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Abstract: To quantify and characterize the potentially toxic protein aggregates associated with neurodegenerative diseases, a high-

throughput assay based on measuring the extent of aggregate-induced Ca2+ entry into individual lipid vesicles has been developed. This 

approach was implemented by tethering vesicles containing a Ca2+ sensitive fluorescent dye to a passivated surface and measuring changes 

in the fluorescence as a result of membrane disruption using total internal reflection microscopy. Picomolar concentrations of Aβ42 oligomers 

could be observed to induce Ca2+ influx, which could be inhibited by the addition of a naturally occurring chaperone and a nanobody designed 

to bind to the Aβ peptide. We show that the assay can be used to study aggregates from other proteins, such as α-synuclein, and to probe the 

effects of complex biofluids, such as cerebrospinal fluid, and thus has wide applicability. 

DOI: 10.1002/anie.201700966 
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Experimental Procedures 

Preparation and purification of recombinant Aβ42 

The recombinant Aβ42 (M1-42) peptide (MDAEFRHDSGYEVHHQKLVFF AEDVGSNKGAIIGLMVGGVVIA), here 

called Aβ42, was expressed in the Escherichia coli BL21 Gold (DE3) strain and purified as described previously 

with slight modifications[1,2]. 

Preparation of recombinant Aβ42 for experiments 

Solutions of monomeric recombinant Aβ42 were prepared as previously described[1,2] by dissolving the 

lyophilized Aβ42 peptide in 6 M GuHCl then purifying the protein using a Superdex 75 10/300 GL column (GE 

Healthcare Bio-Sciences AB SE-751 84 Uppsala, Sweden). The center of the elution peak was collected, and the 

peptide concentration was determined from the absorbance of the integrated peak area using ε280 = 1490 L mol-

1cm−1. 

Measurement of aggregation kinetics of Aβ42 

For kinetic experiments the Aβ42 monomer was diluted with buffer to the desired concentration and 

supplemented with 20 µM ThT. All samples were prepared in low-binding Eppendorf tubes (Eppendorf AG, 

Hamburg, Germany) on ice. Each sample was then pipetted into multiple wells of a 96-well half-area, low-binding 

polyethylene glycol coating plate (Corning 3881, Kennebuck ME, USA) with a clear bottom, at 80 µL per well. The 

96-well plate was placed in a plate reader (Fluostar Omega, Fluostar Optima, or Fluostar Galaxy; BMG Labtech, 

Ortenberg, Germany) and incubated at 37°C under quiescent conditions using the bottom reading mode (440-nm 

excitation filter, 480-nm emission filter). For each new preparation of protein, the aggregation kinetics were 

checked by performing reactions at different concentrations of Aβ42. 

Conditions for Aβ42 aggregation  

Aliquots of monomeric Aβ42 were diluted with buffer to a concentration of 2 µM in low-binding Eppendorf tubes 

on ice. Individual samples were then pipetted into multiple wells of a 96-well half-area plate (Corning 3881, 

Kennebuck ME, USA) and the plate was placed into an incubator at 37 °C, under quiescent conditions. Aliquots 

for measurements of Ca2+ influx were then taken at the desired times after the plate was placed in the incubator. 

Preparation and Purification of α-synuclein 

Recombinant α-synuclein was expressed in the Escherichia coli BL21 Gold (DE3) strain (Stratagene) and purified 

as described previously[3–5]. In short, the purification involved sonicating the cells, boiling the cell debris, and 

carrying out ion exchange chromatography using a POROS HQ20 anion exchange column (Applied Biosystems 

Ltd. Warrington, UK); this step was followed by gel filtration using a HiLoad 26/60 Superdex 75 pg exclusion 

molecular column (Amersham Biosciences, Sweden). The protein concentration was determined from the 

absorbance at 275 nm using an extinction coefficient of 5600 M-1cm-1. Protein samples were flash frozen in liquid 

N2 and stored at -80°C until use. 

 

 



SUPPORTING INFORMATION          

3 

 

Conditions for α-synuclein aggregation  

Monomeric α-synuclein was incubated at a concentration of 70 μM in 25 mM Tris-HCl with 100 mM NaCl (pH 7.4) 

with constant shaking at 200 rpm for 5 h at 37 °C, conditions shown previously to result in the formation of 

oligomeric species[6]. 

