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Abstract

This paper aims to propose a new hyperspectral target-detection method termed

the matched subspace detector with interaction effects (MSDinter). The MSD-

inter introduces “interaction effects” terms into the popular matched subspace

detector (MSD), from regression analysis in multivariate statistics and the bi-

linear mixing model in hyperspectral unmixing. In this way, the interaction

between the target and the surrounding background, which should have but not

yet been considered by the MSD, is modelled and estimated, such that superior

performance of target detection can be achieved. Besides deriving the MSDin-

ter methodologically, we also demonstrate its superiority empirically using two

hyperspectral imaging datasets.

Keywords: Matched subspace detector (MSD), linear mixing model (LMM),

bilinear mixing model (BMM), interaction effects, target detection,

hyperspectral image (HSI)

1. Introduction1

Hyperpsectral target detection aims to detect small objects from the back-2

ground of a hyperspectral image (HSI) by the use of known target spectra. The3

number of target pixels is relatively very small compared with the total number4
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of pixels in an HSI, e.g. only a few target pixels in millions of pixels. Typical5

applications of the HSI target detection include the detection of specific terrain6

features, minerals and crops for resource management, the detection of military7

vehicles and aeroplanes for defence, etc. Comprehensive overviews and gentle8

tutorials of the HSI target detection can be found in [1, 2, 3, 4].9

Target detection algorithms are typically derived from the binary hypothesis10

model, which consists of two competing hypotheses: the H0 (absence of target)11

hypothesis and the H1 (presence of target) hypothesis. The likelihood ratio or12

the generalised likelihood ratio (GLR) of functions of target and background13

can be used to construct a detector.14

Some well-known detectors have been successfully applied to the HSI target15

detection, including the matched subspace detector (MSD) [5], the orthogonal16

subspace projection detector (OSP) [6], the spectral matched filter (SMF) [7, 8],17

the adaptive coherence/cosine detectors (ACEs) [9, 10] and the constrained18

energy minimization (CEM) [11]. Kwon et al. [12] also extend the MSD, OSP,19

SMF and ACEs to their corresponding kernel versions based on the kernel-20

based learning theory. Several methods have been developed based on the CEM21

specifically [13, 14, 15]. Yang et al. [13] utilise an inequality constraint on the22

output detector to solve the spectral variability problems, instead of the equal23

constraint on the CEM. An hierarchical structure of CEM [14] is proposed,24

which suppresses the backgrounds while preserving the target spectra to boost25

the performance of CEM. In a very recent work, Yang et al. [15] use total26

variation to constrain the spatial smoothness and show a promising detection27

performance when only one single target spectrum is available for training.28

Sparse representation (SR)-based algorithms have also been applied to the29

HSI target detection [16, 17, 18, 19, 20, 21]. Chen et al. [16] propose a sparsity-30

based target detection (STD), linearly modelling a test pixel by the training31

background samples and the training target samples. Zhang et al. [17] propose32

an SR-based binary hypothesis model (SRBBH), which is in the similar fashion33

of the binary hypothesis model of the MSD. The kernel versions of the STD34

and SRBBH can be found in [18] and [19], respectively. Detailed reviews of SR35
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algorithms for the HSI classification and detection can be found in [20, 21].36

The assumption of these well-known detectors [5, 6, 7, 8, 9, 10, 16, 17] is37

the linear mixing model (LMM) [22]. The LMM assumes that the spectrum of38

a mixed pixel can be represented as a linear combination of component spectra39

(endmembers). The weight (abundance) of each endmember spectrum is pro-40

portional to the fraction of the pixel area covered by the endmember. If there41

are p spectral bands, the p-variate spectrum x = [x1, . . . , xp]T of a mixed pixel42

can be expressed as a mixture of K endmembers mk with additive noise:43

x = ΣK
k=1akmk + n = Ma + n, (1)

where M is a p × K matrix whose columns are the K endmember spectra44

mk = [mk,1, . . . ,mk,p]T for k = 1, . . . ,K, respectively; a = [a1, . . . , aK ] is45

the fraction abundance vector; and n = [n1, . . . , np]T represents the additive46

Gaussian white noise. Physical considerations dictate that the abundances have47

to satisfy 1) the non-negative constraint, i.e. ak ≥ 0, and 2) the sum-to-one48

constraint, i.e. ΣK
k=1ak = 1. Although the non-negative constraint and the sum-49

to-one constraint are quite meaningful, they are not always enforced because it50

significantly complicates the solving of detection problems. As explained in [22]51

and as usually the case, we can relax both constraints in target detection.52

For the HSI target detection, the underlying physical assumption of the53

LMM is that each incident photon interacts with one earth surface component54

only and the reflected spectra do not mix before entering the sensor. Therefore,55

adopting the LMM in [5, 6, 7, 8, 9, 10, 16, 17] assumes that the target spectral56

signature in the scene remains linearly mixed with the surrounding background57

spectra after entering the sensor. However this is not true in practice, since58

the target spectral signatures captured by the hyperspectral sensor can appear59

significantly different from the true underlying spectrum. The exhibited target60

spectrum may be contaminated by the interaction effect of its true underlying61

spectrum and its surrounding environments. The reasons can be, but not limited62

to, that the sensor picks up the signal from multiple scattering of photons and as63

a result, the abundance vector of targets will be dependent on the characteristics64
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of their surrounding background.65

To cope with multiple scattering problems and to model interaction effects,66

the bilinear mixing model (BMM) has been proposed in the hyperspectral anal-67

ysis, particularly for the unmixing applications [23, 24, 25, 26, 27, 28]. Nasci-68

mento et al. [23] and Fan et al. [24] address the HSI unmixing problem by taking69

into account of the second-order scattering interaction between endmembers, re-70

ferred to as “Nascimento model” and “Fan model” hereafter, respectively. The71

two models are distinguished by different sum-to-one constraints imposed on the72

abundances. Halimi et al. [25] propose a generalised bilinear model (GBM) to73

unmix an HSI pixel and solve the problem by a hierarchical Bayesian algorithm.74

Practical analysis [26, 27, 28] also demonstrate impacts of different orders of in-75

teractions in real HSI mixing problems, such as tree cover estimates in orchards.76

