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Abstract In this paper we develop a class of applied probabilistic continuous time but dis-
cretized state space decompositions of the characterization of a multivariate generalized
diffusion process. This decomposition is novel and, in particular, it allows one to construct
families of mimicking classes of processes for such continuous state and continuous time
diffusions in the form of a discrete state space but continuous time Markov chain repre-
sentation. Furthermore, we present this novel decomposition and study its discretization
properties from several perspectives. This class of decomposition both brings insight into
understanding locally in the state space the induced dependence structures from the gen-
eralized diffusion process as well as admitting computationally efficient representations in
order to evaluate functionals of generalized multivariate diffusion processes, which is based
on a simple rank one tensor approximation of the exact representation. In particular, we
investigate aspects of semimartingale decompositions, approximation and the martingale
representation for multidimensional correlated Markov processes. A new interpretation of
the dependence among processes is given using the martingale approach. We show that
it is possible to represent, in both continuous and discrete space, that a multidimensional
correlated generalized diffusion is a linear combination of processes originated from the
decomposition of the starting multidimensional semimartingale. This result not only recon-
ciles with the existing theory of diffusion approximations and decompositions, but defines
the general representation of infinitesimal generators for both multidimensional generalized
diffusions and, as we will demonstrate, also for the specification of copula density depen-
dence structures. This new result provides immediate representation of the approximate
weak solution for correlated stochastic differential equations. Finally, we demonstrate desir-
able convergence results for the proposed multidimensional semimartingales decomposition
approximations.
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1 Introduction

We develop a class of applied probabilistic continuous time but discretized state space
decompositions of the characterization of a multivariate generalized diffusion process. The
general results in this paper are aimed at developing representations of such generalized
diffusion processes that are tractable to work with both algebraically and computationally.
To achieve this we develop novel mimicking representations of generalized diffusion pro-
cesses which are based around asymptotically exact continuous time, discrete state-space,
Markov chain representations. We derive such representations, prove there exactness in a
weak sense and also develop a class of simulation based approximation algorithms for effi-
cient and accurate computations of such classes of mimicking process. The representations
we develop are novel extensions of ideas considered in works such as Hackbusch (2012).

We present and develop different algebraic tensor representations of this novel decom-
position approach that are beneficial for different numerical approximation settings and in
particular we study the approximation behaviour and discretization properties from several
perspectives. This class of decomposition both brings insight into understanding locally in
the state space the induced dependence structures from the generalized diffusion process as
well as admitting computationally efficient representations in order to evaluate functionals
of generalized multivariate diffusion processes.

We consider the multidimensional stochastic differential equation (SDE) of the form

dXt = b(t, Xt )dt + �(t, Xt )dWt , (1)

where b(t, Xt ) : [0, ∞) × R
d → R

d and �(t, Xt ) : [0, ∞) × R
d → R

d×d and we assume
that b = (bj ) is continuous vector valued function and � = ((�ij )) is a continuous, sym-
metric, nonnegative definite, d × d matrix valued function. Let the infinitesimal generator
associated to the SDE of Eq. (1) be denoted,

A =
⎧
⎨

⎩

⎛

⎝f,Gf = 1

2

d∑

ij

�ij ∂i∂j f +
d∑

i

bi∂if

⎞

⎠ : f ∈ C∞
c (Rd)

⎫
⎬

⎭
, (2)

where C∞
c (Rd) is the set of smooth functions with compact support on R

d .
Specifically, the aim of our work is to develop tracktable and computationally efficient

mimicking representations of the solution for the generalized multivariate correlated diffu-
sion processes of Eq. (1), in settings which may involve potentially very high dimensional
state spaces displaying non-trivial dependence structures.

We propose two ways to calculate the weak solution of the SDE in (Eq. 1) in an
approximate manner:

1. Direct approximation of the infinitesimal generator A with particular emphasis on the
structure of its mixed derivative terms.

2. Decomposition of the infinitesimal generator A into orthogonal components.

The proposed approximation schemes are based on tensor algebra decompositions such as
those considered in Hackbusch (2012). The novelty of our work consists in the introduction
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of new concepts like the copula infinitesimal generator, correlated tensor representation,
conditional infinitesimal generator and the framework developed to perform a parametric
copula function mapping. The proposed results aim to develop a new characterization of
the cross space among dimensions using tensor algebra and they have a general validity.
Furthermore, our schemes are supported by approximation and convergence results that
constitute a very useful perspective to look at solutions of multidimensional SDEs.

Our investigation is focused on aspects of the semimartingale decomposition and martin-
gale representation for multi-dimensional correlated Markov processes. The objective is to
construct a continuous time Markov chain (CTMC) that approximates or mimicks such pro-
cesses and their dependence structures induced throughout the state space, which are only
implicitly defined by the joint structure of the marginal process volatility functional forms
and the joint coupling of the correlation structures in the driving noise processes. Once such
a mimicking process is obtained we may then transform its structure to produce a copula
function mapping theorem that allows one to obtain structural characterizations of general
dependence frameworks, through the specification of the mimicking multivariate diffusion
process.

This work is motivated by the problems of finding the expression of a multi-dimensional
CTMC that both closely follows the dynamics of the corresponding correlated Ito-processes
and also can effectively deal with the representation and simulation of large dimensional
processes that exhibit various correlation structures. Although the literature on Markov
processes and Markov chains is very rich and mature, see (Rogers and Williams 2000;
Ethier and Kurtz 1985; Karatzas and Shreve 2000; Kushner and Dupuis 2001), we find that
there is still room for further investigation and characterization of multi-dimensional chains
and the relationship between the correlation structure among marginal Markov chains and
dependence concepts like copula functions (Nelsen 1999) and concordance measures of
dependence (McNeil et al. 2005; Scarsini 1984). In fact these concepts have always been
treated separately, and there is lack in literature of a theory that begins to reconcile them.

Our findings and results show that our approach, based on linear and tensor algebra,
is a powerful way to produce accurate solutions of multidimensional correlated SDEs that
exhibit a correlation that can be fully modelled through copula functions. Specifically given
a multi-dimensional Ito processes whose drift and diffusion terms are adapted processes, we
show how to construct the approximated infinitesimal generator and how to characterize the
process properties by its associated continuous time Markov chain (CTMC). We construct
an approximated weak solution to the stochastic differential equation that weakly converges
to the distribution of the multi-dimensional Ito processes.

We develop an interpretation for the correlation among processes using the martingale
approach applied to the study of diffusions. The novelty is that it is possible to represent, in
both continuous and discrete space, that a multidimensional correlated generalized diffusion
is a linear combination of processes that originate from the decomposition of the starting
multidimensional semimartingale.

The only assumption required by our approximation approach is that the martingale prob-
lem for the associated generator of the multidimensional Markov process is well posed.
Stroock and Srinivasa Varadhan (1997) formulated the martingale problem as a means
of studying Markov processes, especially multidimensional diffusions. This approach is
deemed to be more powerful and more intrinsic than the alternative approaches represented
by the Markov process approach and the Ito approach. More recently some authors (Brunick
2013) extended the study of the martingale problem associated to operators of the same type
as in (Eq. 2) and showed that is well posed when the covariance matrix takes a particular
lower-diagonal block form.
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Our result reconciles with the existing theory of diffusion approximations and decom-
positions existing in the probability literature and is more closely related to the work of
Gyöngy (1986) and more recently to Brunick and Shreve (2013). In the seminal manuscript
(Gyöngy 1986) considers a multi-dimensional Ito process, and constructs a weak solution to
a stochastic differential equation which mimics the marginals of the original Ito process at
each fixed time instant. The drift and covariance coefficients for the mimicking process can
be interpreted as the expected value of the instantaneous drift and covariance of the origi-
nal Ito process, conditional on its terminal value. In Brunick and Shreve (2013) the authors
extend the result of Gyöngy (1986), proving that they can match the joint distribution at
each fixed time for various functionals of the Ito process. The mimicking process takes the
form of a stochastic functional differential equation and the diffusion coefficient is given by
the so-called Markovian projection. In our framework we further generalize findings from
Brunick and Shreve (2013) and the mimicking process takes form of a sequence of con-
ditional continuous time Markov chains with instantaneous drift and diffusion coefficients
given by projected instantaneous local moments. We use generalized diffusion approxima-
tions, similarly to the work of Ekström et al. (2013), in order to produce desired target
multivariate distributions. However the results presented in Ekström et al. (2013) are limited
to the univariate case and the authors propose an approach that involves the speed of mea-
sure of a diffusion and time-changes of a Brownian motion allowing for target distributions
with arbitrary support. The results reported in this manuscript define the general represen-
tation of the approximated infinitesimal generators for both multidimensional generalized
diffusions and for what we will define as the function copula specification.

The paper is organized as following: Section 2 introduces the martingale problem for
correlated Markov processes. In Section 3.2 we introduce and characterize the approxi-
mation schemes for the infinitesimal generator of correlated Markov processes while in
Section 4 we proposed some desirable convergence results of our approximations and then
in Section 5 we develop an applications section which also presents a generic algorithm for
implementation of the mimicking process solutions developed.

2 Martingale Problems for Correlated Markov Processes

Our analysis takes place on a measure space (�,F , μ), where μ is a non zero σ -finite,
positive measure on the measurable space (�,F ). We denote by ‖f ‖p for p ∈ [1, ∞],
the Lp(μ) norm of a function f : ‖f ‖p

p = ∫ |f |pdμ. Furthermore we define the Markov
semigroup (Pt (x, dy)) on a metric, complete, separable spaceE, as the family of probability
transition kernels on E depending on the parameter t ∈ [0, ∞), such that

∫

y∈E
Ps(x, dy)Pt (y, dz) = Ps+t (x, dz), fors, t ∈ [0, ∞), (3)

and its action on bounded and positive functions is denoted by

Ptf (x) =
∫

f (y)Pt (x, dy). (4)

The family of operators Pt satisfies the following axioms P0 = I , Pt ◦ Ps = Pt+s ,
limt→0+ ‖Ptf − f ‖ = 0. Markov processes are naturally related to Markov semigroups
because the probability measure Pt (x, dy) with Ptf (x) = Ex[f (Xt )] is the law of {Xt }t≥0



Methodol Comput Appl Probab

the process itself starting from the value x at time 0. We assume in this paper that the
measure μ is an invariant measure for the semigroup Pt , and this means that for all
f ∈ L1(μ),

∫

Ptf (x)μ(dx) =
∫

f (x)μ(dx),

and that Pt is a contraction semigroup in L1(μ) for all t . We define the infinitesimal
generator of a strongly continuous contraction semigroup by the map

