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Abstract  17 

Glaciers enhance terrestrial erosion and sediment export to the ocean. Glaciers can also 18 

impact mineral specific weathering rates relative to analogous non-glacial terrains. In tandem 19 

these processes affect continent sediment export to the oceans over glacial-interglacial 20 

cycles. This study summarizes field data from glacial and non-glacial Icelandic river 21 

catchments to quantify the impact of weathering regime on iron and aluminium 22 

(oxyhydr)oxide mineral formation and flux rates. Aluminium and iron (oxyhydr)oxides are 23 

strong indicators of organic carbon preservation in soils and marine sediments. Tracing 24 

changes in (oxyhydr)oxide formation and deposition therefore provides a means of 25 

evaluating potential changes in organic carbon sequestration rates over glacial-interglacial 26 

cycles. Overall, there are several measurable chemical differences between the studied 27 

glacial and non-glacial catchments which reflect the key role of soil formation on terrestrial 28 

weathering. One of the noted chemical difference is that weathering in non-glacial 29 

catchments is characterized by higher apparent rates of iron and aluminium (oxyhydr)oxide 30 

formation relative to glacial catchments. However, the offset in (oxyhydr)oxide formation 31 

does not appear to be transferred into river sediment compositions, and physical weathering 32 

appears to be the dominant control of river sediment composition and export. Glacial rivers 33 

export far more total sediment to nearshore marine environments than analogous non-glacial 34 
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rivers suggesting glacial weathering enhances carbon burial by increasing nearshore marine 35 

(oxyhydr)oxide accumulation. 36 

Keywords: Climate change; organic carbon burial; iron oxyhyroxides; continental weathering 37 

1 Introduction 38 

Iron and Al (oxyhydr)oxide (Fe/AlOOH) concentrations are approximated based on 39 

selective chemical extractions techniques. The pool of dithionate-citrate-bicarbonate (DCB) 40 

reducible minerals, referred to as ‘highly reactive Fe/Al’ (FeHR/AlHR), is one of the most 41 

commonly used methods for estimating for both FeOOH and AlOOH (Raiswell and Canfield 42 

2012). There are strong correlations between the concentrations of FeHR and organic carbon 43 

in marine sediments and FeHR/AlHR and organic matter in soils (Schrumpf et al., 2013). These 44 

correlations are thought to reflect the physiochemical protection of organic matter by FeOOH 45 

and AlOOH (see review by Schrumpf et al., 2013); a process which has been dubbed the 46 

‘Rusty Carbon Sink’ (Lalonde et al., 2012, Barber et al., 2014).  47 

The Rust Carbon Sink is not the first hypothesis to propose FeOOH can have a major 48 

impact on Earth’s climate cycle. The Iron Hypothesis (Martin, 1990) is the well-studied idea 49 

that FeOOH accumulation in the Southern Ocean controls primary productivity in the region. 50 

While much of the research into the Iron Hypothesis has focused on atmospheric dust e.g. 51 

Coale et al., 2004; as Martinez-Garcia et al., (2014) the original iron hypothesis also 52 

proposed the intensity of glacial weathering on Antarctica itself was a major control of iron 53 

export to the ocean. Glacial weathering has been shown to allow for both the formation and 54 

large scale export of iron (oxyhydr)oxides to coastal marine environments (Raiswell et al., 55 

2008; Hawkins et al., 2014, Eirkisdottir et al 2015). This raises the question of whether 56 

weathering promotes organic carbon burial, in addition to primary production, as a result of 57 

enhanced marine FeOOH discharge.  58 

This study re-examines published physical and chemical weathering data from glacial 59 

and non-glacial catchments in Iceland. River waters, sediment and soils are compared to 60 

derive generalized patterns of continental weathering in glacial and non-glacial catchments. 61 

Novel PHREEQC inverse models are also used to approximate the FeOOH and AlOOH 62 

formation rates based on comprehensive river monitoring datasets. The geologic and 63 

geographic nature of Iceland limits the impact of bedrock variability and emphasizes the 64 

impact of continental weathering on sediment composition. This allows a more accurate 65 

determination of the potential impact of chemical offsets between glacial and non-glacial 66 

weathering on (oxyhydr)oxide formation.  67 
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2 Icelandic Geology, Hydrology and Sample Locations 68 

Iceland has four characteristics which favour its use as a type locality for linking glacial 69 

and non-glacial weathering differences to differences in Fe/AlOOH dynamics. Iceland’s 70 

geologic and geographic history has combined to create river catchments, which can be 71 

chemically differentiated based on their extents of soil formation (Gislason et al., 1996). 72 

Iceland’s human geography ensures that the catchments are not significantly altered by 73 

anthropogenic activity. Icelandic rivers have been intensively sampled providing a large 74 

historic chemical database which can be utilized to investigate chemical weathering. Finally, 75 

existing thermodynamic scientific studies have defined clear expectations of how chemical 76 

weathering should progress in Iceland.  77 

Bed rock rheology and chemical composition significantly impact continental 78 

weathering rates (Syvitski and Milliman 2007). Therefore, geologically similar and well-79 

characterized catchments are useful when comparing glacial and non-glacial weathering 80 

rates. Iceland is a geologically young and active island, formed primarily (>80%) of basaltic 81 

lavas, with a mixed mid-ocean ridge/ocean island melt source composition. The remainder of 82 

the island is composed of more acidic/rhyolitic lavas (Jakobsson 1972). Iceland was 83 

completely covered by a single glacial icesheet ~9 ka ago, which collapsed during the Early 84 