It shows that the second-order interaction has the most significant effect of non-77

linear mixing and the higher order interactions can be neglected. On top of78

the BMM, Heylen et al. [29] derive a multilinear mixing model (MLM) which79

extends the BMM to an infinite orders of interactions. Experimental studies80

in [23, 24, 25, 26, 27, 28, 29] have been carried out and shown superior perfor-81

mance of the above-mentioned nonlinear mixing models to conventional linear82

mixing models.83

In this paper, to account for the effect of interaction between the target and84

their surrounding background on the target spectral signature captured by the85

sensor, we propose to introduce interaction effects into the models for the HSI86

target detection. Specifically, we propose a new model, termed the matched87

subspace detector with interaction effects (MSDinter), by introducing the terms88

that describe the interaction effects between the target and its surrounding89

background. To our knowledge, such model is the first one proposed for the90

HSI target detection. The proposed MSDinter model is able to capture better91

the target-background mixing effects within pixel spectrum and therefore can92

improve the performance of target detection.93
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2. The Matched Subspace Detector94

The matched subspace detector (MSD) [5] is a popular algorithm which95

explores the idea of the LMM binary hypothesis model (4). The task is to96

determine if a test pixel x contains materials characterised by exemplar target97

spectral signatures, i.e. whether the test pixel can be represented by a linear98

combination of target spectral signatures and background spectral signatures.99

In the MSD, the target spectral signatures and background spectral signatures100

are represented by the bases of a target subspace and the bases of a background101

subspace, respectively. The underlying assumption of the MSD in the HSI target102

detection is that each basis vector of these subspaces represents an endmember,103

which follows the assumption in the LMM (1).104

When a target pixel presents, the spectrum of an observed pixel can be105

decomposed into two components under the LMM assumption, as106

x = Tγ + Bβ + n, (2)

where T = [t1, . . . , trt ] is a p × rt matrix representing the target subspace,107

and B = [b1, . . . ,brb ] is a p× rb matrix representing the background subspace;108

T is derived from a training target matrix MT ∈ Rp×Nt whose columns are109

the Nt target spectra MT (·, nt) for nt = 1, . . . , Nt, respectively; B is derived110

from a training background matrix MB ∈ Rp×Nb whose columns are the Nb111

background spectra MB(·, nb) for nb = 1, . . . , Nb, respectively; γ and β are112

the corresponding abundance vectors of the subspace T and the subspace B,113

respectively; and n is the additive Gaussian white noise.114

When the target is absent, the spectrum of the observed pixel is adequately115

described by116

x = Bβ + n, (3)

which is a reduced order model. Therefore, to decide whether a given target117

is present or not, we can fit the full model and the reduced model to the test118

pixel spectrum and check which model provides a better fitting according to119

certain criterion. Formulated as a binary hypothesis test, the detection problem120
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becomes a decision between the two competing hypotheses H0 and H1,121

H0 : x = Bβ + n, target absent,

H1 : x = Tγ + Bβ + n, target present.
(4)

Model (4) is defined as the MSD model. Using the generalised likelihood122

ratio test (GLRT) [3], the output detector of the MSD model is given by123

DMSD(x) =
xTP⊥Bx

xTP⊥V x

H1

≷
H0

ν, (5)

where P⊥B = I−PB with PB = B(BTB)−1BT being the projection matrix124

onto the column space of B; and P⊥V = I−PV with PV = V(VTV)−1VT being125

the projection matrix onto the column space of V, where V is a p × (rt + rb)126

concatenated matrix of T and B, i.e. V = [T,B].127

The value of DMSD(x) is compared to a threshold ν to make a final deci-128

sion of which hypothesis should be rejected for test pixel x. In general, any set129

of orthogonal basis vectors that spans the corresponding subspace can be used130

as the column vectors of B and T. In this paper, the significant eigenvectors131

(normalised by the square roots of their corresponding eigenvalues) of the back-132

ground and target covariance matrices Cb and Ct are used to create the column133

vectors of B and T, respectively.134

3. The Matched Subspace Detector with interaction effects (MSDin-135

ter)136

The linear model (2) in the MSD assumes that the abundance vector γ of137

the target subspace T in composing a target pixel x will not change if the138

characteristics of the background change. Specifically, the effect of one-unit139

change of T on x is the marginal effect of targets T on x. The marginal effect140

is obtained by differentiating the conditional expected value of x with respect141
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to T, i.e.142

∂E[x|T,B]

∂T
=


Γ1

Γ2

...

Γrt


(prt)×p

, (6)

where143

Γi =


γi 0 . . . 0

0 γi . . . 0
...

...
. . .

...

0 0 . . . γi


p×p

= γiIp, i = 1, . . . , rt, (7)

and Ip denotes the p×p identity matrix. The details of the derivation are shown144

in section 6 of Appendix.145

That is, [Γ1, . . . ,Γrt ]
T ∈ R(prt)×p in (6) is the change of expected value146

of x induced by one-unit change of T, which includes only the effect of T147

on x, ignoring the effect of B on x. In other words, no matter whether or not148

background spectra present in the subpixel x (i.e. β = 0 or β 6= 0), the marginal149

effect of T on the test pixel x does not depend on the values of B.150

However, in real applications of the HSI target detection, an observed HSI151

pixel will also receive multiple scattering of photons between its material and its152

neighbourhood materials, which the LMM cannot capture. The BMM has been153

introduced in the hyperspectral unmixing problems to accounts for the presence154

of multiple photon interactions [23, 24, 25, 26, 27, 28]. However, the interaction155

effects have not been studied in the hyperspectral target detection. To this156

end, we hypothesise that there are interaction effects of background spectra and157

the target spectrum on the composition of the spectrum of an observed target158

pixel. Therefore we introduce interaction terms into the LMM-based subspace159

model (2) and propose a new method called matched subspace detector with160

interaction effects (shortened as MSDinter).161
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3.1. The bilinear mixing model162