CSF Sample 

The CSF sample was collected from a healthy individual (aged 65 years) by lumbar puncture. Standardized 

protocols for the collection and storage of CSF (www.neurochem.gu.se/TheAlzAssQCProgram) were followed. In 

short, the lumbar puncture was performed between 9 a.m. and 12 noon to collect 15 mL of CSF in sterile 

polypropylene tubes. The sample was divided into 1 mL aliquots that were frozen on dry ice and stored at −80 °C 

in Sarstedt 2mL tube. The time between sample collection, centrifugation, and freezing was maximum 1 h. 

Preparation of the nanobody Nb3 and clusterin 

Nb3 was prepared as previously described[7–9]. Briefly, it was recombinantly expressed in Escherichia coli[9] and 

purified using immobilized metal affinity chromatography and size-exclusion chromatography[7]. The 

concentration was measured by UV absorbance spectroscopy using a molecular extinction coefficient, which was 

calculated based on the sequence of the protein at 280 nm of 21,555 M−1 cm−1. Clusterin was obtained as 

previously described[10,11], and purified from human serum by IgG affinity chromatography or by affinity 

chromatography using MAb G7[12]. 

Optimization of the dye filled vesicle preparation 

Initially we screened a series of different dye molecules for this assay. To ensure that we could attach vesicles to 

the surface and for probing surface coating protocols we used the dye rhodamine (Rh6G) for encapsulation. 

Thereafter, we tested the Ca2+-sensitive dyes Fluo-4, Fluo-8 and Cal-520 (Stratech Scientific Ltd, Newmarket, 

UK) and found that we detected the strongest increase in localized fluorescence intensity using the dye Cal-520. 

We also examined if the method can be performed using vesicles composed of different lipids and tested 1,2-

ditetradecanoyl-sn-glycero-3-phospho-L-serine (DMPS) PS(14:0/14:0) (Avanti Polar Lipids, Alabama, USA, 

Catalogue No. - 840033) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) PC (16:0/18:1) (Avanti 

Polar Lipids, Alabama, USA, Catalogue No. - 840033). We selected vesicles composed of POPC to perform our 

experiments as the bilayer is in the fluid form at room temperature, as previously described[13]. 

We tested vesicles of varying sizes (50, 100 and 200, 400 nm) and found that all these vesicles can be used in 

this assay. We probed vesicles containing varying concentrations of incorporated dye,1-100 μM, and found that 

improved signals can be detected at higher dye concentrations. Higher concentrations of the dye were found to 

be preferable for focusing of the instrument on samples incubated in L15 medium or samples that did not induce 

Ca2+ influx. However, the incorporation of higher concentrations of dye molecules into the vesicles resulted in the 

surrounding solution containing a high concentration of free dye, we therefore performed size exclusion 

chromatography in order to remove free dye molecules from the surrounding solution. We tested both non-

purified and purified vesicle samples and found that we observed considerably less background signal using 

purified vesicles.  
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Finally, based on these optimizations and our calculations (see Supporting Information Note 1 and 2, Supporting 

Information Fig. 1) we performed our experiments using purified vesicles composed of POPC with an average 

size of 200 nm containing Cal-520 at a concentration of 100 μM.  

Preparation and purification of dye filled vesicles  

Phospholipids 16:0-18:1 PC (catalogue no - 850457) and biotinylated lipids 18:1-12:0 Biotin PC (catalogue no - 

860563) were purchased from Avanti Polar Lipids (Alabama, USA) in the form of powder and chloroform 

solutions respectively. For lipids bought as powder, chloroform stock solutions (1 mg/mL) were prepared and 

stored at -20°C. Then stock solutions were mixed such that the ratio between 16:0-18:1 PC and 18:1-12:0 biotin 

PC was 100:1 lipid. The chloroform was then removed under vacuum in a desiccator overnight. The samples 

were then dissolved in HEPES buffer (pH 6.5) with 100 µM Cal-520 and five freeze-and-thaw cycles were 

performed using dry ice and a water bath. The solution was passed at least 10 times through an extruder (Avanti 

Polar Lipids, Alabama, USA) with a membrane of an appropriate size cut off to obtain vesicles of the desired size, 

The size of the vesicles was determined using a Zetasizer (Zetasizer Nano ZSP, Malvern Instruments, Malvern, 

UK). 

