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Fig. 1. We present an image-based method to reconstruct wire objects from a few input images (3 views in our experiments). Our reconstructions faithfully
capture both the 3D geometry and the topology of the wires.

Objects created by connecting and bending wires are common in furniture
design, metal sculpting, wire jewelery, etc. Reconstructing such objects with
traditional depth and image based methods is extremely difficult due to their
unique characteristics such as lack of features, thin elements, and severe
self-occlusions. We present a novel image-based method that reconstructs a
set of continuous 3D wires used to create such an object, where each wire is
composed of an ordered set of 3D curve segments. Our method exploits two
main observations: simplicity - wire objects are often created using only a
small number of wires, and smoothness - each wire is primarily smoothly
bent with sharp features appearing only at joints or isolated points. In light of
these observations, we tackle the challenging image correspondence problem
across featureless wires by first generating multiple candidate 3D curve
segments and then solving a global selection problem that balances between
image and smoothness cues to identify the correct 3D curves. Next, we
recover a decomposition of such curves into a set of distinct and continuous
wires by formulating a multiple traveling salesman problem, which finds
smooth paths, i.e.,wires, connecting the curves. We demonstrate our method
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on a wide set of real examples with varying complexity and present high-
fidelity results using only 3 images for each object.
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1 INTRODUCTION
Wire art is an ancient art form that refers to creation of complex
shapes by bending and connecting wires. First introduced by the
Egyptians around 3000 BC (Ogden 1991), wire art is today practiced
both by expert designers and hobbyists and is common in furni-
ture design, metal sculptures, jewellery making, etc. Unlike other
surface-based objects, wire-based compositions are fundamentally
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Fig. 2. While commodity depth sensors, such as the Microsoft Kinect, fail to
provide reliable depth data for wire objects (notice how most of the flower is
perceived to be planar), PMVS (Furukawa and Ponce 2010), a state-of-the-art
multi-view stereo (MVS) method, generates a noisy and partial point cloud.
Curve skeleton extraction methods (L1 medial axis (Huang et al. 2013)) are
limited when applied to such MVS output.

different as they consist entirely of 1D elements with ‘surfaces’ be-
ing perceptually filled in. This renders such objects more intriguing
and creates a desire to digitize them to enrich virtual worlds.
Digitizing wiry objects remains a challenging problem, even

though a multitude of depth and image based reconstruction meth-
ods exist. Such objects are composed of multiple thin wire structures
that occlude each other and are thus difficult to scan even with high-
end scanners. Moreover, the resolution of commodity depth sensors,
such as the Microsoft Kinect, is insufficient to produce reliable depth
data for thin features (see Figure 2). Therefore, we resort to image-
based methods which provide higher resolution at a low-cost and a
flexible acquisition process. While significant advances have been
made in the domain of image based methods, there are two funda-
mental problems in reconstructing wiry objects that we address in
this work.
Correspondence problem. The success of any image based re-

construction method depends on detecting reliable correspondences,
i.e., identifying points across images that correspond to the same
3D point in the physical world. The correspondence problem is
especially challenging in the case of wiry objects due to the lack of
distinctive image features along thin wires of uniform color. As a
result, traditional multi-view stereo (MVS) approaches suffer from
significant noise and missing data (see Figure 2). Moreover, the re-
sulting reconstructions have only a low level representation, i.e.,
point clouds, without a global curve topology required for a faith-
ful representation. Although there exist methods to extract curve
skeletons from an input point cloud (Huang et al. 2013), the amount
of noise in MVS output renders such methods impractical as shown
in Figure 2.
We side-step from the issues of point-level correspondences by

utilizing high order curve primitives for image matching. In the
absence of distinctive image features, we rely on epipolar cues to
find matches among 2D curve segments detected in each input
view. For each 2D curve segment detected in a reference view, there
are potentially multiple 2D curve segments in another view that
satisfy the epipolar constraints (Hartley and Zisserman 2004). The
number of conforming candidate matches is especially high for
wiry objects, which lack surface patches to hide the wires that are
in the background. In other words, curves at various depths are
simultaneously visible in each image and so result in prohibitively

many candidate matches (in our experiments, for each 2D curve
segment, we typically get 3-4 candidate matches).While it is possible
to locally choose one of these candidate matches based on a data
cost, e.g., by measuring the reprojection error of each selected 3D
curve segment to the input images, we observe that this is not
sufficient to resolve all the ambiguities (see Figure 7). Instead we
propose a strategy that explores an additional smoothness cost that
favors consecutive 3D curve segments with smooth angles and small
gaps. We formulate a global selection problem to choose the desired
3D curve segments from a set of candidate 3D curve segments by
balancing between the data and smoothness costs.
Wire decomposition. Once we construct a set of 3D curve seg-
ments, the next critical step is to recover the global topology of these
segments and obtain a decomposition of the input object into a set
of continuous wires. We observe that objects made of many pieces
of wires are often not stable and difficult to assemble, especially
for hobbyists. On the other hand, bending only a single piece of
wire to create sharp edges is also hard. In light of these observa-
tions, we define a graph where each (estimated) 3D curve segment
is represented by a vertex and vertices are linked by edges that are
assigned costs based on the angle and the distance between the
curves they connect. We then formulate an instance of the multiple
traveling salesman problem over this graph to find low-cost path(s)
connecting all the graph vertices, where each vertex is covered by
exactly one path. By associating a cost to each introduced new path,
we balance between smoothness (i.e., low cost paths) and simplicity
(i.e., as few paths as possible).