As aforementioned, LMM (2) cannot deal with multiple scattering that often163

occurs in the real applications. To this end, the bilinear model (BMM) [23, 24,164

25, 26, 27, 28] is proposed to model interaction effects of each pair of endmem-165

bers, so as to take account of the multiple scattering phenomena. A typical166

BMM called “Fan model” [24] is given by167

x = Ma +

K−1∑
i=1

K∑
j=i+1

αi,jmi �mj + n, (8)

where � denotes the element-wise product operation between two vectors. It168

is defined as that for two vectors, mi = [mi,1,mi,2, . . . ,mi,p]T and mj =169

[mj,1,mj,2, . . . ,mj,p]T of the same length, in this case p × 1, the element-wise170

product is still a vector of the same dimension as the operands with elements171

given by172

(mi �mj)l = mi,l ·mj,l, where l = 1, . . . , p. (9)

So the element-wise product of two endmembers mi and mj is173

mi �mj =


mi,1

...

mi,p

�

mj,1

...

mj,p

 =


mi,1mj,1

...

mi,pmj,p

 . (10)

There are various BMMs with different definitions on the sum-to-one con-174

straint to account for the hyperspectral unmixing problems. In the “Fan model” [24],175

it is assumed that
∑K

k=1 ak = 1 and αi,j = aiaj , whereas in the “Nascimento176

model” [23], the sum-to-one constraint is based on
∑K

k=1 ak+
∑K−1

i=1 ΣK
j=i+1αi,j =177

1. In the following proposed method, since we only care about the presence of178

the interactions terms, it does not matter whether the summation of abundance179

fractions is 1. Again with the explanations in the HSI target detection [22],180

we will relax the sum-to-one constraint as well as the non-negative constraint181

in the following proposed method to simplify the solution to target detection182

problems.183
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3.2. Formulations of MSDinter184

As with the BMM (8), we introduce terms of the interaction between basis185

vectors of the background subspace B and the target subspace T into the MSD186

model (2), and then revise the alternative hypothesis H1 of the MSD model (4).187

The proposed model with interaction effects is defined as follows:188

x = Tγ + Bβ + Hη + n, (11)

where H is a matrix representing the interaction terms between T and B. We189

call the matrix H the interaction matrix, and η is the abundance vector for H.190

The interaction matrix H is obtained by the element-wise product of each191

basis ti and bj , where i = 1, . . . , rt and j = 1, . . . , rb, of the subspace T and192

the subspace B, respectively. Similar to the element-wise production � defined193

in (8), the element-wise product of two basis vectors ti = [ti,1, . . . , ti,p]T and194

bj = [bj,1, . . . , bj,p]T is defined as195

ti � bj =


ti,1
...

ti,p

�

bj,1

...

bj,p

 =


ti,1bj,1

...

ti,pbj,p

 . (12)

Hence, the interaction matrix H is formulated as196

H = [t1�b1, . . . , t1�brb , t2�b1, . . . , t2�brb , . . . , trt�b1, . . . , trt�brb ], (13)

which is a p × (rtrb) matrix. As a result, the abundance vector corresponding197

to H in (13) becomes198

η = [η1,1, . . . , η1,rb , η2,1, . . . , η2,rb , . . . , ηrt,1, . . . , ηrt,rb ]T , (14)

which is a (rtrb)× 1 vector.199

In model (11), each basis vector in T and B is still assumed to represent200

an endmember. The column vectors in H, on the other hand, are assumed to201

represent the interactions between the corresponding basis vectors in T and B,202

respectively. The interaction matrix H in fact can be regarded as a generalisa-203

tion of interaction terms mi �mj defined in model (8).204
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Our proposed MSDinter is then modelled as follows:205

H0 : x = Bβ + n, target absent,

H1 : x = Tγ + Bβ + Hη + n, target present.
(15)

For a simple representation, let U be the concatenated matrix of T, B and206

H (13), i.e.207

U = [T,B,H]

= [t1, . . . , trt ,b1, . . . ,brb , t1 � b1, . . . , trt � brb ],
(16)

which is a p× (rt + rb + rtrb) matrix. Then the abundance vectors γ, β and η208

of model H1 in (15) can be concatenated into a single vector, denoted as υ, i.e.209

υ = [γT ,βT ,ηT ]T , (17)

which is a (rt + rb + rtrb)-dimensional vector. Hence model H1 in the proposed210

MSDinter (15) can be rewritten as211

H1 : x = Uυ + n, target present, (18)

and thus the MSDinter model (15) becomes212

H0 : x = Bβ + n, target absent,

H1 : x = Uυ + n, target present.
(19)

To align with the MSD [5], we also adopt the least squares estimate (LSE)213

to solve the abundance vector β in H0 and the abundance vector υ in H1,214

respectively. Hence it is easily to see that the LSE of β is215

β̂ = (BTB)−1BTx (20)

and the LSE of υ is216

υ̂ = (UTU)−1UTx, (21)

respectively.217

Based on (20) and (21), the residual sums of squares (RSS) e0 and e1 given218

H0 and H1 of MSDinter (19) are computed as219

H0 : e0 =
∥∥∥x−Bβ̂

∥∥∥2
2

= xT (I−B(BTB)−1BT )x, (22)
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and220

H1 : e1 = ‖x−Uυ̂‖22 = xT (I−U(UTU)−1UT )x, (23)

respectively, where I is a p× p identity matrix.221

Therefore the generalised test ratio of the MSDinter model is then given by222

DMSDinter(x) =
e0
e1

=
xT (I−B(BTB)−1BT )x

xT (I−U(UTU)−1UT )x

H1

≷
H0

ν. (24)

Referring to the final results of MSD (5), we reformulate the output detector223

of the MSDinter model (24) by utilising the projection matrices. The numerator224

of (24) is the same as that of the MSD (5), where PB = B(BTB)−1BT is the225

projection matrix onto the subspace B spanned by the basis vectors b1, . . . ,brb226

and P⊥B = I−PB is the orthogonal complement of PB . The denominator227

of (24) can be derived in the same way, where228

PU = U(UTU)−1UT (25)

is the projection matrix onto the subspace U spanned by the column vectors229

in (16) and230

P⊥U = I−PU , (26)

is the orthogonal complement of PU. Hence the final output detector of the231

MSDinter is formulated as232

DMSDinter(x) =
xTP⊥Bx

xTP⊥Ux

H1

≷
H0

ν. (27)

