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1. Introduction
Altered cognitive function due to various neuropsychiatric disorders seems to result from
aberrant neural dynamics in the affected brain [1–4]. Alterations in brain dynamics may also occur
in the absence of disorders, in situations such as typical ageing, traumatic experiences, emotional
responses and tasks. Functional magnetic resonance imaging (fMRI) provides information on the
neural dynamics in the brain with a reasonable spatial resolution in a non-invasive manner. There
are various analysis methods that can be used to extract the dynamics in neuroimaging data
including fMRI signals, such as sliding-window functional connectivity analysis, dynamic causal
modelling, oscillation analysis and biophysical modelling. In this study, we seek the potential of
a different approach: energy landscape analysis.

This method is rooted in statistical physics. The main idea is to map the brain dynamics
to the movement of a ‘ball’ constrained on an energy landscape inferred from neural data. A
ball tends to go downhill and remains near the bottom of a basin in a landscape, whereas it
sometimes goes uphill due to random fluctuations that cause it to wander around and possibly
transit to another basin (figure 1g). Using the Ising model (equivalent to the Boltzmann machine
and the pairwise maximum entropy model (MEM); see [5–7] for reviews in neuroscience),
we can explicitly construct an energy landscape from multivariate time-series data including
fMRI signals recorded at a specified set of regions of interest (ROIs). The pairwise MEM, or,
equivalently, the Ising model, has been used to emulate fMRI signals [6,8–11]. More recently,
we have used the pairwise MEM for fMRI data during rest [12] and sleep [13] and then
developed an energy landscape analysis method and applied it to participants during rest [14]
and during a bistable visual perception task [15]. In contrast with the aforementioned previous
studies [6,8–11], our approach is data driven, with the parameters of the Ising model being
inferred from the given data. In this paper, we review the methods and some technical details.
In passing, we introduce new techniques (i.e. different inference algorithms and a Dijkstra-
like method). We apply the methods to publicly shared resting-state fMRI data recorded from
healthy human participants to validate the new approaches and also to examine the relationship
between the accuracy of fit, the size of the brain system (i.e. number of ROIs) and the length of
the fMRI data.

2. Material and methods
The pipeline of the energy landscape analysis based on the pairwise MEM is illustrated in
figure 1.

(a) Pairwise maximum entropy model
First, we specify a brain network of interest (figure 1a) and obtain resting-state (or under other
conditions, which are ideally stationary) fMRI signals at the ROIs, resulting in a multivariate time
series (figure 1b). We denote the number of ROIs by N.

Second, we binarize the fMRI signal at each time point (i.e. in each image volume) and each
ROI by thresholding the signal. Then, for each ROI i (i = 1, . . . , N), we obtain a sequence of
binarized signals representing the brain activity, {σi(1), . . . , σi(tmax)}, where tmax is the length
of the data, σi(t) = 1 (t = 1, . . . , tmax) indicates that the ith ROI is active at time t, and σi(t) = −1
indicates that the ROI is inactive (figure 1c). The threshold is arbitrary, and we set it to the time
average of σi(t) for each i. The activity pattern of the entire network at time t is given by an
N-dimensional vector σ ≡ (σ1, . . . , σN) ∈ {−1, 1}N , where we have suppressed t. Note that there
are 2N possible activity patterns in total. Binarization is not readily justified given continuously
distributed fMRI signals. However, we previously showed that the pairwise MEM with binarized
signals predicted anatomical connectivity of the brain better than other functional connectivity
methods that are based on non-binarized continuous fMRI signals and that ternary as opposed to
binary quantization did not help to improve the results [12].
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Figure 1. Procedures of the energy landscape analysis for fMRI data. (a) ROIs are specified. (b) fMRI signals are measured at
the ROIs. (c) The fMRI signal at each ROI and each time point is binarized into 1 (active) or−1 (inactive). (d) The normalized
frequency is computed for each binarized activity pattern. (e) The pairwise MEM model (i.e. Boltzmann distribution) is fitted
to the empirical distribution of the 2N activity patterns (equation (2.1)). The energy value is also obtained for each activity
pattern (equation (2.2)). (f ) Relationships between activity patterns that are energy local minimums are summarized into a
disconnectivity graph. (g) Schematic of the energy landscape. Each local minimum corresponds to the bottom of a basin. The
borders between attractive basins of different local minimums are shown by the dotted curves. Any activity pattern belongs to
the basin of a local minimum. Brain dynamics can be interpreted as the motion of a ‘ball’ constrained on the energy landscape.
(Online version in colour.)

