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ABSTRACT 

Systemic sclerosis (SSc) is a systemic autoimmune and connective tissue disorder associated 

with the human leukocyte antigen (HLA) locus. However, the functional relationship between 

HLA gene(s) and disease development remains unknown. To elucidate major 

histocompatibility complex (MHC)-linked SSc genetics, we performed genotyping of 

MHC-borne microsatellites and HLA-DPB1 alleles using DNA obtained from 318 

anti-topoisomerase I antibody-positive patients and 561 healthy controls, all of Japanese 

descent. Those results revealed 2 MHC haplotypes associated with SSc. Exome sequencing 

and targeted analysis of these risk haplotypes identified rs17847931 in retinoid X receptor 

beta (RXRB) as a susceptibility variant (P=1.3×10−15; odds ratio (OR)=9.4) with amino acid 

substitution p.V95A on the risk haplotype harboring HLA-DPB1*13:01. No identical variant 

in the other haplotype including DPB1*09:01 was observed, though that haplotype also 

showed a significant association (P=8.5×10−22; OR =4.3) with SSc. Furthermore, the number 

of risk factors was shown to be a predominant factor, as individuals with 2 factors had 

elevated risk (P=6.7 × 10−13; OR=30.2). We concluded that RXRB may be involved in 

anti-fibrotic activity in skin and chromatin remodeling. 
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INTRODUCTION 

Systemic sclerosis (SSc, MIM #181750) is a systemic autoimmune and connective tissue 

disorder (Nikpour et al., 2010) resulting in clinically heterogeneous symptoms that range from 

limited skin involvement to diffuse skin sclerosis with severe internal organ involvement 

(Jimenez and Derk, 2004). SSc patients are classified into 2 clinical subgroups; limited 

cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc), with those in the latter associated 

with distinct clinical complications and prognosis (Gorlova et al., 2011). SSc patients carry 

different auto-antibodies, including anti-DNA topoisomerase I (ATA) and anti-centromere 

auto-antibodies (LeRoy and Medsger, 2001), with ATA found in approximately 40% of all 

patients with SSc (Hasegawa et al., 2013), though more frequently in those with dcSSc as 

compared to lcSSc (Hasegawa et al., 2013). Furthermore, SSc occurs significantly more 

frequently in families with scleroderma than in the general population (Arnett et al., 2001). 

 Several autoimmune diseases, such as rheumatoid arthritis are genetically associated 

with alleles of human leukocyte antigen (HLA) genes within the major histocompatibility 

complex (MHC) on chromosome 6p21.3. Also, associations between SSc and HLA genes, 

especially class II, have been observed in various ethnic groups (Kuwana et al., 1999; Arnett 

et al., 2010). However, those studies did not elucidate whether HLA genes themselves or 

other MHC-embedded genes are SSc susceptibility factors. Genome-wide association studies 

of SSc performed in Europe also indicated that the strongest association with SSc is located in 

the HLA class II region (Allanore et al., 2011; Gorlova et al., 2011), though they did not 

identify the actual MHC-linked SSc susceptibility gene. Therefore, the genetic architecture of 

SSc in the MHC region remains unclear. 

The genetic nature of the MHC region shows that multiple haplotypes with the 

highest degree of diversity are often maintained in the population by balancing selection, with 

positive selection occasionally generating long-range haplotypes. Thus, the strong linkage 
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disequilibrium (LD) observed even between distant loci within MHC can mask discrimination 

between a bona fide variant associated with disease and a variant influenced by LD 

(Kawashima et al., 2012; de Bakker et al., 2006). Microsatellites have higher mutation rates 

than single nucleotide polymorphisms (SNPs), which can result in break-up of apparently 

immutable common SNP haplotypes into lower frequency haplotypes, thereby facilitating 

identification of functional variants with intermediate or even rare frequencies (Gulcher, 

2012). Therefore, multi-allelic microsatellites may be effective for pinpointing rare 

disease-associated haplotypes in the MHC. 