Holocene stabilizing to near modern conditions about 6 ka ago (Gislason 1996; Norðdhal 85 

and Petersson et al., 2005). Since the collapse of the icesheet vegetation and soil formation 86 

have created significant chemical differences between glacial and non-glacial catchments, 87 

reflected in the distribution of Iceland’s major soil/sediment types (Figure 1). Soil formation 88 

has been attributed to as the principle cause of a number of chemical differences between 89 

the glacial and non-glacial catchments (Gislason et al., 1996; Pogge von Strandmann et al., 90 

2006, 2012; Opfergelt et al., 2013; Opfergelt et al., 2014). 91 
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 92 

Figure 1. Icelandic soil coverage map as modified from Arnalds and Gretasson (2001). The Central 93 

Volcanic zone defines the general limits of significant hydrothermal groundwater formation as mapped 94 

by Kaasalainen and Stefansson (2012). 95 

A number of previous studies have sampled Icelandic soils, sediments, rivers and 96 

groundwaters in the context of continental weathering and this study will draw extensity on 97 

data from: Gislason and Stefansson (1993), Gislason et al., (1996), Stefansson et al., 98 

(2001), Arnorsson et al., (2002), Pogge von Strandmann et al., (2006), Vigier et al., (2006), 99 

Vigier et al., (2009), Oskarsson et al., (2012), Pogge von Strandmann et al., (2012), 100 

Eiriksdottir et al., (2008), Louvat et al., (2008) and Opfergelt et al., (2014). This previously 101 

published work provides what is likely the most complete and extensive data-set on the 102 

interplay of weathering regimes and chemical weathering ever collected on a single geologic 103 

terrain. Because the chemistry of river waters and sediment can show a high degree of 104 

temporal and special variability, large sample sets are required to make statistically robust 105 

conclusions about the chemical weathering process. 106 

3 Methods 107 

3.1 Field sample collection: 108 

River water and sediment samples from Iceland were collected during September 109 

2003, August 2005 reported in Pogge von Strandmann et al., (2006) and then again by the 110 

same methods in August 2012 and August 2013 at locations shown on Figure 2. River 111 

samples were collected from near the water surface in the centre of the flow with access 112 
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facilitated by road bridges. For filtered and suspended sediment samples, 15L of water was 113 

collected and filtered shortly after sampling through 0.2µm cellulose-acetate Millipore filters, 114 

using a pressurized PFA unit. To prevent sample cross contamination the units were flushed 115 

with milli-Q water and at least 2 L of sample which were discarded prior to sample collection. 116 

Elemental iron and aluminium concentrations within this filtered water will be referred to as 117 

‘filtered’ iron/aluminium rather than the more commonly used ‘dissolved’ moniker. The filters 118 

were sealed in petri-dishes for immediate storage and transport to controlled lab conditions 119 

where the sediment was physically removed with a tephlon spatuala and transferred into 120 

glass vials. Total suspended sediment (TSS) concentrations were measured separately by 121 

filtering a known volume of water through a pre-weighted 0.2µm filter. These filters were also 122 

sealed in petri-dishes for transport to the laboratory where they were dried and re-weighed. 123 

Total anion samples, utilizing containers cleaned without acids to avoid NO3
2- or Cl- 124 

contamination, were also collected. Temperature, pH, alkalinity and conductivity were 125 

measured in the field, and where possible a river bed sediments (RBS) sample was also 126 

taken.  127 
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 128 

Figure 2. Bedrock Map and River Catchments. The middle figure shows the locations of samples 129 

from Gislason et al., (1996), Arnorsson et al., (2002), Oskarsson et al., (2012), and Opfergelt (2014) 130 

on a modified version of the Icelandic bedrock map from the Natural History Museum of Iceland. (A) 131 

Shows sample locations in the Borgarfjörður region and (B) shows the sample locations in the 132 

Vatnajökull region. 133 

We will consistently compare our data with Gislason and Arnorsson (1993), Gislason 134 

et al., (1996) and Arnorsson et al., (2002) who sampled at locations shown on Figure 3. The 135 
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only significant difference between the methods used in these studies and our methods is 136 

that these previous studies utilized a 0.1µm cut-off size for filtering their water. Waters 137 

filtered at the 0.2µm and 0.1µm level are predicted to be closely comparable in terms of Fe, 138 

based on studies of the relationship between particle size and Fe speciation (e.g. Lyven et 139 

al., 2003, Andersson et al., 2006). 140 

3.2 Major and Trace Element Analysis: 141 

 Samples from the 2003 and 2005 field seasons were analysed by Pogge von 142 

Strandmann et al., (2006) with methods reported therein. Anions and cations from the 2012 143 

and 2013 samples were analysed using a Dionex D-500X ion exchange chromatograph at 144 

Durham University. Iron and aluminium concentrations were measured by a Thermo-Fisher 145 

X-Series inductively coupled plasma mass spectrometry (ICP-MS) at Durham University, 146 

calibrated against multi-element synthetic standards prepared from high purity single 147 

element standards. A collision cell was used to reduce oxide formation and improve 148 

accuracy. The natural water certified reference material SLRS-5 was used confirm the 149 

accuracy of the measurements. External reproducibility for all measurements was better 150 

than ±5%.  151 

The total carbon concentrations of a selected range of suspended sediment samples 152 

were measured during stable carbon and nitrogen analysis on an isotope ratio-mass 153 

spectrometer at Durham University. The total carbon concentrations of river bedload 154 

sediments were not directly measured but loss-on-ignition values collected during XRD 155 

analysis by Pogge von Strandmann et al., (2006) are used to reflect maximum potential 156 

carbon concentrations in these samples. 157 

4. Theory and Model Calculations 158 

PHREEQC v. 3.0.6 (Parkhurst and Appelo 1999) parameterized with the Bureau de 159 

