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Abstract Acute kidney injury (AKI) is common in children
admitted to hospital. Whilst some recover normal kidney
function following an acute kidney insult, a significant pro-
portion experience long-term sequelae. The aim of this re-
view is to summarize current understanding of the processes
that can lead to sequelae following AKI. Kidney injury, repair,
recovery and progression are described. Risk factors for pro-
gression are outlined, and potential strategies to stratify the
risk of progression in children with AKI are discussed.
Clinical management priorities to minimize sequelae are sug-
gested. Looking ahead, novel therapeutic targets are discussed
with the potential to accelerate adaptive repair and ameliorate
the progression and sequelae of AKI in the future.
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Introduction

The incidence of acute kidney injury (AKI) in children is
rising. One in three children worldwide experience AKI dur-
ing an episode of hospital care [1]. Most children are exposed
to AKI risk factors, such as medication with nephrotoxic po-
tential, during a hospital stay [2, 3]. To date, initiatives have
rightly prioritized improving the identification and initial man-
agement of AKI with global awareness-raising campaigns and

national and international diagnosis and management guide-
lines [4–6]. The events that follow AKI have received less
attention.

Traditionally, AKI in children had been understood to be an
entirely reversible phenomenon. In recent years, this custom-
ary view has been challenged by emerging evidence that sup-
ports a strong link between AKI and chronic kidney disease
(CKD) in adult patients [7]. In this review, current understand-
ing of the events that follow acute kidney insults in children is
outlined, namely renal injury, repair, potential recovery, or
progression to long-term sequelae. These concepts are de-
fined, and their underlying mechanisms outlined. Risk factors
for progression are described, with discussion of clinical man-
agement priorities and potential future therapies aimed at min-
imizing long-term sequelae following AKI in children.

Long-term sequelae of pediatric AKI

Children have the potential to recover ostensibly normal kid-
ney function following an episode of AKI, however a growing
body of evidence suggests that chronic sequelae may be un-
der-recognized. Over one-third of 176 children treated for
AKI at a U.S. tertiary center had reduced kidney function, or
remained dialysis dependent, at the time of discharge from
hospital [8]. In the 3- to 5-year follow-up of this cohort, 17
of 29 children had long-term effects, including hyperfiltration,
reduced kidney function, hypertension or proteinuria [9]. In
another follow-up study of 126 children treated in inten-
sive care, 10% had CKD within 1–3 years following AKI
[10]. A U.S. study of 63 pediatric heart transplant recipients
with AKI showed that 5% of the patients had developed CKD
at 12-month follow-up [11], and six of 37 children treated
for AKI at a tertiary center in India had abnormal renal param-
eters at 10-year follow-up [12]. Infants who experience
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AKI in the neonatal period have an increased risk of abnor-
malities in kidney function in the long term [13, 14]. Taken
together, these data demonstrate that recovery of normal kid-
ney function following AKI in children is by no means guar-
anteed; pediatric AKI cannot be treated as an isolated event
without due attention paid to the potential consequences.

Some children do recover their baseline kidney function
following AKI, however understanding functional renal re-
covery in children is challenging for a number of reasons.
Firstly, pediatric follow-up studies to date have not applied a
standard definition of renal recovery, with definitions varying
from dialysis independence during a hospital stay through to
normalization of plasma creatinine, blood pressure and pro-
teinuria. Secondly, the natural history of increasing glomerular
filtration rate (GFR) in the first year of life from 15 to 90 ml/
min/1.73 m2 presents challenges in defining baseline kidney
function for infants. Thirdly, children have substantial renal
reserve, so significant kidney damage resulting from an AKI
episode can be compensated by hyperfiltration and may there-
fore not be reflected in the plasma creatinine level until ado-
lescence or adulthood [15]. These challenges highlight the
need to look beyond an operationalized definition of renal
recovery based on functional measures, such as creatinine, in
order to identify children who are at greatest risk of long-term
sequelae following AKI. The identification of such children
requires a deeper understanding of the sequence of events that
follow an acute kidney insult, namely injury, repair and po-
tential progression.