Using a strategy based on these factors, we designed the present study with specific 

steps to identify SSc susceptibility variants. First, we performed association analysis using 

microsatellites for the MHC region with DNA obtained from Japanese SSc patients with ATA 

and healthy controls, and identified haplotypes associated with SSc. Next, we sequenced all 

exons of the MHC region into SSc candidate haplotypes (selected subjects with risk 

haplotype) and several control haplotypes (selected subjects without risk), then extracted 

variants that were included in only identical risk haplotypes from all variants detected by this 

sequencing method. Finally, we genotyped the candidate variants with identical risk 

haplotypes in all subjects, and re-estimated the haplotypes between the variants and 

microsatellites. Based on this result, we evaluated which locus generated haplotype 

associations with SSc, in other words, which locus contributes to elevate the frequencies of 

risk haplotypes in SSc patients. Consequently, we identified a SSc susceptibility variant 

(rs17847931) in retinoid X receptor beta (RXRB), a gene thought to be involved in 

anti-fibrotic activity in the skin as well as chromatin remodeling.  
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RESULTS 

Association Analysis Using Multi-Allelic Loci within MHC Region 

In all microsatellites, allele 171 of D6S1583 showed the strongest association with SSc [odds 

ratio (OR) = 4.06, 95% confidence interval (CI) = 3.03–5.44, P = 8.66×10-23] and allele 162 

of D6S1701 showed the highest OR with statistical significance (OR = 5.08, 95% CI = 2.71–

9.51, P = 9.60×10-08) (Figure 1a, b; see Supplementary Table S1 online). Moreover, D6S2731 

and D6S1701 contained 2 alleles that showed strong associations with SSc (Figure 1a, b; see 

Supplementary Table S1 online). These loci were located in the HLA class II region. Among 

the HLA genes, these loci were the closest to HLA-DPB1, which also showed a significant 

association with SSc (Zhou et al., 2009; Arnett et al., 2010; Kuwana et al., 1999). Thus, we 

genotyped HLA-DPB1 in the same subjects in addition to these microsatellites, which 

demonstrated that the alleles DPB1*09:01 (OR = 3.79, 95% CI = 2.85–5.02, P = 1.86×10-22) 

and *13:01 (OR = 7.40, 95% CI = 4.13–13.2, P = 6.80×10-15) each had a significant 

association with SSc (see Supplementary Table S2 online). 

 

Associations between SSc and Haplotypes Defined by Multi-allelic Loci 

Haplotype analysis is essential for genetic studies within the MHC region, as that exhibits a 

higher level of diversity and more extended LD than any other loci (de Bakker et al., 2006). In 

the present study, we detected multiple alleles that showed significant associations with SSc 

in a single locus. Therefore, we speculated that DPB1*09:01 and *13:01 are harbored in 

different haplotypes showing an association with SSc. First, we attempted to extract 2 alleles 

showing LD to DPB1*09:01 and *13:01 in each multi-allelic locus, for which the association 

between SSc and alleles that showed the highest D′ value for HLA-DPB1*09:01 (association 

1) or *13:01 (association 2) in each locus was evaluated (Figure 1a, b; see Supplementary 

Table S1 online). These results suggested that at least 2 haplotypes associated with SSc are 
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harbored in the HLA class II region. 

To define haplotypes associated with SSc, we explored segments that exhibited 

strong LD (r2 >0.7) to DPB1*09:01 or *13:01, which indicated that one (association 1) was 

present at 6 loci (D6S1100i, DPB1, D6S0512i, D6S2731, D6S1701, D6S1583), while the 

other (association 2) was present at 2 loci (DPB1, D6S2731) (Figure 1c, d). Moreover, we 

estimated the haplotypes for 6 loci using PHASE v2.1.1 (Stephens and Donnelly, 2003). Only 

2 haplotypes showed significant associations with SSc among approximately 400 examined 

(including rare haplotypes), both of which harbored DPB1*09:01 [risk haplotype 1 (RH1)] 

and *13:01 (RH2), as expected (Table 1).  

 

Sequencing of Risk Haplotypes 

Next, we determined whether SSc susceptibility variants were harbored in the SSc risk 

haplotypes. For this, we sequenced 13 non-risk, 9 RH1, and 12 RH2 chromosomes 

(haplotypes) in the patient samples using whole-exome sequencing (see Supplementary Table 

S3 online). Among 5077 variants detected within the MHC region, we attempted to detect 

variants that were identical to each risk haplotype, but not observed in non-risk haplotypes. 