Recherches Geologiques et Minieres database (Blanc et al., 2011) was used to build an 160 

inverse dissolution/precipitation weathering model. The model calculates primary mineral 161 

dissolution rates and secondary mineral precipitation rates. This is done by numerically 162 

determining the balance of primary mineral dissolution and secondary mineral dissolution 163 

needed to recreate the measured river water chemistry of a sample from an initial idealized 164 

rainwater solution. In effect this modelling approach provides a way of utilizing the overall 165 

chemical patterns of the rivers to investigate chemical weathering rather than depending on 166 

one or two element comparisons. 167 

The measured chemical composition (alkalinity, pH Al, Ca, Cl, Fe, K, Mg, NO3, Na, 168 

Si, SO4) of the river samples was used to define a solution for every filtered water sample. 169 
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The Cl concentrations of each sample were then used to define an idealized initial rainwater 170 

solution for each sample according to the method developed by Gislason et al., (1996). The 171 

idealized Cl derived rainwater solutions are not perfectly charge balanced so a 5% elemental 172 

uncertainty was included in the model calculations to account for the charge imbalances. 173 

The 5% threshold was set by assuming the charge imbalances reflected analytic uncertainty. 174 

All chemical pathways which reproduce the river solutions from the dissolution of primary 175 

bedrock phases and precipitating the secondary phases starting from the idealized rainwater 176 

solutions were calculated. These pathways were then averaged, yielding a single set of 177 

mineral precipitation and dissolution values characteristic of the weathering signature of 178 

each sample.  179 

The primary mineralogy of both the primary basaltic bedrock (excluding basaltic 180 

glass) and secondary clay and (oxyhydr)oxide phases are well constrained and have been 181 

defined based on Jackobsson (1972), Gislason and Arnorsson (1993), Stefansson (2001), 182 

and Opfergelt et al., (2013) as reported in Table 1. The inverse models depend on 183 

stoichiometric calculation, rather than thermodynamic data, preventing the inclusion of 184 

amorphous phases namely, basaltic glass and allophone, which have no set formula. The 185 

stoichiometric nature of the model also makes it impossible to differentiate minerals with the 186 

same chemical formula. Ferrihydrite and boehmite were excluded from the models on this 187 

basis as these minerals have the same chemical formulas (as defined in the PHREEQC 188 

database) as goethite and gibbsite, respectively. PHREEQC requires all elements used for 189 

charge balance during inverse model calculations to be included in model input phases 190 

requiring the addition of CO2, O2, Cl2, NH3 and SO2 into the model parametrization.  191 

Table 1 Summary of minerals included in PHREEQC inverse-models.  192 

Charge 
Balance  

Primary Mineral Phase 
(Dissolved Only) 

Secondary Mineral Phases (Precipitate Only) 

CO2 
Forsterite: 
Mg2SiO4 

Hedenbergite: 
CaFe(SiO3)3 Imogolite: Al2SiO3(OH)4 

Goethite: 
FeOOH 

O2 
Fayalite: 
Fe2SiO4 

Ilmentite: 
FeTiO3 

Heulandite: 
Ca1.07Al2.14Si6.86O18:6.17H2O 

Boehemite: 
AlOOH 

Cl2 
Ferrosilite: 
FeSiO3 

Albite: 
NaAlSi3O8 

 Montmorillonite(A): 
Ca0.17Mg0.34Al1.66Si4O10(OH)2 

  

NH3 
Enstatite: 
MgSiO3 

Anorthite: 
CaAl2Si2O8 

Montmorillonite (B): 
Na0.34Mg0.34Al1.66Si4O10(OH)3 

SO2 
Diopside: 
CaMg(SiO3)2 

Sandine: 
KAlSi3O8 Kaolinite: Al2Si2O5(OH)4 

 193 

The biggest potential problem with utilizing inverse-chemical weathering models is 194 

that the results are dependent on knowing the exact chemical formulas of all the mineral 195 
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phases. Ideally every potential mineral phase needs to be precisely and accurately defined 196 

however this is not possible in the context of Icelandic weathering. Specifically, additional 197 

consideration needs to be given for the behaviour of basaltic glass and allophane.  198 

Basaltic glass is the first component of Icelandic basaltic to be chemical weathered in 199 

most low temperature environments (Stefansson et al., 2001). The thermodynamics of glass 200 

dissolution in Iceland have been studied but the process has only been defined as a function 201 

of a theoretical pure SiAl(OH) form i.e. Gislason and Oelkers (2003), Eiriksdottir et al., 202 

(2015). As our model is dependent on mineral stoichiometry, the inclusion a theoretical glass 203 

formula, which does not contain Fe, Ca, Mg, etc., would strongly bias the model predicted 204 

impact of glass dissolution. Glass dissolution is a well quantified source of FeOOH formation 205 

(Gislason and Arnorsson 1993). The exclusion of basaltic glass in the model is equivalent to 206 

the assumption that Fe and Al will behave in the same way during glass weathering. That is 207 

glass weathering is assumed to not lead to preferential FeOOH vs AlOOH formation. A different 208 

stoichiometric problem prevents the inclusion of allophane, one of the most common 209 

secondary minerals in Icelandic soils (Oskarsson et al., 2012), in the models. 210 

Secondary alumina-silica formation in Iceland has been described as involving the 211 

formation of ‘amorphous sponge-like balls of kaolinite, allophane and imogolite’ which are in 212 

quasi-equilibrium with gibbsite (Stefansson and Gislason 2001). The precise composition of 213 

these alumina-silicate agglomerates appears to vary with changing conditions (Stefansson 214 

and Gislason 2001), making it impossible to define a fixed chemical formula for the species. 215 