To separate non-incorporated dye molecules from the vesicles, size-exclusion chromatography was performed in 

buffer using a SuperdexTM 200 Increase 10/300 GL column attached to an AKTA pure system (GE Life Sciences) 

with a flow rate of 0.5 mL/min (Supporting Information Fig. 3). 

Preparation of PEGylated slides and immobilization of single vesicles 

Initially we screened a variety of  surface treatment protocols[13–18] and for our experiments we optimized and 

followed a previously described protocol[18] with slight modifications to perform the actual experiments. 

Borosilicate glass coverslides (VWR International, 22x22 mm, product number 63 1-0122) were cleaned by 

sonicating in 2% (v/v) Hellmanex III (Hellma GmbH & Co. KG, Müllheim, Germany) in milliQ water for 10 min 

followed by sonicating twice in milliQ water and in methanol for 10 min each and then in water again for 10 more 

minutes. The glass slides were dried under a nitrogen stream, and plasma-etched using an argon plasma cleaner 

(PDC-002, Harrick Plasma, Ithaca, NY) for 20 minutes to remove any fluorescent impurities. Frame-Seal 

incubation chambers (9x9mm2, Biorad, Hercules, CA, product number SLF-0601) were affixed to the glass slides  

and 50 µL of a mixture of 100:1 PLL-g-PEG (SuSoS AG, Dübendorf, Switzerland) and PLL-g-PEG biotin (SuSoS 

AG, Dübendorf, Switzerland) (1 g/L) in reaction buffer (50 mM Hepes, pH 6.5) was added to the coverslide inside 

of the chamber and incubated for 30 min. Then the coverslides were washed 3 times with filtered reaction buffer. 

50 µL of a solution of 0.1 mg/mL Neutravidin (ThermoScientific, Rockford, IL 61105, USA) in reaction buffer was 

added to the coverslide and incubated for 15 min, and washed 3 times with reaction buffer. Then, 50 µL of the 

solution of purified vesicles was added to the coverslide and incubated for 30 min before washing carefully at 

least 5 times with reaction buffer. 

Imaging using Total Internal Reflection Fluorescence Microscope  

Imaging was performed using a homebuilt Total Internal Reflection Fluorescence Microscope (TIRFM) based on 

an inverted Olympus IX-71 microscope. This imaging mode restricts the detected fluorescence signal to within 

100-150 nm from the glass-water interface. A 488 nm laser (Toptica, iBeam smart, 200 mW, Munich, Germany) 

was used to excite the sample. The expanded and collimated laser beam was focused using two Plano-convex 

lens onto the back-focal plane of the 60X, 1.49NA oil immersion objective lens (APON60XO TIRF, Olympus, 
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product number N2709400) to a spot of adjustable diameter. The fluorescence signal was collected by the same 

objective and was separated from the excitation beam by a dichroic (Di01-R405/488/561/635, Semrock). The 

emitted light was passed through an appropriate set of filters (BLP01-488R, Semrock and FF01-520/44-25, 

Semrock) (Figure S14). The fluorescence signal was then passed through a 2.5x beam expander and imaged 

onto a 512 × 512 pixel EMCCD camera (Photometrics Evolve, E VO-512-M-FW- 16-AC-110). Images were 

acquired with a 488nm laser (~10 W/cm2) for 50 frames with a scan speed of 20 Hz and bit depth of 16 bits. Each 

pixel corresponds to 100 nm. All the measurements were carried out under ambient conditions (T=295K). The 

open source microscopy manager software Micro Manager 1.4 was used to control the microscope hardware and 

image acquisition[19,20]. 