Having discovered the global curve topology, we perform a final
refinement step to fit a cubic B-spline to each 3D wire. We optimize
for the parameters of the splines so that consecutive curve segments
along a path are smoothly connected and the reprojection error to
the input images is minimized. This refinement step helps to fill
small gaps along paths caused by insufficient image information
and results in high fidelity reconstructions as shown in Figure 1.
Such reconstructions enable easy manipulation or recreation using
wire bending machines (Miguel et al. 2016).

We evaluate our method on a variety of real and synthetic exam-
ples composed of both single and multiple wires. We also provide
comparisons with general purpose reconstruction methods and
demonstrate superior results (see Figure 8 and Section 6). Our main
contribution is a practical and effective method that reconstructs
wiry objects from a very few input images (3 in all the presented
examples). To our knowledge, no previous method can reconstruct
wire sculptures at the complexity of our examples. Our method
makes this possible by utilizing high order curve primitives and
exploring global (i.e., smoothness and simplicity) as well as local
data cues.

2 RELATED WORK
Our work builds up on previous methods related to curve-based
structure-from-motion and multi-view stereo as well as modeling
of delicate structures from images and point clouds.
Modeling of delicate structures. With the many advances in ac-
quisition technologies (e.g., structured light, LiDAR, and more re-
cently commodity depth sensors), we have seen substantial progress
in the area of surface reconstruction (Berger et al. 2014) to extract
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high fidelity surfaces from input data. An equally important prob-
lem is to improve the acquisition experience in terms of data cov-
erage (Yan et al. 2014), quality (Wu et al. 2014), and speed (Fan
et al. 2016). These methods, however, focus on objects with smooth
surfaces while scanning thin wires remains challenging due to the
limited sensor resolution. In the specific case of objects with deli-
cate structures, several automatic and interactive modeling methods
have been presented. Li et al. (2010) introduce the deformable model
arterial snakes to reconstruct such objects from high-quality dense
3D scans. An alternative approach is to fit generalized cylinders to
image data (Chen et al. 2013) or point clouds (Yin et al. 2014) where
the fitting process is guided by a skeleton either defined manually
as in 3-Sweep (Chen et al. 2013) or extracted automatically (Huang
et al. 2013). However, thet fact that wire objects do not have suffi-
cient thickness makes it extremely challenging for a user to define a
section plane or a non-planar extrusion curve in a 2D image manu-
ally. Furthermore, 3D point data (e.g., obtained by MVS algorithms)
is not reliable enough to automatically detect curve skeletons as
we show in our evaluations. Martin et al. (2014) present a method
to reconstruct thin tubular structures from a dense set of images
using physics-based simulation of rods to improve accuracy. They
use a 3D occupancy grid to disambiguate 2D crossings of cables.
However, unlike the clean distribution of occupied cells obtained for
cable structures, for typical wiry objects such a grid is very noisy:
due to lack of surface occlusion, wires from the front and back of
an object are simultaneously visible in each view and this results in
ambiguities. Our method recovers the topology of the wires in this
challenging case by using a global optimization.
More recently, some approaches to designing wire objects have

been proposed with a specific focus on fabricating these designs.
Iarussi et al. (2015) tackle the problem of extracting the topology
of a wire jewelry from a single drawing. However, their method as-
sumes that the curves are planar and fully visible in the single image
input. Miguel et al. (2016) present an interactive system to convert a
closed surface mesh to a self-supporting wire sculpture. While both
approaches explore similar characteristics of wire objects, e.g., sim-
plicity, they fundamentally focus on a different problem of bringing
digital designs into life. Thus, our approach is complementary and
can provide input to these methods.
Curve-based Structure-from-Motion. In recent years, a multi-
tude of successful structure-from-motion (SfM) (Snavely et al. 2006;
Wu et al. 2011a) and multi-view stereo (MVS) (Furukawa and Ponce
2010; Goesele et al. 2007) algorithms have been developed. These
methods work on the general principle of identifying point cor-
respondences across images that represent the same world-space
surface locations. While these methods produce impressive results
for objects with reliable texture information, they perform poorly
when there are insufficient discriminative point features. Some re-
searchers have tackled this limitation by exploring the presence of
higher order features such as lines (Baillard et al. 1999; Hofer et al.
2014, 2013; Jain et al. 2010) and curves (Xiao and Li 2005). We refer
the reader to the recent work of Fabbri et al. (2016) for a theoretical
foundation of the multi-view geometry properties of curves.
Curve-based reconstruction methods can be grouped according

to the simplifying assumptions they make: Berthilsson et al. (2001)

assume that each 3D curve is fully visible in each view with no self-
occlusions; Hong et al. (2004) focus on reflective symmetric curves
that are fully visible in one or two images; assuming access to
the range of depth values in the reconstructed scene, Kahl and
August (2003) assign depth values to 2D curves, while Teney and
Piater (2012) design a probability distribution to model the space
of plausible curve reconstructions. Rao et al. (2012) explore known
correspondences between endpoints of planar curves to develop a
curve-based SLAM (simultaneous localization and mapping) system.
Similarly, Nurutdinova et al. (2015) assume that image curves are
already in correspondence and optimize for both camera calibration
and parameters of the reconstructed space curves.