Third, we calculate the relative frequency with which each activity pattern is visited,
Pempirical(σ ) (figure 1d). To Pempirical(σ ), we fit the Boltzmann distribution given by

P(σ | h, J) = exp [−E(σ |h, J)]∑
σ ′ exp [−E(σ ′ | h, J)]

, (2.1)
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where

E(σ | h, J) = −
N∑

i=1

hiσi − 1
2

N∑
i=1

N∑
j=1
j�=i

Jijσiσj (2.2)

is the energy, and h = {hi} and J = {Jij} (i, j = 1, . . . , N) are the parameters of the model (figure 1e).
We assume Jij = Jji and Jii = 0 (i, j = 1, . . . , N). The principle of maximum entropy imposes that
we select h and J such that 〈σi〉empirical = 〈σi〉model and 〈σiσj〉empirical = 〈σiσj〉model (i, j = 1, . . . , N),
where 〈· · · 〉empirical and 〈· · · 〉model represent the mean with respect to the empirical distribution
(figure 1d) and the model distribution (equation (2.1)), respectively. By maximizing the entropy
of the distribution under these constraints, we obtain the Boltzmann distribution given by
equation (2.1). Some algorithms for the fitting will be explained in §2b. Equation (2.1) indicates
that an activity pattern with a high energy value is not frequently visited and vice versa. Values
of hi and Jij represent the baseline activity at the ith ROI and the interaction between the ith and
jth ROIs, respectively. Equation (2.2) implies that, if hi is large, the energy is smaller with σi = 1
than with σi = −1, such that the ith ROI tends to be active.

(b) Algorithms to estimate the pairwise maximum entropy model
In this section, we review three algorithms to estimate the parameters of the MEM, i.e. h and J.

(i) Likelihood maximization

In the maximum-likelihood method, we solve

(h, J) = arg max
h,J

L(h, J), (2.3)

where L(h, J) is the likelihood given by

L(h, J) =
tmax∏
t=1

P(σ (t) | h, J). (2.4)

We can maximize the likelihood by a gradient ascent scheme

hnew
i − hold

i = ε

tmax

∂

∂hi
logL(h, J) = ε(〈σi〉empirical − 〈σi〉model) (2.5)

and

Jnew
ij − Jold

ij = ε

tmax

∂

∂Jij
logL(h, J) = ε(〈σiσj〉empirical − 〈σiσj〉model), (2.6)

where the superscripts new and old represent the values after and before a single updating step,
respectively, and ε (>0) is a constant. A slightly different updating scheme called the iterative
scaling algorithm [16], where the right-hand side of equations (2.5) and (2.6) is replaced by
ε sgn(〈σi〉) log(〈σi〉empirical/〈σi〉model) and ε sgn(〈σiσj〉) log(〈σiσj〉empirical/〈σiσj〉model), respectively,
is also used sometimes [5,12,17,18]. Because equation (2.1) is concave in terms of h and J (which we
can show by verifying that the Hessian of logL is a type of sign-flipped covariance matrix, which
is negative semi-definite), the gradient ascent scheme yields the maximum-likelihood estimator.
Because a single updating step involves all the 2N activity patterns to calculate 〈σi〉model and
〈σiσj〉model, likelihood maximization is computationally costly for large N.

Our Matlab code to calculate the maximum-likelihood estimator for arbitrary multivariate
time-series data is available in the electronic supplementary material.
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(ii) Pseudo-likelihood maximization

The pseudo-likelihood maximization method approximates the likelihood function as follows:

L(h, J) ≈
tmax∏
t=1

N∏
i=1

P̃(σi | h, J, σ /i(t)), (2.7)

where P̃ represents the Boltzmann distribution for a single spin, σi, given the other σj(j �= i) values
fixed to σ /i(t) ≡ (σ1(t), . . . , σi−1(t), σi+1(t), . . . , σN(t)) [19]. In other words,

P̃(σi|h, J, σ /i(t)) =
exp[hiσi + ∑N

j=1
j�=i

Jijσiσj(t)]