Performing the Ca2+ influx assay using TIRFM  

Single vesicles tethered to PLL-PEG coated borosilicate glass coverslides (VWR International, 22x22 mm, 

product number 63 1-0122) were placed on an oil immersion objective mounted on an inverted Olympus IX-71 

microscope. Each coverslide was affixed at Frame-Seal incubation chambers and was incubated with 50 µL of 

HEPES buffer of pH 6.5. Just before the imaging, the HEPES buffer was replaced with 50 µL Ca2+ containing 

buffer solution L-15. 16 (4×4) images of the coverslide were recorded under three different conditions 

(background, in the presence of Aβ42 and after addition of ionomycin (Cambridge Bioscience Ltd, Cambridge, 

UK), respectively). The distance between each field of view was set to 100 μm, and was automated (bean-shell 

script, Micromanager) to avoid any user bias (Figure S3). After each measurement the script allowed the stage 

(Prior H117, Rockland, MA, USA) to move the field of view back to the start position such that identical fields of 

view could be acquired for the three different conditions. We screened surface treatment protocols, PEG: biotin-

PEG ratios, vesicle size, different encapsulate Ca2+ binding dyes and their concentrations to maximize the 

sensitivity of this assay. 

Images of the background were acquired in the presence of L15 buffer. For each field of view 50 images were 

taken with an exposure time of 50 ms. Thereafter, 50 µL of the aggregation reaction, diluted to a concentration of 

twice the targeted value, was added and incubated for 10 min. Importantly we made sure that the glass 

coverslides were not moved during the addition of samples and then images were recorded. Next, 10 µL of a 

solution containing 1 mg/mL of ionomycin (Cambridge Bioscience Ltd, Cambridge, UK) was added and incubated 

for 5 min and subsequently images of Ca2+ saturated single vesicles in the same fields of view were acquired. 

Experiments with recombinant Aβ42 in CSF 

To study the influence of the presence of a complex environment on the Ca2+ influx, we have taken samples of 

recombinant Aβ42 aggregation reactions corresponding to t2 and serially diluted it in the CSF to measure the 

concentration dependence of the Ca2+ influx. Firstly, we imaged the coverslides in presence of 15 µL of L15 

buffer. Then aliquots of recombinant Aβ42 were diluted in 15 µL of CSF which was added to the coverslides and 

incubated for 10 min before images were acquired as described previously. Thereafter, we added ionomycin to 

the sample and imaged the identical fields of view using automatic stage movement to determine the Ca2+ influx. 

Data analysis and quantification of the extent of Ca2+ influx 

The recorded images were analyzed using ImageJ[21,22] to determine the fluorescence intensity of each spot 

under the three different conditions, namely background (Fbackground), in the presence of an aggregation mixture 
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(Faggregate), and after the addition of ionomycin (FIonomycin). The relative influx of Ca2+ into an individual vesicle due 

to aggregates of Aβ42 peptide was then determined using the following equation: 

 
Ca2+influx =

Faggregate − Fbackground

FIonomycin − Fblank
 

 

(1) 

The average degree of Ca2+ influx was calculated by averaging the Ca2+ influx into individual vesicles. 

Results and Discussion 

Supporting Information Note 1: Calculation of the concentration of an individual dye molecule entering 

into a vesicle 

The volume of a single vesicle with a diameter d can be calculated using equation (1). 

𝑉𝑉𝑒𝑠𝑖𝑐𝑙𝑒𝑠 =
4

3
𝜋 (

𝑑

2
)

3

                               (1) 

We used vesicles with diameters of approximately 200 nm, which have a volume of 4.186 x 10-18 L. For a single 

molecule, the number of moles can be calculated using Avogadro’s number (Navogadro = 6.023 x 1023). Using this 

value we can determine the concentration of a single molecule that enters a vesicle using equation (2). 

[𝑆𝑖𝑛𝑔𝑙𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒]𝑖𝑛 𝑉𝑒𝑠𝑖𝑐𝑙𝑒 =  (𝑉𝑉𝑒𝑠𝑖𝑐𝑙𝑒 × 𝑁𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜)
−1

       (2) 

Thus, the concentration of a single molecule entering a vesicle with a diameter of 200 nm is 396 nM (Supporting 

Information Fig. 1). 

Supporting Information Note 2: Rationalization for using vesicles with a diameter of 200nm 

The effectiveness of our single vesicle assay is primarily determined by two parameters with different 

dependencies on the size of a vesicle – (i) high dynamic range and (ii) high sensitivity (Supporting Information Fig. 