As a result, 37 variants were detected in RH1 and 11 in RH2 (Figure 1a, b; see Supplementary 

Figure S1 online), all of which were single nucleotide variants (SNVs). Based on pairwise LD 

analysis of 89 Japanese individuals obtained from the 1000 Genomes Browser 

(http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/), we also confirmed that 37 

SNVs and 11 SNVs exhibited strong LD in 1702 kb (chr 6: 31080320–32782897) (RH1) and 

124 kb (chr 6: 33048348–33172755) (RH2) (Figure 1a, b; see Supplementary Figure 2, 3 

online). Among these, 10 and 2 SNVs conferred amino acid substitutions in RH1 and RH2, 

respectively (Table 2, see Supplementary Figure S1 online). Six non-synonymous SNVs that 

mutually exhibited strong LD in BTNL2 were considered to be candidates for SSc 
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susceptibility in RH1, however, it is unlikely that these are related to a predisposition towards 

SSc, because the allele frequencies in Japanese are actually similar with the frequency of RH1 

in the patient subjects enrolled in this study (Table 1, 2). Moreover, the DPB1-F64Y 

substitution produced by allele A of rs1042117 is unique among all DPB1 alleles observed in 

a Japanese population, whereas in other ethnic groups this substitution is not specific for 

DPB1*13:01, but is instead shared with several DPB1 alleles (see Supplementary Table S4 

online). As a result, we estimated that 4 variants (rs2270191, rs117951780, rs1063646, 

rs79517313) were candidate loci for SSc in RH1 and 1 (rs17847931) in RH2. 

 

Identification of Susceptibility Variant(s) 

Next, to confirm that the SNVs were harbored within each risk haplotype, candidate SNVs of 

all patients and controls were genotyped using the Sanger sequencing method. We selected 

rs117951780 located in CDSN to represent the 4 variants that exhibited strong LD in RH1 as 

well as rs17847931 located in RXRB in RH2 (Table 2, see Supplementary Figure 2, 3 online). 

Both of these non-synonymous SNVs were significantly associated with SSc (rs117951780: 

OR = 2.66, 95% CI = 2.04–3.47, P = 1.06E-13; rs17847931: OR = 9.44, 95% CI = 4.97–17.9, 

P = 1.30E-15) (see Supplementary Table S5 online). We evaluated these results based on a 

haplotype analysis technique that included the SNVs and microsatellites to determine whether 

both SNVs predisposed carriers toward SSc, which indicated that allele A of rs117951780 

was not a primary factor for SSc in RH1, because a haplotype with allele G was also found to 

be associated with SSc (Table 3). Thus, the other 3 SNVs (rs2270191, rs1063646, 

rs79517313) that exhibited strong LD with rs117951780 (see Supplementary Figure 2, 3 

online) were also not considered to be related to SSc susceptibility. As a result, a 

susceptibility variant in RH1 was not identified in this study. In contrast, of all haplotypes in 

RH2, one haplotype with allele C of rs17847931 was found to be significantly associated 
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with SSc (OR = 9.44, 95% CI = 4.97–17.9, P = 1.30E-15) (Table 3), and was included with 

DPB1*13:01 and allele 214 of D6S2731 (Table 3). While allele C of rs17847931 was shown 

to be a candidate factor of SSc susceptibility, DPB1*13:01 and allele 214 of D6S2731 were 

also significantly associated with SSc. Accordingly, this analysis could not identify which 

allele on this haplotype predisposes individuals to SSc. However, the haplotype with allele C 

of rs17847931 was shown to never be combined with any alleles except for DPB1*13:01 and 

allele 214 of D6S2731 (Figure 2, Table 3). Conversely, haplotypes harboring DPB1*13:01 

and/or allele 214 of D6S2731 combined with both alleles for rs17847931 (Figure 2, Table 3). 

Moreover, no recombinant was observed in any haplotype that harbored allele C of 

rs17847931 within the 3 loci DPB1, rs17847931, and D6S2731, though several recombinants 

in haplotypes with allele T of rs17847931 were detected (Figure 2). Thus, allele C of 

rs17847931 recently emerged in the haplotype that includes DPB1*13:01 and allele 214 of 

D6S2731, and may have an increased frequency with the haplotype. Furthermore, alleles of 

loci adjacent to rs17847931 also exhibited increased frequency in the patient group, possibly 

due to hitchhiking (Figure 1, see Supplementary Table S1 online). We cannot completely 

exclude the possibility of intergenic variants with SSc susceptibility based on the results of 

this study. However, the OR value for rs17847931 identified by exome sequencing was 

approximately equal to the RH2 value defined mainly by intergenic markers (Table 1 and 3, 

Figure 2). If an intergenic variant associated with SSc was within the RH2 value, then the risk 

would be lower as compared to that for RH2. Thus, there were no intragenic variants with 

stronger risk than the susceptibility variant rs17847931 within RH2. As a result, we 

concluded that allele C of rs17847931 in RXRB is the primary allele associated with SSc.  