∑
σ ′

i =−1,+1 exp[hiσ
′
i + ∑N

j=1
j�=i

Jijσ
′
i σj(t)]

. (2.8)

We call the right-hand side of equation (2.7) the pseudo-likelihood. Although this is a mean-
field approximation neglecting the influence of σi on σj (j �= i), the estimator obtained by
the maximization of the pseudo-likelihood approaches the maximum-likelihood estimator as
tmax → ∞ [19]. A gradient ascent updating scheme is given by

hnew
i − hold

i = ε(〈σi〉empirical − 〈σi〉P̃) (2.9)

and
Jnew
ij − Jold

ij = ε(〈σiσj〉empirical − 〈σiσj〉P̃), (2.10)

where 〈σi〉P̃ and 〈σiσj〉P̃ are the mean and correlation with respect to distribution P̃ (equation (2.8))
and are given by

〈σi〉P̃ = 1
tmax

tmax∑
t=1

tanh

⎡
⎢⎢⎢⎣hi +

N∑
j′=1
j′ �=i

Jij′σj′ (t)

⎤
⎥⎥⎥⎦ (2.11)

and

〈σiσj〉P̃ = 1
tmax

tmax∑
t=1

σj(t) tanh

⎡
⎢⎢⎢⎣hi +

N∑
j′=1
j′ �=i

Jij′σj′ (t)

⎤
⎥⎥⎥⎦ , (2.12)

respectively. It should be noted that this updating rule circumvents the calculation of 〈σi〉model
and 〈σiσj〉model, which the gradient ascent method to maximize the original likelihood uses and
involves 2N terms.

(iii) Minimum probability flow

Different from the likelihood and pseudo-likelihood maximization, the minimum probability flow
method [20] is not based on the likelihood function. Consider relaxation dynamics of a probability
distribution, P(σ ; τ ), on the 2N activity patterns whose master equation is given by

dP(σ ; τ )
dτ

=
∑
σ ′

[W(σ | σ ′)P(σ ′; τ ) − W(σ ′ | σ )P(σ ; τ )], (2.13)

where W(σ |σ ′) is a transition rate from activity pattern σ ′ to activity pattern σ . As the initial
condition, we impose P(σ ; 0) = Pempirical(σ ). By choosing

W(σ |σ ′) =
{

exp[− 1
2 (E(σ |h, J) − E(σ ′|h, J))] (σ and σ ′ are neighbouring patterns),

0 (otherwise),
(2.14)

where σ and σ ′ are neighbours if they are only different at one ROI, we obtain a standard Markov
chain Monte Carlo method such that P(σ ; τ ) converges to the Boltzmann distribution given by
equation (2.1).
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In the minimum probability flow method, we look for h and J values for which P(σ ; τ ) changes
little in the relaxation dynamics at τ = 0 [20]. The idea is that only a small amount of relaxation
is necessary if the initial distribution, i.e. P(σ ; 0) (=Pempirical(σ )), is sufficiently close to the
equilibrium distribution, i.e. the Boltzmann distribution. The Kullback–Leibler (KL) divergence
between the empirical distribution, P(σ ; 0), and a probability distribution after an infinitely small
relaxation time, P(σ ; ε), is approximated as:

DKL(P(σ ; 0) ‖ P(σ ; ε)) ≈ DKL(P(σ ; 0) ‖ P(σ ; τ ))|τ=0 + ε
dDKL(P(σ ; 0) ‖ P(σ ; τ ))

dτ

∣∣∣∣
τ=0

= ε
d

dτ

[∑
σ∈D

P(σ ; 0) log
P(σ ; 0)
P(σ ; τ )

]∣∣∣∣∣
τ=0

= − ε
∑
σ∈D

dP(σ ; τ )
dτ

∣∣∣∣∣
τ=0

= ε

tmax

tmax∑
t=1

∑
σ ′∈Ω\D

W(σ ′ | σ (t)), (2.15)

where DKL(P(σ ; 0) ‖ P(σ ; ε)) = ∑
σ∈Ω P(σ ; 0) log[P(σ ; 0)/P(σ ; ε)] is the KL divergence, which

quantifies the discrepancy between two distributions, Ω is the set of all the 2N activity patterns
and D = {σ ∈ Ω | Pempirical(σ ) > 0} is a set of activity patterns that appear at least once in
the empirical data. The minimum probability flow method minimizes the last quantity in
equation (2.15), i.e. the probability flow from activity patterns that appear in the data to the
patterns that do not. Therefore, the method is not effective when N is small and tmax is large
such that most activity patterns appear in the data. However, when N is large or tmax is small,
this algorithm is efficient in terms of the computation time and memory space [20]. A gradient
descent method on DKL(P(σ ; 0) ‖ P(σ ; ε)) is practically used for determining h and J.