In the absence of prior knowledge, a typical workflow, which we
also adopt, is to first detect 2D curve segments in each image and
then utilize epipolar constraints to generate hypotheses of corre-
sponding curves across image pairs. This process typically results
in multiple ambiguous matches and an additional view is required
for verification (Robert and Faugeras 1991). Recent work (Fabbri
and Kimia 2010; Usumezbas et al. 2016) uses this workflow to recon-
struct curvilinear structures in general scenes requiring a dense set
of images. Our work, in contrast, reconstructs wireframe objects
from as few as three input views.

All the above mentioned previous works obtain a reconstruction
in the form of individual curve segments, which possibly suffers
from noisy measurements and gaps. Instead, we globally extract
continuous curve paths to produce more faithful representations of
wire objects. A similar path finding approach has been proposed in
the context of medical imaging (Delmas et al. 2015); however, no
previous approach has demonstrated results at the complexity of
the examples we show.

3 OVERVIEW
The input to our algorithm is a set of n (in our experiments n =
3) images, I = {I1, . . . ,In }, of a 3D wire model captured from
different viewpoints along with their camera parameters, K =

{K 1, . . . ,K n }. The output of our method is a set of k reconstructed
3D wiresW = {W1, . . . ,Wk }, where each wire is a continuous
path represented as a B-spline curve. We provide an overview of
this pipeline in Figure 3.

In a pre-processing stage, we extract a set of 2D curve segments
in each image. Specifically, we first convert the images to the YCbCr
color space with histogram equalization on Y-channel (luminance
component) to increase the contrast of the wire regions relative to
the image background. Then, starting from an arbitrary pixel in the
perceived wire region, we utilize a flooding method to extract all
the connected pixels that have a similar color and apply a thinning
algorithm to extract a one-pixel wide curve. Finally, we decompose
each such curve into segments such that no curve segment contains
any joint or branching point (Kovesi 2017). As a result, for each
image I j , we obtain a set of 2D curve segments denoted as cj = {c ji }.
Given a set of 2D curves extracted from each image, our first

goal is to generate a corresponding set of candidate 3D curve seg-
ments. To accomplish this goal, we establish continuos correspon-
dences between matching 2D curve segments from different images.
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input images & 2D curves 3D Curve Reconstruction (Section 4) 3D Wire Decomposition (Section 5)

3D candidate curve generation 
(Section 4.1)

3D curve selection 
(Section 4.2) recovered curve ordering

Fig. 3. Given a set of input images of a wire object, our method first detects 2D curve segments in each image. We then generate a set of candidate 3D
curve segments corresponding to each 2D image curve (Section 4.1) and solve a global selection problem to choose one 3D curve from each candidate set
(Section 4.2). Finally, we recover the global topology of the 3D curve segments (as denoted by the dashed red arrows) and decompose the object into a set of
continuous wires (Section 5). We show this final reconstruction both in 3D and also how its projection (in red) aligns with the original image curves (in black).

input 3D output

We use a conservative
strategy when decompos-
ing 2D curves in each im-
age into segments free of
branching points to ensure
that no 2D curve segment
contains projections of dis-
joint 3D curves. The red
highlighted region in the
inset figure shows an example, where each 2D curve segment is de-
noted with a different color. Some of the branching points detected
in the images may have been created due to self-occlusions and sep-
arate 2D curve segments that are projections of a single continuous
3D curve. While this conservative decomposition strategy results
in the loss of such continuity relations, they are recovered in the
subsequent stages of our algorithm. For example, the final 3D result
shown in the inset consists of a single continuous wire.
For each 2D curve segment c ji detected in a reference view I j ,

we generate a set of candidate 3D curve segments by establishing
correspondences with 2D curve segments in a neighboring view
that satisfy the epipolar constraints (Section 4.1). Once such sets of
candidate 3D curve segments are generated for all views, we formu-
late a global selection problem that solves a quadratic optimization
problem to choose one 3D curve segment from each candidate set
(Section 4.2). This optimization not only minimizes the re-projection
error of a selected 3D curve segment with respect to each view but
also favors consecutive 3D curve segments that form smooth angles.
As a result, we select a set of 3D curve segments, denoted as Copt.

Next, to extract a global curve topology among the individual
and disjoint 3D curve segments in Copt, we solve a multiple travel-
ing salesman problem (mTSP) to identify continuous and smooth
paths such that each 3D curve segment is contained in exactly one
path (Section 5). Each such path corresponds to a continuous wire
composed of a sequence of 3D curve segments which are a subset
of Copt . Finally, for a smooth and compact representation, we rep-
resent each wire as a smooth cubic B-spline curve and optimize for
its parameters using a fitting procedure to minimize its projection
error with respect to the input images.
Next, we describe the respective steps in detail.

4 3D CURVE RECONSTRUCTION
The 3D curve reconstruction step of our method first generates a set
of candidate 3D curve segments and then solves a global selection
optimization to identify the correct 3D curves among these candi-
dates. Without loss of generality, we first explain this process for a
given pair of reference and neighboring views (Ir ,In ) and then
describe how it can be easily extended to multiple views.