Af := lim
t→0+

Ptf − f

t
, (5)

for all f ∈ DE, where the space DE, subspace of Lp(μ), is the space of right continuous
functions f : E → R with left limits, see Ch. 5, pp. 115 of Ethier and Kurtz (1985) for
more details. The properties of A and DE entirely specify the semigroup Pt . In fact given
f ∈ DE the function U(x, t) = Ptf (x) is the unique solution of the equation

∂U(x, t)

∂t
= AU(x, t), (6)

defined in DE for all t > 0 and with U(x, 0) = ν, the initial probability distribution.
We restrict ourself to the set of compactly supported functions denoted by C∞

c (Rd) and
belonging to the set D̄ ⊆ DE, where D̄ is defined as the core of A, and we study only
generators of local diffusions of the form

As =
d∑

i

bi(s, x)
∂

∂xi

+ 1

2

d∑

i,j

�i,j (s, x)
∂2

∂xi∂xj

, (7)

where b = (bi(s, x)), i = 1, . . . , d is a drift vector and � = ((�i,j )), i, j = 1, . . . , d is a
dispersion matrix with � = CC′ that characterize locally stochastic differential equations
(SDE) with expression

Xt = X0 +
∫ t

0
b(s,Xs)ds +

∫ t

0
C(s,Xs)dWs, (8)

where W is a d-dimensional Brownian motion. We note that the dynamics of Xt are char-
acterized completely by the infinitesimal operator and therefore by the laws of the drift and
diffusion coefficients, including the conditional probability law. In particular the infinites-
imal operator in Eq. (26) is specified also by such coefficient with an explicit expression.
In this respect the connection between the generator of Xt and the solution of the SDE for
Xt has a rigorous formulation given by the Martingale problem of Stroock and Srinivasa
Varadhan (1997). It is straightforward to show the connection between the differential oper-
ator A and the probabilistic interpretation of the solution to the corresponding SDE. If
f ∈ C2

c (Rd) then Ito’s Lemma yields

f (X(t)) = f (X(0)) +
∫ t

0
Af (X(s))ds +

∫ t

0
∇f (X(s))′σ(X(s))dW(s). (9)

This means that

f (Xt ) − f (X0) −
∫ t

0
Af (Xs)ds, (10)
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is a local martingale. In particular the processes

Mt = X(t) − X(0) −
∫ t

0
b(X(s))ds =

∫ t

0
σ(X(s))dW(s), (11)

Mi
t M

j
t −

∫ t

0
σij (Xs)ds, (12)

are local martingales.

Definition 1 Denote the generic probability measure ν on (C[0, ∞)d , B(C[0, ∞)d))

under which

Mf (t) = f (Xt ) − f (X0) −
∫ t

0
Asf (Xs))ds, (13)

is a martingale for every f ∈ D̄, and is called a solution to the martingale problem
associated with the operator At , where At is as defined in (Eq. 7).

In addition, it will also be useful to observe the following representation and uniqueness
results regarding the process Xt and the infinitesimal operator At , as detailed for instance
in Stroock and Srinivasa Varadhan (1997).

Theorem 1 The process Xt is a weak solution to the SDE of (Eq. 1) if and only if it satisfies
the martingale problem of (Eq. 1) with At as the infinitesimal operator of Xt as defined in
(Eq. 7).

Another fundamental result we mention that is directly relevant background to the
framework we develop is that given by the following theorem.

Theorem 2 (Uniqueness of SDE solution.) (Stroock and Srinivasa Varadhan 1997, Th.
3.2.1.) The SDE

dXt = b(Xt )dt + C(Xt )dWt , 0 ≤ t ≤ s,X0 ∼ ν(dx), (14)

with X0 a random variable independent from Wt , t ≥ 0 and E[|X0|2] < ∞, has unique
solution adapted to the filtration generated by Wt and X0 if the measurable functions b(x)

and C(x), for t ≤ s, satisfy the following two conditions for a positive real constant K such
that:

1. Lipschitz continuity

|b(x) − b(y)| + |C(x) − C(y)| ≤ K(|x − y|), for allx, y ∈ R
d , (15)

2. Linear Growth

|b(x)| + |C(x)| ≤ K(1 + |x|), for allx ∈ R
d . (16)



Methodol Comput Appl Probab

For completeness we give the definition of generalized diffusion in Definition 2, also see
the reference (Portenko 1982), pag. 121. For a homogeneous Markov process in R

n with
transition probability P(t, x, �) where � is a Borel subset of Rd , let

aε(t, x) = 1

t

∫

|y−x|≤ε

(x − y)P (t, x, dy), (17)

(bε(t, x)θ, θ) = 1

t

∫

|y−x|≤ε

(x − y, θ)2P(t, x, dy), (18)

cε(t, x) = 1

t

∫

|y−x|≤ε

P (t, x, dy), (19)

where t > 0, ε > 0, and x, θ ∈ R
d . Let C0(R

d) be the collection of all real valued
continuous function with compact support of Rd , and Ls(Rd) the collection of symmetric
linear operators acting on Rn.

Definition 2 [Generalized diffusion process] A Markov process with values in Rd and with
transition probability P(t, x, �) is called a generalized diffusion process if the following
two conditions holds:

1. For all ε > 0 and ϕ ∈ C0(R
n)

lim
t→0

∫

Rn

ϕ(x)cε(t, x)dx = 0 (20)

2. There exist linear functionals A(ϕ) and B(ϕ), ϕ ∈ C0(R
n), with values in R

n and
Ls(Rn), respectively, such that for some ε > 0 and all ϕ ∈ C0(R

n)

lim
t→0

∫

Rn

ϕ(x)aε(t, x)dx = A(ϕ) (21)

lim
t→0

∫

Rn

ϕ(x)bε(t, x)dx = B(ϕ) (22)

Remark 1 Observe that if ϕ ≥ 0 for x ∈ R
d , then (B(ϕ)θ, θ) ≥ 0 for all θ ∈ R

d . The limit
in condition 2) exist for all ε > 0 and do not depend on ε. The vector A(ϕ) and the matrix
B(ϕ) are called the drift vector and the diffusion matrix.

Having developed the general theoretical construct for the processes we will be working
with, we may now proceed with the specification of our framework.

3 Approximation of Correlated Markov Processes

In this section we illustrate two new approximation schemes based on tensor algebra for
correlated Markov processes where dynamics are expressed by the SDE in (Eq. 8). The
novelty we introduce in these approximations involves the characterization of the cross
space among dimensions using tensor algebra and in the introduction of new concepts like
the copula infinitesimal generator, correlated tensor representation, conditional infinitesimal
generator and parametric copula functions mapping. The proposed schemes we develop are
based on tensor algebra which we will demonstrate makes them highly amenable to address
problems in high dimensional state spaces for correlated processes. As an overview, the
approximations we develop involve two aspects:
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1. Direct approximation of the infinitesimal generator A with particular emphasis on its
mixed derivatives terms;

2. Decomposition of the infinitesimal generator A into orthogonal components.

In what follows we first illustrate the SDE approximation for d = 1, in order to establish
some useful notation and the building blocks of the approximation schemes.We then present
the details of approximations of correlated processes when d ≥ 2.

3.1 Univariate Diffusion Approximation by CMTC

In order to approximate a one dimensional process, we construct a state space X ⊂ E with
n ∈ N elements and define the sets of such stencils by

X := {x := −22n

2n
= x1,−22n

2n
+ 1

2n
:= x2, . . . ,

1

2n
,
2

2n
, . . . , xm = 22n

2n
:= x}, (23)

with Xo := X\∂X and h = 1
2n a positive constant that represents the discretization unit,

and where the boundary ∂X consist of the smallest (i.e. x) and largest (i.e. x) elements in
X, possibly a countably infinite set, and the interior Xo is the complement of the boundary.
We denote by πn : E → X the bounded transformation from the continuous state space to
the discretized one.

It is possible to construct the continuous time Markov chain X(n) := {Xn
t }t≥0 as the

discrete approximation of X on X by building a matrix A(n) = {a(xi, xj )} for all i, j =
1, . . . , 22n+1 + 1 = m, that is the discretized counterpart of A in (Eq. 7) and each entry can
be calculated by solving the following system of local moment matching equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a(x1, x2) = a(xm, xm−1) = 0,

a(xi, xi+1) = 1
2

(
b(xi )

h
+ σ 2(xi )

h2

)
,

a(xi, xi−1) = 1
2

(
σ 2(xi )

h2
− b(xi )

h

)
,

a(xi, xi) = −(a(xi, xi−1) + a(xi, xi+1)),

(24)

for all i = 2, . . . , 22n+1, with− σ 2(xi )
h

≤ b(xi) ≤ σ 2(xi )
h

. However, the discrete state spaceX
does not need to be uniform and alternative discretization routines are presented in Tavella
and Randall (2000).

Remark 2 In the following we will denote by A(n) = A
(n)
X := A

(n)
X (b(xi), σ (xi)),for

i = 1, . . . , n,the approximated infinitesimal generator for the Markov process X with local
parameters μ(·) and σ(·). In particular A

(n)
Xk

is the approximated infinitesimal generator for

the Markov process Xk . Each operator A
(n)
Xk

can be thought of as an element of a Hilbert
space HXk

, for all k. Furthermore, given a process Xk we will denote by Xk the vector
corresponding to its discrete state space, in a similar fashion as X in Eq. 23.

Assumption 1 Note that for x ∈ ∂X, for computational aspects, we impose an absorbing
boundary condition. However, it is important to choose the boundary states sufficiently in
the extreme of the state space that the laws of the processes X(n) and X are close to each
other during the finite time interval of interest in the approximation. This can always be
trivially achieved and so is not overly restrictive.



Methodol Comput Appl Probab

The resulting matrix A(n) is a tridiagonal matrix in Rm×m , m = 22n+1 + 1, with always
positive extra-diagonal elements. The previous system calculates the entries of this genera-
tor by specifying the first and second instantaneous moments of the processX(n) that have to
coincide with those of X on the set Xo. This is equivalent to satisfy the following conditions

EXt [(Xt+�t − Xt)
z] = EXt [(Xn

t+�t − Xn
t )z] + o(�t), z ∈ {1, 2}andX(n) ∈ Xo. (25)

Furthermore, one could in principle produce more accurate results by matching higher
instantaneous moments of the process and in general there will be a trade off between the
number of local moments matched and the coarsity of the grid/stencil h. We also observe
that the numerical problem we face is of the same type as in (Eq. 6) and its analytic solution
is Ut = etAν which represents the transient probability of a Markov chain with n states.

3.2 Multivariate Diffusion Approximation by CMTC

We are now in a position to introduce the approximation schemes when d ≥ 2 for mul-
tivariate generalized correlated diffusions as introduced previously. Let A

(nk)
Xk

∈ R
nk×nk

denote the approximated infinitesimal generator for the continuous Markov process Xk ,
with k = 1, 2, . . . , d. This notation is useful when describing d correlated processes and the
unique approximated generator for the multidimensional process. Each matrix A

(nk)
Xk

is tridi-
agonal and its entries calculated using instantaneous local moment matching as described
in (Eq. 127).

