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Abstract This is an extended version of the paper presented at the 4th International Work-
shop NFMCP 2015 held in conjunction with ECML PKDD 2015. The initial version has
been published in NFMCP 2015 conference proceedings as part of Springer Series. This
paper presents a novel approach to financial times series (FTS) prediction by mapping
hourly foreign exchange data to string representations and deriving simple trading strategies
from them. To measure the degree of similarity in these market strings we apply familiar
string kernels, bag of words and n-grams, whilst also introducing a new kernel, time-decay
n-grams, that captures the temporal nature of FTS. In the process we propose a sequen-
tial Parzen windows algorithm based on discrete representations where trading decisions
for each string are learned in an online manner and are thus subject to temporal fluctua-
tions. We evaluate the strength of a number of representations using both the string version
and its continuous counterpart, whilst also comparing the performance of different learning
algorithms on these representations, namely support vector machines, Parzen windows and
Fisher discriminant analysis. Our extensive experiments show that the simple string repre-
sentation coupled with the sequential Parzen windows approach is capable of outperforming
other more exotic approaches, supporting the idea that when it comes to working in high
noise environments often the simplest approach is the most effective.
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1 Introduction

Financial time series (FTS) are renowned for being extremely noisy thus making it difficult
to make predictions regarding future events based upon these observations. This has led
many previous authors to seek out novel and exotic representations of the time series that
attempt to remove some of this noise, which would allow for better predictions to be made.
In this paper we adopt an alternative approach to the problem: that is, the mapping of hourly
foreign exchange rate data to a string representation, and using this string to derive a simple
trading strategy. In the process we propose a new type of string kernel, i.e. time-decay
n-grams, and a sequential Parzen windows algorithm based on discrete representations.

We begin our representation by constructing an alphabet using an arbitrary partitioning
of the real-valued returns of the currency pair, and map each hourly return to a particu-
lar letter in the alphabet. By concatenating the letters associated with the previous hourly
returns we create a market string, which is assumed to be representative of the current mar-
ket conditions, and is used to guide trading decisions. Throughout the paper we show how
kernel methods can be used to extend the simple string representation to capture different
characteristics of the financial time series. Furthermore, we present a new temporal-based
string kernel, i.e. time-decay n-grams, that takes into consideration how recently a particular
substring pattern occurred. As well as evaluating the strength of the time series representa-
tion through strings, we also investigate the impact of creating a predictor using a particular
algorithm. Namely, we compare the performance of Parzen windows (PW), support vector
machines (SVMs), Fisher discriminant analysis (FDA) and our incremental learning algo-
rithm similar to a Parzen windows. All of these algorithms and representations are tested
on almost 8 years worth of hourly data taken from four of the most actively traded cur-
rency pairs: AUD/USD, CHF/USD, EUR/USD and GBP/USD. The results seems to favour
the view that simple approaches tend to work best when working in noisy environments.
The paper continues with a review of previous work in Section 2, which is followed by
a short introduction to kernels in Section 3, paying particular attention to the string-based
ones used in our experiments. In Sections 4 and 5 we describe the method of constructing
the so called market alphabet as well as batch algorithms used to define trading strategies.
Section 6 then outlines the sequential Parzen windows algorithm based on discrete repre-
sentations. We conduct the experiments in Sections 7, 8 and 9 and finish with conclusions
and advise on future directions of research in Section 10.

2 Previous work

This paper addresses the problem of FTS prediction from two aspects: the first concerns
how we present the data to the algorithm and the second concerns the choice of algorithm
used to construct the predictor. A large part of FTS research focuses on the discovery of
patterns from noisy data. The traditional approach to model selection usually involves some
form of autoregressive model that we have to fit a set of parameters in order to predict future
price trajectories. While this approach has proven quite useful for the prediction of mean-
reverting and persistent processes such as volatility, it is less successful in predicting the
value or even directional movement of prices.

Machine learning has demonstrated a number of encouraging results for the prediction
of FTS, with SVMs being one of the most popular approaches. One of the first applications
of SVMs to FTS was presented in Tay and Cao (2001) and later extended in Kim (2003).
Both papers provide an empirical analysis of SVM-based FTS prediction and compare its
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performance against a number of other techniques including multi-layer back-propagation
neural network and case-based reasoning. The experimental results in both papers suggest
a superiority of SVM methods when compared to similar techniques, however they do out-
line the challenges of the SVM approach in terms of generalisation to unseen data. In Van
Gestel et al. (2001) the authors compare the performance of a least squares SVM1 to that of
several autoregressive models as well as nonparametric models for both return and volatil-
ity prediction. They report that the least squares SVM has superior performance both in
terms of achieving higher directional prediction and better overall performance compared
to that of other models used in their investigation. Further applications of SVMs for finan-
cial forecasting can be found in Cao and Tay (2003), Perez-Cruz et al. (2003), Hossain and
Nasser (2011), Ou and Wang (2010), Khan (2011). The other two algorithms applied in this
paper, namely FDA and PW are much less explored in terms of FTS prediction. In terms
of application in financial space, FDA has been mainly investigated as a bankruptcy predic-
tion classifier and PW most frequently used for nonparametric density estimation. A recent
application of PW to prediction of stock prices in U.S. and U.K. markets that reportedly
showed encouraging results is conducted in Mwamba (2011).

In terms of data representation, the prevalent approach is to work with continuous time
series data, favouring returns instead of prices due to a number of statistical properties
that the former possess, such as weak stationarity. Relatively less attention has been given
to the study of the discretisation of FTS, nonetheless there have been several attempts to
reduce the noise of a time series by using various quantisation techniques as well as sym-
bolic representations. The latter include discretisation methods and string representations
applied in this paper (see for example Lin et al. 2003), although their application for pre-
diction of FTS in particular and for the purpose of tactical asset allocation is explored to
a much lesser extent. A concise and informative overview of time series data mining tech-
niques can be found in Fu (2011). Therefore, we focus less on the alphabet construction
method and pay more attention to the way patterns are presented to an algorithm, namely
we introduce a new type of string kernel aimed specifically at FTS that are known for
their time-conditional characteristics. A popular approach to FTS prediction among prac-
titioners is to employ rule-based prediction methods that allow the incorporation of prior
knowledge into the decision-making process. These rule-based prediction methods involve
two sources of knowledge; the first is forecasting expertise (e.g. quantitative extrapola-
tions and modelling) and the second is domain knowledge (practical knowledge about
causal relations within particular field) (Armstrong et al. 2001). Perhaps the most pop-
ular example of the latter in finance are methods where rules are based on technical
indicators.2 These allow a researcher to include their expert knowledge into the forecast-
ing process in the form of various thresholds and patterns applied to technical indicators
which ultimately leads to a discrete evaluation of the market at a specific point in time.
Understandably, rule-based forecasting goes beyond rules based on technical indicators,
e.g. assigning different considerations to level and trend of a time series, combining pre-
dictions of a number of models, separating models according to their forecast horizons
etc. (Armstrong et al. 2001). In this sense, machine learning is less restrictive compared to
classical time series analysis since it does not necessarily require that a time series satis-
fies a specific set of assumptions. While econometrics normally avoids including technical

1An extension of the original SVM that penalises the slack variables according to their squared value.
2Technical indicators are best described as rule-based evaluations of the underlying time series where their
mathematical formulae is not based on statistical theory but on an expert’s domain knowledge instead.
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indicators and other heuristics, machine learning techniques allow for an easy inclusion of
such indicatorswithout violating any statistical assumptions. In fact it is quite popular to use these
technical indicators as building blocks of the feature space when predicting FTS with
machine learning algorithms. Moreover, it extends the possibilities of data representation
through the use of kernel functions. The majority of implementations use the Gaussian ker-
nel function due to its rich representation ability, however linear and polynomial kernels
are also popular choices. To the best of our knowledge, this paper presents the first use of
string (text) kernels for prediction of FTS. More importantly, we introduce a new type of
string kernel, namely the time-decay n-grams, that is constructed so as to capture the market
dynamics and domain knowledge for a specific type of data. As the use of kernels plays an
important role in this paper we provide a short overview of kernel methods in the following
section. For more details on kernel methods we point the interested reader to Shawe-Taylor
and Cristianini (2004) and Schölkopf and Smola (2002).