The value of DMSDinter(x) is compared with the threshold ν to make a233

final decision of which hypothesis should be rejected for the test pixel x.234

3.3. Underlying assumption of adding interaction terms in target detection235

In the proposed MSDinter model (15), we assume that the marginal effect236

of targets T on x varies in different surrounding backgrounds. Specifically, the237

abundance of target is not only γ when an interaction with the background238

presents. The abundance of the target can be decomposed into the main effect239

of γ plus a contribution from the interactions.240
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Differentiating the conditional expected value of x given model (11) with241

respect to T, we can obtain the following result:242

∂E[x|T,B]

∂T
=


Γ1

Γ2

...

Γrt


(prt)×p

+


Π1

Π2

...

Πrt


(prt)×p

, (28)

where243

Πi =


BT

1,·ηi 0 . . . 0

0 BT
2,·ηi . . . 0

...
...

. . .
...

0 0 . . . BT
p,·ηi


p×p

, i = 1, . . . , rt, (29)

which is a diagonal p × p matrix; ηi is an rb × 1 vector which is a segment of244

η (14) with245

η = [ηT
1 , . . . ,η

T
i , . . . ,η

T
rt ]

T (30)

where246

ηi = [ηi,1, . . . , ηi,rb ]T ; (31)

and Bl,· denotes a column vector representing the lth row of matrix B. The247

details of the derivation are also presented in section 6 of Appendix.248

In (28), when η = 0, the marginal effect of targets T on an observed test249

pixel x is [Γ1, . . . ,Γrt ]
T ∈ R(prt)×p only; when η 6= 0, the marginal effect250

is [Γ1, . . . ,Γrt ]
T + [Π1, . . . ,Πrt ]

T ∈ R(prt)×p. In other words, the abundance251

of targets can be variable and dependent on the values of B, when there are252

interactions between target spectra and background spectra.253

The underlying physical assumption of model (11) is that given an observed254

target pixel, the hyperspectral sensor will not only receive the reflectance of the255

target and the background independently (modelled by a linear combination of256

Tγ and Bβ), it will also receive the multiple scattering of the target and the257

background (modelled by additional interaction effects Hη between the target258

and the background).259
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Similarly to the explanation of the model used for unmixing of HSIs [25], for260

example, we assume that there are only two components “trees” and “vehicle”261

presented in an observed target pixel, where the ‘vehicle” is the target to be262

detected and “trees” are backgrounds. Illustrations of complex photons paths263

possible to occur are shown in Fig. 1.264

(a) (b)

Figure 1: Examples of complex photon paths possible to occur: (a) LMM; (b) interaction

effects.

In the assumption of LMM, the hyperspectral sensor will receive signals265

backscattered by the trees and the vehicle independently, which are represented266

by the terms βb and γt, respectively as illustrated in Fig. 1(a). However,267

if a signal is first backscattered by the vehicle to trees (or vice versa), and268

then backscattered to the sensor, this will result in multiple scattering and269

the hyperspectral sensor will receive interaction effects between endmembers270

“trees” and “vehicle”, which we assume to be represented by the interaction271

term η(t � b). This multiple scattering process is illustrated in Fig. 1(b). It272

is possible that higher order interactions are also received by the hyperspectral273

sensor. However, as with the analysis of unmixing of HSI [25, 26, 27, 28], these274

higher order terms can be neglected.275
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4. Experimental studies276

We conduct comparative experiments on two publicly available hyperspectral277

datasets. One is for synthetic target detection analysis and the other is for real278

target detection analysis:279

1) Synthetic targets: the Airborne Visible/Infrared Imaging Spectrometer280

(AVIRIS) dataset was captured at the Lunar Crater Volcanic Field (LCVF)281

in northern Nye County, Nevada, USA (http://aviris.jpl.nasa.gov/data/).282

It has a total of 224 spectral bands covering the spectral range of 400nm-283

2500nm. The dataset has been widely used for simulated HSI target detec-284

tion such as in [30, 31]. We use a 200× 200 sub-image in our experiment.285

There is no defined target in the scene. We manually implant target pixels286

into the image and simulate the target detection process, to explore the287

capability of the proposed method.288

2) Real targets: the Hymap dataset contains ground-truth spectra of targets289

and has them readily deployed in the scene. It was captured at the location290

of a small town of Cook City, USA. This image is published by Rochester291

Institute of Technology (RIT), Rochester, NY, USA [32]. The dataset292

comes with the locations and pure spectra for all the desired targets. It293

has a total of 126 spectral bands and is of size 280 × 800, covering the294

spectral range of 453nm-2496nm. Thy Hymap dataset serves as standard295

target detection dataset and is widely used, such as in [21, 30, 31, 33, 34].296

4.1. Synthetic targets: the AVIRIS dataset297

In the AVIRIS image, five target pixels are manually implanted using two298

mixing models that simulate the possible linear/multi-scattering behaviour of299

hyperspectral sensors. This experiment focuses on exploring the capability of300

the proposed method in capturing the interaction effects between the target301

spectrum and the background spectra.302

The AVIRIS image is shown in Fig. 2(a). The locations of the five implanted303

pixels are depicted in Fig. 2(b). The implanted target is a species of mineral304
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called almandine, which is not from the AVIRIS dataset. As with [31], the spec-305

trum of the target almandine is rescaled and resampled to match the AVIRIS306

image wavelength. The target spectrum and five background spectra originally307

at implanted locations are show in Fig. 3. In this simulation, we only conduct308

comparative experiments on MSD and MSDinter, to explore the potential of309

MSDinter.310

(a) (b)

Figure 2: (a) The AVIRIS sub-image (200 × 200) of the third spectral band. (b) Locations

of the implanted targets.