Under the local moment matching formulation the representation of the infinitesimal
generator for correlated Markov processes given in (Eq. 7) can be rewritten as follows:

Lt =
d∑

i

bi(t, x)
∂

∂xi

+ 1

2

d∑

i,j
i=j

ai,j (t, x)
∂2

∂xi∂xj

+ 1

2

d∑

i,j
i �=j

ai,j (t, x)
∂2

∂xi∂xj

. (26)

Now denote this operator in two components,

AX1,...,Xd
:=

d∑

i

bi(t, x)
∂

∂xi

+ 1

2

d∑

i,j
i=j

ai,j (t, x)
∂2

∂xi∂xj

, (27)

and

A
(c)
X1,...,Xd

= 1

2

d∑

i,j
i �=j

ai,j (t, x)
∂2

∂xi∂xj

, (28)

then we can rewrite Lt in (Eq. 26) as the sum of two linear operators

Lt = AX1,...,Xd
+ A

(c)
X1,...,Xd

. (29)

In particular AX1,...,Xd
is the continuous operator for the independent Markov processes

X1, ..., Xd , while A
(c)
X1,...,Xd

is the continuous operator just for the dependence structure of
such processes.

Next we develop two ways to approximate (Eq. 26) on a discrete multidimensional space
⊕n

i=1 Xi , namely:

1. With direct approximation of the operators A
(n1)
X1

, . . . , A
(nd )
Xd

within the orthogonal

dimensions and the operator A
(c)(n1,...,nd )
X1,...,Xd

defined on the cross spaces. This approach
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directly approximates the cross derivatives operators and their action over the cross
state spaces;

2. The operator is approximated only over the orthogonal spaces. This is possible through
the introduction of the notion of conditional operator A

(ni)
Xi |Xj =a with a ∈ Xj and i �=

j, j = 1, . . . , d.

Definition 3 (Multidimensional approximated generator (independent processes)) The
multidimensional approximated generator for n independent Markov process {Xi(t)}t≥0,

for i = 1, . . . , d with approximated generators A
(nk)
xk

∈ R
nk×nk , k = 1, 2, . . . , n is the

(n1n2 · · · nd) × (n1n2 · · · nd) matrix

L
(n1···nd )
X1,...,Xd

= A(n1)
x1

⊕ A(n2)
x2

⊕ · · · ⊕ A(nd)
xd

, (30)

where ⊕ denotes the standard Kronecker sum.

Definition 4 Let the matrix I (n) ∈ R
n×n be the identity matrix of size n, I

(n)
m ∈ R

n×n a
matrix of all zeros and with lower diagonal equal to ones, and I

(n)
p ∈ R

n×n a matrix of all
zeros and with upper diagonal equal to ones, namely:

I (n)
m =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

I (n)
p =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(31)

Proposition 1 (Joint generator I) Let X1 and X2 be two Markov processes with proper-
ties as described in Section 2 and with associated approximated infinitesimal generators
A

(n1)
X1

and A
(n2)
X2

respectively. It is possible to define a Gaussian factor Z which is a Markov
process acting instantaneously on the spaces (X1,X2) with approximated generator the
triadiagonal matrix A

(n1n2)
Z , such that the infinitesimal approximated generator of the cor-

related processes (X1, X2) with local correlation parameter ρ := ρ(X1,X2) can be written
as

A
(n1n2)
X1,X2

= A
(n1)
X1

⊕ A
(n2)
X2

+ A
(c)(n1n2)
X1,X2

(32)

with

A
(c)(n1n2)
X1,X2

= −
(
L

(n1)
Z ⊕ L

(n2)
Z

)
− diag

(
I (n1) ⊗ diag(L

(n2)
Z )

)

+1{ρ>0}
(
I (n2)
m ⊗ L

(m)(n1)
Z + L

(p)(n2)
Z ⊗ I (n1)

p

)

+1{ρ<0}
(
I (n2)
m ⊕ L

(p)(n1)
Z + L

(p)(n2)
Z ⊗ I (n1)

p

)
(33)

and where L
(n1)
Z and L

(n2)
Z denote the component generator matrices of A

(n1n2)
Z that act

on X1 and X2 respectively. The superscript (p) means that the L
(p)(n1)
Z has upper tri-

angular entries as the matrix L
(n1)
Z , while L

(m)(n1)
Z has lower triangular entries as L

(n1)
Z .

Furthermore (Eq. 32) can be rewritten as a conditional structure given by

A
(n1n2)
X1,X2

= A
(n1)
X1|Z ⊕ A

(n2)
X2|Z + A

(n1n2)
Z . (34)
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Proof First we consider the mixed derivative terms in (Eq. 28) when d = 2. For positive
correlation the following approximations hold for finite element approximations for the
partial derivative operators,

∂f

∂x1∂x2
=

(
∂f
∂x2

)

i+1,j
−

(
∂f
∂x2

)

i,j

�x1

= fi+1,j+1 − fi+1,j − fi,j+1 + fi,j

�x1�x2
+ O(�x1) + O(�x2), (35)

∂f

∂x1∂x2
=

(
∂f
∂x2

)

i,j−1
−

(
∂f
∂x2

)

i−1,j−1

�x1

= fi,j − fi,j−1 − fi−1,j + fi−1,j−1

�x1�x2
+ O(�x1) + O(�x2). (36)

Equation (35) can be combined to yield,

∂fij

∂x1∂x2
= fi+1,j+1−fi+1,j −(fi,j−1−2fi,j +fi,j+1)−fi−1,j +fi−1,j−1

2�x1�x2+O(�x2
1 ) + O(�x2

2 ) + O(�x1�x2).
(37)

Note the same scheme applies for negative correlation. However (Eq. 37) can be decom-
posed into the following three terms T 3 − (T 1 + T 2), where

T 1 = fi+1,j − 2fi,j + fi−1,j

2�x1�x2
,

T 2 = fi,j+1 − 2fi,j + fi,j−1

2�x1�x2
,

T 3 = fi+1,j+1 − 2fi,j + fi−1,j−1

2�x1�x2
. (38)

Next we observe that the operator A
(c),(n1n2)
X1,X2

is a ‘correlation’ operator acting on the joint
discretized product space X1 × X2. The term T1 acts only along the discretized support of
X1, the term T2 acts only along the discretized support of X2, while T3 acts only along the
discretized cross support for both X1 and X2. We then use these finite difference operators
to calculate the entries of the operators in (Eq. 33). In particular, we use the scheme T1 for

L
(n1)
Z , the scheme T2 for L

(n2)
Z and T3 for 1{ρ>0}

(
I

(n2)
m ⊗ L

(m)(n1)
Z + L

(p)(n2)
Z ⊗ I

(n1)
p

)
. The

magnitude of the local instantaneous intensities is ρ(X1,X2)σX1, σX2. We can therefore
rewrite (Eq. 32) as

A
(n1n2)
X1,X2

= (A
(n1)
X1

− L
(n1)
Z ) ⊕ (A

(n2)
X2

− L
(n2)
Z )

−
[
diag(I (n1) ⊗ diag(L

(n2)
Z ))

+ 1{ρ>0}
(
I (n2)
m ⊗ L

(m)(n1)
Z + L

(p)(n2)
Z ⊗ I (n1)

p

)

+ 1{ρ<0}
(
I (n2)
m ⊕ L

(p)(n1)
Z + L

(p)(n2)
Z ⊗ I (n1)

p

)]
. (39)
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If we define the following operators,

A
(n1)
X1|Z = (A

(n1)
X1

− L
(n1)
Z ),

A
(n2)
X2|Z = (A

(n2)
X2

− L
(n2)
Z ),

A
(n1n2)
Z = −diag(I (n1) ⊗ diag(L

(n2)
Z )) + 1{ρ>0}

(
I (n2)
m ⊗ L

(m)(n1)
Z + L

(p)(n2)
Z ⊗ I (n1)

p

)

+1{ρ<0}
(
I (n2)
m ⊕ L

(p)(n1)
Z + L

(p)(n2)
Z ⊗ I (n1)

p

)
. (40)

This proves (Eq. 34).

Proposition 2 (Multivariate Uniform Distribution Infinitesimal Operator) The opera-
tor A

(c)(n1n2)
X1,X2

is the infinitesimal generator associated to a bivariate correlated distribution
with uniform marginals.

Proof Let’s consider the operator A
(c)(n1n2)
X1,X2

in (Eq. 33) acting on the joint Hilbert space
HX1X2 = HX1 ⊕ HX2 . Without loss of generality we consider the structure of the approxi-
mated infinitesimal operator when ρ > 0, and we note that the case with ρ < 0 is identical.
In this case the operator is given by,

A
(c)(n1n2)
X1,X2

= −
(
L

(n1)
Z ⊕ L

(n2)
Z

)
− diag

(
I (n1) ⊗ diag(L

(n2)
Z )

)

+
(
I

(n2)
m ⊗ L

(m)(n1)
Z + L

(p)(n2)
Z ⊗ I

(n1)
p

)
, (41)

and it is a linear function of the operators L
(n1)
Z and L

(n2)
Z that act on the spaces HX1 and

HX2 respectively.

Theorem 3 (Kronecker Product of Matrix Sequence, ⊗S) If A is an R
m×n matrix and

{Bj }, j = 1, . . . , m is a sequence of m R
p×q matrices, then the Kronecker product of a

matrix sequence A ⊗S {Bj } is the nm × pq block matrix:

A ⊗S {Bj } =
⎡

⎢
⎣

a11B1 · · · a1nB1
...

. . .
...

am1Bm · · · amnBm

⎤

⎥
⎦ (42)

We have that:

A ⊗S {Bj }T =
(
A ⊗ I (p)

) (
I (n) ⊗S {Bj }

)T =
(
I (n) ⊗S {Bj }

) (
A ⊗ I (p)

)T

(43)

and also

A ⊕S {Bj }T =
(
A ⊗ I (p)

)
+

(
I (n) ⊗S {Bj }

)T =
(
I (n) ⊗S {Bj }

)
+

(
A ⊗ I (p)

)T

(44)

Proof Results in Eqs. (43) and (44) follow from standard tensor algebra, see the reference
(Zhang and Ding 2013).

Theorem 4 If A is an R
m×n matrix and {Bj }, j = 1, . . . , m is a sequence of m R

p×q

matrices, then

exp
(
A ⊕S {Bj }

) ≈ exp(A) ⊗S exp({Bj }) + O([A, {Bj }]) (45)
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Proof See (Zhang and Ding 2013).

For completeness we report the following property of the exponential of the Kronecker sum
of two matrices, which is extensively used in all the paper.