3 Kernel methods

Suppose we are given a set of training examples (x1, y1), . . . , (xm, ym) ∈ X ×Y . The gen-
eral idea of pattern analysis is to learn a function f : X → Y that maps input observations
x ∈ X to output values y ∈ Y . In this paper we focus on binary classification algorithms
where the output space is given by Y = {−1, 1} and the input space X is arbitrary. When
using training samples to learn the function f : X → Y , we want to ensure that it is capable
of generalising to unseen examples. Therefore given a new input x we want to predict the
corresponding y ∈ Y , such that the input-output pair (x, y) is similar to what we have seen
in our training sample. In order to do this we must define a similarity measure over both
the input and output space. In classification, output similarities are simply given by whether
they belong to the same class. In the kernel method approach to learning, we define the sim-
ilarity measure on the input space by introducing a kernel function k : X × X → R. In
order to be a valid similarity measure, the kernel function must satisfy that for all x, z ∈ X

k(x, z) = 〈φ(x), φ(z)〉,

where φ, known as the feature mapping, maps X into some dot product space F where
similarities can be evaluated. This very general notion of a kernel function allows the input
space to be mapped to a large number of possible feature spaces, often of much higher
dimensions, where the differences between observations drawn from different classes may
become more distinct. A benefit of the algorithms using kernel methods is that they avoid
having to explicitly compute feature space representations by ensuring that feature map-
pings only appear in the algorithms as inner-products and can thus be directly evaluated
using a kernel function.

Another point worth stressing is that our definition of a feature mapping, and therefore
the kernel function, represents our prior knowledge about the research problem and is a
crucial stage of the pattern analysis. Kernel functions act as similarity measures and offer
flexibility in terms of incorporating domain knowledge into the pattern analysis task. In
this paper we attempt to capture some domain knowledge about the intra-day FX price
movements through the discretisation of the returns of the FTS and through introduction of
time-decay n-grams so as to capture temporal information of the FTS. Loosely speaking,
we conjecture that when traders view the hourly changes of an FTS they are unlikely to
take into consideration the exact value of the hourly returns (the continuous value). Instead
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we believe that it is more likely that they conduct some form of discretisation of the previ-
ous price movements in order to gauge the underlying market conditions, and make their
trading decisions. This is in essence what we are attempting to do by creating the market
alphabet, and concatenating previous hourly returns and their corresponding letters to form
a string representation of the market. We now present three different string kernels used
in our experiments, each of which is capable of capturing different characteristics of the
time series. First we outline a couple of well-known text kernels, namely bag-of-words and
n-grams. Next, we propose a new type of string kernel, the time-decay n-grams, aimed at
capturing conditional nature of FTS.

3.1 Bag-of-words

Bag-of-words (BoW) approach is a type of vector space model where the idea is to count
the number of words appearing in a document and make a classification decision based on
that information. BoW does not take into account order of words so grammatical or seman-
tic information is lost to a high degree. As an example, let us assume a set of documents L

on two different topics A and B, i.e. we have two classes of documents. The BoW approach
makes a vector representation of each document by counting the number of times a particu-
lar word appears in that document where the dimensionality of the vector is determined by
the dimensionality M of the dictionary (union of all words in all documents). A mapping of
a document dl into a vector space can be written as

φ : dl → φ(dl) = (f (w1, dl), . . . , f (wm, dl)) ∈ R
M (1)

where f (wm, dl) is the frequency of word wm in a document dl . After performing identical
mapping on all sets of documents we can then store the data in a document-term matrix
D of dimensions L × M with rows associating to the number of documents and columns
referring to the number of words. Our kernel matrix that presents the basis for a further
pattern analysis is then K = DDᵀ. Note that within the context of our research, a document
is equivalent to a single word of length K and hence we are effectively comparing entire
documents when estimating the degree of similarity between words. Using string kernel
terminology, BoW approach is equivalent to fixed-length strings matching. Let us follow
Shawe-Taylor and Cristianini (2004) and define an alphabet Σ as a finite set of |Σ | letters
and a string s = s1, . . . , s|s| as any finite sequence of letters of some predefined length
|s| = K from Σ with the set of all finite strings equal to ΣK . BoW is then equal to a
boolean function p(s, s′) that returns a value of 1 only when the two strings, s and s′, are
identical and 0 otherwise:

p(s, s′) =
{
1 if s = s′
0 if otherwise

(2)

As such BoW kernel does not include finer comparison of words such as taking into account
subsequences of characters within words. A string kernel presented in the following section
does precisely that.

3.2 n-grams

This is a text representation method popular especially in computational linguistics (Lodhi
et al. 2002) and bioinformatics (Liu et al. 2008). A document is represented in terms of
substrings where each substring represents a feature of the underlying document. As its
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name suggests n-grams (NG) refers to n-number of adjacent characters in the alphabet with
each n-gram type representing a type of substring (i.e. a feature). Within the context of
our research where documents are in fact represented by a single word, we now no longer
look for similarities between strings (words) of fixed length K , but also take into account
similarities between subsequences of length n ≤ K within each word. The dimensionality of
our feature space is now |Σ |n, where n ≤ K with n denoting the length of subsequences, i.e.
n-grams. Note that the similarity function for each string is no longer a boolean operator and
our feature space no longer comprised of binary vectors. By accounting for subsequences we
now have a feature space where each string is represented by a vector of non-zero entries for
each of the n-grams present in that string. We now present a simple example of the n-gram
kernel computations on a set of four five-letter strings (K = 5) constructed from a three-
letter alphabet Σ = {a,b,c} where the length of the subsequence that we are interested in
is n = 2.

Example 1 Consider the strings abcab, abbbc, cbaba and bbcaa. We fix the string
subsequence length to n = 2 and compute feature space representation for each of these
words. To do this we compute all contiguous subsequences of length n = 2 present in the
data set. We then identify whether this subsequence was present in a particular word so as
to obtain a feature vector for each string:

φ ab bc ca bb cb ba aa

abcab 2 1 1 0 0 0 0
abbbc 1 1 0 2 0 0 0
cbaba 1 0 0 0 1 2 0
bbcaa 0 1 1 1 0 0 1

Finally we quantify the similarities between the four words by calculating the kernel matrix:

K abcab abbbc cbaba bbcaa

abcab 6 3 2 2
abbbc 3 6 1 3
cbaba 2 1 6 0
bbcaa 2 3 0 4

Note, that the kernel matrix assigns the highest values along the diagonal where the words
are in fact identical, while having non-zero non-diagonal entries as a result of taking into
account the subsequences as part of string comparison.

3.3 Time-decay n-grams

We now introduce a time-decay n-gram kernel that takes into account the time-conditional
information of an FTS. We attempt to do so by assigning higher weights to the more recent
FTS observations compared to less recent ones. If we revisit the traditional n-grams in
Example 1 and assume that these letters correspond to a time series, we can incorporate the
temporal nature of the observations by introducing the weights qi for i = {1, . . . , 4}. Let i

index the location of the n-gram, where i < j means i occurred after j and we assume that
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∑
i qi = 1 and qi ≥ qj if i ≤ j . For example, suppose we wanted the relationship between

the first n-gram and the last one to be such that q1/q4 = d, meaning the first n-gram is d

times more important than the last one. This can be achieved through a simple exponential
decay function were the ratio between the importance of consecutive n-grams is fixed, i.e.
qi/qi+1 = � = exp (log(d)/(k − 1)). Here k denotes the maximum number of n-grams for
a given word length K and is given as k = max(K − n + 1, 0). In our case with K = 5 and
n = 2 the maximum number of n-grams is therefore k = 4.

Example 2 Consider once again the strings abcab, abbbc, cbaba and bbcaa. We fix
the string subsequence length to n = 2 and compute feature space representation for each
of these words. To do this we compute all contiguous subsequences of length two present
in the data set. We then identify whether this subsequence was present in a particular word
so as to obtain a feature vector for each string, and assign it a weight qi corresponding to its
position in the string:

φ ab bc ca bb cb ba aa

abcab (q1 + q4) q2 q3 0 0 0 0
abbbc q1 q4 0 (q2 + q3) 0 0 0
cbaba q3 0 0 0 q1 (q2 + q4) 0
bbcaa 0 q2 q3 q1 0 0 q4

Suppose we set the decay factor at d = 2 and therefore qi/qi+1 = � = exp (log(2)/(3)).
Then the kernel matrix between these words is given by:

K abcab abbbc cbaba bbcaa

abcab 0.38 0.22 0.11 0.12
abbbc 0.22 0.38 0.07 0.21
cbaba 0.11 0.07 0.36 0.00
bbcaa 0.12 0.21 0.00 0.27

4 Discrete time series representations

Here we demonstrate a method for recoding of continuous data into a time series of discrete
representations, i.e. a so called market alphabet that contains information about the market
dynamics for the underlying time period. Generally speaking, information about market
action for a particular asset is obtained by recording four prices at each time interval. In
our case of hourly data, we have prices for the open, high, low and close over each hourly
interval, given by Ot , Ht , Lt and Ct respectively, with each price being a positive real
number. As will be made clear in subsequent sections, our goal will be to predict at the
beginning of the price interval whether the price will increase or decrease over the interval
based on recent relative price movements, or more precisely simple arithmetic returns, rt =
(Ct − Ot)/Ot that have occurred leading up to time t . Rather than following the usual
practice of using the continuous values of the returns we form a partitioning of the real line
R and label each sub-interval with a unique identifier, i.e. a letter σ from alphabet Σ .