4.1.1. Experimental settings311

The implanted target pixel x is mixed with the prior target spectrum t312

and the original background spectrum b at each implanted location shown in313

Fig. 2(b). Two mixing models are used:314

• Linear mixing model (LMM):315

x = ftt + fbb, (32)

• Bilinear mixing model (BMM):316

x = ftt + fbb + (1− ft − fb)t� b, (33)
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Figure 3: (a) The locations of the representative background spectral samples. (b) The pure

target spectrum and the representative background spectra located in (a).

where ft and fb are implanted fractions of the target spectrum and of the317

background spectrum, respectively. The fractions of all terms are sum to 1 in318

LMM (32) and BMM (33), respectively. We simulate four datasets for LMM319

and BMM, respectively, and details of the implanted fractions are shown in320

Table 1.321

Table 1: Details of the implanted fractions for the AVIRIS dataset.

LMM BMM

Fraction ft fb ft fb 1− ft − fb
Simulation 1 5% 95% 1% 5% 94%

Simulation 2 7% 93% 1% 7% 92%

Simulation 3 9% 91% 1% 9% 90%

Simulation 4 10% 90% 1% 10% 89%

As the spectra of the mixed target pixels may appear very different from322

the spectra in the original image, the detection may become trivial and the323

performances of both detectors are not distinguishable. Therefore we randomly324

add white noise with mean 0 to the whole image after implanting the target325
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pixels, which mimics the distortion caused by the sensors in real applications.326

In this experiment, the added white noise is measured in terms of the Signal-327

to-Noise Ratio (SNR). The SNR in decibels is defined as328

SNRdB = 10 log10

(
σ2
i

σ2
noise

)
, (34)

where σi is the standard deviation of the ith band image for i = 1, . . . , 224 and329

σnoise is the standard deviation of the noise added to each band image. We330

set SNRdB = 20dB and therefore add white noise with σ2
noise = σ2

i /100 in each331

band image in the following simulations.332

We use the single target spectrum and five background spectra shown in333

Fig. 3 as the target subspace T and the background subspace B, respectively.334

The receiver operating characteristic (ROC) curve is adopted to measure the335

detection performances. The ROC is a threshold-free measurement. For each336

detector result, the threshold varies in a range to obtain a set of pairs of the337

true positive rate and the false positive rate, which is then used to plot the ROC338

curve. We also employ the area under curve (AUC) statistics to measure the339

detection performance quantitatively, in pair with the ROC curve.340
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Figure 4: ROC curves of detecting implanted target pixels mixed by LMM: (a) ft = 5%,

fb = 95%; (b) ft = 7%, fb = 93%; (c) ft = 9%, fb = 91%; (d) ft = 10%, fb = 90%.

The ROC curves of detecting the LMM-based implanted targets pixels and341

the BMM-based implanted targets pixels by MSD and MSDinter are shown in342

Fig. 4 and Fig. 5, respectively. The AUC performances corresponding to Fig. 4343

and Fig. 5 are listed in Table 2.344
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Figure 5: ROC curves of detecting implanted target pixels mixed by BMM: (a) ft = 1%,

fb = 5%, 1− ft− fb = 94% ; (b) ft = 1%, fb = 7%, 1− ft− fb = 92% ; (c) ft = 1%, fb = 9%,

1 − ft − fb = 90%; (d) ft = 1%, fb = 10%, 1 − ft − fb = 89%.

Table 2: AUC statistics of MSD and MSDinter for the AVIRIS dataset.

LMM BMM

AUC MSD MSDinter MSD MSDinter

Simulation 1 1 0.945 0.860 0.961

Simulation 2 1 0.984 0.857 0.933

Simulation 3 1 0.998 0.839 0.931

Simulation 4 1 1 0.837 0.930
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4.1.2. Results on LMM-mixed targets345

From the results listed in Table 2 and shown in Fig. 4, where implanted346

target pixels are synthesised by LMM, we can observe at least two patterns.347

Firstly, MSD achieves perfect performance for LMM-mixed targets, i.e. AUC348

= 1 on detecting all implanted targets with enumerated fractions. That is,349

it implies that if target pixels captured by the HSI sensor are mixed by the350

linear combination of the target spectrum and the background spectrum, MSD351

can perform perfectly. Secondly, as the implanted target fraction ft increases,352

e.g. slightly increasing from 5% to 10%, the detection performance of MSDinter353

improves from 0.945 to 1. It implies that MSDinter can also achieve nearly354

perfect to perfect performance even when targets are linearly mixed without355

any interaction effect.356

4.1.3. Results on BMM-mixed targets357

In this simulation, the implanted target fraction ft is fixed to be 1%, and358

the implanted background fraction is ranged from 5% to 10%. The rest of359

fractions are occupied by the interaction terms t � b. The performances of360

MSD and MSDinter on detecting the BMM-based implanted targets are listed361

in Table 2 and shown in Fig. 5. We can observe that MSDinter outperforms MSD362

on detecting all BMM-based implanted targets with enumerated fractions. It363

reveals that if the interaction between the background spectrum and the target364

spectrum does exist, MSDinter can achieve better performance than that of365

MSD, as the latter fails to take the interaction effects into consideration.366

4.1.4. Detection statistics of MSD and MSDinter367

We further compare the test statistics of all pixels in the AIVRIS image368

processed by MSD and MSDinter. The test statistics of 40,000 pixels in the369

LMM-based simulation and BMM-based simulation are shown in Fig. 6 and370

Fig. 7, respectively. Due to the nature of MSD and MSDinter, the test statistics371

are always greater than 1 and the pixels with higher statistics are considered372

more likely to be targets.373
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Figure 6: Test statistics of the AVIRIS image implanted by LMM with mixing fractions

ft = 9%, fb = 91%: (a) MSD, AUC = 1; (b) MSDinter, AUC = 0.998.
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Figure 7: Test statistics of the AVIRIS image implanted by BMM with mixing fractions