Theorem 5 Let A ∈ R
m×m and B ∈ R

n×n; then

eA⊕B = eA ⊗ eB (46)

Proof The Kronecker sum of the two matrices is a matrix C ∈ R
mn×mn given by:

M = A ⊕ B = A ⊗ In + Im ⊗ B (47)

The exponential of the matrix M is:

eC = eA⊕B = e(A⊗In+Im⊗B) = eA⊗IneIm⊗B (48)

Equation (48) is true if (A⊗ In)(Im ⊗B) = (Im ⊗B)(A⊗ In). This a property of the matrix
exponential where

e(A+B)t = eAt eBt ifAB = BA. (49)

We have by theorem 1 of Zhang and Ding (2013) that

A ⊗ B = (A ⊗ In)(Im ⊗ B) = (Im ⊗ B)(A ⊗ In) (50)

Therefore the matrices (A⊗ In) and (Im ⊗B) in Eq. (48) always commute. Furthermore by
theorem 3 of Zhang and Ding (2013) we have that, if A,C ∈ R

m×m and B,D ∈ R
n×n, then

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (51)

By theorem 18 of Zhang and Ding (2013) we have that, if A ∈ R
m×m and f (z) is analytic

and f (A) exists, then

f (In ⊗ A) = In ⊗ f (A)andf (A ⊗ In) = f (A) ⊗ In (52)

By combining Eqs. (47), (48) and (52), we have

eA⊕B = e(A⊗In+Im⊗B) = eA⊗IneIm⊗B (53)

= (eAIm) ⊗ (Ine
B) = eA ⊗ eB (54)

Theorem 6 (Conditional Infinitesimal Generator) Let the infinitesimal generators of
generalized diffusions {Xi(t)}t≥0, i = 1, 2, . . . be

AXi
(s) = μi(x, s)

∂

∂x
+ 1

2
σ 2

i (x, s)
∂2

∂x2
, i = 1, 2, . . .

and with general and local properties as described in Section 3.2. Without loss of generality
let us drop the time s ≥ 0 dependency and assume that the diffusions {Xi(t)}t≥0, i =
1, 2, . . . are locally correlated with instantaneous local covariation given by

〈
σi(x)dWi(t), σj (y)dWj (t)

〉
= σi(x)σj (x)ρij (x, y), for all i, j = 1, 2, . . . (55)

In order to introduce the concept of conditional infinitesimal generator, without loss of
generality, we consider the 2-dimensional operator,

Lt = AX1,X2 + A
(c)
X1,X2

(56)

being the d-dimensional case just an algebraic extension. We will make all the necessary
dimensionality considerations for the d-dimensional representation. Therefore let’s consider
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the processes pair X1 = X and X2 = Y . The conditional approximated infinitesimal gen-

erator A
(n1)
X|Y is defined by the sequence of operator matrices

{
A

(n1)
X|Y=yj

}
∈ R

n1×n1 , yj ∈ Y
each of whose entries are obtained according to local moment matching by:

A
(n1)
X1|X2=yj

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(x1, x2) = a(xm, xm−1) = 0,

a(xi, xi+1) = 1
2

(
μ1(xi )+ρ12(xi ,yj )

σ1(xi )

σ2(yj )
(yj −μ2(yj ))

h
+ σ 2

1 (xi )(1−ρ2
12(xi ,yj ))

h2

)

,

a(xi, xi−1) = 1
2

(
σ 2
1 (xi )(1−ρ2

12(xi ,yj ))

h2
− μ1(xi )+ρ12(xi ,yj )

σ1(xi )

σ2(yj )
(yj −μ2(yj ))

h

)

,

a(xi, xi) = −(a(xi, xi−1) + a(xi, xi+1)),

(57)

for all yj ∈ Y, xi ∈ X, with − σ 2
k (xi )

h
≤ μk(xi) ≤ σ 2

k (xi )

h
for k = 1, 2, −1 ≤ ρ12(xi, yj ) ≤ 1,

and a(xi, xj ) ≥ 0 for all i �= j .

Proof Let’s consider the Markov processes pair (X, Y ) and how to derive its corresponding
infinitesimal generator approximation in matrix form. The local instantaneous intensities are
calculated in the same way as described in Section 3.2 for the one dimensional case, namely
using local moment matching as reported in (Eq. 25). For the 2-d case the instantaneous
intensities are calculated using the local transition kernel

p(Xt+�t , Yt+�t |Xt, Yt ), as�t → 0. (58)

In particular considering the local states xi ∈ X and yj ∈ Y the transition probability in
(Eq. 58) can be rewritten in local form as

p(xi+1, yj+1|xi, yj ) = p(xi+1|yj+1, xi)p(yj+1|yj ), (59)

where
(
Yt+ = yj+1|Yt = yj

) ∼ p(yj+1|yj ) = N
(
μ(yj ), σ

2(yj )
)

(60)

(
Xt+ = xi+1|Yt = yj+1, Xt = xi

) ∼ p(xi+1|yj+1, xi)

= N
(
μ(xi) + σ(xi )

σ (yj )
ρ(xi, yj )(yj − μ(yj )), (1 − ρ2(xi, yj )σ

2(xi))
)

The calculation of the matrix entries for A
n1n2
X1|X2=yj

is done in identical way as described
in Section 3.2, imposing the instantaneous moments of (Eq. 61) for all yj ∈ Y and this
completes our proof. Extension to dimensions larger than two is straightforward due to
independence of each conditional operator.

Remark 3 We would like to remark that the matrices
(
A ⊗ I (p)

)
and

(
I (n) ⊗S {Bj }

)
in

Eq. (44) do not commute. However the key result in our proposed multidimensional diffusion
approximation is based on theorem 4, namely

exp
(
A ⊕S {Bj }

) ≈ exp(A) ⊗S exp({Bj }) + O([A, {Bj }]) (61)

While the left side of Eq. (61) represents the expression of the diffusion approximation that
will be used in the study of weak convergence in Section 4, the right end side is instead a
further algebraic approximation that is key to a fast computation of the proposed numerical
scheme illustrated in Section 5. We have that, while the left side of Eq. (61) can be inter-
preted as a multidimensional approximation of the transition probability at time 1, the right
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end side represents the same multidimensional approximation made by one dimensional
approximations. The error term of order O([A, {Bj }]), is due to the fact that the matrices
A and the matrix sequence {Bj } do not commute.

Example 1 We saw in Eq. (44) that the expression of the Kronecker sum of a matrix A with
a matrix sequence {Bj } can be written as:

A ⊕S {Bj }T =
(
A ⊗ I (p)

)
+

(
I (n) ⊗S {Bj }

)T =
(
I (n) ⊗S {Bj }

)
+

(
A ⊗ I (p)

)T

(62)

More specifically, if we consider a coupled diffusion process (X, Y ), the expression of the
approximated infinitesimal generator reads

AX ⊕S {AY |X} =
(
AX ⊗ I (p)

)
+

(
I (n) ⊗S {AY |X}

)

=
(
AX ⊗ I (p)

)
+

(
I (n) ⊗ {AY }

)
+

(
I (n) ⊗S {A(c)

Y |X}
)

(63)

In Eq. (63) we introduce the matrix {A(c)
Y |X} spanning the X-Y space. Such a matrix is

a rotation matrix which corresponds to a specific operator, a copula one, with approxi-
mated infinitesimal generator equal to the difference between the joint operator and the
independent one. In fact with some algebra we have that:

{A(c)
Y |X} = AX ⊕S {AY |X} − (AX ⊕ AY ) (64)

=
(
AX ⊗ I (p)

)
+

(
I (n) ⊗S {AY |X}

)
−

[(
AX ⊗ I (p)

)
+

(
I (n) ⊗ AY

)]
(65)

=
(
I (n) ⊗S {AY |X}

)
−

(
I (n) ⊗ AY

)
(66)

with generator matrix entries given by:

{A(c)
Y |X=xj

} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(y1, y2) = a(ym, ym−1) = 0,

a(yi, yi+1) = 1
2

(
σ 2
1 (yi )(1−ρ2

12(xi ,yj ))

h2
+ ρ12(xi ,yj )

σ1(yi )

σ2(xj )
(xj −μ2(xj ))

h

)

,

a(yi, yi−1) = 1
2

(
σ 2
1 (yi )(1−ρ2

12(xi ,yj ))

h2
− ρ12(xi ,yj )

σ1(yi )

σ2(xj )
(xj −μ2(xj ))

h

)

,

a(yi, yi) = −(a(yi, yi−1) + a(yi, yi+1)),

(67)

The representation of the copula transition probability in tensor form is:

P (c)
y = α

P (X, Y )

P (X)P (Y )
= α

P (Y |X)

P (Y )
= α

I (n) ⊗S e{AY |X}

I (n) ⊗ AY

(68)

where α is just a scaling factor. Analogously,

P (c)
x = α′ P(X, Y )

P (X)P (Y )
= α′ P(X|Y )

P (X)
= α′ e{AY |X} ⊗S I (m)

AY ⊗ I (m)
(69)

with α′ just a scaling factor. Note that P (c)
y = P

(c)
x for standardized uniform marginals.

Corollary 1 (Multidimensional approximated generator (correlated processes)) The
multidimensional approximated generator for n independent Markov process {Xi(t)}t≥0,

for i = 1, . . . , d with approximated generators A
(nk)
Xk

∈ R
nk×nk , k = 1, 2, . . . , n is the

n1n2 · · · nd × n1n2 · · · nd matrix

A
(n1···nd )
X1,...,Xd

= A
(n1)
X1|X2,...,Xd

⊕S · · · ⊕S A(nd )
xd

, (70)
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where ⊕S denotes the Kronecker sum over a matrix sequence.

From Theorem 6 it is clear that we can represent the approximated multidimensional gen-
erator of (Eq. 30) as a decomposition of independent conditional generators. Furthermore it
is also possible to exploit standard results of conditional probability partitioning in order to
facilitate the local characterization of the independent multidimensional conditional gener-
ators. Given a multivariate gaussian variable X ∼ N(μ,�) and consider the partition of X

and equivalently of μ and � into

X =
[

x1
x2

]

, μ =
[

μ1
μ2

]

, � =
[

�1,1 �1,2
�2,1 �2,2

]

(71)

Then (x1|x2) = y = x1 + Cx2, where C = −�1,2�2,2
−1, the conditional distribution of

the first partition given the second, is N(μ, �), with mean

μ = μ1 + �1,2�2,2
−1(x2 − μ2), (72)

and covariance matrix

� = �1,1 − �1,2�2,2
−1�2,1. (73)

More generally if we denote by � the covariance matrix introduced within the definition
of the operator in (Eq. 7), and by X ∼ N(μ,�) a multivariate normal vector, and fixed
t ≥ 0 the covariance matrix � = {ai,j (t, x)} ∈ R

d×d of Eqs. (7), (26) is

� =

⎛

⎜
⎜
⎜
⎝

�1,1 �1,2 · · · �1,d
�2,1 �2,2 · · · �2,d

...
...