(c) Accuracy indices
Fully describing an empirical distribution requires 2N − 1 parameters, whereas the pairwise MEM
only uses N + N(N − 1)/2 parameters. The pairwise MEM imposes that the first two moments of
σi agree between the empirical data and the model. However, the model may be inaccurate in
describing higher-order correlations in the empirical data. Most previous studies used one or both
of the following two measures to quantify the accuracy with which the MEM fitted the empirical
data.

The first measure is defined by
I2

IN
= S1 − S2

S1 − SN
, (2.16)

which ranges between 0 and 1 for the maximum-likelihood estimator, and Sk ≡ −∑
σ∈Ω Pk(σ )

log Pk(σ ) is the Shannon entropy of the MEM incorporating correlations up to the kth order [17,21].
The so-called independent MEM, in which we suppress any interaction between the elements (i.e.
Jij = 0 for i, j = 1, . . . , N), gives P1(σ ). The pairwise MEM gives P2(σ ). The empirical distribution
(i.e. Pempirical(σ )) is identical to PN(σ ). The denominator of equation (2.16), S1 − SN ≡ IN , is
referred to as the multi-information, which quantifies the total contribution of the second or
higher order correlation to the entropy of the empirical distribution. The numerator, S1 − S2 ≡ I2,
is equal to the contribution of the pairwise correlation. If I2/IN = 1, the pairwise correlation alone
accounts for all the correlations present in the empirical data. If I2/IN = 0, the pairwise correlation
does not deliver any information.

The second measure is defined by

r = DKL(P1(σ ) ‖ PN(σ )) − DKL(P2(σ )‖PN(σ ))
DKL(P1(σ ) ‖ PN(σ ))

. (2.17)

Note that r also ranges between 0 and 1 for the maximum-likelihood estimator [5,12,22]. If the
pairwise MEM produces a distribution closer to the empirical distribution than the independent
MEM does, r is large. If the pairwise MEM and the independent MEM are similar in terms of the



7

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160287

.........................................................

proximity to the empirical distribution, we obtain r ≈ 0. For the maximum-likelihood estimator,
we obtain I2/IN = r [5,18].

(d) Disconnectivity graph and energy landscape
Once we have estimated the pairwise MEM, we construct a dendrogram referred to as a
disconnectivity graph [23], as shown in figure 1f. In the disconnectivity graph, a leaf (with a
loose end open downwards) corresponds to an activity pattern σ that is a local minimum of
the energy, i.e. an activity pattern whose frequency is higher than any other activity pattern
in the neighbourhood of σ . The neighbourhood of σ is defined as the set of the N activity
patterns that are different from σ only at one ROI. In the disconnectivity graph, the vertical
position of the endpoint of the leaf represents its energy value, which specifies the frequency of
appearance, with a lower position corresponding to a higher frequency. The branching structure
of the disconnectivity graph describes the energy barrier between any pair of activity patterns
that are local minimums. For example, to transit from local minimum α1 to local minimum α3 in
figure 1f, the brain dynamics have to overcome the height of the energy barrier (shown by the
double-headed arrow). If the barrier is high, transitions between the two activity patterns occur
with a low frequency.

The disconnectivity graph is obtained by the following procedures. First, we enumerate local
minimums, i.e. the activity patterns whose energy is smaller than that of all neighbours. Then, for
a given pair of local minimums α and α′, we consider a path connecting them, α ↔ α′, where
a path is a sequence of activity patterns starting from α and ending at α′ such that any two
consecutive activity patterns on the path are neighbouring patterns. We denote by Emax(α ↔ α′)
the largest energy value among the activity patterns on path α ↔ α′. The brain dynamics on this
path must climb up the hill to go through the activity pattern with energy Emax(α ↔ α′) to travel
between α and α′. Because a large energy value corresponds to a low frequency of the activity
pattern, a large Emax(α ↔ α′) value implies that the frequency of switching between α and α′
along this path is low. Because various paths may connect α and α′, we consider

Ēαα′ = min
α↔α′ Emax(α ↔ α′). (2.18)

If we remove all the rarest activity patterns whose energy is equal to or larger than Ēαα′ , α and α′
are disconnected (i.e. no path connecting them exists). The energy barrier for the transition from
α to α′ is given by Ēαα′ − E(α).