4.1 3D Candidate Curve Generation
Given a set of curve segments cr = {cri } detected in a reference view
Ir , we represent each cri as a sequence of densely sampled image
points,pri, j , j = 1, 2, . . . , s . For each cri , starting from the first sample
point pri,1, we compute its corresponding epipolar line, lr→n

i,1 , in a
neighboring view In . Each epipolar line lr→n

i,1 is likely to intersect
multiple disjoint 2D curve segments in In , each being a possible
match for cri (see Figure 4) 1. We expect the epipolar lines corre-
sponding to consecutive sample points pri, j to result in intersections
with the same set of candidate matching curve segments due to the

1We note that there may be degenerate cases where an epipolar line is locally almost
parallel to a 2D curve segment making it difficult to compute robust intersections. We
refer the reader to the Appendix for a discussion of how we handle these cases.

p
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p
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I r I n
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R1

R2

(reference view) (neighboring view)

epipole
l i,1

r   n

l i,j
r   n

l i,s
r   n

Fig. 4. We show a 2D curve segment cri in Ir along with sample points (pri,1,
pri, j , p

r
i,s ) and their corresponding epipolar lines (l r→ni,1 , l r→ni, j , l r→ni,s ) in In .

Epipolar lines corresponding to sample points between pri,1 and p
r
i, j result

in two intersection points in In (R1) and generate two candidate matching
2D curve segments (pink and purple). Starting with pri, j , epipolar lines result
in three intersection points (R2). Thus we break cri into two segments at pri, j
such that for the segment between pri, j and p

r
i,s three candidate matching

2D curve segments (pink, blue, and orange) are generated.
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I q

I q

viewport

Fig. 5. Given a candidate 3D curve segment, we project it to a third view
Iq and find the 2D curve segment in Iq that has the smallest aggregated
closest point distance with its projection. We compute a confidence cost for
the 3D curve segment which measures both the distance and the angular
deviation between such closest points. 3D curve segments (in orange) which
receive a high confidence cost can be pruned, while others (in blue) are kept
as a candidate.

continuity of image curves. Thus, we trace out these intersections
as long as the number of intersections for consecutive sample points
stays constant. If we reach a sample point pri, j on c

r
i whose epipolar

line intersects a different number of 2D curve segments in In (e.g.,
due to a discontinuity resulting from self-occlusions), we break cri
into two segments consisting of sample points {pri,1,p

r
i,2, . . . ,p

r
i, j−1}

and {pri, j ,p
r
i, j+1, . . . ,p

r
i,s }, respectively. By repeatedly tracing the

intersection points of the consecutive epipolar lines and splitting
cri as necessary, we obtain a resulting set of 2D curve segments cr
in Ir , where for each cri we have a set of matching candidate 2D
curve segments cr→n

i, j , j = 1, 2, . . . ,m in the neighboring view In .
Given a curve segment cri in Ir and its candidate matching curve

segments cr→n
i, j in In , j = 1, 2, . . . ,m, we generate a set of 3D curve

segments Cri, j , j = 1, 2, . . . ,m, each represented by a sequence of
3D points reconstructed by triangulating the corresponding sample
points in Ir and In . Each Cri, j is potentially the correct 3D curve
segment for cri ∈ I

r and is also compatible with In by construction.
We use a third view Iq to help asses the likelihood of each ofCri, j to
be the correct 3D curve segment corresponding to cri (see Figure 5).
In particular, we project each Cri, j to I

q and find the 2D curve
segment in Iq that is closest to its projection. We compute this clos-
est 2D curve segment by establishing closest point correspondences
between each sample on the projection ofCri, j and the sample points
on each c

q
o ∈ I

q and choosing the cqo that results in the smallest
aggregated distance between such correspondences. Given a set of
point correspondences (u,v ), where u lies along the projection of
the 3D curve segmentCri, j to I

q andv is its closest point correspon-
dence on the 2D curve segment cqo ∈ Iq , we compute a confidence
cost, S (Cri, j ), as:

S (Cri, j ) =

∑
(u,v )

((
∥u −v ∥/diaд(Iq )

)
+

(
1 −|tu · tv |

))
s

, (1)

where we measure both the distances between the corresponding
points and the deviation between their tangential directions, (tu , tv )
(see Figure 5). We normalize the distance measures by the length of
the diagonal of the image, diaд(Iq ), and normalize the aggregated
distance and tangential deviation by s , the number of sample points
on Cri, j . This confidence cost is used in the subsequent stage of our
method to identify the correct 3D curve segments.

4.2 3D Curve Selection
In the previous step, for each 2D curve segment cri , we reconstruct
a set of 3D curve segments, Cr

i = {C
r
i, j }, composed of multiple

candidates satisfying the epipolar constraints (see Figure 6) (in our
experiments we often have 3-4 candidates for each curve segment).
Next, we explore two type of cues to choose one 3D curve segment
for each cri as its true 3D proxy. First, for each cri , we want to se-
lect the 3D curve segment that matches image observations well.
However, due to many self-occlusions, image observations alone
are not sufficient to resolve all the ambiguities. Therefore, we also
explore pairwise relations between 3D curve segments. Since the
true 3D curve segments are assumed to be taken from an object
created by bending continuous wires, consecutive curve segments
along this wire are smoothly connected. Thus, pairs of nearby 3D
curve segments with smooth angles are more likely to exist together,
which provides an effective pairwise cue. We formalize these cues
in an optimization problem as follows. First, for ease of notation,
we denoteAr = ∪iCr

i , the union of all candidate 3D curve segment
sets Cr

i . For each 3D curve segment inAj ∈ A
r , we define a binary

indicator variable x j where x j = 1 if the corresponding curve seg-
ment is selected and x j = 0 otherwise. We denote by X the vector
formed by concatenating all such binary variables. Since, our goal