1).  

High dynamic range is the capacity to detect differences in fluorescence intensity over a range of varying 

amounts of Ca2+ influx within individual vesicles, without reaching saturation. The dynamic range of the assay 

described here is related to the maximum amount of measurable Ca2+ influx (e.g. when all dye molecules within a 

single vesicle are saturated with Ca2+), which is directly proportional to the volume of a vesicle. For example, 

using vesicles with a larger volume enables the encapsulation of more Cal-520 dye molecules, therefore reaching 

saturation of the maximum fluorescence intensity at larger amounts of Ca2+ influx compared to a vesicle of a 

smaller volume with less Cal-520 dye molecules incorporated.  

High sensitivity means the ability to detect low levels of Ca2+ influxes within an individual vesicle. The detection 

sensitivity for Ca2+ influx is inversely proportional to the volume of each vesicle. For example, the effective 

concentration of a single Ca2+ ion within a vesicle increases with a decrease of the volume of the vesicle. Hence, 

a small volume of a vesicle increases the sensitivity of the detection of our assay because smaller changes in the 

absolute number of Ca2+ ions relate to a larger change in their effective concentration.  
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More specifically, with the aim of maximizing the sensitivity of our assay we designed our assay such that the 

effective concentration of a single Ca2+ ion entering an individual vesicle is in the range of the dissociation 

constant of the dye Cal-520 (Kd - 320 nM). We determined, using equation (1), that a vesicle with a diameter of 

approximately 215 nm fulfils the requirement to achieve our target that a single Ca2+ entering such a vesicle 

would have an effective concentration of 320 nM. As outlined above for vesicles with a diameter of 215 nm or 

less, a single ion entering the vesicle will result in an ion concentration slightly above the Kd of Cal-520. The 

result is an increase of the fraction of the dye bound to Ca2+, which can be detected using fluorescence 

microscopy methods. Therefore, in order to achieve the maximum sensitivity with a wide dynamic range of the 

assay presented in this work, we fabricated vesicles with a diameter of approximately 200 nm. 
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Supporting Information Figure S1: Design of the assay to achieve an optimum sensitivity and wide 

dynamic range. The effective concentration of a single Ca2+ (black line) and the number of encapsulated dye 

molecules (grey line) in a vesicle as a function of its diameter. The diameter of a vesicle (215 nm) such that a 

single Ca2+ entering the vesicle has an effective concentration close to the Kd of the Cal-520 dye (320 nM) is 

highlighted in blue. The effective concentration of a single Ca2+ entering a vesicle with a diameter of 200 nm, as 

used in the present work, is 396 nM and shown in red. 
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Supporting Information Figure S2:  Schematic of the total internal reflection microscopy (TIRFM) set-up. 

A 488 nm laser line was used to excite the sample. The power was controlled by a combination of neutral-density 

filters (ND filters). The exposure time is controlled automatically with a mechanical shutter. The laser beam were 

expanded and collimated with the telescopes L1 and L2. Laser beams were aligned using combinations of 

mirrors M1-M2. An ocular lens L3 and a dichroic beam splitter D1 were used to focus the collimated beam on the 

back aperture of the objective for wide field illumination. The emitted fluorescent light was collected by the same 

objective. The TIRF mode was achieved by of axis movement of the beam at the glass-water interface and the 

resulting fluorescence was focused using a combination of L4 and L5 onto the electron-multiplying Charge 

Coupled Device (EMCCD) chip.  
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Supporting Information Figure S3: Separation of dye filled lipid vesicles from non-incorporated free dye. 

Lipid vesicles composed of 16:0-18:1 PC and 18:1-12:0 Biotin PC (ratio 100:1) were prepared in HEPES buffer 

(pH 6.5) with 100 µM Cal-520 dye by five freeze-and-thaw cycles and extrusion. Size-exclusion chromatography 

was performed in HEPES buffer (pH 6.5) using a SuperdexTM 200 Increase 10/300 GL column attached to an 

ÄKTA pure system (GE Life Sciences) and the absorption was monitored at 280 nm (blue) and 488 nm (red). 