The events that follow an acute kidney insult

Until recently, progress in characterizing the events that fol-
low an acute kidney insult was hampered by the lack of a
consensus definition of progression and its associated events.
Following recognition of this issue, a working group of the
13th Acute Dialysis Quality Initiative (ADQI) Conference
sought to clarify these concepts. This group outlined a
paradigm for understanding the clinical course of AKI and
proposed definitions for terms related to events mediating
resolution or progression [16]. They conceptualized the events
that follow an acute kidney insult in three phases, as illustrated
in Fig. 1. The development phase represents the immediate
effects of the initial insult, which may be subclinical. The
extension phase then ensues, in which both injury from the
kidney insult and repair mechanisms compete. The resolution
phase represents the net outcome of damage and repair. The
duration of each phase can vary considerably depending on
the nature of both the kidney insult and repair processes.

Concepts relating to progression following AKI are best
understood in the context of the sequence of events described
above. In the development phase, a kidney insult leads to
injury. In the extension phase, repair processes are initiated

in response to injury. Adaptive repair is a coordinated process,
resulting in the resolution of renal structure without long-term
sequelae. In contrast, maladaptive repair results in durable
reduction in kidney function usually associated with a change
in renal structure. The extension phase represents the net result
of renal injury and repair processes. Renal recovery is a con-
sequence of adaptive repair that leads to durable improvement
in kidney function or structure. Conversely, progression is
defined as a durable change in kidney structure or function
detected by biomarkers, imaging studies or histopathology
[16].

Recent progress has been made in operationalizing a defi-
nition of renal recovery; the Kidney Disease: Improving
Global Outcomes (KDIGO) AKI work group developed the
entity Bacute kidney disease^ to characterize partial functional
recovery following AKI [5]. This was defined as a GFR of
<60 ml/min/1.73 m2 or evidence of structural kidney damage
for less than 3 months. This concept bridges the gap between
the BLoss^ and BEnd Stage^ categories of the pediatric RIFLE
criteria [17]. In clinical practice, recovery is often thought of
as a return to baseline plasma creatinine. As discussed above,
functional renal recovery should be interpreted with caution in
children, as a return to baseline creatinine may mask underly-
ing durable kidney damage.

Pathophysiology of progression following AKI

There is a growing understanding of the pathophysiologic
mechanisms that underlie progression following AKI. Acute
kidney insults disrupt tubules, capillaries and glomeruli, with
the proximal tubule being particularly vulnerable [18]. Repair
processes are then initiated in response to the insult [19, 20].
Sustained recovery can be attributed to adaptive repair
processes resulting from a well-balanced response between
inflammatory and anti-inflammatory factors [21]. In many
situations, this fine balance is not achieved, resulting in
maladaptive repair, which predisposes to the development of
interstitial fibrosis. Adaptive and maladaptive repair can be
focally variable; tubular damage can resolve completely in
some areas, whereas other areas can be less resilient to insults,
leading to tubular atrophy. Maladaptive repair and interstitial
fibrosis reduce the kidneys’ reserve available to buffer further
kidney insults. A negative spiral can then ensue, in which
fibrotic damage further increases the risk of subsequent
progression and more extensive chronic damage. The finely
balanced response to the initial kidney insult, together with the
nature and duration of this insult itself, are critical in deter-
mining the long-term outcome following AKI [7, 16, 22].

Animal models of AKI have led to the identification of a
number of mechanistic pathways that contribute to progres-
sion following an acute kidney insult. These include oxidative
stress, the DNA damage response pathway, epigenetic
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changes, mitochondrial dysfunction and the complement
pathway, as illustrated in Fig. 2.