2D curve segments
in reference view

candidate
3D curve segments

selected 
3D curve segments

Fig. 6. After the 3D candidate curve generation step, for each 2D curve
segment we obtain multiple candidates (e.g., for the highlighted 2D curve
segment, we obtain 3 candidate curves in 3D (in pink)). The 3D curve selec-
tion process identifies the correct 3D curve among such candidates solving
a global selection problem.

candidate
3D curve segments

3D curve selection
with smoothness

3D curve selection
without smoothness

Fig. 7. For a given set of candidate 3D curve segments, using only the unary
data term results in the selection of many wrong 3D curve segments. This
shows the necessity of a global optimization with additional smoothness
priors.
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is to select only one 3D curve segment from each candidate set, we
define the linear constraint,

∑
Aj ∈Cr

i
X(j ) = 1 for each Cr

i .
We evaluate the compatibility of each 3D curve segment using the

confidence cost defined in Equation 1. We concatenate the confidence
scores of all the 3D curve segments Aj ∈ A

r in a vector U such
that Uj = S (Aj ).

Next, in order to evaluate the pairwise relations between 3D curve
segments Ai and Aj , we define a pairwise cost d (Ai ,Aj ):

d (Ai ,Aj ) = e (Ai ,Aj ) + µ f (Ai ,Aj ). (2)

e (Ai ,Aj ) measures the distance in 3D between the closest end-
points of Ai and Aj and f (Ai ,Aj ) = (1 − cosα )/2, where α is
the angle between the tangent directions of these closest endpoints.
Here µ denotes the relative importance between the distance and
angle terms (µ = 1 in our experiments). We aggregate all pairwise
relations in a square matrix V of dimension b × b where b is the
cardinality of Ar (i.e., the total number of candidate 3D curve seg-
ments). We set Vi j = d (Ai ,Aj ) for all non-diagonal entries and set
the diagonal entries to zero.

Given U and V, we optimize for X⋆ that minimizes the following:

X⋆ := argmin
X

UTX + λXTVX,

subject to ∀Cr
i :

∑
Aj ∈Cr

i

X(j ) = 1 (3)

where λ determines the relative weighting of the unary and binary
cues and is set to 0.1-0.2 in our experiments (based on thickness
and size of the object). We solve Equation 3 using the quadratic
programming package in Matlab (The MathWorks 2016) and obtain
an optimized set of 3D curve segments Copt which contains exactly
one 3D curve segment as the true 3D proxy for each 2D curve
segment cri .
While it is possible to solve Equation 3 over all of the candidate

3D curve segments, in cases where this becomes computationally
inefficient (due to a very large number of unknowns), it is possible
to employ a pruning strategy where 3D curve segments with a con-
fidence cost greater than a threshold (1.5-2 in our experiments) are
pre-filtered. Finally, in order to show the importance of utilizing
both unary and binary cues, for a given set of candidate 3D curve
segments, we solve Equation 3 twice, with and without the binary
term. As shown in Figure 7, using only unary terms results in selec-
tion of many wrong candidates. This proves the effectiveness of our
global selection strategy.

4.3 Taking Alternative Reference Views
We have described the 3D curve segment reconstruction step that
generates 3D candidate curves from a pair of reference and neighbor
views and uses a third view for verification. When there are more
views, we utilize an incremental reconstruction strategy. Starting
from a pair of reference and neighbor views, we reconstruct a set
of 3D curves for each 2D curve segment in the reference view as
just described. We then choose a new view as reference view and
find a compatible neighboring view (a view with a good range of
parallax as proposed by Goesele et al. (2007)). We project all the 3D
curve segments reconstructed so far to the reference view and mark
all (parts of) 2D curve segments that are covered by a projection

as processed. A 2D curve segment is considered to be covered by
a projection of a 3D curve segment if the aggregated distance and
tangent deviation between the closest points among the 2D segment
and the projection is below a certain threshold (0.02-0.05% compared
to bounding box diagonal). We perform the same reconstruction
step for all the unprocessed 2D curve segments in the new reference
view. We repeat this step until all views have been considered as a
reference view.

5 3D WIRE DECOMPOSITION
Once we have constructed a set of 3D curve segments, Copt, as
explained in the previous section, our next goal is to recover the
global topology of these curves and decompose them into a set
of distinct continuous wires. To perform this decomposition, we
exploit two unique features of wire objects we consider as input.
First, such objects are often composed of only a small number of
wires because it is not trivial to stably connect many pieces of wires.
Second, it is hard to bendwires to create sharp angles due to physical
resistance. Therefore, we expect each output wire to be as smooth as
possible. In light of these considerations, we formulate the 3D wire
decomposition as a multiple traveling salesman problem (mTSP) as
described in the following.