 

Association Between Number of Risk Factors and SSc 

To better understand how RH1 and allele C of rs17847931 may influence an individual’s risk 
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for SSc, we investigated the associations based on diplotypes and number of risk factors. 

Twenty of the SSc patients had both risk factors, whereas individuals who harbored both risk 

factors were never detected in the control group (see Supplementary Table S6 online), 

implying that these are strongly related to a predisposition for SSc. Our analysis based on the 

number of risk factors indicated that >50% of SSc patients had 1 or more risk factors (OR = 

6.16, 95% CI = 4.44–8.60, P = 3.83E-32), while patients with 2 risk factors had higher OR 

values (OR = 30.2, 95% CI = 7.17–127, P = 6.73E-13) (Table 4). These results demonstrated 

that the number of risk factors within the MHC region is strongly related to SSc, indicating 

that other factors in RH1 leading towards a predisposition for SSc may be discovered in 

future studies. 

 

Evaluation of impact allele C of rs17847931 on RXRB function using in silico analysis 

RXRs are mainly comprised of three domains; the N-terminal domain (NTD), where an 

amino acid with substitution by the allele C of rs17847931 is located, the DNA binding 

domain (DBD), and the C-terminal ligand binding domain (LBD). The NTD is highly 

variable in terms of size and sequence among RXRs, and lacks a fixed tertiary structure, thus 

is termed an intrinsically disordered region. The NTD provides interaction surfaces for 

transcriptional co-regulatory proteins and protein binding to NTD mediates transcriptional 

activation of RXR receptors after undergoing a disorder-to-order transition (Kumar and 

McEwan, 2012). 

To understand the influence of the substitution p.V95A (c.284T>C) in RXRB, we 

first defined the intrinsically disordered regions in the amino acid sequence of RXRB using 

several methods available in PONDR (Romero et al., 2001) and DISOPRED3 (Ward et al., 

2004). All methods predicted that residue 95 was in the disordered region (see Supplementary 

Figure S4 online). Next, disordered protein-binding regions of the sequence were predicted 
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using Anchor (Meszaros, Simon and Dosztanyi, 2009; Dosztanyi, Meszaros and Simon, 2009), 

which showed that the residue at position 95 was located at the edge of the protein binding 

region from 67 to 95 (see Supplementary Table S7 online). 

 

DISCUSSION 

Previous studies have indicated that the DPB1 locus is a susceptibility gene for ATA-positive 

SSc within the MHC region, and that DPB1*13:01 is strongly associated with SSc and ATA 

in various ethnic groups (Arnett et al., 2010; Wang et al., 2014; Zhou et al., 2009). In our 

previous study and that of another group, a significant association of SSc with ATA and 

DPB1*13:01, as well as DPB1*09:01 was shown in Japanese and Korean subjects (Kuwana 

et al., 1999; Zhou et al., 2009). Other studies have also reported these associations, though 

they did not determine whether HLA or other genes generated them. In the present study, we 

used microsatellite mapping combined with risk haplotype sequencing and clearly defined 2 

genetic risk haplotypes, and also discovered at least 1 MHC-linked susceptibility variant 

(rs17847931) in RXRB related to ATA-positive SSc. 

The present results identified a factor that predisposes individuals toward SSc in RH1, 

which covers approximately 1.7 Mbp (from HLA-C to DPB1), at least within the MHC region. 

Due to exome sequencing, we might have missed a susceptibility variant for SSc in RH1 if 

that was located in intergenic or intronic segments. However, a haplotype itself is more likely 

to predispose toward SSc. The haplotype harboring DPB1*09:01 is a common long-range 

haplotype that spans the entire HLA class I and II regions, and is specific to the Japanese 

population (Okada et al., 2015). In addition, it is unlikely that a variant alone can protect a 

long-range haplotype including itself from recombination events without breaking down and 

increasing the haplotype frequency. Therefore, combinations of amino acid polymorphisms in 

multiple class I and II HLA genes may explain the risk factor for RH1 within the MHC region 
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(Okada et al., 2015). 