Oxidative stress plays a key role in both the development of
kidney injury following an acute insult and maladaptive repair
and progression following the injury itself [23, 24].
Notwithstanding the contribution of oxidative stress to injury
and progression, there is some evidence that this pathway
might be beneficial in ameliorating the effects of acute insults
in specific circumstances. Ischemic pre-conditioning prior to a
kidney insult has been found to reduce the development of
AKI [25]. The likely mediators of this protective effect are
cellular defense mechanisms, such as hypoxia-inducible
factor (HIF) and nuclear factor erythroid 2-related factor 2
(Nrf2), which are activated by the pre-conditioning event
[26]. Although potentially beneficial in ameliorating acute
injury, pre-conditioning responses can be chronically
deleterious [27]. Injury can lead to a reduction in capillary
density that can exacerbate renal hypoxia and thereby
contribute to progression [28, 29]. The durable effects of
ischemic pre-conditioning in AKI require further careful
evaluation.

The DNA damage response is a network of signaling
pathways that can trigger cell cycle arrest, or cell death, in
response to injury. DNA damage response pathways are
activated by AKI [30]. Aberrant cell cycle arrest in proximal
tubular cells has been implicated in maladaptive repair and the
development of fibrosis [31]. Kidney injury can also influence
the phenotypic transition of various cells that can lead to
progressive damage. Transition of endothelial cells to a
mesenchymal phenotype can impair proliferation and
exacerbate oxidative stress [32]. Durable structural changes
and progression can result from the transition of pericytes to
myofibroblasts and from epithelial–mesenchymal transition in
renal obstruction [33, 34].

Emerging evidence suggests a role for complement path-
ways in progression following an acute kidney insult. Knock-
out of cell surface complement regulatory proteins from prox-
imal tubular epithelial cells increases susceptibility to progres-
sive injury in ischemia–reperfusion models of AKI [35, 36].
Complement pathway inhibition ameliorates kidney injury in
this model. Further work is needed to clarify the exact nature
of complement interactions in AKI progression.

It is anticipated that growing knowledge of the mechanisms
that underlie progression following AKI will ultimately lead
to therapies that may ameliorate long-term sequelae, as
discussed further in the section BFuture therapies which may
ameliorate progression following AKI^.

Identifying children who are at risk of progression
following AKI

The identification of children who are most at risk of progres-
sion following AKI is necessary in order to target interven-
tions to minimize progression. Risk factors for long-term se-
quelae following AKI and techniques to stratify the risk of
progression in children are outlined in this section.

The severity of a kidney insult is a well-established risk
factor for progression following AKI. Insults that are severe
and/or prolonged can disrupt the balance of inflammatory and
anti-inflammatory factors required to facilitate adaptive repair
processes, and thus compromise renal recovery [37, 38].
Multiple acute kidney insults exert a cumulative impact that
can hamper adaptive repair and lead to sequelae. Laboratory
and clinical observations support this concept. In animal
models, the frequency of proximal tubule injury affects renal
prognosis [38]. In adult patients with diabetes mellitus, repeat-
ed episodes of AKI are associated with end-stage renal disease
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[39]. Multiple episodes of myohemoglobinuric AKI are close-
ly associated with long-term kidney fibrosis and CKD [27].
The cumulative impact of multiple kidney insults can compro-
mise adaptive repair processes with resultant progression.

Pre-existing CKD confers an increased risk of pro-
gression following AKI. Animal studies have demon-
strated a propensity for maladaptive repair in the context
of reduced renal mass [40]. Clinical studies in both
adults and children evidence reduced capacity for func-
tional renal recovery following AKI in patients with pre-
existing CKD [7, 22, 41, 42]. This phenomenon repre-
sents a high-risk to children with CKD given their life-
time exposure to acute kidney insults.

Many of the risk factors for progression outlined above
are challenging to quantify. Strategies with greater dis-
criminative power to identify children at risk of progres-
sion are needed. Large data techniques in which electronic
health information, such as laboratory values, vital signs
and patient characteristics, are used to build prediction
models for events have been successfully used to stratify
adult patients at risk of developing AKI [43]. Further
work is needed to evaluate the application of these tech-
niques to determine progression risk following AKI in
both adults and children.