Given the set of 3D curve segments, Copt = {Ci }, i = 1, 2, ...b, we
construct a directed graphG = (V, E), where each Ci is represented
as a vertexVi ∈ V . We define an additional start node,V0, such that
each path defined over this graph starts and ends at this node. A
directed edge ei j ∈ E going from the node Vi to Vj is assigned a
costwi j based on the pairwise relation between the corresponding
3D curve segments Ci and Cj . Precisely,wi j = d (Ci ,Cj ) as given in
Equation 2. The edge costs are defined symmetrically, i.e.,wi j = w ji .
Given G = (V, E), our goal is to find k distinct paths that start

and end at V0 such that each Vi (i > 0) is contained in exactly one
path. Each of these paths corresponds to a continuous 3D wire used
to create the input wire model. Since each path is uniquely defined
by the edges it is composed of, each edge ei j ∈ E is assigned a
binary variable xi j : xi j = 1 if ei j is contained in a path and xi j = 0
otherwise. Furthermore, each node Vi ∈ V is assigned an auxiliary
integer variable ui ∈ N to denote the order in which Vi is visited
along a path, u0 = 0 for the dummy start nodeV0. We formulate our
path finding problem as minimizing the total cost of the selected
edges and the number of paths:

{k⋆,x⋆i j } := argmin
{k,xi j }

∑
i, j

xi jwi j + ξk̇ . (4)

ξ is a fixed cost associated with using a unique path. In order to
ensure each path is valid (i.e., each vertex is visited by exactly one
path and no path is composed of disconnected cycles), Equation 4
is solved subject to the following constraints.

To ensure each nodeVi (i > 0) is visited by a path, exactly one of
the incoming and outgoing edges of a node needs to be selected in
the solution:

∀i > 0 :
∑
j, j,i

x ji = 1,

∀i > 0 :
∑
j, j,i

xi j = 1. (5)
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Each of the k paths is required to start and end at the start node V0:∑
j, j>0

x j0 = k,∑
j, j>0

x0j = k . (6)

In order to avoid paths composed of disconnected cycles, subtour
elimination constraints as proposed by Kara and Bektas (2006) are
defined:

∀i > 0 :
ui + (b − 1 − k )x0i − xi0 ≤ b − k,

ui + x0i ≥ 2,
∀i, j > 0, i , j :
ui − uj + (b − k + 1)xi j + (b − 1 − k )x ji ≤ b − k . (7)

We use the Gurobi optimization package (Gurobi Optimization
2016) to solve the binary-integer optimization problem given in
Equation 4 with respect to the constraints defined in Equations 5, 6,
and 7. As a result, we obtain a set of k continuous wires,W =

{W1, . . . ,Wk }, where eachWi is composed of an ordered set of
3D curve segments.

We note that ξ , the cost of using a unique wire, provides a trade-
off in the number of wires included in a decomposition. Increasing
this cost prefers decompositions composed of fewer wires. In our
experiments, we found setting ξ = 1/8th of the maximum edge cost
provides a good balance. We also experimented with optimizing
Equation 4 with known number of wires, i.e. manually setting k .
In the special case of k = 1 (i.e., for objects composed of a single
wire), this formulation reduces to the standard travelling salesman
problem where the goal is to find a single path that visits each node.
Finally, while Equation 4 can be optimized over a fully connected
graph G, some edges with very high costs can be pre-pruned for
better computational efficiency.

Image-guided Curve Smoothing
At this stage, we have fully recovered all the 3D proxy information
we need to represent the input object. Due to instabilities in lifting
very small 2D curve segments to 3D, there may be small gaps be-
tween the 3D curve segments along a given wire decomposition.
Thus, in a final stage, we represent each wireWi with a cubic B-
spline and optimize for its parameters so that the projection of the
resulting 3D wire matches the image observations. In particular
given a wireWi , we represent it as:

Wi = B (t ) =

д∑
j=1
Xjϕ j (t ), (8)

whereXj are the control points and ϕ j are fixed cubic B-spline basis
functions. If the total number of points sampled along all the 3D
curve segments contained inWi is h, we define д = h/10 control
points. We first fit a B-spline to the set of all sample points alongWi
with each sample point ua , a = 1, 2, . . .h associated with a fixed
parameter value along this spline, B (ta ), 0 ≤ ta ≤ 1.

Given this initial B-spline fitting curve in 3D, we next perform an
iterative optimization to obtain a refined set of control points X⋆

j

that minimizes the following energy:

X⋆
j := argmin

Xj

h∑
a=1

n∑
o=1




K
o (B (ta )) − p

o



2
+

ω
h−1∑
a=2




B (ta−1) − 2B (ta ) + B (ta+1)




2
. (9)

The first term minimizes the distance between K o (B (ta )), the
projection of a 3D sample point ua to image Io , and its closest
point correspondence po ∈ Io . We project each sample point to
the images it is visible in. The second term imposes a Laplacian
smoothness penalty between consecutive sample points and ω (set
to 103 in our experiments) defines the relative importance between
the data and smoothness terms.
We solve Equation 9 in an iterative manner, re-establishing the

correspondences between the projections of 3D sample points and
2D sample points in the images at each iteration. Typically, this
process converges in 5-15 iterations and the resulting B-spline rep-
resentation of each wire is free of gaps and provides an accurate,
smooth, and compact reconstruction of the object.

6 RESULTS
We evaluate our method on a wide set of examples with varying
complexity. For each of these examples we utilize 3 images of the
wire object taken from different viewpoints as input, together with
their camera parameters. We use the open-source structure-from-
motion (SfM) tool, VisualSFM (Wu 2011; Wu et al. 2011b), to obtain
the camera parameters in a pre-calibration step. Note that we make
use of nearby textured objects to ensure that a sufficient number of
image correspondences are detected for reliable SfM computation.
For each of our examples, we provide a sample input image

and a rendering of our final reconstruction in Figure 8 and refer
to the accompanying video and supplementary material for more
closeups. Our examples have varying complexities, each being com-
posed of 1-3 wires. For each of these examples, our method pro-
vides a faithful 3D geometry and a plausible wire decomposition.