The approach we take is to use sub-intervals (bk, bk+1], where bk < bk+1, that have
roughly an equal number of members, i.e. in the training sample there are roughly the same
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number of returns rt corresponding to each sub-interval. This can be achieved by sorting the
returns rt and taking equally separated percentile points as the limits of the sub-intervals.
An important point to consider is the sub-interval that contains both positive and negative
values. Intuitively it makes sense to split this sub-interval into two separate sub-intervals
either side of zero. The mapping A : R → Σ between returns and the alphabet is given by

A(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1, b0 < r ≤ b1
σ2, b1 < r ≤ b2

...

σ|Σ |, b|Σ |−1 < r ≤ b|Σ |,

(3)

where b0 = −∞ and b|Σ | = +∞. Using this notion each observation rt belongs to a given
sub-interval, which we identify with a letter σ from our alphabet Σ . The representation
can be extended to include past observations by concatenating the letters corresponding to
past returns (see Fig. 1). More formally, an alphabet Σ of |Σ | letters is constructed by an
arbitrary partitioning of the real line R where each return rt ∈ R is mapped to a letter
σt ∈ Σ . A string is constructed according to st = σt−1 . . . σt−K , where K defines how
many past returns we look at.

5 Batch classification strategies

As mentioned earlier, the goal is to predict at the beginning of the price interval whether the
price will increase or decrease over the interval, i.e. yt = sign (Ct − Ot) ∈ {−1, 1}. Hence,

Fig. 1 Alphabet representation: left side displays letters (i.e. partitions) together with the number of exam-
ples (namely, the returns of EUR/USD exchange rate) that fall into individual partitions. Right side displays
the time series of these same hourly returns over the period of 24 h with each of the hourly returns being
assigned a letter depending on which partition they fall into
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we will employ binary classification algorithms that return predictions ŷt ∈ {−1, 1} based
on which we then buy (go long) or sell (go short) the underlying currency cross. Classifiers
investigated here and presented in the following sections are Parzen windows (PW), support
vector machines (SVM) and Fisher discriminant analysis (FDA).

5.1 Parzen windows

We begin by describing a nonparametric conditional probability estimator proposed origi-
nally by Nadaraya (1964) and Watson (1964) with the following description borrowed from
Smola (2007). Suppose we have a training set of observations S = {(x1, y1), . . . , (xt , yt )} ∈
X ×Y and wish to estimate a conditional probability P(y|x). For the moment let us assume
that target takes values yt ∈ {−1, 1}. What is also known as Watson-Nadaraya (WN) model,
estimates conditional probability by combining the product rule p(x, y) = p(y|x)p(x) and
Bayes rule, so that

P(y|x) = P(y, x)
P (x)

=
∑

t yt k(xt , x)∑
t k(xt , x)

, (4)

where we estimate both densities p(y, x) and p(x) using Parzen windows. Here k(xt , x)
denotes a kernel function that satisfies

∑
t k(xt , x) = 1 and acts as a weighting function

that defines the region of influence of a data point. Optimal decision rule for WN classifier
is then equal to observing the sign of

P(y = 1|x) − P(y = −1|x) ∝
∑

t

yt k(xt , x). (5)

Note, that we can easilty turn WN classifier into regression by simply changing the target
from a categorical yt ∈ {−1, 1} to real-valued numeric output yt ∈ R. Parzen windows
estimators are not new in financial analysis, where they are usually applied as empirical
density estimators. However, due to their nonparametric nature they are often dismissed due
to risk of overfitting.

5.2 Fisher discriminant analysis (FDA)

Fisher discriminant analysis (Fisher 1936) is an approach to classification that uses only
the empirical mean and covariance matrices of the class specific distributions to construct
a predictor. Suppose we have the empirical mean μ̂i and covariance matrices Σ̂i for each
class i = −, +. The goal of FDA is to find the vector w that maximises the distance
between the projected means, whilst ensuring that the within-class variance remains small.
Mathematically speaking, this is represented by maximising the functional

J (w) =
(
wT (μ̂+ − μ̂−)

)2
wT

(
Σ̂+ + Σ̂−

)
w

,

and it is well known that the optimal solution w∗ is given by

w∗ =
(
Σ̂+ + Σ̂−

)−1
(μ̂+ − μ̂−).

FDA represents one of the earliest approaches to pattern recognition, however it was rel-
atively overlooked as a method for high-dimensional problems due to the difficulties of
inverting a sometimes singular matrix. However, following the kernelisation of FDA in
Mika et al. (1999), and its competitive performance with methods such as SVM and neural
networks, interest was subsequently revived.
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5.3 Support vector machines

Support vector machines (SVMs) (Cortes and Vapnik 1995; Shawe-Taylor and Cristianini
2000; Boser et al. 1992) are one of the most popular classifiers used within the machine
learning community. Their popularity stems from the strong theoretical grounds upon which
they were built and the generalisation performance that they offer. They were first intro-
duced by Boser et al. (1992) as an algorithm for finding the optimal separating hyperplane
for two classes and extended to account for the case of non-separable data by Cortes and
Vapnik (1995). The SVM is a linear classifier operating in a high-dimensional space defined
by the feature mapping φ(x) and they use the so called kernel trick to enable a dual rep-
resentation and an efficient computation of the solution. The SVM is a maximum margin
classifier where the margin is defined as the minimum distance of a training sample to the
hyperplane defined by weight vector w and bias term b:

γ (w,S) = min
i

yi(〈w, xi〉 + b)

||w|| (6)

It is the goal of the SVM algorithm to find the hyperplane defined by w and b such that
this margin is maximised. Statistical learning theory (Vapnik 2013) states that the general-
isation ability of a classifier depends on its VC-dimension and it was shown that this can
be bounded in terms of the margin it produces. Therefore by maximising the margin of the
classifier we can effectively bound the generalisation error of the classifier and it is this idea
that has driven the theory behind SVMs. The slack-version of the optimisation (Cortes and
Vapnik 1995) problem is given by:

minimize
w

1

2
||w||2 + C

∑
i

ξi

subject to yi(〈w, φ(xi )〉 + b) ≥ 1 − ξi i = 1 . . . n

ξi ≥ 0 i = 1 . . . n.

By using the standard Lagrangian formulation it is straightforward to show that the optimal
weight vector w∗ is given by a linear combination of the training points

w∗ =
∑

i

αiyiφ(xi),

where the conditions for optimality state that αi > 0 if yi(wT φ(xi) + b) ≤ 1, and αi = 0
if yi(wT φ(xi) + b) ≥ 1. The optimal value for the bias term b∗ ∈ R can also be extracted
from the conditions for optimality, where for any j where αj ∈ (0, C)

b∗ = y − j − wT φ(xj ) = yj −
∑

i

αiyik(xi, xj ).

Future predictions are made according to:

ŷ =
{

1 if
∑

i αiyik(xi, x) + b ≥ 0
−1 otherwise

.

We will be using the formulation of SVM that uses ν parameter to control the degree of
flexibility in SVM and effectively determines the lower bound on the number of support
vectors.3 Also, note that contrary to PW and FDA classifiers that base their predictions on

3Not to be confused with the ν parameter governing confidence of our prediction in sequential string
algorithms presented in the following sections.
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centres of the distribution, SVM constructs a predictor using the set of support vectors that
effectively lie on the edge of the class specific distributions.

6 Discrete representation strategies

The following section presents three original sequential predictors that utilise discretisa-
tion of FTS and string representations, namely the (a) simple strings strategy (S-BoW),
(b) a string subsequence strategy with equally-weighted n-grams (S-NG) and (c) a string
subsequence strategy with time-decay n-grams (S-TDNG).

6.1 Simple strings strategy (S-BoW)

Our goal is to come up with a prediction rule g : ΣK → {−1, 1} indicating whether
we believe the price will increase or decrease over the next interval. Keeping in mind the
discrete representation method described in Section 4, we know that the feature space φ

is constructed by mapping each unique string s ∈ ΣK to binary vector with one non-zero
entry corresponding to that particular string such that 〈φ(s), φ(s′)〉 = 1 if and only if s = s′,
and zero otherwise. This is equivalent to a bag-of-words kernel presented earlier, where
we only have a single word in each document. Here however, we learn our predictor in an
incremental manner by maintaining an individual weight ws and count cs for each string.
This weight ws is given by the sum of observed outcomes for that string, i.e. the weight
corresponding to string s at time T is given by ws = ∑T

t=1 yt I [st = s], where I [a] is
the indicator function returning 1 if the predicate a is true and 0 otherwise. The count cs

simply measures the number of times we have seen string s, i.e. cs = ∑T
t=1 I [st = s]. We

can think of our predictor as a sequential version of the Parzen windows classifier, which
is traditionally used in conjunction with a feature map φ and kernel function k(x, x′) =
〈φ(x), φ(x′)〉. The Parzen windows prediction function gpw is given by

gpw(x) = sign

(
T∑

t=1

ytk(xt , x)