The use of urinary biomarkers to inform the risk of
progression following AKI has shown some potential. In
adult patients, three biomarkers have been found to predict
progression of AKI among patients with acute cardiorenal
syndrome, namely urinary angiotensinogen, urinary neu-
trophil gelatinase-associated lipocalin and urinary
interleukin-18 [44]. Whilst studies in neonates and chil-
dren with AKI have identified biomarkers with some dis-
criminative value for the early identification of AKI
[45–49], their use in risk stratification for progression has
not been evaluated to date.

Imaging applications have shown promise in identifying
features that may predict progression following AKI. Two
magnetic resonance imaging (MRI) techniques, namely
diffusion-weighted-MRI and blood oxygen level-dependent-
MRI, have been used to evaluate tubulointerstitial alterations
and parenchymal hypoxia in patients with both AKI and CKD
with some success [50]. Ultrasound and MRI elastography
can provide hemodynamic and structural information which
may be predictive of progression [51, 52]. Further evaluation
of these non-invasive techniques may enhance assessment of
progression risk in the future.

There is a clinical need to develop reliable strategies to
stratify the risk of progression following AKI in the pediatric
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population in order to tailor appropriate therapy and follow up
with the aim of minimizing long-term sequelae.

Clinical strategies to minimize progression following
AKI

Strategies to minimize progression following AKI in children
have not been systematically studied to date. Interventions
should target removal of kidney insults and optimization of
conditions that facilitate adaptive repair. Clinical priorities in-
clude optimization of kidney perfusion, removal of iatrogenic
insults, attention to urinary drainage and correction of acid–
base and electrolyte disturbances.

Optimizing kidney perfusion

Several factors underlie the kidneys’ vulnerability to
malperfusion after an acute insult. Autoregulation of renal
blood flow can be disrupted, compounded by falling oxygen
tension in the renal medulla which is already relatively hyp-
oxic under normal physiologic conditions. Repair processes
are particularly vulnerable to hypoxia in the context of
tubulointerstitial edema, vasoconstriction, endothelial injury
and capillary compression in AKI [37]. Impaired production
of vasoactive factors by damaged tubules, such as vascular
endothelial growth factor (VEGF), further compromise paren-
chymal perfusion [53]. Malperfusion hinders metabolically
demanding adaptive repair processes.

Clinical observations in adult critical care patients sup-
port the key role of optimal renal perfusion in promoting
adaptive repair following AKI. Both higher systemic ox-
ygen delivery and higher mean arterial blood pressure are
independently associated with a lower risk of sequelae
following AKI [54]. However, the optimization of kidney
perfusion can be clinically challenging in the context of
generalized fluid overload in children. Key principles in-
clude the maintenance of adequate systemic blood pres-
sure, with careful attention to the assessment and correc-
tion of intravascular volume depletion. Excessive or over-
rapid diuresis or ultrafiltation should be avoided.
Inotropic support can be indicated, but there is no evi-
dence to support the use of Brenal dose^ dopamine in
AKI [55].

Novel therapies to reduce the impact of renal hypoper-
fusion on progression following AKI are on the horizon.
These will be discussed further in the section BFuture ther-
apies which may ameliorate progression following AKI^.

Minimizing iatrogenic insults

Persistent or repeated kidney insults hamper adaptive repair.
In children with AKI, urgent evaluation of all factors that may

compromise adaptive repair, as well as their removal, is there-
fore paramount.

A common iatrogenic kidney insult in the hospital
setting is medication with nephrotoxic potential—in one
study 86% of non-critically ill children were exposed to
this risk [3]. Frequently prescribed agents include antibi-
otics, antifungals, antivirals, non-steroidal anti-inflamma-
tory agents, immunosuppressants, intravenous contrast
media and angiotensin-converting-enzyme inhibitors. A
systematic screening program in hospitalized children
was successful in reducing medication-related AKI, the
main benefit being more rapid recognition, which led
care teams to reduce medication exposure earlier [56].
This initiative was followed by a sustained quality im-
provement program which demonstrated a reduction in
medication-related AKI over a 3-year period [57].
These studies were not designed to assess the effect of
this strategy on progression following AKI, however it is
intuitive that early removal of nephrotoxic insults might
facilitate adaptive repair and limit progression.