 RXRB is 1 of 3 retinoid X receptors (RXRs) belonging to the class of nuclear receptors, 

and mediates the effects of retinoic acid (RA) (Fitzgibbon et al., 1993). This receptor is a 

transcription factor that mediates an array of extracellular signals in a ligand-dependent 

manner to regulate the target gene by binding to response elements within the promoter 

regions of these genes (Philip et al., 2012). RXRs form homodimers or heterodimers with 

another nuclear receptor to bind RA and vitamin D (Evans and Mangelsdorf, 2014). Among 

retinoids, 9-cis RA is a high affinity ligand for RXRs (Heyman et al., 1992) and also exhibits 

a high anti-fibrotic activity in SSc fibroblasts (Xiao et al., 2011; Xiao et al., 2008). 

Homodimer formation by RXRs is induced by 9-cis RA (Zhang et al., 1992). RXRs also form 

a heterodimer with peroxisome proliferator-activated receptors (PPARs) and 9-cis RA 

regulates target genes via the PPAR/RXR complex (Kliewer et al., 1992). PPAR-γ also 

exhibits anti-fibrotic activity (Wu et al., 2009), and its mRNA/protein expression levels are 

reduced in SSc skin biopsy as well as in explanted skin fibroblast specimens (Dantas et al., 

2015; Wei et al., 2010). Thus, RXRB likely exhibits anti-fibrotic activity in skin tissues via 

agonists such as RA. 

 ATP-driven chromatin remodeling activities and co-activators that exhibit intrinsic 

histone acetyltransferase activities are both involved in transcriptional initiation triggered by 

liganded heterodimeric RAR/RXR (Dilworth et al., 2000; Dilworth et al., 1999), while 

thyroid hormone receptor-β/RXRα heterodimers also induce localized disruption of chromatin 

in a thyroid hormone-independent manner (Lee et al., 2003). Thus, RXRB is also expected to 

be shown to be involved with histone acetylation and chromatin remodeling. The histone 

deacetylase inhibitor trichostatin A has an anti-fibrogenic effect in models of 

bleomycin-induced fibrosis (Ye et al., 2014; Huber et al., 2007) and also in SSc fibroblasts 
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(Wang, Fan and Kahaleh, 2006), implying that histone acetylation induces such anti-fibrotic 

action. Histone acetylation involved with RXR may also induce anti-fibrotic action.  

 Results of our in silico analysis suggested that the p.V95A substitution may alter the 

interaction of RXRB with the co-regulatory protein. Since hydrophobicity is important for 

protein-protein interaction, its decrease from V (very strong) to A (weak) may have a notable 

affect on protein-protein binding affinity, which has an impact on RXRB functions. Therefore, 

the function of this variant in RXRB should be elucidated by functional analysis in the future. 

 To summarize, we genetically identified RXRB as a gene with a high risk for SSc 

susceptibility, which is involved with anti-fibrotic activity in skin tissue. Our findings may 

lead to new therapeutic targets; indeed, drugs targeting RXRs are among the most widely 

used and commercially successful (Evans and Mangelsdorf, 2014). Future studies of RXRB 

may identify unknown aspects of the pathogenesis of SSc, thereby facilitating development of 

new therapeutic strategies and targets. 

 

MATERIALS AND METHODS 

Study approval 

Upon the approval of the experimental procedures by relevant ethical committees at all 

universities, participants gave written informed consent in accordance with the Declaration of 

Helsinki. 

 

Study population 

  We used unrelated ATA positive SSc patients (the age of onset, median [25 - 75 

percentiles]: 48 years [34 - 59]), including 260 with diffuse cutaneous involvement and 252 

with interstitial lung disease, and healthy unrelated individuals. A total of 318 individuals 

affected with SSc and 561 unrelated healthy individuals of Japanese origin participated in this 
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study. All the patients fulfilled the new classification criteria (van den Hoogen et al., 2013). 

 

Microsatellite Genotyping 

We selected 15 microsatellites spanning 5.81 Mbp in the HLA region (see Supplementary 

Table S8 online), and performed genotyping for patients and control subjects. All of the 

physical positions of the microsatellites and other loci on chromosome 6 were based on the 

reference UCSC Genome Browser assembly (GRCh37/hg19, http://genome.ucsc.edu/). 

Forward primers in the primer sets used to amplify microsatellites were labeled by 5’ 

fluorescent FAM. Fragment analysis by capillary electrophoresis using a Thermo Fisher 

Scientific 3730 Genetic Analyzer and allele assignment using GeneMapper Software (Thermo 

Fisher Scientific) were performed as previously described (Tamiya et al., 2005). Fragment 

size was assigned to an allele name in corresponding microsatellites. 