ft = 1%, fb = 9% 1 − ft − fb = 90%: (a) MSD, AUC = 0.839; (b) MSDinter, AUC = 0.931.
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In Fig. 6(a), we can observe that MSD has very distinguishable test statistics374

of the implanted targets which are linearly mixed without interaction. However375

in Fig. 7(a), the test statistics of MSD on targets not only largely decrease but376

also become undistinguishable when the implanted targets are bilinearly mixed377

with interaction, and the performance of MSD drops significantly, from AUC378

= 1 (6(a)) to AUC = 0.839 (7(a)). On the other hand, the test statistics of379

MSDinter are more stable than those of MSD, whether or not the implanted380

pixels are mixed by LMM or BMM, which are depicted in Fig. 6(b) and 7(b).381

It indicates that MSDinter can handle both simple and complex mixing effects,382

with much more stable performance than MSD.383

4.2. Real targets: the Hymap dataset384

For the real hyperspectral dataset, i.e. the Hymap dataset where targets are385

deployed in the scene, the proposed MSDinter method is evaluated against not386

only MSD but some other well-known detectors, such as ACE [10], CEM [11]387

and OSP [6]. We also compare the MSDinter method with an SR-based method388

termed STD [16].389

The Hymap image is shown in Fig. 8. As the desired targets are mainly390

located in the central part of the whole image and the materials lie around the391

margin of the image are homogeneous which are mainly composed of trees, we392

cropped a 100 × 300 sub-image from the central part of the original Hymap393

image for evaluating the performances of detectors. Such a sub-image setting394

has been widely used and well accepted by researchers, such as in [21, 35, 36].395

Different experimental settings for analysing the Hymap image can also be found396

in [13, 15, 30, 31, 33, 34] for different illustrative purposes.397

There are seven types of targets in the Hymap dataset, including four types398

of fabric panels (F1, F2, F3, F4) and three types of vehicles (V1, V2, V3).399

There are two samples with different sizes deployed in the scene for F3 and F4,400

termed F3a and F3b, F4a and F4b, respectively. The rest of targets, i.e. F1,401

F2, V1, V2 and V3, have only one sample each. When one type of target is to402

be detected, e.g. F3a and F3b, the other targets, i.e. F1, F2, F4a, F4b, V1, V2403
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and V3, are regarded as background pixels. The seven types of targets and their404

central coordinates of region of interests (ROIs) are shown in Table 3. Since the405

spatial resolution of the Hymap dataset is about 3m, we can infer that F1 (3m406

× 3m), F2 (3m × 3m) are nearly full pixels, whereas all the other targets are407

smaller than a pixel and appear as subpixels. Therefore a mixture model should408

be considered for all the targets, and the interaction effects between the target409

and the background are likely to occur. The cropped sub-image as well as ROIs410

of seven types of targets are shown in Figure 8 and Figure 9, respectively.411

Figure 8: The Hymap image with a spatial size of 280 × 800 [32]. We cropped a spatial size

of 100 × 300 sub-image for evaluation in this experiment.

The spectrum of each desired target (F1-F4 and V1-V3) is provided by412

projected-equipped SPL files [32]. As with [31], we rescale and resample the413

SPL spectra according to the Hymap HSI wavelength. Preprocessed target414

spectra are given in Fig. 10. We randomly select one sample spectral signature415

of each target in the scene, and plot them in Fig. 11. Comparing Fig. 10 with416

Fig. 11, we can clearly see that target spectra signatures in the scene are very417

different from those ground-truth spectra in Fig. 10, and the pattern of how the418

sampled target spectra are mixed with the background spectra is complicated.419
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Table 3: List of the targets in the Hymap dataset

Target Description and pixel size of ROI
Central coordinates

of ROI
Photo

F1
Red cotton (3m × 3m)

( 5× 5 pixels)
(138, 504)

F2
Yellow nylon (3m × 3m)

( 5× 5 pixels)
(122, 484)

F3 a&b

Blue cotton

(2m × 2m & 1m × 1m)

( 5× 5 pixels &3× 3 pixels )

(122, 494)

& (127, 490)

F4 a&b

Red Nylon

(2m × 2m & 1m × 1m)

( 5× 5 pixels &3× 3 pixels)

(144, 516)

& (152, 514)

V1
Green Chevy Blazer

( 3× 3 pixels)
(128, 339)

V2
White Toyota T100

( 3× 3 pixels)
(156, 353)

V3
Red Subaru GL

( 3× 3 pixels)
(186, 282)

(a)

0 F1 F2 F3 F4 V1 V2 V3

(b)

Figure 9: (a) The Hymap sub-image (100 × 300) of the 33th spectral band; (b) ROIs of

seven types of targets (F1, F2, F3, F4, V1, V2 and V3) in the Hymap sub-image. There are

two samples of targets F3 and F4 each, termed F3a and F3b, and F4a and F4b, respectively.

The pixel sizes of the ROI of targets F1, F2, F3a, F3b, F4a, F4b, V1, V2 and V3 are 25, 25,

25, 9, 25, 9, 9, 9 and 9, respectively. Different types of targets are shown in different colours.

23



Spectral band index

0 20 40 60 80 100 120 140

R
e
fl
e
c
ta

n
c
e

0

0.2

0.4

0.6

0.8

1

F1

F2

F3

F4

(a)

Spectral band index

0 20 40 60 80 100 120 140

R
e
fl
e
c
ta

n
c
e

0

0.2

0.4

0.6

0.8

1

V1

V2

V3

(b)

Figure 10: Rescaled prior spectra of all the targets in the SPL files: (a) fabric panels; (b)

vehicles.
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Figure 11: Rescaled sample spectra of all targets in the Hymap scene: (a) fabric panels; (b)

vehicles. The selected sample spactra are located in the central coordinates of the ROIs of

F1, F2, F3a, F4a, V1, V2 and V3, respectively, which are shown in Table 3.
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4.2.1. Experimental settings420