To calculate Ēαα′ , we employ a Dijkstra-like method as follows. Consider the hypercube
composed of 2N activity patterns. By definition, two nodes (i.e. activity patterns) are adjacent
to each other (i.e. directly connected by a link) if they are neighbouring activity patterns. Each
node has degree (i.e. number of neighbours) N. Then, fix a local minimum activity pattern α and
look for Ēαα′ for all local minimums α′. We set Ēαα = E(α) and Ēαα′ = E(α′) for all α′ that are
neighbours of α. These values are finalized and will not be changed. Ēαα′ for the other 2N − N − 1
local minimums α′ are initialized to ∞. Then, we iterate the following procedures until Ēαα′

values for all the nodes α′ are finalized. (i) For each finalized α′, update Eαα′′ for its all unfinalized
neighbours α′′ using

Ēnew
αα′′ =

{
min{Ēold

αα′′ , Ēαα′ } (Ēαα′ ≥ E(α′′)),
E(α′′) (Ēαα′ < E(α′′)).

(2.19)

(ii) Find α′ with the smallest unfinalized Ēαα′ value and finalize it. (iii) Repeat steps (i) and (ii). If
we carry out the entire procedure for each local minimum α, we obtain Ēαα′ for all pairs of local
minimums.

By collecting pairs of local minimums that have the same Ēαα′ value, we specify a set of
local minimums that should be located under the same branch. This information is sufficient
for drawing the dendrogram of local minimums, i.e. the disconnectivity graph.

Each local minimum has a basin of attraction in the state space, Ω . Each activity pattern,
denoted by σ , usually belongs to one of the attractive basins, which is determined as follows.
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(i) Unless σ is a local minimum, move to the neighbouring activity pattern that has the smallest
energy value. (ii) Repeat step (i) until a local minimum, denoted by α, is reached. We conclude
that σ belongs to the attractive basin of α. (iii) Repeat steps (i) and (ii) for all the initial activity
patterns σ ∈ Ω .

Using the information on the local minimums and attractive basins, the dynamics of the
activity pattern are illustrated as the motion of a ‘ball’ on the energy landscape, as schematically
shown in figure 1g as a hypothetical two-dimensional landscape. The local minimums and energy
barriers in figure 1g correspond to those shown in the disconnectivity graph (figure 1f ).

(e) 0/1 versus 1/ − 1
We remark on two binarization schemes. In statistical physics, the pairwise MEM, or the Ising
model, usually employs σi ∈ {−1, 1} (i = 1, . . . , N) rather than σ̃i ∈ {0, 1}. The former convention
respects the symmetry between the two spin states and is also convenient in some analytical
calculations of the model that exploit the relationship (σi)2 = 1 regardless of σi [24,25]. For
neuronal spike data, σ̃i ∈ {0, 1} is often used [22,26,27], whereas σi ∈ {−1, 1} is also commonly used
[17,18,28,29]. For fMRI data, our previous work employed σ̃i ∈ {0, 1} [12–15]. The use of σ̃i ∈ {0, 1}
in representing neuronal spike trains has a rationale in being able to express the instantaneous
firing rate in a simple form

∑N
i=1 σi and synchronous firing of neurons by a simple multiplication

[30]. For example, three neurons simultaneously fire if and only if σ1σ2σ3 = 1. It should also be
noted that the iterative scaling algorithm for maximizing the likelihood (§2b(i)) does not generally
work for σi ∈ {−1, 1} because 〈σi〉empirical and 〈σi〉model, the logarithm of whose ratio is used in the
algorithm, may have opposite signs.