Photographs of the fractions (F1, vesicle fraction) and F2 (lipid, free dye) are shown. 
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Supporting Information Figure S4: Automatic stage movement to enable a high-throughput single-vesicle 

assay. To calculate the percentage of Ca2+ influx in individual vesicles, we compared the same vesicles under 

three different conditions - the presence of Ca2+ buffer, after the addition of a sample and then after the addition 

of ionomycin. Using a bean-shell based in-house written script, we scanned and imaged 16 (4x4) identical fields 

of view (dark grey squares) using automatic stage movement. Each of the fields of view was 50 µm x 50 µm and 

the distance between two consecutive fields is 100 μm. After the last image (16), the stage automatically moves 

to the initial position of the slide (1, enabling us to scan identical fields of view. Our script allowed us to choose 

the number of areas to be imaged as well as the distance between them. 
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Supporting Information Figure S5: Photobleaching of the Cal-520 dye molecules encapsulated into 

individual vesicles. (a) Surface-tethered single vesicles with a diameter of 200 nm containing the dye Cal-520 

appear as bright spots under illumination with 488-nm laser (at higher power; 100 W/cm2). The image was 

averaged over 1000 frames of 50 ms exposure time. The circles indicate spots that correspond to the 

photobleaching traces in b and c (The scale bar represents 3 μm) (b) Example of typical photobleaching traces of 

vesicles containing Cal-520 dye molecules (Position 1-4) and the background (5). (c) Zoom of the early times of 

the photobleaching traces shown in b. Continuous bleaching of localized bright spots indicates the presence of 

multiple dye molecules within the vesicles. The different averaged intensities as well as the different 

photobleaching times show the diverse encapsulation efficiencies of individual vesicles. 
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Supporting Information Figure S6: Intensity traces of single vesicles under different conditions. 15x15 

µm2 TIRF image of the coverslide with surface tethered vesicles containing multiple Cal-520 dye molecules 

incubated with (a) L15 buffer only , (b) Aβ42 aggregates and (c) ionomycin. Images were acquired using 10 

W/cm2 power and averaged over 50 frames with 50 ms exposure time. Each bright localized spot corresponds to 

a vesicle filled with dye. The circles indicate the spots that were used for intensity profiles. The scale bar 

represents 3 µm. Intensity traces of background (1) and four representative vesicles containing the Cal-520 dye 

(2-5) are shown in the presence of (d) only L-15 buffer, (e) Aβ42 aggregates and (f) ionomycin. The intensity of 

the dye molecules encapsulated within the vesicles does not notably change for most of the vesicles in the power 

regime and the time scales (2.5 s) that were used in these experiments. 



SUPPORTING INFORMATION          

14 

 

 

 

Supporting Information Figure S7: Photo-stability of Cal-520 dye filled single vesicles in the presence of 

Ca2+. (a) The coverslide with surface-tethered vesicles containing Cal-520 dye molecules was incubated in the 

presence of Ca2+ containing phenol free L15 buffer and imaged at 0, 20, 40 and 60 minutes of incubation (the 

scale bar represents 3 µm). The circles indicate the spots that were used for intensity profiles. We have seen 

photobleaching of dye molecules in individual vesicles but the vesicles show structural integrity over the 

experimental time scales. (b) Typical intensity traces for vesicles containing Cal-520 dye molecules (Position 1-4) 

and the background (Position 5). Each point corresponds to the average of 10 frames with an exposure time of 

50 ms. The measurements were performed at high power (at 100 W/cm2) to enable the vesicles to be detected.   
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Supporting Information Figure S8: Detectable fluorescence of surface tethered vesicles containing Cal-

520 dye molecules incubating with solutions containing different membrane disrupting reagents. The 

surface tethered vesicles containing Cal-520 dye molecules can be detected as bright localized spots in the 

presence of Ca2+ containing buffer under 488-nm illumination. The addition of ionomycin significantly increases 

the fluorescence intensity, demonstrating that ionomycin allows Ca2+ to enter the vesicles. After the addition of 

Triton X no localized fluorescence was detected, which suggests that the addition of the detergent disrupts the 

membrane. The scale bar represents 5 µm. These experiments were performed at a higher laser power (at 100 