Kaolinite and Imogolite are the endmembers of the kaolinite-allophane-imogolite series so 216 

they were included in the model and allowed to vary relative to one another. The overall 217 

uncertainty of the Al/Si ratio of the amorphous alumina-silicates however does limit the 218 

certainty which can be ascribed to the AlOOH formation rate estimates.  219 

In other localities, the inclusion of iron in certain clay minerals would also introduce 220 

uncertainty in terms of the model-predicted Fe/AlOOH formation rates. In Iceland, this does 221 

not appear to be a significant problem. While Fe-smectites have been identified in mature 222 

Icelandic soils (Stefansson and Gislason 2001), very little iron appears to be directly 223 

incorporated into Icelandic clay minerals. Data supporting this assertion will be outlined in 224 

subsequent sections, but, in short, the most altered Icelandic soil samples from Opfergelt et 225 

al., (2014) are 82.5 and 98 wt. % clay and organic matter, and the iron within these samples 226 

is 91% and 95% DCB-extractable, respectively. Consequently, no more than about 5% of 227 

iron cycling during chemical weathering is affiliated with the formation of iron bearing clays.  228 
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5 Results 229 

All data are presented in figures containing a mixture of new and published data which 230 

are cited accordingly. The solid phase concentration data is reported normalized to titanium. 231 

Titanium is considered to be immobile during basaltic weathering and behaves 232 

conservatively in basaltic soils (Nesbitt and Wilson 1992) favouring its use to normalize 233 

against organic matter dilution and/or mobile element leaching.  234 

5.1 Icelandic Bedrock 235 

Pristine Icelandic basaltic lavas from Jakobsson (1972), Arnorsson et al., (2002), 236 

Eiriksdottir et al., (2008), Louvat (2008) and Schuessler et al., (2009) are characterized by 237 

relatively constant Ti normalized elemental ratios shown on Figure 3. Icelandic rhyolite 238 

contains an order of magnitude less total Ti than the basalts, 2.2 mol/kg vs 0.17 mol/kg 239 

respectively, which significantly offsets the Ti normalized elemental concentrations between 240 

the basalts and rhyolites. There is limited compositional overlap between the basaltic and 241 

rhyolitic samples although some of the basaltic samples have [Na+K]/[Ti] values which drift 242 

towards more evolved values. 243 

 244 
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Figure 3. data from Jakobsson (1972), Arnorsson et al., (2002), Eiriksdottir et al., (2008), Louvat 245 

(2008) and Schuessler et al., (2009). Icelandic basalts display a limited range of variability in Ti 246 

normalized elemental space characterized by positive correlations between the various elements. 247 

The compositional range of pristine Iceland basalt can be constrained to statistically 248 

significant correlations between Ti normalized elemental concentrations, shown as the 249 

dashed lines on Figure 3. These correlations include elemental pairs such as Mg and Ca, 250 

which have a similar mobility during chemical weathering, and elemental pairs such as Mg 251 

and Fe which have significantly different elemental mobilities (Gislason et al., 1996). For the 252 

remainder of this paper these correlations are used to define the compositional signature of 253 

pristine basalt, which will be shown as dashed black lines on the subsequent figures. 254 

5.2 River Sediment Compositions 255 

 The compositions of total suspended sediment (TSS) and river bed sediment (RBS) 256 

from glacial and non-glacial rivers from Pogge von Strandmann et al., (2006) and Eiriksdottir 257 

et al., (2008) are reported relative to the basaltic compositional array in Figure 4. All the 258 

sediments have compositions which fall along or near the basaltic compositional array for 259 

most elements. The non-glacial TSS samples have mobile element patterns near one 260 

endmember of the basaltic compositional array while the glacial TSS samples have mobile 261 

element concentrations near the other basaltic endmember. The only potential compositional 262 

deviation of the sediments from basaltic values is apparent in Fe/Al space. A number of the 263 

glacial samples have lower [Al]/[Ti] ratios relative to their [Fe]/[Ti] ratios than observed in 264 

pristine basalt. 265 
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 266 

Figure 4. River sediment compositional data from Pogge von Strandmann et al., (2006) and 267 

Eiriksdottir et al., (2008). All the river sediments have elemental compositions consistent with those 268 

expected for pristine basalt except in terms of the proportion of [Al]/[Ti] to [Fe]/[Ti] in the glacial 269 

sediments. 270 

5.3 Soil Formation 271 

The compositions of Icelandic soil samples from Óskarsson et al., (2012) and Opfergelt 272 

et al., (2014) are reported relative to the basaltic compositional array on Figure 5. All the 273 

samples are from soil profiles that lie above basaltic bedrock as shown on Figure 2. Air 274 

borne volcanic ash, primary composed of basaltic ash, is also a major component of most 275 

Icelandic soils (Oskarsson et al., 2012). The samples are colour coded according to their 276 

Total Reserve in Bases (𝑇𝑅𝐵 = ∑ 𝑁𝑎+ + 𝐾+ + 𝐶𝑎2+ + 𝑀𝑔2+ cmolc kg-1). In general soil 277 

formation leads to the loss of base cations, an increase in organic carbon concentration, and 278 

the transformation of primary magnetite into secondary (oxhydr)oxides i.e. ferrihydrite and 279 

goethite. 280 
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 281 

Figure 5. Icelandic soil composition data from (Oskarsson et al., 2012; Opfergelt et al., 2014). The 282 

dashed black lines reflect the compositional range of typical Icelandic basalt as defined in Section 3.2. 283 