The energy in the case of σ̃i ∈ {0, 1} is defined as

Ẽ(σ̃ | h̃, J̃) = −
N∑

i=1

h̃iσ̃i − 1
2

N∑
i=1

N∑
j=1
j�=i

J̃ijσ̃iσ̃j. (2.20)

Mathematically, the two representations are equivalent to the one-to-one relationship, 2σ̃i − 1 =
σi (i = 1, . . . , N), which results in

h̃i = 2hi − 2
N∑

j=1
j�=i

Jij (2.21)

and
J̃ij = 4Jij. (2.22)

3. Results

(a) Accuracy of the three methods
We applied the three methods to estimate the pairwise MEM to resting-state fMRI signals
recorded from two healthy adult individuals in the Human Connectome Project. We extracted
ROIs from three brain systems, i.e. default mode network (DMN, NROI = 12), fronto-parietal
network (FPN, NROI = 11) and cingulo-opercular network (CON, NROI = 7), using the ROIs
whose coordinates were identified previously [31]. We had tmax = 9560 volumes in total.

The estimated parameter values are compared between likelihood maximization and pseudo-
likelihood maximization in figure 2a–f. For all the networks, the results obtained by the
pseudo-likelihood maximization are close to those obtained by the likelihood maximization, in
particular for J. The results obtained by the likelihood maximization and those obtained by
the minimum probability flow are compared in figure 2g–j for the DMN and FPN. We did not
apply the minimum probability flow method to the CON because all of the 28 activity patterns
appeared at least once, i.e. D = Ω , which made the right-hand side of equation (2.15) zero. The
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figure indicates that the estimation by the minimum probability flow deviates from that by the
likelihood maximization more than the estimation by the pseudo-likelihood maximization does,
in particular for h. The two measures of the accuracy indices are shown in table 1 for each
network and estimation method. The two indices took the same value in the case of the likelihood
maximization [5,18]. In the case of the pseudo-likelihood maximization, the two accuracy indices
were slightly different from each other, and both took approximately the same values as those
derived from the maximum likelihood. In the case of the minimum probability flow, r was
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Table 1. Accuracy of fitting for each network and estimation algorithm.

DMN FPN CON

r I2/IN r I2/IN r I2/IN
likelihood maximization 0.6921 0.6921 0.7830 0.7830 0.9744 0.9744

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pseudo-likelihood maximization 0.6921 0.6972 0.7830 0.7853 0.9745 0.9744
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

minimum probability flow 0.6480 0.7437 0.6124 1.2295 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

substantially smaller than the values for the likelihood or pseudo-likelihood maximization. By
contrast, I2/IN exceeded unity because S1 > SN > S2 for the minimum probability flow method.

(b) Disconnectivity graphs
Figure 3 shows the disconnectivity graph of the DMN, FPN and CON, calculated for the
parameter values estimated by likelihood maximization. The two synchronized activity patterns,
i.e. the activity patterns with all ROIs being active or inactive, were local minimums. The FPN
had much more local minimums than the DMN and CON did. Although the present results are
opposite to our previous results using a different dataset [14], the reason for the discrepancy is
unclear.

(c) Effects of the data length
Our experiences suggest that, as the number of ROIs, N, increases, the pairwise MEM seems
to demand a large amount of data to realize a high accuracy. If we use N ROIs, there are 2N
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possible activity patterns. Therefore, as we increase N, it is progressively more likely that many
of the activity patterns are unvisited. However, the MEM assigns a positive probability to such
an unvisited pattern. Even if an activity pattern σ is realized by the empirical data a few times,
the empirical distribution, Pempirical(σ ), would not be reliable because it is evaluated only based
on a few visits to σ (divided by tmax). If tmax is much larger and σ is visited proportionally many
times, then we would be able to estimate Pempirical(σ ) more accurately. This exercise led us to
hypothesize that the accuracy scales as a function of tmax/2N .

To examine this point, we carried out likelihood maximization on the fMRI data of varying
length � (tmax/20 ≤ � ≤ tmax) and calculated r (which coincides with I2/IN for the maximum-
likelihood estimator). For a given �, we calculated r for each of the tmax − � datasets of length �, i.e.
{σ (1), . . . , σ (�)}, {σ (2), . . . , σ (� + 1)}, . . ., {σ (tmax − � + 1), . . . , σ (tmax)}. The average and standard
deviation of r as a function of �/2N are shown in figure 4a for the DMN, FPN and CON. As
expected, the accuracy improved as � increased. The results for the DMN, FPN and CON roughly
collapsed on a single curve. The figure suggests that, to achieve an accuracy of 0.8 and 0.9, each
activity pattern should be visited ≈5 and ≈16 times on average, respectively.