W/cm2) to allow the detection of Cal-520 dye molecules not bound to Calcium. 
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Supporting Information Figure S9: The Ca2+ influx caused by an Aβ42 sample diluted by a factor of 200 

remains unchanged over a time period of 2 h of incubation at the diluted concentration. Aliquots were 

taken from an aggregation reaction of Aβ42 at a time-point corresponding to t2 (Figure 2a) and diluted by a factor 

of 200 to a concentration of 10 nM (monomer equivalents). The diluted sample was incubated at room 

temperature and at the indicated time points (0, 0.5, 1, 1.5, and 2 h) after dilution of the sample, the ability of the 

oligomers to permeate the membrane was tested. We found no significant change in their ability to permeate the 

membrane and induce Ca2+ influx. 

  



SUPPORTING INFORMATION          

17 

 

 
 

Supporting Information Figure S10: The distribution of the percentage of Ca2+ influx into single vesicles 

depending on the concentration of Aβ42 aggregates. Histograms showing the percentage of Ca2+ influx into 

individual vesicles after the addition of aliquots taken of an aggregation reaction of 2 μM monomeric Aβ42 at a 

time point corresponding to t2. An aliquot was taken, diluted to the desired concentration and the Ca2+ influx was 

determined. The Ca2+ influx was calculated for individual vesicles and binned using 10% steps. The number of 

vesicles detected, the mean percentage of Ca2+ influx, the standard deviation and the standard error of mean are 

shown for each concentration of Aβ42. 
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Supporting Information Figure S11: Reproducibility of the dependence of the percentage of Ca2+ influx on 

the Aβ42 concentration. Monomeric Aβ42 was incubated at a concentration of 2 μM and an aliquot was taken 

at a time point corresponding to t2. Aliquots were taken and diluted to the desired total Aβ42 monomer 

concentration. The concentration dependence of the Ca2+ influx is shown for four independent experiments 

(replicates) for the concentration range from 50 pM to 5 nM for which we observed a linear increase in the Ca2+ 

influx. The mean of the percentage of Ca2+ influx of these replicates is shown as the average Ca2+ influx in Fig. 

2d. 
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Supporting Information Figure S12: Ca2+ influx induced by α-synuclein aggregates. Monomeric α-synuclein 

was incubated at a concentration of 70 μM in 25 mM Tris-HCl with 100 mM NaCl (pH 7.4) for 5 h at 37 °C with 

constant shaking at 200 rpm. Both for the monomeric protein (Monomeric α-synuclein) and the aggregation 

mixture (Aggregated α-synuclein), aliquots were taken, diluted to a concentration of 5 nM monomeric α-synuclein 

and the percentage of Ca2+ influx was determined. The detection of increased Ca2+ influx upon the addition of α-

synuclein aggregates indicates that the Ca2+ influx is due to the presence of the latter. 

  



SUPPORTING INFORMATION          

20 

 

 
 

Supporting Information Figure S13: Recombinant Aβ42 aggregates induce Ca2+ influx in the presence of 

a complex biofluid. Monomeric Aβ42 was incubated at a concentration of 2 μM under quiescent conditions at 

37 °C and an aliquot was taken at a time point corresponding to t2. The aliquot was diluted to the indicated 

concentrations of total Aβ42 monomer equivalent in a single sample of control human CSF and the Ca2+ influx 

measured. The insert is a zoom from 0 to 0.7 nM.  
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Supporting Information Figure S14: Estimation of the detected photons from the emission of Cal-520 dye 

molecules. (a) Laser excitation at 488 nm and transmission efficiency of dichroic beam splitter (Di01-

405/488/561/635), long pass filter (BLP01-488), and band pass filter (FF01-520/44-25) as well as the normalized 

Quantum efficiency for an EMCCD Photometrics Evolve (EVO-512-M) are shown. (b) The emission profile of Cal-

520 molecules measured with a Fluorimeter (black dashed line, grey area) and the calculated Cal-520 emission 

profile (green) with using the BLP01-488 and FF01-520/44-25 filters are shown. We calculated the emission 

efficiency (62%) by taking into account the efficiency of the dichroic beam splitter, the filters and the efficiency of 

the detector. 
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