. . .
...

�d,1 �d,2 · · · �d,d

⎞

⎟
⎟
⎟
⎠

. (74)

Conditional probability partitioning is a very important property when creating the
sequence of conditional approximated generators as in (Eq. 57) because large multivari-
ate Gaussian vectors can be easily partitioned as the combination of sets of independent
sub-multivariate Gaussian vectors. Each of the sub-multivariate Gaussian vectors can be
further characterized and locally approximated through a principal component analysis
(PCA). Therefore it is possible to construct a reduced dimensionality infinitesimal genera-
tor of a large dimension process without an aggregate PCA of the global process covariance
structure.

Example 2 (3-D approximated generator) Given the results in Theorem (6), and applying
corollary 1, we show how to calculate A

(n1n2n3)
X1X2X3

. In fact we can express the approximated
3-D generator under a conditional decomposition according to

A
(n1n2n3)
X1X2X3

= A
(n1)
X1|X2X3

⊕S A
(n2)
X2|X3

⊕S A
(n3)
X3

. (75)

Note that (n1)
X1|X2X3

=
{
A

(n1)
X1|X2=x2,X3=x3

}
∈ R

n1×n1 with x2 ∈ X2 and x3 ∈ X3 and

A
(n2)
X2|X3

=
{
A

(n2)
X2|X3=x3

}
∈ R

n2×n2 with x3 ∈ X3 .
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Remark 4 It is important to note that the joint infinitesimal generator approximation pro-
vided in the main Theorem 6 is not equivalent to the joint representation of Proposition 1.
The approximations do not produce same instantaneous local correlations in the cross
space, but they produce equivalent ‘terminal’ joint distribution. We would like to intro-
duce the explicit expressions of the quadratic variation and quadratic covariation among
CTMC with generators approximated using the method introduced in Theorem (6). This is
formalized in the following Lemmas.

Lemma 1 (Orthogonal CTMCs and zero instantaneous covariation) Let X = [X(n1)
1 ,

. . . , X
(nd )
d ]′ be a d-dimensional CTMC and define its partition asX = [x1, x2]′. Let’s denote

define y = x1 + Cx2, where C = −�1,2�2,2
−1. Then the chains x2 and the conditional

chains y are orthogonal and var(x1|x2) = var(y).

Proof We want to show that the instantaneous covariation of the chains x2 and y is zero.
Therefore we compute

cov(x2, y) = cov(x2, x1) + cov(x2, Cx2)

= �1,2 + Ccov(x2, x2)

= �1,2 − �1,2�2,2
−1�2,2 = 0 (76)

Furthermore we have

var(x1|x2) = var(x1 + Cx2)

= var(x1) + Cvar(x2)C
′ + Ccov(x1, x2) + cov(x2, x1)C

′

= var(y|x2) = var(y). (77)

Lemma 2 (‘Terminal’ covariance of orthogonal CTMCs) Given the settings and results
from Proposition 6 and Lemma 1 with some algebra it is straightforward to obtain the
covariance matrix �. We have

[y, x2]
[

� 0
0 �2,2

] [
y

x2

]

= [x1, x2]
[

�1,1 �1,2
�2,1 �2,2

] [
x1
x2

]

. (78)

Theorem 7 (Equivalence of the joint ‘terminal’ representations) Given two correlated
Markov processes X1 and X2, with properties as described in Section 2, the approximated
‘terminal’ joint transition probability kernel P

(n1n2)
X1,X2

(X1,X2) is the solution of the Cauchy
problem of (Eq. 6) where the infinitesimal operator can be expressed in either cross space
and marginals decomposition or as conditional decomposition given by

A
(n1n2)
X1,X2

= A
(n1)
X1

⊕ A
(n2)
X2

+ A
(c)(n1n2)
X1,X2

, (79)

or

A
(n1n2)
X1,X2

= A
(n1)
X1|X2

⊕S A
(n2)
X2

. (80)

The approximations in Eqs. (79) and (80) produce equivalent ‘terminal’ joint transition
probabilities.

Proof Refer to Lemma 1 and Lemma 2.
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Theorem 8 (Correlated kernel tensor representation) Given m correlated Markov
processes, with properties as described in Section 2, the approximated solution of the mar-
tingale problem for (Eq. 1) is given by the product measure representation involving the
generator decomposition according to,

P
(n1···nm)
X1,...,Xm

(t) = e
tA

(n1)

X1 |X2,...,Xm ⊗S e
tA

(n2)

X2 |X3,...,Xm ⊗S · · · ⊗S e
tA

(nm)
Xm (81)

Proof In order to calculate the m-dimensional solution of (Eq. 81) we exploit the orthog-
onality of the conditional approximated infinitesimal operators A

(ni)
Xi |...,Xm

for all i. This
follows from Theorem 6. Then the transition density of (Eq. 81) is computed along same
lines as in example 2.

3.3 Functional Copula Constructions

We are interested in generating joint distributions with a variety of dependence structures
and to achieve this purpose we use copula function specifications. In what follows we
explore how copulas and families of copulas are generated and introduce a general approach
to construct copulas in a tensor product space. In particular we show how copulas are related
to other methods of generating joint distributions in a Hilbert space based on specified
marginal tensors and decomposition properties of the product space. In doing this we exploit
some desirable convergence results of the proposed transformed tensor representation of
multivariate correlated processes to the continuous copula functions.

After the definition of a copula function we recall Sklar’s theorem, a fundamental result
about the relationship between marginals and joint distribution for multivariate correlated
random variables. This is important to recall as we will develop a new characterization of
Sklar theorem as a function generator representation.

Definition 5 (m-Copula Function) An m-dimensional copula (or m-copula) is a func-
tion C from the unit m-cube [0, 1]m to the unit interval [0, 1] which satisfies the following
conditions:

1. C(1, . . . , 1, an, 1, . . . , 1) = an for every n ≤ m all an in [0, 1];
2. C(a1, . . . , am) = 0 if an = 0 for an ≤ am;
3. C is m-increasing.

Remark 5 Property 1 says that if the realizations of m-1 variables are known each with
marginal probability one, then the joint probability of the outcomes is the same as the
probability of the remaining uncertain outcome. Property 2 is sometimes referred to as the
grounded property of a copula. It says that the joint probability of all outcomes is zero if
the marginal probability of any outcome is zero. Property 3 says that the C-volume of any
m-dimensional interval is non-negative. Properties 2 and 3 are general properties of mul-
tivariate cdfs. It follows that an m-copula can be defined as an m-dimensional cdf whose
support is contained in [0, 1]m and whose one-dimensional margins are uniform on [0, 1].
In other words, anm-copula is anm-dimensional distribution function with all m univariate
margins being U(0, 1).

The relationship between distribution functions and copulas is given by the following
result, see an overview in Sklar (1996).
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Theorem 9 (Sklar’s Theorem) Let X and Y be random variables with distribution func-
tions F and G respectively and joint distribution function H . Then there exists a copula C

such that for all (x, y) ∈ R × R

H(x, y) = C(F(x), G(y)) (82)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on
Ran(F) × Ran(G). Conversely, if C is a copula and F and G are distribution functions, then
the function H defined by (82) is a joint distribution function with margins F and G.

By Sklar’s theorem, given continuous margins F1 and F2 and the joint continuous distri-
bution function F(x1, x2) =C(F1(x1), F2(y2)), the corresponding copula is generated using
the unique inverse transformation

C(u1, u2) = C(F(x1), F2(x2)) = F(x1, x2) = F(F−1
1 (u1), F

−1
2 (u2)), (83)

where u1 and u2 are standard uniform variates. Given the result in theorem 8 it is possible
to extend it to the representation of joint distribution function using tensor algebra. Without
loss of generality we present the result in two dimensions. Extension to higher dimensional
case is straightforward by induction.

Proposition 3 (Sklar’s Theorem in Generator Space) Let P
(n1n2)
X1,X2

(X1,X2)(t), t ≥ 0, be
the approximated transition probability kernel solution of the martingale problem in (Eq. 1)
for the infinitesimal generator

As =
2∑

i

bi(s, x)
∂

∂xi

+ 1

2

2∑

i,j

�i,j (s, x)
∂2

∂xi∂xj

. (84)

Then the approximated joint distribution function for the process starting at (x1, x2) is given
by

F
(n1n2)
X1,X2

(X1,X2|X1 = x1, X2 = x2)= F
(n1)
X1

(X1|X1 = x1) ⊗S F
(n2)
X2

(X2|X1, X2 = x2)

(85)

Proof Due to the main results of theorem 6 and theorem 81 the following expression holds:

P
(n1n2)
X1X2

= P
(n1)
X1

⊗S P
(n2)
X2|X1

(86)

Then we can calculate:
x1∑

i=x1

P (n1)(x
(1)
i |X1 = x1) ⊗S

x2∑

j=x2

P(x
(2)
j |X2 = x2, X1 = x

(1)
i )

= F
(n1n2)
X1,X2

(X1,X2|X1 = x1, X2 = x2). (87)

Due to the general validity of our result we can proceed to formulate it in the following
theorem.

Theorem 10 (Joint Distribution Function Convergence) Let X1(t) and X2(t) be corre-
lated Markov processes with marginal distributions FX1 and FX2 and approximated joint
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distribution function F
(n1n2)
X1,X2

(X1,X2) as in (Eq. 85). Let C(u1, u2) : [0, 1]2 �→ [0, 1] a
continuous copula function. Then the following convergence result holds:

lim
n1,n2→∞ F

(n1n2)
X1,X2

(X1,X2) = C(FX1(X1), FX2(X2)) (88)

Corollary 2 (General Copula Mapping) Let D(n1,n2,...) := [ i
n1

] × [ j
n2

] × . . . where i =
0, . . . , n1 and j = 0, . . . , n2 and so on, denote the discretization of the unit hypercube. Let
Cn1,n2(ui, vj ) be a copula distribution function defined for all (ui, vj ) ∈ D(n1,n2). Then
according to theorem 10, the following equalities hold:

C(n1,n2)(ui, vj ) = C(n1,n2)
(
F

(n1)
X1

(x
(1)
i ), F

(n2)
X2

(x
(2)
j )

)
= F(x

(1)
i , x

(2)
j ) (89)

Furthermore, if we denote by θ the set of the copula parameters, and by p the set
of local cross space parameters for the approximated tensor representation, then given

C(n1,n2)
(
F

(n1)
X1

(x
(1)
i ), F

(n2)
X2

(x
(2)
j ); θ

)
, its equivalent representation in a tensor space is the

solution of the following minimization problem:

min
p

∥
∥
∥C(n1,n2)(ui, vj ; θ) − F

(n1n2)
X1,X2

(X1,X2; p)
∥
∥
∥
2

2
(90)

(Equation 90) means that for a given parametric copula distribution function C belonging to
any copula family it is possible to find a set of local parameters p that would produce a joint
distribution function F that has minimal Euclidean distance from C in the tensor space. A
practical way to solve (Eq. 90) is to compute the local likelihood with respect to the set of
parameters p = {pij } such that

min
pij

{
log

(
Ctarget(ui, uj ; θ) − F

(n1n2)
X1,X2

(
F

(n1)
X1

(x
(1)
i ), F

(n2)
X2

(x
(2)
j );pij

)}
, for alli, j. (91)

where Ctarget can be any target copula function.