In realistic target detection problems, the background statistics are usually421

unknown. As explained in [37], the statistics of background can be estimated422

by all pixels within the area of interest when detectors are applied in a sparse423

target environment. In our experiment, there are 30,000 pixels in the cropped424

Hymap sub-image and among which there is only 1 target pixel to be detected425

for each desired target. The number of target/image ratio is 1/30000, which426

means our detection environment is sufficiently sparse. Therefore we can use all427

pixels of the cropped Hymap image to estimate the mean µb and the covariance428

Cb of the background. In this way, the detector of each test pixel has global429

and identical background statistics (mean µb and covariance Cb). In addition,430

detectors used in this paper, including MSD, MSDinter, ACE, CEM, OSP, all431

adopt the same aforementioned background samples for fair comparison. For432

the SR-based method STD, the background dictionary for each test pixel is433

constructed by 29,999 pixels of the cropped image excluding the test pixel itself.434

Among the compared detectors, MSD, MSDinter and OSP involve the con-435

struction of background subspace B. We use the mean-centred HSI (removing436

the estimated mean µb from the HSI) to compute the covariance matrix Cb437

and then preserve significant eigenvectors of Cb to create columns of B. For438

MSD and MSDinter, we should also construct target subspace T. Since there439

is only one prior spectrum of each desired target mt, we actually do not need440

to do eigen-decomposition on mt to obtained the target subspace T. Instead,441

we subtract the background mean µb from the prior target spectrum mt, i.e.442

mt − µb, and then normalise mt − µb to have a unit L2-norm as the target443

subspace T. As a result, the estimated background endmembers b and the444

target endmember t all have unit L2-norm and are independent of each other.445

For STD, the union dictionary is constructed by the concatenation of 29,999446

pixels and the single prior spectrum of each desired target for each test pixel.447

Again, each column of the dictionary is normalised to have unit L2-norm. In448

this paper, the STD method is solved by a greedy algorithm called orthogonal449
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matching pursuit (OMP) [38].450

We should note that each target deployed in the scene has an ROI [32],451

which means that the target may appear in any coordinates within the ROI.452

For example, F1 has a 5 × 5 pixels size of ROI and the central coordinates of453

ROI are (138, 504). It implies that if we detect at least one pixel as a target454

in the ROI, then this detection is regarded as a 100% correct detection. As455

with [31] and [36], we use the false alarm rate (FAR) to measure the detection456

performances of the compared methods. The FAR in this experiment is defined457

as the number of pixels not in the target ROI but have test statistic values equal458

to or greater than that of the pixel with the highest statistic value within the459

target ROI, normalised by the total number of pixels in the Hymap HSI (i.e.460

30,000 pixels).461

Among the methods to be compared, MSD, MSDinter, OSP and STD have462

parameters to tune. For MSD, MSDinter and OSP, the parameter is rb, which463

is the number of eigenvectors to be preserved for the background subspace B.464

For STD, the parameter is the sparse level, termed L, which is the number465

of HSI pixels to be selected for the sparse representation. As ACE and CEM466

only use the target endmembers and the whole HSI to construct detectors, no467

tuning parameters are involved. Due to the limited number of target samples468

in the dataset, it is infeasible to tune parameters via cross validation. Hence as469

with most published works of HSI target detections conducted on the Hymap470

dataset such as [31, 33, 34], the parameter of each detector is manually tuned to471

show the optimal performance of the algorithms for illustrative purposes. The472

number of preserved eigenvectors rb of the background subspace B for MSD,473

MSDinter and OSP and the sparse level L of representation for STD are listed474

in Table 4, respectively.475

4.2.2. Experimental results476

The detection performances of all detectors are list in Table 5. We can477

observe that the proposed MSDinter outperforms MSD, ACE, CEM, OSP and478

STD in detecting all seven types of targets. Specifically, MSDinter can achieve479
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Table 4: The parameter rb of OSP, MSD and MSDinter and the parameter L of STD.

Target
rb L

OMP MSD MSDinter STD

F1 9 110 5 10

F2 118 111 5 12

F3 58 11 5 12

F4 118 88 6 10

V1 91 91 6 10

V2 43 43 2 4

V3 105 106 10 12

the best detection performance on detecting F1, F2, F3 with FAR equal to480

0. Compared with MSD, MSDinter significantly improves FARs for all targets.481

It implies that these observed target pixels captured by the HSI sensor are482

more likely to contain the interaction of background spectra and target spectra.483

In this sense, as MSDinter models the interaction effects, it achieves better484

performance than MSD, which fails to model the interaction effects.485

Table 5: FAR under 100% detection of ACE, CEM, OSP, MSD, STD and MSDinter for the

Hymap dataset. Boldface indicates the best performance.

FAR ACE CEM OSP MSD STD MSDinter

F1 1.02e-02 1.19e-02 0.01e-02 0.76e-02 0.06e-02 0.00e-02

F2 8.55e-02 1.11e-02 0.01e-02 0.14e-02 0.53e-02 0.00e-02

F3 0.57e-02 1.35e-02 0.27e-02 0.0057e-02 0.08e-02 0.00e-02

F4 0.21e-02 0.51e-02 0.08e-02 0.0037e-02 0.31e-02 0.0027e-02

V1 1.37e-02 1.41e-02 0.86e-02 0.62e-02 24.76e-02 0.0013e-02

V2 1.34e-02 2.22e-02 0.85e-02 0.40e-02 0.52e-02 0.31e-02

V3 19.94e-02 24.87e-02 1.82e-02 1.48e-02 11.36e-02 0.54e-02

For illustration purposes, we select one of the seven types of targets, i.e. F1,486

and plot prediction maps resulted from all compared methods. The prediction487
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maps are shown in Fig. 12, in which the test statistic of each HSI pixel is colour488

coded. We can observe that the proposed MSDinter produces the most distin-489

guishable detection results, as shown in Fig. 12(c). In the MSDinter prediction490

map (Fig. 12(c)), the test statistics of pixels within the ROI of F1 have the491

highest values compared with the statistics of all the other pixels, which result492

in the best detection performance with FAR equal to 0. On the other hand,493

the prediction maps of MSD, ACE, CEM, OSP and STD are not easy to dis-494

tinguish F1 and the background, and their detection performances are not as495

good as that of MSDinter. In addition, comparing the prediction maps of MSD496

and MSDInter shown in Fig. 12(b) and Fig. 12(c), we can see that MSDinter497

eliminates the high statistics of background pixels and thus reduces FAR, which498