Optimizing urine drainage

Relieving the urinary tract obstruction is a well-established
management priority in AKI in both adults and children [6].
This is particularly important in children for whom congenital
anomalies of the kidney and urinary tract (CAKUT) are a
frequent cause of CKD. Children with CAKUT frequently
experience episodes of AKI with acute-on-chronic impair-
ment in kidney function. These episodes represent a high risk
of progression. Renal tract dilatation should be evaluated
using ultrasound [58], with optimization of urinary drainage
in conjunction with a pediatric urologist and/or interventional
radiologist if necessary. Delays in optimizing drainage can
compromise adaptive repair.

Controlling acid–base and electrolyte abnormalities

Acid–base homeostasis can be severely disrupted following
AKI. Processes such as proximal tubular bicarbonate reab-
sorption, distal tubular proton excretion and medullary urea
recycling are compromised. Severe acidosis can compromise
the coordination of adaptive repair by disrupting protein
charge, conformation and function. In the clinical setting, con-
trolling acid–base disturbance is likely to facilitate adaptive
repair.

Electrolyte dysregulation is a further feature of AKI that
can disrupt cellular function and thus hamper adaptive repair.
Careful attention to plasma electrolyte levels and correction of
gross abnormalities may therefore ameliorate progression.

Renal replacement therapy (RRT) may be necessary to
control electrolyte and acid–base disturbance in children with
oligo-anuric AKI. The optimal timing and modality of RRT to
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reduce the risk of progression have not yet been determined.
In critically ill children, earlier initiation of continuous RRT
may improve survival [59]. A key principle for the RRT pre-
scription is avoidance of rapid or excessive ultrafiltration as
this may compromise intravascular volume and renal perfu-
sion, thus hampering adaptive repair.

Future therapies which may ameliorate progression
following AKI

Whilst current clinical strategies to minimize progression fo-
cus on optimization of the microenvironment in order to facil-
itate adaptive repair, treatments to accelerate recovery are on
the horizon. Potential targets for future therapies and their
associated biochemical pathways are discussed in this section
and summarized in Table 1.

A key pathway with future therapeutic potential is that of
hypoxia and oxidative stress, both factors which can mediate
progression [23, 24]. A number of relevant therapeutic targets
have been identified. HIFs are transcription factors that play a
key role in mediating cellular responses to hypoxia. In animal
models of AKI, pre-ischemic targeting of the HIF pathway is
effective in ameliorating injury and progression in specific
circumstances [26, 60]. Similarly, activation of Nrf2, a regu-
lator of cellular resistance to oxidants, has shown promise in
attenuating progression [61, 62]. Thirdly, exogenous VEGF, a
stimulant of angiogenesis, can exert a protective effect on
renal capillaries and ameliorate long-term damage following
an acute insult [63]. The above targets have shown promise as
potential future treatments that may minimize progression fol-
lowing hypoxic ischemic insults to the kidneys.

Mitochondrial dysfunction, which can result from
AKI, presents an additional pathway relevant to progres-
sion. Suppression of mitochondrial biogenesis has been
demonstrated in animal models of AKI [64] and is likely
to promote progression to fibrosis through persistent

cellular injury [65]. Therapeutic agents that support mi-
tochondrial biogenesis and function may therefore be
beneficial in ameliorating progression in the future.

Epigenetic changes can influence repair and progression
following an acute kidney insult. Epigenetic alterations are
activated after AKI and include histone modifications, DNA
methylation and chromosomal conformational changes [16].
Novel therapeutic agents that target epigenetic alterations have
shown promise in animal models of AKI; for example histone
deacetylase inhibitors have been found to accelerate renal re-
covery and reduce fibrosis after AKI in zebrafish and mice
[66].