The soils are colour coded according to their Total Reserve in Bases (𝑇𝑅𝐵 = ∑ 𝑁𝑎+ + 𝐾+ + 𝐶𝑎2+ +284 

𝑀𝑔2+ cmolc kg-1). 285 

There is a general decrease in soil pore-water pH with decreasing TRB. Magnesium and 286 

Ca appear to behave similarly and lie on the basaltic compositional array during chemical 287 

weathering. Nearly all the soils are significantly depleted in [Na+K]/[Ti] relative to basalt. 288 

Aluminium is preferentially retained in the soils relative to Ca and Mg during chemical 289 

weathering. Iron is also preferentially retained in soils during chemical weathering relative to 290 

Mg and Ca. There is no clear and systematic pattern in the behaviour of Fe relative to Al 291 
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during chemical weathering although the soils with the lower TRB concentrations have 292 

significantly higher Fe/Al values than pristine basalt. 293 

The trends in iron behaviour during weathering can be further explored by examining 294 

changes in iron mineralogy during weathering. Two selective iron extractions, sodium-295 

dithionate-bicarbonate (FeDCB) and oxalate (Feo), were used to measure iron concentrations 296 

as a function of iron mineralogy in Icelandic soil by Opfergelt et al., (2014). The important 297 

difference between the extractions is that FeO includes magnetite but not goethite, while 298 

FeDCB includes goethite but not magnetite (Poulton and Raiswell 2005). Goethite is a 299 

common Fe-oxyhydroxide present during basaltic weathering (Stefansson and Gislason 300 

2001), while magnetite is a common primary mineral phase in Icelandic basalts (Gislason 301 

and Stefansson 1993). Consequently, FeDCB/Total Iron (FeT) values reflect the proportion of 302 

iron oxyhydroxides to total iron within a sample. The FeO/FeDCB values reflect the balance of 303 

magnetite dissolution to goethite formation. 304 

Soil FeDCB/FeT values show a strong positive correlation with soil clay content, increasing 305 

to in excess of 0.8 in soils with at least 60 wt.% clay (Figure 6A). Soil FeO/FeDCB shows a 306 

negative correlation with clay content in all but the most weathered soils. A few of the 307 

strongly weathered samples have unusually low FeO/FeDCB values given their clay content 308 

and these samples do not follow the correlation between clay content and organic carbon 309 

defined by others (Figure 26 B/C). Field characterizations of the outlaying samples by 310 

Opfergelt et al., (2014) suggests that they are all from reducing horizons within the soil 311 

profiles.  312 

 313 
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 314 

Figure 6. Data from Opfergelt et al., (2014). (A) The FeDCB/Total Iron (FeT) values, reflecting the 315 

proportion of iron oxyhydroxides to total iron within soil samples, and (B) the FeO/FeDCB values, 316 

reflecting the balance of magnetite dissolution to goethite formation are plotted versus the clay 317 

content of soil samples from 1) leptosol, 2) vitrisols, 3) brown and gleyic andosols and 4) 318 

histosols/histic andosols. (C) The clay content increases with the organic carbon content 319 

5.4 Dissolved Load Concentrations 320 

 The chemical composition of Icelandic glacial and non-glacial rivers reported by 321 

Gislason et al., (1996), Arnorsson et al., (2002), Vigier et al., (2006), Pogge von Strandmann 322 

et al., 2006, Louvat et al., (2008), as well as new measurements (data in Supplementary 323 

Information) are summarized in Table 2.2. The data in the table includes the measured 324 

values as well as values that have been corrected for precipitation inputs. Glacial and non-325 

glacial rivers, on average, have significantly different Cl concentrations (90µM vs. 150µm 326 

respectively, P<0.05). Icelandic river waters receive nearly all their Cl in affiliation with 327 

marine aerosols associated with precipitation allowing Cl to be used to correct rivers for 328 

rainwater inputs (Gislason et al., 1996).  329 

 330 

 331 

 332 

 333 
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Table 2. Average River water compositions ±σ. *TSS values were only measured by Pogge von 334 

Strandmann et al., (2006), Vigier et al., (2006) and in the new samples reported in the this study. As a 335 

result, only 30 glacial and 30 non-glacial samples were utilized to calculate the pH and TSS values. 336 

**Chlorine concentrations were used to correct the river values for precipitation inputs according to 337 

methods established in Gislason et al., (1996). 338 

  
Uncorrected Value Cl Corrected value 

Glacial n=50 Nonglacial n=57 Glacial n=50 Nonglacial n=57 

Al (µM) 1.4±1.1 0.5±0.4 1.4±1.1 0.5±0.4 

Ca (µM) 81±40 102±49 80±40 99±49 

Cl (µM) 90±49 150±98 - - 

Fe (µM) 0.4±0.4 0.5±0.5 0.4±0.4 0.5±0.5 

K (µM) 10±6 15±7 8±6 12±8 

Mg (µM) 59±59 75±57 51±60 64±57 

Na (µM) 236±107 280±108 168±86 149±103 

TSS* (mg/L) 980±676 204±213 

 

pH* 8.36±0.95 7.91±0.47 

 339 

The precipitation corrected values for the individual samples location are shown in 340 

Figure 7. The dashed lines on Figure.7 correspond to the elemental ratio of pristine basalt, 341 

as defined in Section 5.1, such that the bulk dissolution of basalt during chemical weathering 342 

would result in the river waters having compositions corresponding to the lines. Overall the 343 

rivers do not have compositions consistent with such bulk dissolution. Preferential elemental 344 

mobility appears to increase along the trend Fe/Al<Mg, Ca<<Na+K. At the immobile end of 345 

this trend Fe and Al appear to behave significantly differently in glacial and non-glacial 346 

catchments. All the glacial samples possess an Al/Fe ratio that is equal to or greater than the 347 