(i) (ii)

We note that during wire de-
composition a specific chal-
lenging case is when four
curve segments come together
(see inset). In this case, there
are two possible options for
connecting these curves, i.e. (i) a crossing, or (ii) or a continuous
path with sharp bends, both resulting in plausible decompositions.
Our method prefers smooth crossings since we utilize the smooth-
ness prior. If this is not the desired decomposition, the user may
want to reclassify junction points.

Quantitative Evaluations
In order to quantitatively evaluate our algorithm, we reconstruct a
synthetic wire object (similar in complexity to the CAT example)
from its renderings using ground truth camera parameters. Further-
more, we generate reconstructions by adding noise to the camera
parameters. We represent the rotation of the camera with Euler
angles and add random noise to each of the angles sampled from a
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Fig. 8. We evaluate our method on several objects of varying complexity. For each object, we provide one of the input images and our final 3D reconstruction.
We also provide comparisons with PMVS (Furukawa and Ponce 2010) and Line3D++ (Hofer et al. 2016) run on a set of input images consisting of 15 views.
Finally, we evaluate the L1-medial skeleton extraction method of Huang et al. (2013) on the point clouds generated by PMVS.We also run the mTSP formulation
on the output of Line3D++ output to demonstrate how small variations can lead to large topological errors with significant errors in the final output.
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normal distribution with mean zero and standard deviation of one
degree. For translation, we add random noise by sampling from a
normal distribution of mean zero and a standard deviation of 0.1%,
0.2%, and 0.3% of the length of the diagonal of the bounding box
of the synthetic model in 3D. In each case, we measure the closest
point distances between the ground truth and the reconstructed
model in 3D. We report the average and maximum of such closest
point distances in Table 1. We note that we report the errors as a
percentage of the length of the diagonal of the bounding box of
synthetic model in 3D.

We also quantitatively evaluate the performance of our approach
on real examples. We compute a re-projection error by sampling
points on the reconstructed 3D wires, projecting these samples to
the input views, and measuring the distance between the projected
points and the closest points sampled on the 2D curves for each view.
We report the average and maximum of such re-projection errors
for each input view in Table 2. We note that we report the errors as
a percentage of the length of the diagonal of the 2D bounding box
of the wiry object in the corresponding view.

Performance
We measure the execution time of different stages of our algorithm
on a machine with Intel i7 3.46 GHz CPU with 24 GB RAM. While
3D curve reconstruction (Section 4) takes about 10 to 22 seconds;
3D curve decomposition (Section 5) takes about 50 to 60 seconds for
simple models (e.g.,HUMAN) and a fewminutes for complex models
(e.g., CART). The complexity of a wire sculpture is not directly based
on the number of wires it is composed of, instead it depends on
the density of the wires since denser configurations result in large
number of candidate 3D curves.

Comparisons
We compare our approach to PMVS (Furukawa and Ponce 2010), a
state-of-the-art multi-view stereo (MVS) algorithm, and Line3D++,
a recent line-based MVS algorithm (Hofer et al. 2016) developed for
scene abstraction. We run each of these methods on an input image
set composed of 15 views including the original 3 views we use for
out method where the calibration is obtained by VisualSFM. (We
run the same comparison on an input image set of 10 views and
provide the results in the supplementary material.) As illustrated
in Figure 8, even when using substantially more views, both ap-
proaches still suffer from noise and significant amount of missing
data. Furthermore, neither point- nor individual line-based repre-
sentations can capture the global topology of the wires and thus are

Table 1. We reconstruct a synthetic model from its rendering both using
ground truth camera parameters (no noise) and by adding random noise to
the camera parameters. We report the error as the average and maximum of
the closest point distances between the ground truth and the reconstructed
model in 3D. Distances are reported as a percentage of the length of the
diagonal of the bounding box of synthetic model in 3D.

no noise 0.1% noise 0.2% noise 0.3% noise
avg 0.17 0.35 0.54 0.6
max 0.98 1.02 2.06 2.89

Table 2. For real examples, we compute a re-projection error by sampling
points on the reconstructed 3D wires, projecting these samples to each
input view, and measuring the distance between the projected points and
the closest points sampled on the 2D curves in the view. We report the
average and maximum of such re-projection errors for each input view as
a percentage of the length of the diagonal of the 2D bounding box of the
wiry object in the corresponding view.

view 1 view 2 view 3
avg max avg max avg max

HUMAN 0.29 1.70 0.37 0.92 0.37 1.85
BIKE 0.19 0.94 0.19 1.36 0.22 1.65
BIRD 0.13 0.58 0.14 0.88 0.14 0.78

ELEPHANT 0.18 0.85 0.21 2.47 0.17 1.14
CAT 0.26 1.28 0.40 3.66 0.24 1.50

FLOWER 0.51 3.99 0.47 3.43 0.41 3.53
HORSE 0.24 1.11 0.24 2.01 0.21 1.56
CART 0.16 0.59 0.18 1.05 0.21 1.78

TURTLE 0.26 2.45 0.57 3.18 0.29 1.86

not suitable for any post-processing operations. We evaluate the
recent L1-medial skeleton extraction method (Huang et al. 2013) on
the point clouds generated by PMVS (we include the parameters we
use for this method in the supplementary material). As shown in
Figure 8, due to noise and missing data in the PMVS output, this
approach fails to recover a complete and accurate curve skeleton
in many cases demonstrating the impracticality of utilizing similar
approaches as a post-processing step.
We also run our mTSP formulation on the output of Line3D++

and observe that small variations lead to large topological errors in
the final output. This demonstrates the importance of our 3D curve
selection formulation (Section 4.2).
Finally, in Figure 2, we provide an example depth map of a wiry

object captured from a commodity depth sensor (Microsoft Kinect).
Even though we paint the originally black wire model with a diffuse
paint, the sensor fails to provide any useful depth information for
the thin wires that is required for surface reconstruction.