 

HLA-DPB1 and Candidate Variants Genotyping 

Exon 2 of HLA-DPB1, and 2 variants of the CDSN (rs117951780) and RXRB (rs17847931) 

genes were sequenced using PCR-based Sanger sequencing. PCR assays were performed 

using a reaction volume of 25 µL, which contained 25 ng of genomic DNA, 0.5 U of KOD 

FX Neo (TOYOBO), 12.5 µL of 2× PCR Buffer, 5 µL of dNTP (2 mM each), and 0.2 µM 

(final concentration) of each of the primers. PCR sequencing primers and the thermal cycling 

profile are indicated in Supplementary Table S8 online. The PCR products were purified 

using AMPure XP (Beckman Coulter), according to the manufacturer’s protocol. Purification 

and sequencing of the PCR products were conducted using a BigDye Terminator v3.1 Cycle 

Sequencing kit (Thermo Fisher Scientific) with a sequencing primer (see Supplementary 

Table S9 online) and a BigDye XTerminator Purification Kit (Thermo Fisher Scientific), 

according to the manufacturer’s instructions. Automated electrophoresis was performed using 
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an ABI PRISM 3730 Genetic Analyzer (Thermo Fisher Scientific). DPB1 alleles were 

determined based on the alignment database of dbMHC. 

 

Genomic Library Construction and Sequencing 

We selected 17 subjects for exome sequencing based on haplotypes within the MHC region 

(see Supplementary Table S3 online). For exon fragment capture and sequencing, we used 

Agilent SureSelect Target Enrichment (v.5; 50 Mbp), according to the manufacturer’s 

instructions. Sequence analysis was performed using Illumina Genome Analyzer IIx or 

HiSeq2000 platforms with the paired-end sequencing protocol (2×100 bp). 

 

Analysis of Exome Sequencing Data in MHC Region 

Fastx-toolkit version 0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/index.html) was used for 

quality control of the sequencing reads. Quality passed reads were mapped to the reference 

(UCSC Genome Browser assembly GRCh37/hg19, http://genome.ucsc.edu/) using 

Burrows-Wheeler Aligner (BWA) version 0.5.9 with the default parameters (Li and Durbin, 

2009). After alignment, Sequence Alignment/Map (SAMtools) version 0.1.17 was used to 

convert the .sam file to a .bam file (Li et al., 2009), and potential PCR duplicates were flagged 

with Picard MarkDuplicates (version 1.88; http://picard.sourceforge.net/). Genome Analysis 

Toolkit (GATK, version 2.2-8) was used to perform local realignment, map quality score 

recalibration, and variant detection (McKenna et al., 2010). SNVs and indels were then 

annotated for functional consequences at gene and protein sequence levels using ANNOVAR 

(Wang, Li and Hakonarson, 2010). In the MHC region, the target of this study 

(chr6:25000001-35000000, hg19), samples from 17 selected subjects (see Supplementary 

Table S3 online) were sequenced to a mean depth of 65.1 reads, covering a mean 99.9% and 

93.5% by at least 1 and 10 reads, respectively. Functions of non-synonymous SNVs were 
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predicted using SIFT (Kumar, Henikoff and Ng, 2009), PolyPhen 2 (Adzhubei et al., 2010), 

and FATHMM (Shihab et al., 2014). 

 

Statistical Analysis 

Logistic regression models were used to assess the genetic effects of multi-allelic loci and SSc 

risk haplotypes. Comparisons of differences in genotype and haplotype frequencies were 

performed using regression analysis for log-additive models (de Cid et al., 2009). The 

unadjusted OR and 95% CI values were calculated. Analyses were conducted using the 

SNPassoc R library (de Cid et al., 2009) obtained from The Comprehensive R Archive 

Network. For these association analyses, we used Bonferroni-corrected values to address the 

problem of multiple testing with a threshold P-value of 3.07E-04 (to account for multiple 

testing of 163 alleles in 16 multi-allelic loci in the first microsatellite analysis). The exact 

P-value for the Hardy–Weinberg proportion test was simulated using the Markov chain 

method within Genepop (Rousset, 2008). PHASE v2.1.1 was used to estimate haplotypes for 

multi-allelic loci (Stephens and Donnelly, 2003). To evaluate the LD around the MHC region, 

each multi-allelic locus was regarded as an SNV (Kawashima et al., 2012). Thus, we 

extracted the allele with the highest D′ value for 2 SSc risk alleles (HLA-DPB1*09:01 and 

*13:01) from all of the alleles in each locus, and merged the other alleles. Haploview 4.2 was 

used to investigate the degree of LD for risk haplotypes (Barrett et al., 2005). P-values 

(Fisher’s exact test) and ORs were calculated for the association with SSc according to 

diplotype and haplotype numbers using the basic tool in the Comprehensive R Archive 

Network. 