Al/Fe ratio of basalt. The non-glacial rivers mostly display the opposite trend and are 348 

characterized by lower Al/Fe ratios than basalts across a range of Fe concentrations. 349 

In addition to the purely chemical differences, glacial and non-glacial rivers are 350 

physically offset in terms of their total suspended sediment concentrations (TSS). Glacial 351 

rivers contain on average 4.8 times more TSS than the non-glacial rivers. The average TSS 352 

offset is consistent with a long-term record of Icelandic River data by Louvat et al., (2008). 353 

Louvat et al., (2008) found that in rivers which had been sampled a minimum of 23 times 354 

over a minimum of 7 years, glacial samples contained 923±606 mg/L TSS while non-glacial 355 

samples contained on average 150±85 mg/L TSS. 356 
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 357 

Figure 7. Icelandic rivers composition data from Gislason and Arnorsson (1993), Gislason et al., 358 

(1996), Arnorsson et al., (2002), Vigier et al., (2006) and Pogge von Strandmann et al., (2006). The 359 

data has been corrected for precipitation inputs. The dashed lines represent the element ratios of 360 

pristine basalt. 361 

5.5 Inverse Models and Secondary Mineral Formation Rates. 362 

The inverse chemical weathering model predicted FeOOH and AlOOH formation rates 363 

are shown as functions of primary mineral dissolution rates on Figure 8 for glacial and non-364 

glacial catchments. The rates are shown in molar unit concentrations, which encapsulates 365 

the general principle that chemical weathering scales with hydrologic discharge during 366 

continental weathering (e.g. Anderson et al., 1997; Eiriksdottir et al., 2008). On average, 367 

non-glacial weathering appears to significantly enhance both Fe (P<0.02 two-tailed t-test) 368 

and Al (P<0.05 two-tailed t-test) (oxyhydr)oxide formation relative to glacial weathering. The 369 

offset in FeOOH formation rates constitutes a 37% increase in iron formation in non-glacial 370 

catchments relative to glacial catchments: 32µmol/kg to 44µmol/kg.  371 
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 372 

Figure 8. PHREEQC Model calculated reactive oxide formation rates. On average, non-glacial 373 

weathering significantly enhances FeOOH formation (P<0.02) and AlOOH formation (P<0.05). 374 

 Sensitivity testing was conducted to determine which chemical factors were most 375 

important in terms of controlling Fe/AlOOH formations. The model Fe/AlOOH formation 376 

estimates are not sensitive to the measured Fe or Al concentrations of the samples; either 377 

doubling or removing the Al and Fe concentrations in the river waters from the model inputs 378 

changes the Fe/AlOOH formation estimates by less than the rounding uncertainty associated 379 

with the reported data i.e. <0.1 µmol/kg). The estimates are far more sensitive to the 380 

concentrations of Mg and Ca. ‘The FeOOH formation estimates effectively scale on a 1:1 basis 381 

while AlOOH formation estimates scale with Ca. This is because, as shown on Figure 8, the 382 

model predicted FeOOH formation rates are almost entirely controlled by olivine dissolution 383 

while the AlOOH formation rates are mostly controlled by plagioclase dissolution. 384 

6. Discussion  385 

6.1 pH and Chemical Weathering Patterns. 386 

Gislason et al., (1996) proposed the relative of mobility’s of elements during Icelandic 387 

weathering decreased along the trend: Na> K>Ca, Mg >Al>Fe. This is not entirely consistent 388 

with the soil, river sediment or river water data. Figure 9 which shows the average elemental 389 

mobility patterns of rivers in the non-glacial Borgarfjörður and glacial Vatnajökull catchment 390 

regions (see Figure 2). In non-glacial catchments iron is at least as mobile as Al, and in the 391 

glacial catchments the mobility is Ca is closer to K than Mg. In total these patterns most 392 

likely reflect the role soil formation has on continental weathering. 393 

The mobility of Ca relative to Na decreases from the glacial to the non-glacial 394 

catchments via of a process which does not seem to impact K or Mg. The most plausible 395 

explanation for the shift in Ca relative to Na is a change in a plagioclase weathering. The 396 
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predicted stabilities of albite (Na-plagioclase) and anorthite (Ca-plagioclase) differ across the 397 

typical pH range or Icelandic surface and ground waters (Arnorsson et al., 2002). As shown 398 

on Figure 10, anorthite is always under-saturated while albite is near saturated above pH 399 

values of 7 (Stefansson et al., 2011; Arnorsson et al., 2002). A shift toward more acidic 400 

conditions would therefore be expected to result in a decrease in the mobility of Ca relative 401 

to Na. The absolute pHs of the rivers do not cover the appropriate range of values, but 402 

Icelandic soil porewater do span the correct range. Chemical weathering in Icelandic soils is 403 

associated with decreasing soil pore-water pH (see Figure 5). The pore water in immature 404 

soils covers a similar pH range to the Icelandic rivers, but mature soils are characterized by 405 

soil pH values as low as 4 (Opfergelt et al., 2014). If plagioclase weathering is dominantly 406 

occurring within soils, then the reduction in Ca mobility relative to Na is inductive of the pH 407 

controlled shift in continental weathering between glacial and non-glacial patterns.  408 

 409 

Figure 9 Relative mobility of major cations during basalt weathering in the Borgarfjörður and 410 