Because the aforementioned sampling method used overlapping time windows to make
different samples strongly depend on each other, we carried out the same test by dividing the
entire time series {σ (1), . . . , σ (tmax)} into two halves of length � = tmax/2, four quarters of length
� = tmax/4, eight non-overlapping samples of length � = tmax/8 and so forth. The results (figure 4b)
were similar to those in the case of overlapping time windows (figure 4a).

4. Discussion
We explained a set of computational methods to estimate the pairwise MEM and energy
landscapes from resting-state fMRI data. Novel components, as compared with our previous
methods [12–15], were the pseudo-likelihood maximization, the minimum probability flow and a
variant of the Dijkstra method to calculate the disconnectivity graph. We applied the methods to
fMRI data collected from healthy participants and assessed the amount of data needed to secure
a sufficient accuracy of fit.

The present results suggest that the current method is admittedly demanding in terms of
the amount of data, although the results should be corroborated with different datasets. In the
application of the pairwise MEM to neuronal spike trains, the data length does not seem to
pose a severe limit if the network size, N, is comparable to those in this study. This is because
one typically uses a high time resolution to ensure that there are no multiple spikes within a
time window (e.g. 2 ms [28], 10 ms [22], 20 ms [17,18,27]). Then, the number of data points, tmax,
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is typically much larger than in typical fMRI experiments. In fMRI experiments, the interval
between two measurements, called the repetition time (TR), is typically 2–4 s, and a participant in
the resting state (or a particular task condition) can be typically scanned for 5–15 min. Then, we
would have tmax = 75–450, with which we can reliably estimate the pairwise MEM model up to
N ≈ 5 (figure 4), which is small. If we pool fMRI data from 10 participants belonging to the same
group to estimate one MEM, we would have tmax = 750–4500, accommodating N ≈ 8. This is an
important limitation of our approach. Currently we cannot apply the method to relatively large
brain systems (i.e. those with a larger number of ROIs), let alone voxel-based data.

We demonstrated the methods with fMRI data obtained from healthy participants. The same
methods can be applied to different conditions of human participants including the case of
medical applications, the topic of the present theme issue. Various neuropsychiatric disorders
have been suggested to have dynamical footprints in the brain [1–4]. Altered dynamics in the
brain at various spatial and time scales may result in deformation of energy landscapes as
compared with healthy controls.

5. Material and methods

(a) Data and participants
We used resting-state fMRI data publicly shared in the Human Connectome Project (acquisition
Q10 in release S900 of the WU-Minn HCP data) [32]. The data were collected using a 3T
MRI (Skyra, Siemens) with an echo planar imaging (EPI) sequence (TR, 0.72 s; TE, 33.1 ms; 72
slices; 2.0 mm isotopic; field of view, 208 × 180 mm) and T1-weighted sequence (TR, 2.4 s; TE,
2.14 ms; 0.7 mm isotopic; field of view, 224 × 224 mm). The EPI data were recorded in four runs
(≈15 min run−1) while participants were instructed to relax while looking at a fixed cross mark
on a dark screen.

We used such EPI and T1 images recorded from two adult participants (one female; 22–25
years old), because the amount of the data was sufficiently large for the current analysis.

(b) Preprocessing and extraction of region of interest data
We preprocessed the EPI data in essentially the same manner as the conventional methods that
we previously used for resting-state fMRI data [12,33,34] with SPM12 (www.fil.ucl.ac.uk/spm).
Briefly, after discarding the first five images in each run, we conducted realignment, unwarping,
slice timing correction, normalization to the standard template (ICBM 152) and spatial smoothing
(full-width at half maximum = 8 mm). Afterwards, we removed the effects of head motion, white
matter signals and cerebrospinal fluid signals by a general linear model. Finally, we performed
temporal band-pass filtering (0.01–0.1 Hz) and obtained resting-state whole-brain data.

We then extracted a time series of fMRI signals from each ROI. The ROIs were defined as 4 mm
spheres around their centre whose coordinates were determined in a previous study [31]. The
signals at each ROI were those averaged over the sphere. In total, we obtained time-series data of
length tmax = 9560 at 30 ROIs (12 in the DMN, 11 in the FPN and 7 in the CON).
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