Limitations
Our method provides an effective and practical solution to a very
challenging problem: we digitize wire objects from as few as 3 im-
ages in the form of a global curve network readily available for post
processing and fabrication. Nevertheless, there are certain limita-
tions we would like to address in future work. Failures in extracting

Fig. 9. Our method is not designed to handle very dense wire sculptures
that are closer to surfaces instead of 1D elements.©Pinterest
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reliable 2D image curves, e.g., due to cluttered background or insuffi-
cient contrast between the object and the background, will degrade
the performance of our approach like any other image-basedmethod
operating at the level of curves. We assume the camera parameters
of the input images to be given and rely on surrounding texture
objects to obtain this information. Significant deviations from the
true camera parameters will potentially result in noisy 3D curve
segment reconstructions and failures in the wire decomposition. A
joint framework that optimizes both for the camera parameters and
the 3D wires is an interesting research direction. Finally, our method
is not designed to handle very dense wire sculptures such as shown
in Figure 9. Such examples are closer to surfaces instead of 1D el-
ements and other modeling paradigms (e.g., procedural modeling)
would be more suitable.

7 CONCLUSION AND FUTURE WORK
We present an image-based reconstruction method of wire objects
using as few as 3 images as input. Our method exploits unique
characteristics of wire objects (simplicity – the object is composed of
a few wires, and smoothness – each wire is bent smoothly) to recover
the global 3Dwire decomposition.We represent each wire as a curve
in our reconstructions to facilitate editing and physical fabrication of
the results. Combined with the power of wire sculpting, we believe
that this paves the road to using wires as a rapid prototyping tool
to bring creative ideas into the digital design process.

In addition to addressing the limitations of our method discussed
in the previous section, there are several exciting future research
directions. For our experiments, we utilized 3 input views for each
example, which all together provide a full coverage of the input ob-
ject. Exploring strategies for next best view selection in the context of
wire objects is a promising reserch direction. Our current approach
focuses on objects made by bending and connecting multiple wires.
While bending is one of the most prominent techniques used in
wire art, there are other techniques, e.g., twisting two wires as seen
in the bird example in Figure 9 and wrapping thin wires around
thicker ones. Exploring such techniques as additional priors in the
reconstruction method (e.g., physical stability of the reconstructed
object) is a promising direction likely to expand the scope of the
objects that can be captured accurately.
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APPENDIX
When a particular epipolar line becomes tangent to or overlaps
with a 2D curve segment, multiple intersection points close to each
other on the same curve are generated. These cluttered intersections
do not define meaningful disjoint curves and cause difficulty in
reconstructing 3D curve segments in the concerned region. We
propose a curve fitting strategy to handle such degenerate cases.
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Fig. 10. In case an epipolar line becomes tangent or overlaps with a 2D
curve segment, we solve the resulting degenerate case by a curve fitting
strategy.

When an epipolar line, ℓ, is tangent to a smooth curve at a point
of non-vanishing curvature, the part of the curve in a neighbor-
hood of the tangent point lies entirely on the same side of ℓ. Given
the epipolar line ℓ that passes through a point p sampled on a 2D
curve segment, we identify p as a tangent point if them-nearest
samples (m = 25) of p on the curve all lie on the same side of ℓ. This
neighborhood is unstable to compute exact intersections with ℓ.

Given a 2D curve segment cri in a reference view Ir , assume the
epipolar line, ℓr→n

i,s , of a sample point pri,s on cri in a neighboring

view In is at a threshold distance (λ = 8) from a tangent point
detected on a curve segment cnj in In (see Figure 10). We denote
the two intersection points between ℓr→n

i,s and cnj as pni,s and p
n
j,t .

Moving along cri will yield another point pri,t whose epipolar line
will be the same as ℓr→n

i,s . Under epipolar constraints, pnj,s and p
n
j,t

have the same epipolar line in Ir and this line passes through pri,s
and pri,t . Thus the curve region, Kp

r
i,sp

r
i,t in I

r and the curve region,
Kpnj,sp

n
j,t in I

n are corresponding regions.
There are two possible pairings between the matching regions

Kpri,sp
r
i,t and Kpnj,sp

n
j,t for subsequent 3D curve reconstruction, that

is: (i) (pri,s ,p
n
j,s ) for one end and (pri,t ,p

n
j,t ) for the other end; or (ii)

(pri,s ,p
n
j,t ) for one end and (pri,t ,p

n
j,s ) for the other end. For each

pairing, we first compute the 3D positions of the paired endpoints
and then fit a polyline between these 3D endpoints that is smooth
and matches the two image observations as in Equation 9. We keep
both of the results as part of the candidate 3D curve segment set.
If an epipolar line is tangent to a curve at an inflection point,

we detect the unstable neighborhood by checking if them-nearest
points of the intersection point lie within a narrow strip centered
around the epipolar line. The remaining curve region process re-
mains unchanged.
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