Vatnajökull catchments. Rmobility = (Xwater / Nawater) / (XRBS / NaRBS) 411 

A key aspect of the dynamics of Ca and Na in Icelandic soil and surface water systems 412 

is that the solubility of the elements is not pH dependent. Once in solution the migration of 413 

Ca and Na between (sub)glacial, soil, and/or river environments is not highly impacted by pH 414 

boundaries. This provides a clear contrast when it comes to evaluating the environmental 415 

behaviour of Al and Fe.  416 

Temporarily ignoring organic matter dynamics, the solubility’s of Fe and Al are both 417 

strongly pH dependent. Across the pH range of our river samples, pure Al is about four 418 

orders of magnitude more soluble than pure Fe (Wesolowski and Palmer 1994; Liu and 419 

Millero 1999). As pH values decrease towards acidic pore water values, the solubility of Fe 420 

increases while the solubility of Al decreases (see Figure 10). If, like was the case with 421 

plagioclase, most chemical weathering reactions occur in affiliation with soil formation Al 422 

mobility would be expected to be higher than Fe in glacial rivers. Additionally, Fe and Al 423 

would be expected to be effectively immobile in non-glacial rivers. This is because while 424 



20 
 

acidic pore waters will favour iron dissolution this dissolved iron would be expected to 425 

precipitate as soon as it entered the rivers. 426 

 427 

Figure 10. The andsol pH range is defined based on pore-water solutions from Opfergelt et al., 428 

(2014) and reflects soils typical of non-glacial catchments in Iceland. A) Albite solubility and B) 429 

Anorthite solubility in Icelandic surface waters modified from Arnorrson et al (2002). At pH>7 430 

albite is near saturated while anorthite is significant under saturated across the pH spectrum. 431 

C) Iron solubility curve modified from Liu and Millero (1999) and D) Al solubility curve 432 

modified from Wesolowski and Palmer (1994). Iron is more soluble in the pH range of soil 433 

porewater than in the pH range of Icelandic rivers whereas Al solubility follows the opposite 434 

trend. The arrow on pannel C underscores the relationship between apparent iron solubility 435 

and organic ligand availability with non-glacial rivers potentially falling nearer to the ligand 436 

stabilized values. 437 

In many surface water environments, the mobility’s of Fe and Al are dominated by 438 

organic matter availability rather than the actual solubility’s of Fe and Al. (Perdue et al., 439 
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1976; Liu and Millero 1999). The presence of organic matter would be predicted to drive 440 

systems to the extremes i.e. high Fe mobility in non-glacial rivers and high Al mobility in 441 

glacial rivers as organic matter stabilized the preferentially released element. This pattern of 442 

extremes can be identified within the individual samples reported on Figure 7, but on 443 

average non-glacial rivers do not contain significantly more iron that glacial rivers (see Table 444 

2.2). Overall, the data appears to be better explained by the aforementioned inorganic 445 

solubility patterns. The apparent limited influence of organic matter in non-glacial rivers can 446 

in part be explained by the known relationship between organic matter accumulation and soil 447 

formation in Iceland. Opfergelt et al., (2011) showed the while Al was complexed to organic 448 

matter in organic rich porewaters, in most soil solutions Al was found to be un-complexed. In 449 

most non-glacial catchments the total drainage area associated with organic rich soils is 450 

limited (See Figure 1) so, at least in Iceland, the Al flux associated with soil formation is not 451 

necessarily driven by organic matter. Additionally the overall organic matter concentrations 452 

of both glacial and non-glacial river catchments in Iceland are relatively low. Pogge von 453 

Strandmann et al., (2008) found dissolved organic carbon (DOC) concentrations of 30-50 454 

µmol/L in glacial rivers in Iceland and DOC concentrations of 100-141 µmol/L in non-glacial 455 

rivers. The higher concentrations are very similar to the concentration of humic acid used in 456 

the experiments by Liu and Millero (1999) shown on Figure 10. While organic matter does 457 

increase the apparent solubility of Fe at this level the overall apparent solubility of Fe 458 

remains very low and less than Al. 459 

The influence of pH-dependent mineral reactions during soil formation on overall 460 

chemical weathering patterns is also reflected in the inverse-weathering FeOOH and AlOOH 461 

formation rate estimates. The inverse weathering models predict FeOOH formation is mainly 462 

coupled to olivine dissolution and AlOOH formation is primarily coupled to plagioclase 463 

dissolution. This is a key result in terms of validating the models as the pattern is consistent 464 

with independent predictions of mineral weathering patterns in Iceland e.g. Arnorsson et al., 465 

(2002). Furthermore, the absolute stabilities of olivine and plagioclase are predicted to 466 

decrease with decreasing pH (Stefansson et al., 2001). As a result, the higher weathering 467 

rates in non-glacial catchments are best explained by the increased weathering intensity of 468 

acidic non-glacial soils relative to alkaline glacial environments. It is worth noting that this is 469 

not a result of the way the inverse models were parametrized. All the models were 470 

parametrized with the same initial rainwater pH (5.5 consistent with mean Icelandic 471 

precipitation; Gislason et al., 1996) and run to their respective final riverine pHs (which aren’t 472 

significantly different) preventing the introduction of any pH bias during model 473 

parameterization. The models are reproducing the weathering trend based only on the 474 

residual chemical patterns of soils formation transferred into the rivers from soil drainage.  475 
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Overall it would appear that soil formation has a measurable impact on continental 476 

weathering including riverine chemistry. In the case of glacial/non-glacial differences, soil 477 

formation promotes AlOOH and FeOOH formation in non-glacial systems. But this does not 478 

imply non-glacial weathering increases Fe/AlOOH export to nearshore marine environments.  479 