indicates that taking the target-background interaction effects into account can499

significantly improve the performance of the HSI target detection.500

5. Conclusion501

In this paper we have proposed a new method called MSDinter for the hyper-502

spectral target detection. The MSDinter method introduces interaction terms503

into the popular MSD to model and capture the interaction between target and504

background spectra. Compared with MSD, the proposed MSDinter method505

produces superior detection performance on the synthetic dataset of AVIRIS506

and the real dataset of Hymap, demonstrating the benefit of taking target-507

background interaction into modelling for target detection.508

It is worthwhile to mention that, besides the platform of MSD, the proposed509

concept of interaction effects can also be applied to other target detection meth-510

ods which have not yet considered target-background interaction. It is of our511

research interests to further work in this direction to investigate its potential of512

improving other established algorithms of target detection from hyperspectral513

images.514
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(e) (f)

(g)

Figure 12: Test statistics for detecting F1 in the Hymap image. Brighter pixels have higher

test statistics and therefore are more likely to be targets. (a) Ground-truth labels of F1; (b)

MSD, FAR = 0.76e-02; (c) MSDinter, FAR = 0.00e-02; (d) ACE, FAR = 1.02e-02; (e) CEM,

FAR = 1.19e-02; (f) OSP, FAR = 0.01e-02; (g) STD, FAR = 0.06e-02.
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6. Appendix515

This section describes in detail how to differentiate the conditional expected516

value of x with respect to T, i.e. ∂E[x|T,B]
∂T , for model (2) and model (11),517

respectively.518

To start with, assume that matrix T contains only one vector t. Then the519

model (2) of x is simplified as520

x = Bβ + tγ + n, (35)

where γ is a scalar. It follows that the derivative ∂E[x|t,B]
∂t effectively measures521

the impact on the expected value of x from one-unit change of each element in522

t. According to the definition of the Jacobian matrix, the resultant derivative523

of ∂E[x|t,B]
∂t will be a p× p matrix, given a p× 1 vector x and a p× 1 vector t.524

That is:525

∂E[x|t,B]

∂t
=


γ 0 . . . 0

0 γ . . . 0
...

...
. . .

...

0 0 . . . γ


p×p

= γIp, (36)

which turns out to be a diagonal p× p matrix γIp, where Ip denotes the p× p526

identity matrix.527

When matrix T contains multiple vectors ti for i = 1, . . . , rt, which is the528

case of model (2), the derivative of ∂E[x|T,B]
∂T measures the impact on the ex-529

pected value of x from one-unit change of each element in T. Let us rewrite530

model (2) as531

x = Bβ + Tγ + n = Bβ + [t1, . . . , trt ]γ + n, (37)

where γ is an rt-variate vector. Then the resultant derivative ∂E[x|T,B]
∂T will be532

a (prt)× p matrix, with x being a p× 1 vector and T being a p× rt matrix.533

Based on the results in (36) and letting Γi denote the p× p diagonal matrix534
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with γi on the diagonal, i.e.535

Γi =


γi 0 . . . 0

0 γi . . . 0
...

...
. . .

...

0 0 . . . γi


p×p

= γiIp, (38)

it follows that the derivative in the case of model (2) is536

∂E[x|T,B]

∂T
=


Γ1

Γ2

...

Γrt


(prt)×p

, (39)

which is a concatenated matrix.537

For model (11), the addition of interaction term Hη introduces complexity538

to the computation, but due to the nature of linear algebra, the derivative can539

be found in a similar fashion. With the added interaction term, the model (11)540

of x,541

x = Bβ + Tγ + Hη + n, (40)

has the derivative as542

∂E[x|T,B]

∂T
=


Γ1

Γ2

...

Γrt


(prt)×p

+
∂Hη

∂T
. (41)

For the derivation ∂Hη
∂T , we can follow the same steps by which we get results

(36) and (39). Firstly, recall that the interaction matrix H has been expanded

in (13):

H = [t1 � b1, . . . , t1 � brb , t2 � b1, . . . , t2 � brb , . . . , trt � b1, . . . , trt � brb ].

Thus ∂Hη
∂ti

, where i = 1, . . . , rt, can be written as543
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∂Hη

∂ti
=



∑rb
j=1 bj,1ηi,j 0 . . . 0

0
∑rb

j=1 bj,2ηi,j . . . 0
...

...
. . .

...

0 0 . . .
∑rb

j=1 bj,pηi,j


p×p

=



∑rb
j=1 B1,jηi,j 0 . . . 0

0
∑rb

j=1 B2,jηi,j . . . 0
...

...
. . .

...

0 0 . . .
∑rb

j=1 Bp,jηi,j


p×p

=


BT

1,·ηi 0 . . . 0

0 BT
2,·ηi . . . 0

...
...

. . .
...

0 0 . . . BT
p,·ηi


p×p

,

(42)

which is a diagonal p× p matrix, where ηi is a segment of η with544

η = [η1,1, . . . , ηi,j , . . . , ηrt,rb ]T = [ηT
1 , . . . ,η

T
i , . . . ,η

T
rt ]

T , (43)

and Bl,· denotes a column vector representing the lth row of matrix B.545

Let Πi denote the resultant derivative with respect to ti in (42):546

Πi =


BT

1,·ηi 0 . . . 0

0 BT
2,·ηi . . . 0

...
...

. . .
...

0 0 . . . BT
p,·ηi


p×p

. (44)

The derivative of ∂Hη
∂T is then the concatenation of Πi:547

∂Hη

∂T
=


Π1

Π2

...

Πrt


(prt)×p

. (45)
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By substituting (45) back to (41), the derivative of the expected value of x548

given the interaction model (11) is then549

∂E[x|T,B]

∂T
=


Γ1

Γ2

...

Γrt


(prt)×p

+


Π1

Π2

...

Πrt


(prt)×p

. (46)
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