Theorem 11 (Copula Infinitesimal Operator) Let c(n1,n2)(ui, vj ) be a copula density
function defined for all (ui, vj ) ∈ D(n1,n2). Given the result in theorem 10, we have that

c(n1,n2)
(
F

(n1)
X1

(x
(1)
i ), F

(n2)
X2

(x
(2)
j )

)
= P (c)(x

(1)
i , x

(2)
j ), for alli, j. (92)

with infinitesimal operator given by (Eq. 33).

Theorem 12 (Copula Tensor Representation) Given the tensor product basis Z = BX ⊕
BY associated to A

(nx,ny)

X,Y as in (Eq. 79), where BX and BY denote the basis of the oper-

ators A
(nx)
X and A

(nx)
X respectively, it is possible to specify a point (xi, yj ) ∈ (X,Y) with

corresponding associated subspace (M ⊕M⊥) ⊂ Z of the direct sum of vectors x ∈ M and
y ∈ M⊥ with origin (xi, yj ), such that the following relations hold,

z = x ⊕ y (93)

and

z = z′ + z′′ = (x′ ⊕ y′) + (−a ⊕ −a⊥), (94)
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where the vector a is the shared component among the vectors x and y or the instantaneous
local covariance part of the joint process (Xt , Yt ) and represents the copula. Equations (93)
and (94) are represented in Fig. 1.

4 Convergence of the Approximated Generator

In Section 3.2 we defined the Markov chain X
(n)
t approximating the multidimensional gen-

eralized diffusion Xt . Here we present weak convergence results for X
(n)
t to the solution of

the SDE for Xt , introduced in (Eq. 1). The convergence is studied from different perspec-
tives: first from a semigroup point of view, secondly in a spectral way through a Fourier
unitary transformation of the approximated generator providing desired rate of convergence
results, and lastly through the martingale problem for the associated infinitesimal generator.

Fig. 1 Representation of z = z′ + z′′ = (x′ ⊕ y′) + (−a ⊕ −a⊥)
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It is important to remark that convergence is studied within the multidimensional space, and
not onto the projected subspaces introduced in our approximation.

We want that the continuous Markov chain X(n) := {Xn
t }t≥0 has a dynamics as close as

possible to the corresponding approximated process {Xt }t≥0. At this purpose we can define
an error

εn(f ) := sup
x∈H

‖A(n)f (x) − Af (x)‖. (95)

Using the semigroup approach to weak convergence we can state that, if εn(f ) tends to zero
as n tends to infinity for f in D , then the sequences of processes X(n), converges weakly
to X, in the space DE. The following theorem states that if the error εn(f ) goes to zero as
n tends to infinity, implying norm convergence of the approximated generator A(n)f (x) to
Af (x), this would imply also convergence of the corresponding approximated semigroup
P

(n)
t to Ptf and of the chain X(n) to X for t ≥ 0.

Theorem 13 Let X be a Feller process with state space E and infinitesimal generator A

satisfying the properties and assumptions defined in Section 2, and X(n) be a sequence of
Markov chains with generator matrices A(n). Then it holds that

lim
n→∞ εn(f ) = 0 (96)

for every function f in the core of A, which is equivalent to the statement that

P
(n)
t πnf → Ptf, for allf ∈ C0(E), t ≥ 0.

Then the sequences of processes X(n), converges weakly to X, in the space DE.

Proof From Theorem 6.1 in Chapter 1 pag. 28 of Ethier and Kurtz (1985), we have that
if P

(n)
t , n = 1, 2, . . ., and Pt are strongly continuous contraction semigroups on H ∈ E

with generators A(n) and A respectively, and let D be a core for A, then the following are
equivalent:

(i) For each f ∈ E

P
(n)
t πnf → Ptf

uniformly on bounded intervals.
(ii) For each f ∈ E

P
(n)
t πnf → Ptf

for all t ≥ 0.
(iii) For each f ∈ D , there exists fn ∈ D(A(n)) (D(A(n)) is the domain of A(n) ) for each

n ≥ 1 such that fn → f and A(n)fn → Af .

Furthermore, following (Ethier and Kurtz 1985), Chapter 4 pag. 172 Theorem 2.11, we have
that if Pt is a Feller Semigroup on C0(E) and that for each t ≥ 0 and f ∈ C0(E)

P
(n)
t πnf → Ptf.

If X
(n)
0 has limiting distribution ν, then there is a Markov Process X corresponding to Pt

with initial distribution ν and sample paths in Dp , and

X(n) → X inDp.
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Therefore, in order to be able to use the result of theorem 13, we just need to prove the
convergence of the proposed approximated generator A(n) and this is done in the following
theorem.

Theorem 14 For all f ∈ D , with D core of the generator A as previously defined,

lim
n→∞ sup

x∈H
|A(n)f (x) − Af (x)| = 0

This mode of convergence is called strong convergence.

Proof Let f ∈ D and x ∈ H, and h := �x ∈ R the discretization unit. We can locally
write the generator of the semigroup P

(n)
t as

A(n)f (x) = a(n)(x, x + h) (f (x + h) − f (x)) + a(n)(x, x − h) (f (x − h) − f (x))

By Taylor approximation

fn(x) ≈ f (x + �x) ≈ f (x) + f ′(x)�x + 1

2
f ′′(x)(�x)2 + o((�x)2)

we obtain for all i = 1, 2, . . ., xi ∈ H,

A(n)fn(xi) = a(xi, xi+1)

(

f (xi) + f ′(xi)�x + 1

2
f ′′(xi)(�x)2 + o((�x)2) − f (xi)

)

+ a(xi, xi−1)

(

f (xi) − f ′(xi)�x + 1

2
f ′′(xi)(�x)2 + o((�x)2) − f (xi)

)

= f ′(xi)�x (a(xi, xi+1) − a(xi, xi−1))

+ 1

2
f ′′(xi)(�x)2 (a(xi, xi+1) − a(xi, xi−1))

+ (a(xi, xi+1) − a(xi, xi−1)) o((�x)2).

Due to the fact that f ∈ D , the error term o((�x)2) is uniform in x. We have that

a(xi, xi+1) + a(xi, xi−1) = σ 2(xi)

h2
,

a(xi, xi+1) − a(xi, xi−1) = μ(xi)

h
.

In Section 3.2 we made precise assumptions, see the assumption 1 on the behaviour at the
boundary of the process. Without loss of generality we can assume that the boundary is
at a point of infinity, i.e. not attainable in finite time and it is furthermore absorbing. It is
possible to express A(n)fn(x) for all x ∈ H, as

A(n)fn(x) = f ′(x)�x
( μi

�x

)
+ 1

2
f ′′(x)(�x)2

(
σ 2(xi)

(�x)2

)

+
(

μ(xi)

�x

)

o((�x)2)

= Af (x) +
(

μ(xi)

�x

)

o((�x)2).

We obtain

sup
x∈H

|Anf (x) − Af (x)| = sup
x∈H

|μ(xi)

�x
o((�x)2)| = C1o((�x)2)

n→∞−−−→ 0. (97)
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In case the elements of ∂H, consisting of the smallest (i.e. x) and largest (i.e. x) elements
in H, are absorbing states of the Markov chain we can continue the above analysis with a
further investigation of the weak convergence. Furthermore the behavior on the boundary
of the functions f ∈ D is f ′(x) = f ′(x) = 0. For xi = x we have,

|A(n)f (x) − Af (x)| ≤ |A(n)f (x) − A(n)f (x + h)|
+ |A(n)f (x + h) − Af (x + h)|
+ |Af (x + h) − Af (x)|

The second term tends to 0 as shown above, the third term by continuity of Af in x. For the
first term we have

|A(n)f (x) − A(n)f (x + h)| = |a(x, x + h)(f (x + h) − f (x))

− a(x + h, x)(f (x + 2h) − f (x + h))

− a(x + h, x + 2h)(f (x + h) − f (x))|
= O(n)o(h)

n→∞−−−→ 0.

since a(x, x + h), a(x + h, x), a(x + h, x + 2h) are on order n and (f (x + h) − f (x)),
(f (x +2h)−f (x +h)), (f (x +h)−f (x)) are of order o(h) because f ′(x) = 0 for f ∈ D.
The result for x follows in the same way.

4.1 Correlated Diffusions Approximation Convergence

For this purpose we need to introduce multiplication operators that are considered as an
infinite-dimensional generalization of diagonal matrices and they are extremely simple to
construct. Furthermore, they appear naturally in the context of the Fourier transform or
when one applies the spectral theorem and deals with spectral representation of operators
on Hilbert spaces. It is an equivalent way to represent the same operator and can be useful
for calculations and further analysis.

We recall that the definitions of discrete Fourier transform matrix and its inverse as a
unitary operator are given by,

Fs,k = 1√
n

e−i 2π
n

sk,

F−1
k,s = 1√

n
ei

2π
n

sk,

Fl,kF
−1
k,j = δl,j ,

where δl,j is the Kronecker delta, so these matrices give the resolution of the identity matrix
and define a unitary transformation. Also, if f (x) is a function belonging to the space

L2 and Bn be the Brillouin zone defined as Bn =
{
−π

h
+ kh, k = 0, . . . , 2π

h2
= n

h

}
the

transformation Fn : L2(H) �→ L2(Bn)

Fn(f )(s) =
∑

x∈H
Fs,kf (x), (98)
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is the discrete Fourier transform of f , with H := hZ 1 . In fact,

F (f )(s) = 1√
n

∫ π
h

− π
h

e−isxf (x)dx (99)

≈ 1√
n

n−1∑

k=0

eis(−
π
h
+kh) f (−π

h
+ kh)

︸ ︷︷ ︸
fk

, (100)

where h = 2π
n
. We now extend the above transformation to the d-dimensional case, and the

following results set the notation for our subsequent theorems and proofs.

Lemma 3 For any nonnegative-definite symmetric matrix � the function

ϕX = exp

(

−iμs − 1

2
s′�s

)

t (101)

is the characteristic function at time t > 0 of the random vector X with E[X] = μ and
Cov[X] = �.