 

Analysis of RXRB N-terminal domain 
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To conduct in silico analysis of disordered regions in RXRB, we obtained the amino acid 

sequence (GenBank accession: NM_021976) from the NCBI GenBank database. To predict 

intrinsic disorder regions in the sequence, we used two computational programs; PONDR 

(http://www.pondr.com) and DISOPRED3 (Ward et al., 2004). For prediction by PONDR, we 

used four different methods that are implemented within the program (Peng et al., 2005; 

Obradovic et al., 2005; Obradovic et al., 2003; Romero et al., 2001; Romero, Obradovic and 

Dunker, 1997) To predict protein-binding regions, we utilized Anchor (Meszaros, Simon and 

Dosztanyi, 2009; Dosztanyi, Meszaros and Simon, 2009). 
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TABLES 
 

 

Table 1    Associations between SSc and haplotypes defined by multi-allelic loci

Physical position1 32717094 33043703 33124074 33173650 33302306 33719206

Locus D6S1100i DPB1 D6S0512i D6S2731 D6S1701 D6S1583 Case Control L U

Risk Haplotype1 (RH1) 114 *09:01 231 210 162 171 0.226 0.069 4.36 3.18 - 5.99 8.52 x 10-22

Risk Haplotype2 (RH2) - *13:01 - 214 - - 0.090 0.011 9.31 4.91 - 17.6 1.66 x 10-15

Frequency
OR

95% CI
P

1Physical positions of loci on chromosome 6 are based on the reference UCSC (University of California, Santa Cruz) Genome Browser assembly (GRCh37/hg19) .

Abbrevations: OR, Odds ratio; CI, confidence Intervals; L, lower; U, upper; P , probability.
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Table 2    Nonsynonymous SNVs identical to risk haplotypes in exome sequenicng

Haplotype SNV Position3 Ref4 Alt5 Gene JPT HGVB CEU EA Subsititution SIFT PolyPhen 2 FATHMM 

rs2270191 31080320 C T C6orf15 (NM_014070) 0.1250 0.1197 0.0000 0.0074 exon1:c.G13A:p.V5M Tolerated Benign Tolerated

rs117951780 31084034 C T CDSN  (NM_001264) 0.1250 0.1197 0.0000 0.0086 exon2:c.G1358A:p.S453N Tolerated Possibly damaging Tolerated

rs1063646 31107648 C T PSORS1C1 (NM_014068) 0.1394 0.1228 0.1667 0.1659 exon6:c.C398T:p.P133L Tolerated Benign Tolerated

rs28362675 32362521 C A BTNL2 (NM_019602) 0.2260 0.2190 0.0000 0.0081 exon6:c.G1360T:p.G454C Tolerated Benign Tolerated

rs41441651 32363888 C T BTNL2 (NM_019602) 0.2260 0.2228 0.0000 0.0090 exon5:c.G1006A:p.D336N Tolerated Benign Tolerated

rs41417449 32364011 T C BTNL2 (NM_019602) 0.2260 0.2237 0.0000 0.0089 exon5:c.A883G:p.M295V Tolerated Benign Tolerated

rs34423804 32364046 T A BTNL2 (NM_019602) 0.2260 0.2268 0.0000 0.0089 exon5:c.A848T:p.D283V Tolerated Benign Tolerated

rs41355746 32364052 C T BTNL2 (NM_019602) 0.2260 0.2208 0.0000 0.0089 exon5:c.G842A:p.R281K Deleterious Probably damaging Tolerated

rs78587369 32370927 G A BTNL2 (NM_019602) 0.2260 0.2196 0.0000 0.0089 exon3:c.C494T:p.T165I Tolerated Possibly damaging Tolerated

rs79517313 32713044 C T HLA-DQA2 (NM_020056) 0.1250 0.1170 0.0000 0.0081 exon2:c.C191T:p.T64M Deleterious Probably damaging Tolerated

rs1042117 33048539 T A HLA-DPB1 (NM_002121) 0.0048 0.0213 0.1111 0.0958 exon2:c.T191A:p.F64Y Tolerated Benign Tolerated

rs17847931 33167145 A G RXRB (NM_021976) 0.0048 0.0187 0.0000 0.0001 exon2:c.T284C:p.V95A Tolerated Benign Deleterious