)
, (7)

which takes into consideration each training example. As already mentioned, this is often
referred to as the Watson-Nadaraya estimator, which is an estimate of the conditional prob-
ability of a class. Note that we no longer have to maintain previous examples as they can
be captured by the primal representation of the predictor and we only have to maintain
|Σ |K individual weights. In our experiments this remains a feasible primal representation
as the maximum alphabet length and string length are set to |Σ | = 6 and K = 5 mean-
ing that |Σ |K ≤ 7776. In Algorithm 1 we present the sequential BoW algorithm and have
introduced two additional variables, a threshold τ and minimum observation number ν.
Threshold τ can be interpreted as the excess in probability of a given class occurring that is
required to invoke a trading decision. The minimum observation number ν is used to ensure
that we can have gathered enough information in order to make a decision. Together these
variables control the level of confidence that we have in our trading decision. The dimen-
sion of our primal weight vector w depends on the size of the alphabet Σ and the number
of past returns K that we examine, i.e. |w| = |Σ |K . At each time step t we only update a
single entry of w, the one corresponding to the particular string observation st at that time
i.e. wst . We construct and update the counts c in a similar manner.
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6.2 String subsequence strategies

In this section we examine an extension of the simple string strategy by measuring the
impact of n-grams, with and without time-decay, on the probability of class membership.
We begin by outlining a sequential NG algorithm (S-NG) that utilises equally-weighted
n-grams and proceed with introduction of a sequential TDNG algorithm (S-TDNG) that
employs the time-decay kernel explained in Section 3.3.

6.2.1 Sequential n-grams strategy: equally-weighted (S-NG)

We could take a step further in the analysis of market alphabet and investigate the sub-
sequences within strings by employing the concept of n-grams. Recall that one of the
challenges associated with n-grams is the choice of the value of n and related to it the prob-
lem of high dimensionality for high values of n. In terms of our strings subsequence strategy,
note that the size of the feature space is now |Σ |n, where n ≤ K is the length of the subse-
quences that we examine. However our feature space is no longer a binary vector with one
non-zero entry, instead there is a non-zero entry for each subsequence that is present in the
string. The approach used in Algorithm 1 can be simply adjusted to account for the use of
n-grams. The observation s = (sn

1 . . . sn
k ) is now decomposed to k = max(K − n + 1, 0)

n-grams of length n, which results in f (s) = 1
k

∑k
i=1 wsn

i
. The weight vector and count

updates occur in a synonymous manner to before, where we take each subsequence sn
i in

turn, updating its count csn
i
and weight wsn

i
. To keep our expressions as clear as possible

we now drop the superscripts on sn
i , when the context is clear that we use a fixed length n-

gram. The confidence of the trading decisions are controlled by the total count c = 1
k

∑
i csi

and the value δ = f (s)/c. The value δ can once again be interpreted as an conditional
probability estimate for a given string representation.
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6.2.2 Sequential n-grams strategy: time-decay (S-TDNG)

The n-gram feature space that we have described thus far corresponds to the traditional
one used in machine learning literature, however this has not been designed to take into
consideration any temporal influences that may exist. For example, we would expect that
more recent subsequences will have a stronger influence on the likely outcomes and should
therefore have a greater weight placed upon them. In the financial literature this empirical
phenomenon is often described as the conditional nature of FTS and is assumed across
various asset classes and financial markets. To factor this into our representation we can
introduce a simple decay function that weights subsequences according to their position in
the string,

f (s) =
k∑

i=1

qiwsi where
k∑

i=1

qi = 1 and q1 ≥ q2 ≥ · · · ≥ qk. (8)

Note that in traditional n-grams we effectively have qi = 1
k
for each k. We have to make a

slight adjustment to the updates, which are now given by csi ← qi+csi andwsi ← qiy+wsi ,
where w = (ws)s∈Σk maintains a weighted sum of the directional movements associated
with each subsequence. We now show that the prediction rule g is equivalent to that of a
Parzen windows classifier constructed using this new time decay feature mapping.

Proposition 1 Let φ(s) be the feature mapping associated with the time-decay n-gram
kernel of length n given by

k(s, s′) =
∑

u∈Σk

k∑
i=1

k∑
j=1

qiqj I [si = u]I [sj = u], (9)

where
∑k

i=1 qi = 1 and qi ≥ qj if i ≥ j . At time T the value of each component of the
primal weight vector (wsi )si∈Σk is given by wsi = ∑T

t=1 yt

∑k
i=1 qiI [st,i = si], where

st,i corresponds to the i-th n-gram at time t . At time T the prediction function g(s) =
sign(〈w, φ(s)〉) = sign

(∑k
i=1 qiwsi

)
is equivalent to the Parzen windows classifier given

by gpw(s) = sign
(∑T

t=1 ytk(s, st )
)
.

Proof By expressing the sum over kernel functions in terms of the subsequences present in
string s we have

T∑
t=1

ytk(s, st ) =
T∑

t=1

yt

k∑
i=1

qi

k∑
j=1

qj I [st,j = si] =
k∑

i=1

qi

T∑
t=1

yt

k∑
j=1

qj I [st,i = si], (10)

which is equivalent to
∑k

i=1 qiwsi . Therefore we see that both the Parzen windows classifier
and our simple average strategy will return the same prediction.

Through this proposition we see that we are able to represent the solution learned by the
Parzen windows in its primal form using only |Σ |k variables. This allows us to avoid storing
past observations in memory and we can efficiently train over as many training samples as
we feel is necessary.
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Table 1 Descriptive statistics for four currencies as measured on the training set

FX Mean* Std. Skew. Ex. kurtosis KS(r) LB(r)

AUD −0.090 0.197 −0.445 37.093 0.0000 0.0000

CHF −0.030 0.133 0.066 12.002 0.0000 0.0022

EUR −0.017 0.123 −0.026 13.228 0.0000 0.0001

GBP −0.110 0.128 −0.403 19.915 0.0000 0.0000

Also included are p-values for Kolmogorov-Smirnov normality test as well as for Ljung-Box autocorrelation
test (24 lags)

*Value adjustment: 1.0e-2

7 Experimental design

We evaluate the performance of our proposed predictors by using hourly data of four of
the most actively traded currency pairs; AUD/USD, CHF/USD, EUR/USD and GBP/USD.4

The extensive dataset S consists of T ≈ 50, 000 (i.e. 50k) observations for each currency,
covering dates ranging from February 2005 to January 2013. Digressing briefly, the major-
ity of previous experiments using machine learning for FTS prediction have focused on
predicting stock returns and often report abnormal returns. We have chosen to focus on cur-
rencies due to their permanence and relatively stable prices, rather than the survivorship
bias and tendency for an upward drift in prices that exists with stocks taken from indices
such as S&P500 or the FTSE100. We investigate the performance from two perspectives:
(a) the type of data used for decision making and (b) the complexity of the learning algo-
rithm. The experiments are designed by first splitting full sample into training and test sets
ST r , ST e ⊂ S. Parameter analysis is conducted solely on the training set ST r by investigat-
ing the effect of parameter choice in terms of accuracy scores. After analysing parameter
behaviour on ST r and obtaining optimal specifications for each of the algorithms we then
compare their trading performance on the remainder of the data, i.e. test set ST e comprised
of subsequent T ≈ 25k observations. Test performance is estimated using a number of
trading statistics, namely the: (a) cumulative return (CR), (b) annualised volatility (V), (c)
annualised Sharpe ratio (SR), (d) gain-to-loss ratio (GL), (e) activity ratio (ACR), (f) profit
per trade (PPT), (g) maximum drawdown (MD) and (h) maximum drawdown duration
(MDD) (see Appendix for details).

7.1 Descriptive statistics

Examination of statistical properties of currency pairs is performed on the training set ST r

and indicates the absence of normal distribution and presence of serial autocorrelation in
currency returns (Table 1).

Kolmogorov-Smirnov (KS) normality test rejects the null hypothesis Ho of FX returns
being normally distributed for all four FX pairs (two-sided test at α = 1 % confidence

4Since all currencies are USD based we will simply omit the notation for USD and denote the fours currencies
as AUD, CHF, EUR and GBP.
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Fig. 2 QQ plot for AUD shows deviation from a standard normal distribution. Excess kurtosis measured on
ST r for AUD is κ = 37.093

level). The empirical deviation from normality common to all four exchange rates is mir-
rored in excess kurtosis, i.e. heavy tails of their empirical distributions. Next, Ljung-Box
(LB) autocorrelation test rejects null hypothesis Ho of no autocorrelation in the time series
indicating that we can not rule out autocorrelation with significant confidence. These find-
ings hold for all four currency pairs, nonetheless deviations from normality and presence
of potential autocorrelation are most convincing for GBP and especially for AUD. In fact
note that for CHF and EUR the Ljung-Box test rejects the null hypothesis due to inclusion
of longer lags but fails to do so for more recent lags. Deviation from normality for AUD is
clearly visible in a QQ plot (Fig. 2) that compares empirical sample quantiles and theoretical
quantiles from a standard normal distribution (denoted with a straight line). These findings
suggest that it may be sensible to take a nonparametric approach to forecasting of intra-day
exchange rates. Figure 3 shows presence of potentially significant autocorrelation5 in AUD
returns at α = 5 % confidence level, particularly for some of the most recent observations.
QQ and ACF plots for remaining three currency pairs were moved to Appendix to prevent
cluttering.