The response of renal tubular epithelial cells to DNA dam-
age is implicated in fibrosis of the kidney. Modifying the cell
cycle of renal tubular epithelial cells via inhibition of tumor
suppressor p53 and inhibiting downstream signaling from tu-
bular cells in cell cycle arrest can prevent progression and
fibrosis [67]. Further translational work is needed to determine
if these strategies can ameliorate kidney fibrosis following
AKI in the clinical setting.

Whilst the avenues discussed above hold promise for future
accelerated adaptive repair in children at risk of AKI progres-
sion, they are all several steps away from being evaluated in
the clinical setting. For now, the mainstays of clinical man-
agement to minimize progression remain optimization of renal
perfusion, urinary drainage and the extracellular environment,
and minimization of ongoing kidney insults.

Summary

Acute kidney injury is common in children treated in hospital,
and a significant proportion experience long-term sequelae.
Following AKI, adaptive repair processes can result in the
recovery of kidney function; conversely, maladaptive repair
can lead to progression, defined as a durable change in kidney

Table 1 Pathways of progression following acute kidney injury and related mechanisms and therapeutic targets

Pathway Mechanisms/model Future therapies

Oxidative stress Capillary rarefaction Ischemic pre-conditioning
Activation of hypoxia-inducible factor (HIF)
Activation of nuclear factor erythroid 2-related factor 2 (Nrf2)
Exogenous vascular endothelial growth factor

DNA damage response Aberrant cell cycle arrest
Endothelial to mesenchymal transition
Epithelial to mesenchymal transition
Pericyte to myofibroblast transition

p53 inhibitors

Epigenetic changes Histone modifications
DNA methylation
Chromosomal conformational changes

Histone deacetylase inhibitors

Mitochondrial dysfunction Suppression of mitochondrial biogenesis
Toll-like receptor 4-dependent mitogen activated protein kinase
Extracellular signal-regulated kinase signaling

Stimulators of mitochondrial biogenesis

Complement Cell surface complement regulatory protein knockout Complement pathway blockade
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structure or function detected by biomarkers, imaging studies
or histopathology.

Established risk factors for progression include severity of
the kidney insult, the cumulative impact of multiple AKI ep-
isodes and pre-existing CKD. Further risk stratification using
electronic health record data, biomarker panels and imaging
modalities are being evaluated.

Clinical strategies aimed at minimizing progression include
optimization of kidney perfusion, urinary drainage and elec-
trolyte and acid–base balance, as well as prompt removal of
ongoing kidney insults. Future therapies that may accelerate
adaptive repair following AKI and ameliorate progression are
on the horizon.

Multiple-choice questions (answers are provided
following the references)

1. Progression following AKI is defined as:

a) Increasing severity of acute kidney injury
b) Recovery of plasma creatinine to baseline
c) A durable change in kidney structure or function de-

tected by biomarkers, imaging or histopathology
d) Extra-renal complications following AKI.

2. Following an acute kidney insult, which of the following
are true?

a) Plasma creatinine may not change
b) injury initiates repair mechanisms
c) adaptive repair results in progression
d) progression can lead to chronic sequelae.

3. Risk factors for progression following AKI in children
include:

a) Chronic kidney disease
b) Repeated episodes of AKI
c) Severity of the kidney insult
d) Interstitial fluid overload.

4. Clinical management priorities to reduce progression fol-
lowing AKI include:

a) Early angiotension-converting enzyme inhibition
b) Diuretic therapy
c) Optimizing kidney perfusion
d) All of the above.

5) Mechanistic pathways for future therapies include:

a) Oxidative stress
b) Cell cycle modification
c) Histone deacetylase inhibition
d) All of the above.
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1. c

2. a, b, d

3. a, b, c

4. c

5. d
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