Theorem 15 (cf. (Lukacs 1958), Th. 3.2.3) Let f (s) be an arbitrary characteristic function.
For every real x the limit

p(x) = lim
T ↓0

1

2T

∫ T

−T

e−isxf (s)dx (102)

exists and is equal to the saltus of the distribution function of f (s) at the point x.

We can obtain a spectral representation of the operator L
n1···nd

X1,...,Xd
by applying the above

unitary transformation leading to the following diagonal operator,

qn1···nd
(s) = F (L

(n1···nd )
X1,...,Xd

(f ))F−1(s, s) (103)

where the approximated operator of (Eq. 30) can be written as

L
(n1···nd )
X1,...,Xd

= μ′∇ + 1

2
σ ′H̃σ (104)

with ∇ the discrete d-dimensional operator gradient and H̃ the discrete d-dimensional
Hessian operator.

In order to derive some converge properties of the operator (30) we do this by com-
paring the spectral representations of the probability density functions for the continuous
infinitesimal generator and its approximated counterpart, namely

P
(n1···nd )
t (x, y) = 1

(2π)d

∫

[− π
h
, π

h
]d

eqn1 ···nd
(s)t eis(y−x)ds,

and

pt (x, y) = 1

(2π)d

∫

Rd

ϕXeis(y−x)ds.

1H is possibly unbounded but in all our practical applications we consider H ⊂ D := [−K,K] ⊂ R,
K ∈ (0,∞), with D the operator domain and assuming for simplicity also periodic boundary conditions.
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In this way we are able to assess the order of convergence of the error

εn :=
∣
∣
∣pt (x, y) − P

(n1···nd )
t (x, y)

∣
∣
∣. (105)

To assess the rate of convergence of (Eq. 105), we exploit the relationship between the
distribution function and its corresponding characteristic function and in particular we refer
to the Continuity Theorem.

Theorem 16 (Continuity Theorem, cf. (Lukacs 1958), Th. 3.6.1.) Let {Fn(x)} be a
sequence of distribution functions and denote by {fn(s)} the sequence of the corresponding
characteristic functions. The sequence {Fn(x)} converges weakly to a distribution function
F(x) if, and only if, the sequence {fn(s)} converges for every s to a function f (s) which is
continuous at s = 0. The limiting function is then the characteristic function of F(x).

We can therefore focus on the analysis of the passage to the limit h → 0 of the following
spectral representation, conditional on a time t ,

lim
h↓0

1

(2π)d

∫

[− π
h
, π

h
]d

eqn1 ···nd
(s)t eis(y−x)ds = 1

(2π)d

∫

Rd

ϕXeis(y−x)ds. (106)

Theorem 17 (Convergence of the d-dimensional approximated operator) For all x

we consider the sequence of distribution functions P
(n1···nd )
t (x, y) and by {eqn1 ···nd

(s)t } the
sequence of the corresponding characteristic functions. The sequence {Fn(x)} converges
weakly to a distribution function F(x) if, and only if, the sequence {eqn1 ···nd

(s)t } converges
for every s to a function ϕX which is continuous at s = 0. The limiting function is then the
characteristic function of F(x).

Proof We prove convergence and characterization of the rate of convergence for d = 1
and d = 2 being the proof in higher dimensions just an algebraic extension of the case of
d = 2. The calculation of qn1···nd

(s)t is straightforward and it is just an application of the
shift theorem. For d = 1

Fn(A
(n1)
X1

)(f )(s) =
∑

x∈H
Fs,k

(

μ∇h1(f )(x) + σ 2

2
�h1(f )(x)

)

Fn(μ∇h1)(f )(s) =
∑

x∈H
Fs,kμ∇h1(f )(x)

= μ

n−1∑

k=0

Fs,k

f (kh + h1) − f (kh − h1)

2h1

= μ

2h1

(

eih1s
n−1∑

k=0

Fs,kf (kh) − e−ih1s
n−1∑

k=0

Fs,kf (kh)

)

= μ
eih1s − e−ih1s

2h1
F (f )(s) = −iμ

sin h1s

h1
F (f )(s).

Doing a similar calculation for F ( σ 2

2 �h1)(f )(s) we obtain

qn1(s) =
(

−iμ
sin h1s

h1
+ σ 2 cos(h1s) − 1

h21

)

(s). (107)
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We have

P
(n1)
t (x, y) = p(n1)(y ≤ Xt ≤ y + h1|X0 = x)

= 1

n1

∑

s∈Bn

eqn1 (s)t eis(y−x).

Without loss of generality, this result is a particular case of the continuity theorem (16),
and the convergence error of (Eq. 105) is measured in correspondence of saltus point of
the distribution, see Th.(15). Lets consider the integral on the left end side of (Eq. 106) for
d = 1 and it can be rewritten as

1
2π

∫ π
h1

− π
h1

e

(

−iμ
sin h1s

h1
+σ 2 cos(h1s)−1

h21

)

(s)t

eis(y−x)ds

= 1
2π

∫ −K

− π
h1

e

(

−iμ
sinh1s

h1
+σ 2 cos(h1s)−1

h21

)

(s)t

eis(y−x)ds

+ 1
2π

∫ K

−K
e

(

−iμ
sinh1s

h1
+σ 2 cos(h1s)−1

h21

)

(s)t

eis(y−x)ds

+ 1
2π

∫ π
h1

K e

(

−iμ
sinh1s

h1
+σ 2 cos(h1s)−1

h21

)

(s)t

eis(y−x)ds

and it is possible to make the first and the third integral on the right end side arbitrary
small by choosing a large number K > 0 and by selecting h1 > 0 sufficiently small. If we
consider the second integral we can analyze the behaviour as h1 → 0. We notice that the
function

lim
h1→0

(

iμ
sinh1s

h1

)

= lim
h1→0

iμ
s

s

sinh1s

h1

= lim
h1→0

isμ
sinh1s

h1s
= isμ

and

lim
h1→0

(

σ 2 cosh1s − 1

h21

)

= lim
h1→0

σ 2 s2

s2

cosh1s − 1

h21

= lim
h1→0

σ 2s2
cosh1s − 1

(h1s)2
= −1

2
σ 2s2.

We would like to examine in more details the order of convergence of the above functions
as h1 → 0. For the limit

lim
h1→0

sinh1

h1
= 1,

using sin h1 = h1 − h31
6 + . . ., we get

sinh1

h1
− 1 = sinh1 − h1

h1
= −h31

6h
+ . . . = −h1

2

6
+ . . .
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we find an order of O(h21). In the same way using cosh1 = 1− h21
2 + . . ., we can assess the

order of convergence of the limit

lim
h1→0

1 − cosh1

h21

= 1

2
,

1 − cosh

h21

=
1 −

(

1 − h21
2 + . . .

)

h21

= 1

2
+ . . .

and convergence order of O(1). Therefore the order of convergence is at most O(h21). This
results can be extended to all the marginals of a d-dimensional approximated operator in
case of independent marginals. In the presence of correlation we have the presence of mixed
derivative terms. For d = 2 the calculation of qn1n2 is as follows:

Fn

(
A

(n1n2)
X1,X2

)
(f )(s)

= Fn

(
A

(n1)
X1

⊕ A
(n2)
X2

+ A
(c)(n1n2)
X1,X2

)
(f )(s)

=
∑

x1∈X1

∑

x2∈X2

Fs,k

((

μ1∇h1 + σ 2
2

2
�h1 + μ2∇h2 + σ 2

2

2
�h2 + ρσ1σ2∇h1∇h2

)

(f )(x)

)

.

(Eq. 108) is equivalent to

Fn

(
A

(n1)
X1

⊕ A
(n2)
X2

+ A
(c)(n1n2)
X1,X2

)
(f )(s)

= Fn

(
A

(n1)
X1

)
(f )(s) ⊕ Fn

(
A

(n2)
X2

)
(f )(s) + Fn

(
A

(c)(n1n2)
X1,X2

)
(f )(s).

Therefore it is sufficient to analyze the term

Fn

(
A

(c)(n1n2)
X1,X2

)
(f )(s), (108)

where the operator A
(c)(n1n2)
X1,X2

was introduced in proposition 1 as the correlation operator.

Fn

(
A

(c)(n1n2)
X1,X2

)
(f )(s)

=
∑

x1∈X1

∑

x2∈X2

Fs,k

(
ρσ1σ2∇h1∇h2

)
(f )(x)

)

= ρ12σ1σ2
1

h1h2
(cos(h1s1 + h2s2) − cos(h1s1) − cos(h2s2) + 1) ,

because of the mixed derivative term approximation of proposition 1. The following
approximations hold:

cos(h1s1 + h2s2) − 1 = −h22s
2
2

2
− s1s2h1h2 − h21s

2
1

2
+ h21s

2
1h

2
2s

2
2

4
+(1 + h1 + h21)O(h2)

3 + O(h)3,

cos(h1s1) − 1 = − s21h
2
1

2
+ O(h1)

3,

cos(h2s2) − 1 = − s22h
2
2

2
+ O(h2)

3.
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Therefore,

lim
h1,h2→0

ρ12σ1σ2
1

h1h2
(cos(h1s1 + h2s2) − cos(h1s1) − cos(h2s2) + 1) = −ρ12σ1σ2s1s2,

(109)
that is exactly the characteristic function of the covariance term for the bivariate normal
distribution at time t . Given this proof, extension to higher dimensions is algebraically
straightforward.

4.2 Weak Convergence of the Approximating Chain Using the Martingale
Central Limit Theorem

Here we present a weak convergence result for the multivariate diffusion approximation
introduced in Section 3.2, along the lines of the general diffusion convergence Theorem
4.1 at pag. 354 of Ethier and Kurtz (1985). The convergence result we propose is based on
the arguments belonging to the formulation of diffusion theory in terms of the martingale
problem, see (Stroock and Srinivasa Varadhan 1997), which requires minimal assumptions
about the smoothness of the coefficients of the SDE and can be seen as an extension of the
martingale central limit theorem [Martingale CLT, Th. 1.4, (Ethier and Kurtz 1985), pag.
339]. The results are mainly obtained by compactness arguments which do not require a
priori regularity. These arguments are the same as those devised to provide an existence
theory for the multidimensional SDE under consideration, and they just refer to properties
of the SDE coefficients, that are the prerequisites for our analysis as per Section 2.

Theorem 18 Let � = ((�ij )) be a continuous, symmetric,nonnegative definite, d × d

valued function on R
d and let b : Rd → R

d be continuous. Let

A =
{(

f,Gf = 1

2

∑
�ij ∂i∂j f +

∑
bi∂if

)

: f ∈ C∞
c (Rd)

}

(110)

and suppose that the CRd [0, ∞) martingale problem for A is well posed. For n = 1, 2, . . .
let Xn and Bn be processes with sample paths in DRd [0, ∞) and let An = ((A

ij
n )) be a sym-

metric d×d matrix-valued process such thatAij
n has sample paths inDR[0, ∞) andAn(t)−

An(s) is non negative definite for t > s ≥ 0. Set F n
t = σ (Xn(s), Bn(s), An(s) : s ≤ t).