8 Training phase: parameter analysis

We begin by investigating parameter dynamics of the algorithms on the training set
ST r comprised of the initial T ≈ 25k hourly observations. The remaining 25k obser-
vations are kept for testing purposes only, i.e. we treat them as theoretically unseen

5Or more precisely, a highly significant rejection of the null hypothesis of no autocorrelation.
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Fig. 3 ACF for AUD hourly returns with straight lines denoting 5 % confidence level (24 lags)

data. This is so as to examine generalisation properties of the algorithms identified as
optimal in our training set. Parameters investigated for ν-SVM and FDA are νsvm

i =
[0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5] and λj = 10[−3,−2,−1, 0, 1, 2, 3], respectively.

8.1 Batch predictors

This section investigates the effects of time series discretisation on predictors’ performance.
Namely, we train the three batch algorithms, PW, FDA and SVM, using a sliding win-
dows approach for an array of alphabet and word lengths and observe the difference in
performance to that of classifiers when learning is based on continuous features. The lat-
ter are obtained by lagging the original variable where lags correspond to word lengths
K = [1 : 5]. Sliding windows entails training a classifier on a window of WT r = 1500
observations and then validating it on subsequent window of WV al = 500 observations.
The reason for adopting this approach is that while a multitude of different parametrisation
exist for each of the algorithms, clearly, for such high-dimensional time series data the stan-
dard cross-validation approach is not applicable. Hence we train-validate each classifier for
a number of parameter values6 and assess their performance in terms of accuracy on the
training set ST r . Let us use θ to denote an n-dimensional parameter vector for an individual
algorithm, where θ = (θ1, θ2, . . . , θn) ∈ � ⊆ R

n. Then the optimal parameter vector θ∗ is
the one that achieves the highest performance P on the training set, i.e.

θ∗ : argmax
θ

P (11)

6Parameters controlling the degree of regularisation λ and ν in FDA and SVM, respectively.
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Fig. 4 Performance comparison for PW, FDA and SVM classifiers denoted with black, blue and purple
markers, respectively. Algorithms utilise continuous features (for lags analogous to word lengths, i.e. K =
[1 : 5]) and BoW kernel. BoW are calculated for word lengths K = [1 : 5] and alphabet lengths |Σ | = [2 : 6]

where at this stage we estimate performance in terms of accuracy P := Acc. Parame-
ter specification θ∗ that achieved the highest training accuracy is ultimately tested on the
theoretically unseen set ST e.

8.1.1 Features: continuous vs. discrete

Our initial experiments entailed analysis of the discretisation impact on performance of
batch classifiers. Figure 4 shows accuracy achieved by PW, FDA and SVMwhen continuous
features were used as inputs vs. when a simple BoW kernel was used as a similarity measure
between the strings. Word and alphabet lengths applied were K = [1 : 5] and |Σ | = [2 : 6],
respectively. The former are plotted along the x-axis with different markers at each word
length representing different alphabet lengths. Note that for FDA and SVM, both of which
were trained for a range of respective regularisation parameters, these figures represent their
performance averaged across all parameter values for simplicity of presentation. Clearly,
the effects of FTS discretisation are counter-productive as we observe performance deteri-
oration across both algorithms as well as word/alphabet lengths. SVM noticeably achieves
lower accuracies across the board for both continuous and string features. Also, it seems
that extending word lengths further decreases information content as performance deterio-
rates for longer strings. Figure 5 displays accuracies across a combination of word/alphabet
lengths for each of the three algorithms using string (BoW) features averaged across all four
FX pairs. Clearly, shorter word and alphabet combinations are preferred to longer ones as
accuracy deteriorates for the latter case.
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Fig. 5 Word vs. alphabet length:
accuracies (in %) averaged across
all four FX pairs for PW-BoW
(top), FDA-BoW (middle) and
SVM-BoW (bottom)
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8.1.2 Effect of time-decay

Next we investigate the performance of string algorithms when a more detailed similarity
kernels are used, i.e. n-grams (NG) and time-decay n-grams (TDNG). Moreover, we are
interested in the effect of applying a decay parameter d = q̃1/q̃k that effectively determines
the degree of importance between the first and last observation (d = 1 for equally-weighted
n-grams). We keep the length of subsequence fixed at n = 1. Figure 6 shows that account-
ing for time-decay (here fixed at d = 5) is in fact beneficial as algorithms on average record
higher accuracies with TDNG compared to NG kernel (red markers). Understandably, there
is no difference in performance for K = 1 word length as time-decay does not come
into effect for a single lag (which results in TDNG markers overwriting red NG markers).
Nonetheless, as shown in Fig. 7 even more complex string kernels do not manage to consis-
tently outperform algorithms trained on continuous features despite showing encouraging
results.

8.2 Sequential predictors

This section focuses on parameter analysis of sequential string algorithms on the training
sample ST r . We begin by comparing the effects of word, alphabet and n-gram lengths on
performance. We continue by investigating the dynamics of decay, threshold and minimum
observation parameters.

Fig. 6 Performance of PW, SVM and FDA classifiers when equally-weighted NG kernel is applied (red
markers) compared to TDNG kernel with decay (here fixed at d = 5). String parameters are |Σ | = [2 : 6],
K = [1 : 5] and n = 1
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Fig. 7 Performance of PW, SVM and FDA classifiers when trained on continuous features compared to the
same batch algorithms utilising a TDNG kernel with decay (here fixed at d = 5). String parameters are
|Σ | = [2 : 6], K = [1 : 5] and n = 1

8.2.1 String length analysis: words vs. alphabet vs. n-grams

Figure 8 displays training performance for S-BoW algorithm for Σ = [2 : 6] and
K = [1 : 5] combinations. These results seem to reinforce the preference for shorter word
and alphabet combinations. Furthermore, we run S-BoW for two cases, namely when we do
not impose advice of confidence parameters, i.e. τ and ν are equal to zero (blue markers),
and when we do impose confidence parameters in this case τ = 0.05 and ν = 50 (red mark-
ers; algorithms followed by a suffix ‘A’). The effect of using advice is clearly positive and
seemingly significant. Moreover, not only do S-BoW-A outperform their counterparts that
do not utilise advice, they also clearly outperform the batch PW strategy that learned using
continuous data (black circles), a result that none of the three batch algorithms managed to
achieve regardless of the string kernel type. We continue by comparing S-NG and S-TDNG
strategies (both without advice) for the same word and alphabet combinations whilst adding
the subsequence dimension, i.e. n = [1, 2, 3]. As depicted in Fig. 9, the S-NG accuracies
denoted with red markers are visibly lower compared to the results achieved by the S-TDNG
strategy that utilises the time-decay n-gram kernel (d = 5). Moreover, this result holds
across the word, alphabet and n-gram combinations. Lastly, we examine the effects of con-
fidence parameters τ and ν for the case of S-TDNG (d = 5) and plot its performance along
the batch PW algorithm learned on continuous data (Fig. 10). We observe that when no
advice is imposed (red markers) the S-TDNG strategy manages to match the performance
of a batch PW algorithm. However, as was the case with S-BoW-A in the beginning of this
section, imposing advice improves performance of the algorithm across the word, alphabet
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Fig. 8 Sequential S-BoW with advice (red markers) and without advice (blue markers). Accuracies across
various word and alphabet lengths. Batch PW with continuous data is added for comparison (black circles)

Fig. 9 Sequential S-NG equally-weighted (red markers; d = 1) and S-TDNG with time-decay (black, blue
and purple markers). The decay is fixed at d = 5. Accuracies across various word, alphabet and n-gram
lengths
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Fig. 10 Time-decay S-TDNG without advice (red markers) and S-TDNG with advice (black, blue and pur-
ple markers). The decay is fixed at d = 5. Accuracies across word, alphabet and n-gram lengths. Batch PW
with continuous data for comparison (black circles)

and n-gram combinations. The effect of confidence parameters as well as the decay param-
eter on the classification performance is clearly important and so in the following sections
we examine the effects of τ , ν and d in more detail.

