – 0.001

50 −0.214 −0.064 0.021
2 100 −0.110 −0.018 −0.018

200 −0.051 0.010 0.013
500 −0.013 – 0.013

Table 4: Mean error on s

τ S SML SML+Newton SML+AA

50 0.139 0.095 0.041
1 100 0.083 0.043 0.028

200 0.046 0.019 0.020
500 0.021 – 0.013

50 0.136 0.053 0.032
2 100 0.072 0.020 0.020

200 0.036 0.010 0.016
500 0.014 – 0.012

Table 5: RMSE on a
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τ S SML SML+Newton SML+AA

50 0.379 0.234 0.107
1 100 0.219 0.103 0.074

200 0.121 0.044 0.053
500 0.056 – 0.033

50 0.219 0.068 0.056
2 100 0.115 0.025 0.025

200 0.056 0.019 0.029
500 0.021 – 0.022

Table 6: RMSE on s

τ S SML SML+Newton SML+AA

50 29.5 63.1 96.1
1 100 68.7 86.7 95.2

200 85.9 92.6 94.9
500 92.7 – 94.5

50 25.3 84.2 94.9
2 100 69.7 93.5 95.4

200 87.2 95.4 95.6
500 92.9 – 94.6

Table 7: Actual coverage probabilities for a

τ S SML SML+Newton SML+AA

50 23.2 63.7 96.7
1 100 66.0 87.9 96.1

200 86.6 93.3 95.6
500 92.9 – 94.3

50 23.6 87.9 95.1
2 100 69.0 94.0 95.3

200 87.3 95.1 95.2
500 93.0 – 94.6

Table 8: Actual coverage probabilities for s
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Figure 1: Distributions of the t statistics for (H0): a = 1
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Density of t statistic for s
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Figure 2: Distributions of the t statistics for (H0): s = 1
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