Let τ r
n = inf{t : |Xn(t)| ≥ ror|Xn(t−)| ≥ r}, and suppose that

Mn = Xn − Bn (111)

and
Mi

nM
j
n − A

ij
n (112)

are F n
t -local martingales, and for each r > 0, T > 0, and i, j = 1, 2, . . . , d

lim
n→∞E

[

sup
t≤T ∧τ r

n

∣
∣
∣Xn(t) − Xn(t−)

∣
∣
∣
2
]

= 0, (113)

lim
n→∞E

[

sup
t≤T ∧τ r

n

∣
∣
∣Bn(t) − Bn(t−)

∣
∣
∣
2
]

= 0, (114)

lim
n→∞E

[

sup
t≤T ∧τ r

n

∣
∣
∣A

ij
n (t) − A

ij
n (t−)

∣
∣
∣
2
]

= 0, (115)

sup
t≤T ∧θr

n

∣
∣
∣B

i
n(t) −

∫ t

0
bi(Xn(s))ds

∣
∣
∣

p−→ 0 (116)
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and

sup
t≤T ∧θr

n

∣
∣
∣A

ij
n (t) −

∫ t

0
�ij (Xn(s))ds

∣
∣
∣

p−→ 0. (117)

Suppose that P(X(n)(0)−1) ⇒ ν, with ν the starting distribution. Then X(n) ⇒ X , with X

the solution of the martingale problem for (A, ν).

Proof Due to the fact that the martingale problem for A is well posed, the process M(t) =
X(t) − B(t) is a martingale. By the optional stopping theorem, see (Rogers and Williams
2000), if τ is a stopping time also M(τ) is a martingale. In particular this is valid also for
the stopping time τ r

n = inf{t : |Xn(t)| ≥ ror|Xn(t−)| ≥ r}. By (Eq. 111) the process
Mn(t) = Xn(t)−Bn(t) is a martingale. Relatively compactness properties of Mn(t) implies
relatively compactness of Xn(t) and Bn(t) and therefore for Xn(t ∧ τn) and Bn(t ∧ τn) as
in Eqs. (113) and (114) respectively. This extends also to the stopped martingale Mn(t ∧
τn ∧ τa) where τa = inf{t : Aii

n (t) > t sup|x|≤r aii (x) + 1, for some i}. Furthermore relative
compactness in a set C is a condition equivalent to the condition that each sequence in C

contains a convergent subsequence, see for example (Billingsley 1999). This means that
every subsequence Xnk

(t ∧ τ r
n) ⇒ Xr̄(t ∧ τ r ), where τ r = inf{t : |Xr̄(t)| ≥ r}, for all

r̄ ≥ r > 0 Therefore the stopped processes

Mr̄(t ∧ τ r ) = Xr̄(t ∧ τ r ) −
∫ t∧τ r

0
b(Xr̄ (s))ds (118)

Mr̄
i (t ∧ τ r )Mr̄

j (t ∧ τ r ) −
∫ t∧τ r

0
aij (X

r̄ (s))ds (119)

are martingales and by Ito’s lemma

f (Xr̄(t ∧ τ r )) −
∫ t∧τ r

0
Af (Xr̄(s))ds (120)

is a martingale for each f ∈ C∞
c (Rd), and Af (Xr̄(s)) is the approximated infinitesimal

generator applied to the function f . In particular if the martingale problem is well posed
uniqueness argument for the solution hold and hold also for the solution for the stopped
problem, hence

Xn(t ∧ τ r ) ⇒ X(t ∧ τ r ) (121)
for all r . Also r → ∞ implies τ r → ∞. Therefore Xn → X.

5 Application to the Solution of Multi-Dimensional SDEs

In this section we are going to apply the results developed in the previous sections to calcu-
late the approximate solution of a multi-dimensional SDE, as per Eq. 1. To achieve this in a
manner that can then be trivially generalized to more complex higher dimensional settings
it suffices to illustrate the process on a simple representative toy example.

Let us consider the following pair of stochastic differential equations,

dXt = (θ − Xt)dt + σ1dW
(1)
t (122)

dYt = μdt + σ2dW
(2)
t (123)

where θ ≥ 0, σ1 > 0, μ ≥ 0, σ2 > 0 are real-valued parameters, the initial conditions
X0 = x0, Y0 = y0 hold, andW(1) andW(2) are correlatedWiener processes with correlation
coefficient ρ, i.e. E[W(1)

t W
(2)
t ] = ρt .
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In this case of time-hogeneous correlated diffusion processes of Eq. 122 and function f =
f (x, y) that are twice differentiable with compact support, the Markov generator A is given
by

Af = (θ − x)
∂f

∂x
+ σ 2

1
∂2f

∂x2
+ μ

∂f

∂y
+ σ 2

2
∂2f

∂y2
+ ρ

∂2f

∂x∂y
(124)

We are interested in calculating the transition probability p that satisfies the partial
differential equation (FKE)

∂p

∂t
+ Ap = 0 (125)

with starting conditions p(z, t0; z′, t0) = δ(z − z′), with z = (x, y), where δ is the Dirac
delta function and the operator A acts on the coordinates z.
In order to approximate the multi-dimensional diffusion process Zt = (Xt , Yt ) with a
Markov chain Z(n), we follow the algorithm below based on the theory and results of the
previous sections.

Algorithm: Computational Implementation of Mimicking CTMC Process

STEP 1 Define the state-space for the CTMC Z(n).
This implies that we need to define a discrete state
space for each dimension. A grid X := x1, . . . , xnx ∈ R for
the chain X(nx) with nx ∈ N elements, such that xi < xj for
any integers 0 ≤ i < j ≤ nx . Likewise, we generate a grid
Y := y1, . . . , yny ∈ R for the chain Y (ny) with ny ∈ N elements.

STEP 2 Approximate the infinitesimal generator A of Eq. (124) as follows:

A ≈ Anxny = Any ⊕S {Anx

X|Y }T (126)

where:

2.1 The entries of the generator matrix Any are
computed by locally solving the system of Eq.
(127) for the second equation in Eq. (122)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a(y1, y2) = a(yny , yny−1) = 0,

a(yi, yi+1) = 1
2

(
μ
hy

+ σ 2
2

h2y

)

,

a(yi, yi−1) = 1
2

(
σ 2
2

h2y
− μ

hy

)

,

a(yi, yi) = −(a(yi, yi−1) + a(yi, yi+1)),

(127)

with hy = yny −y1

ny
and − σ 2

2
h

≤ μ ≤ σ 2
2
h
. However, the discrete

state space Y does not need to be uniform.
2.2 Each conditional infinitesimal generator matrix

of the sequence {Anx

X|Y } can be computed by locally
solving the system of Eq. (57) The conditional
approximated infinitesimal generator A

(n1)
X|Y is defined

by the sequence of operator matrices
{
A

(n1)
X|Y=yj

}
∈ R

n1×n1 ,
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yj ∈ Y each of whose entries are obtained according
to local moment matching by:

A
(n1)
X1|X2=yj

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(x1, x2) = a(xm, xm−1) = 0,

a(xi , xi+1)= 1
2

(
μ1(xi )+ρ12(xi ,yj )

σ1(xi )

σ2(yj )
(yj −μ2(yj ))

h
+ σ 2

1 (xi )(1−ρ2
12(xi ,yj ))

h2

)

,

a(xi , xi−1)= 1
2

(
σ 2
1 (xi )(1−ρ2

12(xi ,yj ))

h2
− μ1(xi )+ρ12(xi ,yj )

σ1(xi )

σ2(yj )
(yj −μ2(yj ))

h

)

,

a(xi , xi )=−(a(xi , xi−1) + a(xi , xi+1)),

(128)

for all yj ∈ Y, xi ∈ X, with − σ 2
k (xi )

h
≤ μk(xi) ≤ σ 2

k (xi )

h
for k =

1, 2, −1 ≤ ρ12(xi, yj ) ≤ 1, and a(xi, xj ) ≥ 0 for all i �= j .

STEP 3 Compute the transition probability using the generator matrix of Eq. (126) via
the discretization as follows:

3.1 Compute the discretized form exactly as follows
(exact in asymptotic weak convergence sense)

Pt = etA ≈ etAnxny = e
tAny ⊕S {Anx

X|Y }T (129)

3.2 Alternatively, make the second stage
approximation for a the most efficient
approximation using the following additional
rank 1 approximation. Where we can approximate
the computation of the transtion probability of
Eq. (129) further

Pt ≈ etAny ⊗S e
t{Anx

X|Y }T (130)

Remark 6 Although the transition probability obtained from Eq. (130) is
approximated, its computation is faster than the one calculated using Eq. (129)

Fig. 2 Approximated transition probabilities computed using the above algorithms with the suggested dif-
fusion parameters with time t = 1. On the left hand side the transition probability corresponding to

e
tAny ⊕S {Anx

X|Y }T . In the middle we plot the transition probability corresponding to etAny ⊗S e
t{Anx

X|Y }T , there-
fore simplifying the matrix exponential problem from 2-D into two 1-D problems, and such approximation
is numerically faster than the computation of the exponential of the corresponding 2-D matrix. On the right
end side we plot the difference of the two obtained transition probability kernels
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because the problem of matrix exponentiation is one dimentional instead of
bidimensional.

5.1 2D SDE Case Study and Analysis of Results

We compute the joint transition densitiy for the coupled process (X1(t), X2(t)) using
the following parameters for the first marginal process (μ1, σ1) = (0.02, 0.4), and these
parameters (μ2, σ2) = (0.03, 0.4) for the second process, with ρ1,2 = 0.6, t = 1, and
(X1(0),X2(0)) = (0, 0). Computational results are shown above in (Fig. 2).

We propose in (Fig. 3) theMATLABcode that closely follow the steps of the above algorithm:

Fig. 3 Computation of the approximated transition density for two coupled Diffusions by tensor approximation
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6 Conclusion

In this paper we investigated aspects of semimartingale decompositions, approximation
and the martingale representation for multidimensional correlated Markov processes. We
formulated a new interpretation of the dependence among processes using the martingale
approach. We showed that it is possible to represent, in both continuous and discrete space,
that a multidimensional correlated generalized diffusion is a linear combination of processes
that originate from the decomposition of the starting multidimensional semimartingale.
This result not only reconciles with the existing theory of diffusion approximations and
decompositions, but defines the general representation of infinitesimal generators for both
multidimensional generalized diffusions and, as we demonstrated, also for the specification
of copula density dependence structures. This new result provides immediate represen-
tation of the approximate solution for correlated stochastic differential equations. We
showed desirable convergence results for the proposed multidimensional semimartingales
decomposition approximations.
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