8.2.2 Time decay n-grams: decay analysis

We investigate the influence of decay parameter in time-decay kernel on the perfor-
mance of the sequential string algorithms. We experimented using decay factors d =
[1, 5, 10, 15, 25, 35, 50, 100] for two types of parameter combinations, i.e. of high (H)
and low dimensionality (L). High-dimensional set had alphabet and word lengths fixed at
|Σ | = 5 and K = 4 with n-gram lengths equal to n = [1, 2, 3]. Low-dimensional set on the
other hand consisted of parameter values |Σ | = 4, K = 3 and n = [1, 2]. Threshold τ and
minimum observation ν parameters are both fixed at zero. To compute the weightings qi

used with the function f (s) = ∑
i qiwi we begin by letting q̃1 = 1 and recursively compute

q̃i+1 = q̃ic. The decay factor d states that q̃1/q̃k = d, where k is the number of n-grams
present in the string. Therefore using the recursions we observe that q̃1 = dq̃1c

k−1 and that

c = e− log d
k−1 . A final normalisation qi = q̃i/

∑
j q̃j ensures the weights qi sum to one. The

results of the experiments quite clearly show a preference for larger decay factors as accu-
racies increase as we move from equally-weighted S-NG predictor (d = 1) towards higher
decays along the x-axis (Fig. 11). Also, lower parameter dimensions (star markers) seem to
be preferable as well as less sensitive to the choice of d. Note, however that after a certain
point the decay value becomes less relevant and in some cases even counter-productive.
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Fig. 11 Influence of time decay on performance. Both minimum observation ν and threshold τ parameters
are set to zero. Reported are accuracies for different model combinations with n-grams of lengths n =
[1, 2, 3] (index related to each individual decay value displayed on x-axis)

8.2.3 Threshold analysis (τ )

The role of threshold τ is to increase forecast guarantees of our string strategies. Exper-
iments were performed by fixing the remaining parameters and observing classification
accuracies for different threshold values τ = [0 : 0.01 : 0.2]. As was the case in previous
Section 8.2.2 we investigate performance for high (H) and low (L) dimensional features.
The comparison between all three string subsequence strategies, S-BoW, S-NG and S-
TDNG, is shown in Figure 12, with decay parameter in time-decay n-gram strategy held
fixed at d = q1/qK = 5 and minimum observations held at ν = 0. We observe slightly
higher accuracies for S-TDNG algorithms, however note that after a certain τ value per-
formance becomes increasingly volatile. Also, as was the case in previous section, lower
dimensionalities are preferred to higher ones regardless of the strategy type.

8.2.4 Confidence analysis (ν)

Here, too, we gradually increase the minimum number of observations determined by
ν = [0 : 50 : 1000]. Similarly to τ , parameter ν governs confidence of our forecasts.
Remaining parameters are held constant at |Σ | = 4, K = 3 and n = 3 with threshold
fixed at τ = 0 and decay ratio in time-decay n-grams fixed at q1/qK = 5. Time-decay
n-grams strategy S-TDNG (purple markers) achieves higher accuracy scores compared to
both S-BoW (black markers) as well as S-ND (blue markers) in three out of four cases
(Fig. 13). Note, however that we report results for low-dimensional features only as for
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Fig. 12 Threshold analysis: accuracies achieved across a range of τ values (x-axis denoting their respective
indices). Algorithms S-BoW (black markers), S-NG (blue markers) and S-TDNG (purple markers) seem to
favour lower dimensional feature spaces (full markers) over higher ones (empty markers)

high-dimensional cases algorithms would not always be able to satisfy the conditions.
S-BoW in particular showed high sensitivity to higher values of ν (even for low dimen-
sional features as shown in Fig. 13), a direct result of its inability to find a high-enough
number of matches so as to cross the required ν value. Our detailed parameter analysis indi-
cates that while sequential string algorithms do manage to achieve superior performance
on the training set, they also exhibit sensitivity to parameters when these are increased to
extremes. Hence we restrict our optimisation procedures to lower parameter values where
our strategies exhibit stable training performances.

9 Testing phase: generalisation properties

Finally, we test all optimal classifiers, batch and sequential, on the test set ST e, that is the
second set of T = 25k hourly observations, so as to investigate their ability to generalise
on theoretically unseen data. We also compare their performance to a naive strategy whose
directional prediction is based on the last hourly return. In other words, in such a strategy
a trading signal for the upcoming trading session is determined solely by the direction of
the last available observation, i.e. st = sign(yt−1) ∈ {−1, 1} for a naive momentum strat-
egy and st = −sign(yt−1) ∈ {−1, 1} for a naive contrarian strategy. We examine these
results together with the maximum accuracy results achieved by the optimal algorithms on
the training set ST r . Performance on the test set ST e is again assessed via accuracy, however,
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Fig. 13 Minimum observation analysis: S-BoW (dark markers) vs. S-NG (blue markers) and S-TDNG
(purple markers). Respective indices for ν values are denoted on x-axis

we also employ the following trading metrics: (a) cumulative return (CR), (b) annualised
volatility (V), (c) annualised Sharpe ratio (SR), (d) gain-to-loss ratio (GL), (e) activity
ratio (ACR), (f) profit per trade (PPT), (g) maximum drawdown (MD) and (h) maximum
drawdown duration (MDD) (see Appendix for details).

9.1 Classification performance

Table 2 conveys maximum training accuracies achieved by each best classifier f (θ∗). We
witness a gradual improvement in performance as we move from utilising BoW towards NG
and TDNG kernels. Also, while continuous features add information value to the extent that
their algorithms perform at par with string-based classifiers, this does not seem to be the case
with S-TDNG that achieves the highest accuracy in three out of four cases (AUD, CHF and
GBP). Also, we observe that on average most algorithms outperform both naive strategies
with an exception of SVMs. Note that in most string kernel cases, PW and FDA classifiers
achieve almost identical results. This indicates that optimal FDA algorithms employ the
highest regularisation value λ = 103 which reduces FDA to a PW classifier since covari-
ances become practically spherical and FDA’s property to maximise class separation by
readjusting the coordinate scheme of the data becomes ineffective. Next, Table 3 shows
performance of the same best algorithms when used for prediction on the unknown data
set ST e. We observe a slight deterioration in performance across the algorithms, nonethe-
less the best performing predictors again seem to be sequential string algorithms (especially
S-TDNG) as well as batch PW and FDA predictors.
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Table 2 Maximum accuracies
achieved by predictors on the
training set ST r

f (θ∗) ACC (%)

AUD CHF EUR GBP

Naive-M 47.85 47.10 47.63 47.54

Naive-C 52.12 52.90 52.37 52.46

PW (cont.) 52.28 52.78 52.74 52.71

FDA (cont.) 52.29 52.86 52.83 52.81

SVM (cont.) 51.40 50.99 51.19 50.89

PW-BoW 52.07 52.72 52.53 52.53

FDA-BoW 52.07 52.72 52.60 52.53

SVM-BoW 50.34 50.60 50.57 50.45

PW-NG 52.23 52.63 52.70 52.63

FDA-NG 52.23 52.63 52.70 52.63

SVM-NG 50.98 51.44 51.10 51.34

PW-TDNG 52.23 52.67 52.95 52.95

FDA-TDNG 52.23 52.67 52.95 52.95

SVM-TDNG 51.38 51.72 51.37 51.30

S-BoW 52.10 53.14 52.71 52.74

S-NG 52.11 53.16 52.72 52.88

S-TDNG 52.43 53.25 52.86 53.15

Table 3 Accuracies achieved on
the test set ST e by best training
predictors

f (θ∗) ACC (%)

AUD CHF EUR GBP

NaiveM 48.43 46.55 47.11 47.27

NaiveC 51.57 53.45 52.89 52.73

PW (cont.) 51.26 53.27 52.48 51.85

FDA (cont.) 51.23 53.39 52.70 51.98

SVM (cont.) 50.04 49.89 49.79 50.19

PW-BoW 51.40 53.52 52.61 52.80

FDA-BoW 51.40 53.52 52.50 52.80

SVM-BoW 50.33 50.62 50.09 50.20

PW-NG 51.40 53.52 51.58 52.80

FDA-NG 51.40 53.52 51.58 52.80

SVM-NG 49.61 50.54 50.58 49.98

PW-TDNG 51.40 52.76 52.12 52.54

FDA-TDNG 51.40 52.76 52.12 52.54

SVM-TDNG 49.34 50.56 50.17 50.55

S-BoW 51.11 53.45 52.62 52.11

S-NG 51.34 53.60 52.65 52.58

S-TDNG 51.58 53.68 52.13 52.66
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Table 4 AUD: trading performance on the test set ST e