6.3 Soils and River Sediments. 480 

There is a fundamental difference between mineral formation and mineral transport. 481 

Icelandic soils trap FeOOH as it forms (Figure 6) opening the possibility that much of the 482 

FeOOH formed during non-glacial weathering never reaches the ocean. This possibility is 483 

underscored by the lack of chemical similarity between non-glacial river sediment and 484 

mature soils.  485 

Figure 11 shows the compositions of the glacial and non-glacial sediments relative to 486 

the composition of the Icelandic soils. All the river sediments are chemically more similar to 487 

pristine basalt than to Icelandic soil material. Additionally, the compositions of the river 488 

sediment cannot be explained through the mixing of soils with different compositions. All the 489 

river sediments have higher Na+K, Mg, and Ca concentrations relative to their Fe and Al 490 

concentrations than all the soil samples. This is consistent with physical processes 491 

controlling both glacial and non-glacial river sediments independently of chemical soil 492 

formation process. 493 
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 494 

Figure 11 Icelandic river sediment and soil compositions. The river sediment data from Figure 2.5 is 495 

combined with the soil data from Figure 2.6: RBS=riverbed Sediment; TSS= total suspended 496 

sediment. The solid black lines reflect the composition of pristine Icelandic basalt. The soils are 497 

generally depleted in the mobile elements (Na, K, Mg, Ca) relative to the sediments. 498 

The dominance of physical weathering on river sediment chemistry is not a new idea 499 

especially in the context of FeOOH. Poulton and Raiswell (2005) and Poulton and Canfield 500 

(2005) found that the FeOOH concentrations of river sediment from glacial and non-glacial 501 

catchments from around the world were best explained by physical weathering. Specifically, 502 

FeOOH concentrations were found to correspond to sediment surface area irrespective of 503 

bedrock lithology or soil formation intensity. This is consistent with more recent studies which 504 

have found high FeOOH export from glacial systems characterized by high rates of physical 505 

weathering e.g. Bhatia et al., (2013); Hawkins et al., (2014). 506 

6.4 Physcial Weathering, FeOOH export and Earth’s Climate 507 

One important aspect of this study is that, whereas previous studies have shown 508 

glacial terrains can be a significant source of FeOOH, we have directly compared analogous 509 

glacial and non-glacial terrains in a way which allows us to conclude glacial terrains export 510 

more FeOOH than equivalent non-glacial terrains. However, our conclusion has previously 511 

been implied based on studies of Antarctica (Martin 1990), Greenland (Bhatia et al., 2013) 512 
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and other terrains (Poulton and Canfield 2005) so the idea isn’t new. Additionally, any 513 

number of previous studies have stated: chemical weathering patterns do differ between 514 

glacial and non-glacial catchments in Iceland e.g. Gislason et al., (1996); Pogge von 515 

Strandmann et al., (2006, 2012); Opfergelt et al., (2013); Opfergelt et al., (2014), but 516 

because of the environmental behaviour of Fe and Al physical processes control the 517 

secondary Fe/AlOOH flux rates (Poulton and Canfield 2005). This confirms Martin (1990)’s 27 518 

year old claim that in general physical sediment erosion by glaciers enhances marine FeOOH 519 

accumulation. 520 

What is important to note is a significant new idea has gained traction since the 521 

original proposal of the Iron Hypothesis. It is now widely understood that FeOOH promotes not 522 

only primary production but also carbon burial. Marine carbon burial accounts for the 523 

sequestration of about 309 Tg C yr-1 (Burdgie 2007) and it accounts for about half of the total 524 

annual geologic sink of carbon (Ciais et al., 2013). Its estimated that 20% of organic carbon 525 

in marine sediments is directly stabilized by FeOOH (Lalonde et al., 2012) so significant 526 

changes in FeOOH export equate to significant changes in Earth’s climate. This is a statement 527 

that is worth re-iterating because it demands a significant shift in the importance which can 528 

be attributed to studying FeOOH fluxes from glacial systems. For example Hawkins et al., 529 

(2014) concludes: “We contend that the consideration of meltwater Fe fluxes, which 530 

supplements iron from icebergs, is critical for understanding iron cycling and primary 531 

productivity in polar waters.” Such a statement falls short of what we are contending as the 532 

true significant of the work by Hawkins et al., (2014), Raiswell et al., (2008) and others which 533 

is: we contended that the consideration of meltwater Fe fluxes, which supplements iron from 534 

icebergs, is critical for understanding carbon burial and Earth’s climate. 535 

7. Summary and Conclusions. 536 

Direct chemical measurements of Icelandic sediments and soils and inverse 537 

stoichiometric modelling of chemical weathering in Icelandic catchments support the 538 

assertion that the chemical weathering process does differ between glacial and non-glacial 539 

catchments. The differences appear to be products of the soil formation process and, more 540 

specifically, the relationship between pore-water pH and mineral weathering. However, as 541 

many authors have concluded before us, these chemical differences don’t appear to have a 542 

significant effect on FeOOH and AlOOH delivery to the ocean, because physical processes are 543 

more important in the context of sediment export rates. This allows us to conclude not just 544 

that glacial weathering is a significant source of (oyxhyr)oxides to the ocean, but that glacial 545 

weathering promotes the accumulation of significantly more (oyxhyr)oxides in nearshore 546 

marine environments than analogous non-glacial weathering. We assert that this difference 547 
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is not tangentially related to climate change via primary productivity but directly relates to 548 

carbon sequestration via marine carbon burial. 549 
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