RH1

RH2

Allele frequency1

Japanese Caucasian Prediction of deleterious SNVs2

Abbrevations: JPT, Japanese in Tokyo (1000 Genome Brouwser; http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes); HGVB, Human Genetic Variation Database (http://www.genome.med.kyoto-
u.ac.jp/SnpDB/); CEU, Utah Residents (1000 Genome Brouwser); EA, European American (NHLBI Exome Sequencing Project: http://evs.gs.washington.edu/EVS/).

5Allele identical to risk haplotype.

4Allele of the reference sequence.

3Physical positions of loci on chromosome 6 are based on the reference UCSC (University of California, Santa Cruz) Genome Browser assembly (GRCh37/hg19) .

2Deleterious SNV prediction using multiple method. See Methods.

1Known allele frequency of public database in each population.
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Table 3    Haplotype associations with SSc by candidate SNVs and multi-allelic loci

Physical position1 31084034 32717094 33043703 33124074 33167145 33173650 33302306 33719206

Locus rs117951780 D6S1100i DPB1 D6S0512i rs17847931 D6S2731 D6S1701 D6S1583 Case Control L U

A 114 *09:01 231 T 210 162 171 0.206 0.064 4.10 2.96 5.67 4.63 x 10-19

G 114 *09:01 231 T 210 162 171 0.024 0.005 4.49 1.88 10.7 7.19 x 10-04

A or G 114 *09:01 231 T 210 162 171 0.253 0.079 3.93 3.01 - 5.14 1.16 x 10-23

*13:01 C 214 0.088 0.011 9.44 4.97 17.9 1.30 x 10-15

*13:01 T not 214 0.006 0.003 1.53 0.38 6.22 1.98 x 10-01

1Physical positions of loci on chromosome 6 are based on the reference UCSC (University of California, Santa Cruz) Genome Browser assembly (GRCh37/hg19) .

Risk Haplotype2 (RH2)

Frequency
OR

95% CI
P

Risk Haplotype1 (RH1)

Abbrevations: OR, Odds ratio; CI, confidence Intervals; L, lower; U, upper; P , probability

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

26 

 

 

 

Table 4    Association between the number of risk factors and SSc

Case
(N=318)

Control
(N=561)

Case Control L U

1 138 85 0.434 0.152 4.29 3.12 - 5.91 7.55 x 10-20

1 or 2 169 87 0.531 0.155 6.16 4.44 - 8.60 3.83 x 10-32

2 31 2 0.097 0.004 30.2 7.17 - 127 6.73 x 10-13

Abbrevations: H, heterozygosity; OR, Odds ratio; CI, confidence interval; L, Lower; U, Upper; P ,
Probability

P
Number

 Number of risk
factors

Frequency
Odds
ratio

95% CI
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FIGURE LEGENDS 

 

Figure 1. Allelic association and haplotype sequencing within MHC region. 

Top figures (a, b) show association peaks for multi-allelic loci and positions of SNV loci with 

identical risk haplotypes. Black circles show P-values for allelic associations (left axis). Gray 

squares show odds ratios. Gray vertical lines show 95% confidence intervals for odds ratios 

(right axis). Red circle and square indicate allele C of rs17847931. Blue crosses show 

locations of SNVs identical to each risk haplotype (see Supplementary Figure S2, 3 online). 

Physical positions are based on the reference sequence. Bottom figures (c, d) show pairwise 

LD (r2) between alleles of multi-allelic loci. 

 

Figure 2. Haplotype structure harboring allele C of rs17847931. 

All haplotype structures harboring alleles for RH2 associated with SSc were found in 3 loci 

(DPB1, rs17847931, D6S2731) in all subjects. The same haplotypes are abbreviated as dots. 

Red alleles are those that showed a significant association with SSc in each locus and blue 

alleles represent the others. Red chromosome IDs indicate homozygotes at DPB1*13:01 and 

allele C of rs17847931. Only 1 haplotype had chromosomes containing allele C of 

rs17847931, suggesting no recombinants for the haplotype with the allele within the 3 loci. 

Haplotype and locus association indicated associations between haplotype group and SSc, and 

between risk allele and SSc in each locus in all subjects. OR, odds ratio; CI, confidence 

interval; P, probability. 
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