AUD

CR* V* SR t-Stat GL ACR PPT* MD* MDD

Naive-M −56.13 13.14 −1.14 −2.13 0.94 1.00 −0.25 66.69 911

Naive-C 56.13 13.14 1.14 2.13 1.07 1.00 0.25 15.04 194

PW (cont.) 33.23 12.60 0.75 1.41 1.05 0.94 0.17 18.24 332

FDA (cont.) 29.77 12.60 0.67 1.26 1.05 0.94 0.15 18.19 332

SVM (cont.) −19.87 12.60 −0.45 −0.84 1.00 0.94 −0.10 33.81 841

PW-BoW 31.93 12.60 0.72 1.35 1.06 0.94 0.16 22.16 353

FDA-BoW 31.93 12.60 0.72 1.35 1.06 0.94 0.16 22.16 353

SVM-BoW 11.31 12.60 0.26 0.48 1.01 0.94 0.06 24.30 547

PW-NG 31.93 12.60 0.72 1.35 1.06 0.94 0.16 22.16 353

FDA-NG 31.93 12.60 0.72 1.35 1.06 0.94 0.16 22.16 353

SVM-NG −17.75 12.60 −0.40 −0.75 0.98 0.94 −0.09 35.27 322

PW-TDNG 31.93 12.60 0.72 1.35 1.06 0.94 0.16 22.16 353

FDA-TDNG 31.93 12.60 0.72 1.35 1.06 0.94 0.16 22.16 353

SVM-TDNG −56.61 12.60 −1.28 −2.40 0.97 0.94 −0.28 58.41 882

S-BoW 44.79 13.12 0.91 1.76 1.05 1.00 0.65 15.74 325

S-NG 48.95 13.14 0.99 1.92 1.06 1.00 0.63 17.70 325

S-TDNG-25 62.84 13.14 1.28 2.47 1.07 1.00 0.81 17.43 332

9.2 Trading performance

In this section we assess the quality of the algorithms from a trading perspective. We
estimate trading performance using a number of metrics separately for each of the four
exchange rates. We pay special attention to the annualised Sharpe ratio which communicates
the risk-adjusted returns and similarly to the t-statistic (also reported) essentially signals
the confidence of the results, i.e. to what extent is a mean return different from zero. Note
however, that due to return distributions exhibiting quite high excess kurtosis estimates, the
reliability of these statistics should be observed with some forethought. The names of the
algorithms in bold are denoting those with the highest t-statistic, and hence Sharpe ratio,
achieved on that particular sample (exchange rate). Table 4 shows results for AUD with
results for the other three currencies moved to Appendix for higher clarity. We observe that
in the case of AUD the best performing strategy according to Sharpe ratio as well as other
criteria such as cumulative profit (CR) and profit-per-trade PPT is S-TDNG. Also, it seems
running a naive contrarian strategy, S-BoW and S-NG resulted in returns significant at 5 %
confidence level. Runing a naive momentum strategy on other hand would have had quite
negative consequences as would relying on predictions of almost any SVM classifier. The
best trading strategies on CHF, EUR and GBP are S-NG, naive contrarian and string-based
batch classifiers (PW and FDA) respectively, with naive momentum and SVM based predic-
tors consistently performing worse. Overall, trading performance seems to resemble results
when comparing accuracies, a sensible result as our trading does not include position sizing
of any kind. Note however, that the flexibility of our approach allows us to easily change
our choice of performance criterion P something to be investigated in the future.
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10 Conclusions and future research

This paper investigates the idea of time series discretisation and utilises text or string ker-
nels to learn about the underlying market dynamics. It proposes a new type of n-gram
kernel that takes into account conditional nature of FTS data, namely the time-decay n-
grams. We first approach the problem by using batch versions of the Parzen windows,
Fisher discriminant analysis and support vector machine algorithms, and analyse the effect
of using discrete representation rather than continuous real-valued inputs to predict the
direction of hourly foreign exchange returns. Our experiments show that the Parzen win-
dows and Fisher discriminant analysis, both of which focus on centres of the distribution
rather than the margins (contrary to SVMs), are effectively outperforming the support vector
machine classifier for both continuous and discrete data. We also observed that discreti-
sation does not automatically improve performance, but much depends on the choice of
kernel function used to learn the market alphabet. Namely, the only kernel able to match
and to some extent outperform batch classifiers with continuous inputs, is the time-decay
n-grams kernel proposed in this paper that captures temporal influences of string subse-
quences. However, due to batch classification algorithms being to some extent hampered
by their ability to only consider a finite number of training samples, we consequently build
on these results and introduce a novel approach to FTS forecasting based on a simple string
representation and sequential learning with market alphabet representation that resembles
incremental Parzen windows algorithm. We examine the design of this trading strategy
from two perspectives, namely the complexity of the underlying algorithm and the repre-
sentation of the underlying time series used in the decision making process. We show that
time-decay kernel can be evaluated efficiently using a simple weighted averaging process
that is equivalent to the Parzen windows classifier using that kernel. The results of these
experiments suggest that a simple string representation coupled with an averaging pro-
cess is capable of outperforming more exotic approaches, whilst supporting the idea that
when it comes to working in high noise environments often the simplest approach is the
most effective.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Performance metrics

Cumulative return

If T denotes the number of trading instances (i.e. hours) and rt is the strategy return at time
t then we calculate cumulative return as:

R =
T∑

t=1

rt (12)

http://creativecommons.org/licenses/by/4.0/
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Volatility

Unconditional volatility of a trading strategy is calculated as a (square root of) sample
variance of the strategy’s returns:

s2 = 1

T − 1

T∑
t=1

(rt − r̄)2 (13)

Sharpe ratio

Sharpe ratio is a risk-adjusted performance metric proposed by Sharpe (1966). In its original
form it is equal to:

SR = μ(r)

σ (r)
(14)

Here μ(r) is an average excess return of the strategy over a benchmark (such as a risk-free
rate for example) and σ(r) is a standard deviation of excess returns. We assume a risk-free
rate of rf = 0 so the average excess return of the strategy equals the average return of the
strategy. Note, that we are interested in the annualised estimate of the Sharpe ratio which
requires us to scale the estimate with a square root of the number of trading instances in
a year. For example for the case of hourly data with 252 business (i.e. trading) days with
24h/day the annualised Sharpe ratio (ASR) is equal to ASR = √

252 ∗ 24×SR. Note, that
the same principle applies when calculating the annualised estimate of volatility.

T-statistic

We use a simple t-statistic to test for the significance of the time series of strategy returns.
Namely, we test the hypothesis that the population mean return significantly differs from
zero, i.e. Ho : μo = 0. This single-sample metric is essentially a Sharpe ratio7 multiplied
by the square root of the sample size T used in the underlying experiment.

t = μ(r) − μo

σ(r)/
√

T
= √

T
μ(r)

σ (r)
, (15)

where μ(r) is the sample mean of the strategy return r and σ(r) is its sample standard
deviation.

Gain-to-loss ratio

We can write the equation for gain-to-loss ratio as

GL =
∑T +

t=1 f (r)∑T −
t=1 g(r)

(16)

7Sharpe ratio as expressed in its basic form, i.e. not annualised or adjusted in any way.
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where function f (r) is a boolean operator for positive returns

f (r) =
{
1 if r+
0 if otherwise

(17)

and function g(r) is a boolean for negative returns

g(r) =
{
1 if r−
0 if otherwise

(18)

and T + and T − denote the number of trading instances with positive (r+) and negative (r−)
returns, respectively. Hence, GL ratio effectively measures the number of winning trades
relative to the number of losing trades.

Activity ratio

If T denotes the number of trading instances and N denotes the number of all instances in
a sample then activity ratio is simply calculated as:

ACR = T

N
(19)

Profit-per-trade

We obtain profit-per-trade by averaging cumulative return of a strategy across the number
of active trading instances:

PPT =
∑

t rt

T
(20)

Maximum drawdown and maximum drawdown duration

Maximum drawdown measures the maximum cumulative returnR loss suffered by the strat-
egy in the entire trading period before recuperating losses. We calculate it as Dunis and
Williams (2003):

MD = min
t=1,...,T

(
Rt − max

i=1,...,t
(Ri)

)
(21)

Maximum drawdown duration (MDD) is equal to the number of trading instances that the
drawdown spans over, i.e. the amount of time that it takes for the strategy to reach the
maximum cumulative return of the past.
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Descriptive statistics (Figs. 14, 15 and 16)

Fig. 14 Top: QQ plot for CHF shows deviation from a standard normal distribution. Excess kurtosis mea-
sured on ST r for CHF is κ = 12.002. Bottom: ACF for CHF hourly returns with straight lines denoting 5 %
confidence level
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Fig. 15 Top: QQ plot for EUR shows deviation from a standard normal distribution. Excess kurtosis mea-
sured on ST r for EUR is κ = 13.228. Bottom: ACF for EUR hourly returns with straight lines denoting 5 %
confidence level
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Fig. 16 Top: QQ plot for GBP shows deviation from a standard normal distribution. Excess kurtosis mea-
sured on ST r for GBP is κ = 19.915. Bottom: ACF for GBP hourly returns with straight lines denoting 5 %
confidence level
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Trading performance (Tables 5, 6 and 7)

Table 5 CHF: trading performance on the test set ST e

CHF

CR* V* SR t-Stat GL ACR PPT* MD* MDD

Naive-M −91.21 11.81 −2.05 −3.84 0.87 1.00 −0.40 93.42 948

Naive-C 91.21 11.81 2.05 3.84 1.15 1.00 0.40 11.61 85

PW (cont.) 85.33 11.59 2.09 3.92 1.14 0.94 0.43 10.99 83

FDA (cont.) 81.70 11.59 2.00 3.75 1.15 0.94 0.41 11.24 128

SVM (cont.) −13.88 11.60 −0.34 −0.64 1.00 0.94 −0.07 26.36 879

PW-BoW 91.51 11.59 2.24 4.21 1.15 0.94 0.46 11.45 74

FDA-BoW 91.51 11.59 2.24 4.21 1.15 0.94 0.46 11.45 74

SVM-BoW 16.26 11.60 0.40 0.75 1.03 0.94 0.08 19.63 371

PW-NG 91.51 11.59 2.24 4.21 1.15 0.94 0.46 11.45 74

FDA-NG 91.51 11.59 2.24 4.21 1.15 0.94 0.46 11.45 74

SVM-NG −7.47 11.60 −0.18 −0.34 1.02 0.94 −0.04 33.98 738

PW-TDNG 62.17 11.59 1.52 2.86 1.12 0.94 0.31 15.87 166

FDA-TDNG 62.17 11.59 1.52 2.86 1.12 0.94 0.31 15.87 166

SVM-TDNG 30.65 11.60 0.75 1.41 1.02 0.94 0.15 17.92 326

S-BoW 98.87 11.79 2.22 4.32 1.15 1.00 0.99 10.79 57

S-NG 105.96 11.81 2.38 4.62 1.16 1.00 1.07 11.24 66

S-TDBG-50 104.27 11.81 2.34 4.55 1.16 1.00 1.02 11.18 58

Table 6 EUR: trading performance on the test set ST e

EUR

CR* V* SR t-Stat GL ACR PPT* MD* MDD

Naive-M −84.88 10.46 −2.13 −4.02 0.89 1.00 −0.37 86.60 957

Naive-C 84.88 10.46 2.13 4.02 1.12 1.00 0.37 10.20 63

PW (cont.) 35.57 10.19 0.98 1.85 1.10 0.95 0.17 13.51 262

FDA (cont.) 36.36 10.19 1.00 1.89 1.11 0.95 0.18 14.23 261

SVM (cont.) −21.92 10.19 −0.60 −1.14 0.99 0.95 −0.11 41.47 783

PW-BoW 58.80 10.19 1.62 3.06 1.11 0.95 0.29 11.25 115

FDA-BoW 50.33 10.19 1.39 2.62 1.11 0.95 0.25 11.25 115

SVM-BoW −14.03 10.19 −0.39 −0.73 1.00 0.95 −0.07 35.61 887

PW-NG 3.08 10.19 0.09 0.16 1.07 0.95 0.02 29.35 602

FDA-NG 3.08 10.19 0.09 0.16 1.07 0.95 0.02 29.35 602

SVM-NG 23.88 10.19 0.66 1.24 1.02 0.95 0.12 12.30 209

PW-TDNG 23.42 10.19 0.65 1.22 1.09 0.95 0.11 23.10 326

FDA-TDNG 23.42 10.19 0.65 1.22 1.09 0.95 0.11 23.10 326

SVM-TDNG 10.80 10.19 0.30 0.56 1.01 0.95 0.05 14.51 338

S-BoW 78.83 10.45 1.98 3.87 1.11 1.00 0.67 11.24 114

S-NG 52.15 10.47 1.31 2.55 1.11 1.00 0.77 12.33 252

S-TDNG-35 11.71 10.47 0.29 0.57 1.09 1.00 0.26 18.85 690
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Table 7 GBP: trading performance on the test set ST e

GBP

CR* V* SR t-Stat GL ACR PPT* MD* MDD

Naive-M −89.69 9.83 −2.40 −4.52 0.90 1.00 −0.39 92.82 952

Naive-C 89.69 9.83 2.40 4.52 1.12 1.00 0.39 6.74 99

PW (cont.) 39.53 9.26 1.20 2.26 1.08 0.95 0.19 9.05 355

FDA (cont.) 44.28 9.26 1.34 2.53 1.08 0.95 0.22 6.49 109

SVM (cont.) −6.47 9.26 −0.20 −0.37 1.01 0.95 −0.03 27.19 766

PW-BoW 86.72 9.25 2.63 4.97 1.12 0.95 0.42 5.40 55

FDA-BoW 86.72 9.25 2.63 4.97 1.12 0.95 0.42 5.40 55

SVM-BoW 3.42 9.26 0.10 0.20 1.01 0.95 0.02 22.87 368

PW-NG 86.72 9.25 2.63 4.97 1.12 0.95 0.42 5.40 55

FDA-NG 86.72 9.25 2.63 4.97 1.12 0.95 0.42 5.40 55

SVM-NG 4.87 9.26 0.15 0.28 1.00 0.95 0.02 12.74 541

PW-TDNG 79.01 9.25 2.40 4.52 1.11 0.95 0.39 5.68 115

FDA-TDNG 79.01 9.25 2.40 4.52 1.11 0.95 0.39 5.68 115

SVM-TDNG 7.64 9.26 0.23 0.44 1.02 0.95 0.04 13.46 611

S-BoW 47.21 9.74 1.27 2.48 1.09 0.99 0.60 12.11 307

S-NG 85.53 9.83 2.28 4.46 1.11 1.00 0.98 6.00 68

S-TDNG-35 77.06 9.83 2.06 4.02 1.11 1.00 0.94 8.32 102

References

Armstrong, J.S., Adya, M., & Collopy, F. (2001). Rule-based forecasting: using judgment in time-series
extrapolation. Norwell: Kluwer.

Boser, B.E., Guyon, I.M., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers.
Proceedings of the fifth annual workshop on computational learning theory, 9, 144–152.

Cao, L.J., & Tay, F.E.H. (2003). Support vector machine with adaptive parameters in financial time series
forecasting. Neural Networks, 14, 1506–1518.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
Dunis, C.L., & Williams, M. (2003). Application of advanced regression analysis for trading and investment.

In Laws, J., Dunis, C.L., & Naı̈m, P. (Eds.) Applied quantitative methods for trading and investment.
New York: Wiley.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2),
179–188.

Fu, T. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24,
164–181.

Hossain, A., & Nasser, M. (2011). Reccurent support and relevance vector machines based model with
applications to forecasting volatility of financial returns. Journal of Intelligent Learning Systems and
Applications, 3, 230–241.

Khan, A.I. (2011). Financial volatility forecasting by nonlinear support vector machine heterogeneous
autoregressive model: evidence from NIKKEI225 stock index. International Journal of Economics and
Finance, 3, 138–150.

Kim, K.J. (2003). Financial time series forecasting using support vector machines.Neurocomputing, 55, 307–
319.

Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A symbolic representation of time series with implications
for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on research issues in data
mining and knowledge discovery (DMKD ’03) (pp. 2–11). New York: ACM.



J Intell Inf Syst

Liu, B., Wang, X., Lin, L., Dong, Q., & Wang, X. (2008). A discriminative method for protein remote
homology detection and fold recognition combining top-n-grams and latent semantic analysis. BMC
Bioinformatics, 9, 510.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2002). Text classification using
string kernels. The Journal of Machine Learning Research, 2, 419–444.

Mika, S. et al. (1999). Fisher discriminant analysis with kernels. IEEE.
Mwamba, J.M. (2011). Modelling stock price behaviour: the kernel approach. Journal of Economics and

International Finance, 3, 418–423.
Nadaraya, E.A. (1964). On estimating regression. Theory of Probability and its Applications, 9(1), 141–142.
Ou, P., & Wang, H. (2010). Financial volatility forecasting by least square support vector machine based on

GARCH, EGARCH and GJR models: evidence from ASEAN stock markets. International Journal of
Economics and Finance, 2, 51–64.

Perez-Cruz, F., Afonso-Rodriguez, J.A., & Giner, J. (2003). Estimating GARCHmodels using support vector
machines. Quantitative Finance, 3, 163–172.

Schölkopf, B., & Smola, A.J. (2002). Learning with kernels: support vector machines, regularization,
optimization, and beyond. Cambridge: MIT Press.

Sharpe, W.F. (1966). Mutual fund performance. Journal of Business. Series A, 39, 119–138.
Shawe-Taylor, J., & Cristianini, N. (2000). An introduction to support vector machines and other kernel-

based learning methods. Cambridge: Cambridge University Press.
Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis infrastructure. Cambridge:

Cambridge University Press.
Smola, A.J. (2007). An introduction to machine learning: instance based estimation. Statistical machine

learning program. Lecture notes. Tata Institute, Pune. http://alex.smola.org/teaching/pune2007/pune 2.
pdf.

Tay, F.E.H., & Cao, L. (2001). Application of support vector machines in financial time series forecasting.
Omega, 29, 309–317.

Van Gestel, T., Suykens, J.A.K., Baestaens, D.E., Lambrechts, A., Lanckriet, G., Vandaele, B., De Moor, B.,
& Vandewalle, J. (2001). Financial time series prediction using least squares support vector machines
within the evidence framework. Neural Networks, 12, 809–821.

Vapnik, V. (2013). The nature of statistical learning theory, Springer Science & Business Media.
Watson, G.S. (1964). Smooth regression analysis. Sankhyā: The Indian Journal of Statistics. Series A, 26(4),
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