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Abstract 

 

Autologous airway epithelial cells have been used in clinical tissue-engineered airway 

transplantation procedures with a view to assisting mucosal regeneration and restoring 

mucociliary escalator function. However, limited time is available for epithelial cell 

expansion due to the urgent nature of these interventions and slow epithelial regeneration 

has been observed in patients. Human airway epithelial cells can be expanded from small 

biopsies or brushings taken during bronchoscopy procedures but the optimal mode of tissue 

acquisition from patients has not been investigated. Here, we compare endobronchial 

brushing and endobronchial biopsy samples in terms of their cell number and their ability to 

initiate basal epithelial stem cell cultures. We found that direct co-culture of samples with 

3T3-J2 feeder cells in culture medium containing a Rho-associated protein kinase (ROCK) 

inhibitor, Y-27632, led to the selective expansion of greater numbers of basal epithelial stem 

cells during the critical early stages of culture than traditional techniques. Additionally, we 

established the benefit of initiating cell cultures from cell suspensions, either using brushing 

samples or through enzymatic digestion of biopsies, over explant culture. Primary epithelial 

cell cultures were initiated from endobronchial biopsy samples that had been cryopreserved 

prior to the initiation of cell cultures, suggesting that cryopreservation could eliminate the 

requirement for close proximity between the clinical facility in which biopsy samples are 

taken and the specialist laboratory in which epithelial cells are cultured. Overall, our results 

suggest ways to expedite epithelial cell preparation in future airway cell therapy or 

bioengineered airway transplantation procedures. 
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Main Text 

 

Airway tissue engineering has seen the development of cell-scaffold solutions for otherwise 

intractable human disease and has seen clinical translation in compassionate cases (Badylak 

et al., 2012). Pre-clinical (Crowley et al., 2015) and early clinical work (Hamilton et al., 2015) 

suggests the importance of epithelial restoration following airway transplantation to avoid 

complications, such as recurrent infection (Zhang et al., 2015). Clinical protocols have 

recognized the importance of epithelial replacement as bioengineered airway scaffolds have 

included cultured epithelial cells or explanted airway mucosa from recipient airways (Elliott 

et al., 2012). However, a standardized method to expand these cells is lacking, largely due to 

the varied clinical scenarios in which transplantation is indicated. Such technology would 

also be invaluable to inform the development of ‘stand alone’ respiratory mucosal epithelial 

replacement treatments for a range of diseases. We and others have recently characterized 

an improved culture methodology (Chapman et al., 2010; Liu et al., 2012; Suprynowicz et al., 

2012) for human airway basal cells, the stem/progenitor cells of the human upper airways 

(Hogan et al., 2014), by co-culturing epithelial cells with mitotically inactivated 3T3-J2 feeder 

cells in medium containing the Rho-associated protein kinase (ROCK) inhibitor Y-27632 

(3T3+Y) (Butler et al., 2016; Reynolds et al., 2016). This method has clear advantages over 

the time-consuming derivation of airway epithelial cells from pluripotent stem cells and 

conventional cell culture using bronchial epithelial growth medium (BEGM) for basal cell 

expansion, owing to its capability to expand autologous primary cells from living patients in 

meaningful numbers. However, the optimal method to isolate autologous epithelial cells 

from patient biopsy samples remains unclear. Previously, this has been achieved by explant 

culture of endobronchial biopsy samples in BEGM (Butler et al., 2016) but we reasoned that 

initiation of cultures would be improved using the 3T3+Y protocol.  

 

In vitro expansion of human airway epithelial cells has been reported from both 

endobronchial brushings (Kelsen et al., 1992) and endobronchial biopsies, either as explants 

(de Jong et al., 1993) or digested to obtain a cell suspension (Goulet et al., 1996). Initially we 

sought to compare two alternative modes of tissue acquisition to derive autologous airway 

cells from patients: endobronchial biopsy and endobronchial brushing samples (Figure 1A). 

Individuals consented to either endobronchial biopsies or endobronchial brushings so we 
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compared these modes of acquisition at the population level. We found a trend towards 

there being fewer cells in biopsy samples than in brushings, although this difference was not 

statistically significant (Figure 1B). This could be explained by the inefficiency of the 

digestion protocol used to isolate cells from biopsy tissue. 

 

Next, we investigated methods to derive epithelial cell cultures from these endobronchial 

samples. We compared the expansion of epithelial cells from brushings and biopsies seeded 

directly in co-culture as well as biopsies that were digested to a single cell suspension prior 

to seeding (Figure 1C). Cells were seeded both in direct 3T3+Y co-culture and in medium 

conditioned by 3T3-J2 feeder cells (CM+Y), as it has been previously reported that secreted 

factors mediate the effects of co-culture and that direct contact with feeder cells is not 

required (Palechor-Ceron et al., 2013). Cultures could be initiated from all sample types in 

both 3T3+Y and CM+Y, although the rate of successful initiation of cultures was higher in 

those expanded in 3T3+Y for biopsy and digested biopsy samples (Figure 1D). We found that 

explant biopsies generated the fewest cells by day 12 of culture, while digestion of biopsies 

to generate a single cell suspension prior to culture generated the greatest number of cells 

in 3T3+Y (Figure 1E). Cultures derived from brushings generated an intermediate number of 

epithelial cells at this time point in 3T3+Y, suggesting that, while brushing does generate a 

cell suspension, there might be fewer basal epithelial cells present in these samples.  

Digested biopsies expanded in CM+Y generated significantly fewer cells than those 

expanded in 3T3+Y, but for biopsy explants and brushings both 3T3+Y and CM+Y generated 

similar numbers of cells at the time of first passage (Figure 1E). Importantly, flow cytometric 

analyses suggested that, regardless of derivation or culture technique, cytokeratin 5 (CK5)-

/integrin α6-expressing basal cells were selectively expanded from patient samples (Figure 

1F). 

 

After trypsinization and re-seeding (that is, at ‘passage 1’), we found that basal cells derived 

from brushings and biopsies behaved similarly (Figure 2A), with comparable numbers 

generated in either 3T3+Y co-culture or in CM+Y, although consistently fewer cells were 

expanded over the 7-day culture period in CM+Y (Figure 2B). Again, CK5/integrin α6 co-

expression was demonstrated by flow cytometry (Figure 2C). 
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Next, we used low-density colony formation assays to investigate the cause of the 

decreased numbers of basal cells expanded in CM+Y. Fewer epithelial colonies were 

generated in CM+Y than in direct 3T3+Y co-culture but separation of epithelial cells from 

feeder cells by a transwell membrane allowed colony formation that was comparable to 

direct co-culture (Figure 2D). This indicated that, while direct cell-cell contact between 

epithelial cells and feeder cells was dispensable for the enhancement of epithelial cell 

expansion, continuous production of secreted factors by feeder cells was important for 

epithelial support and could not be reproduced by feeding cells with 3T3-J2-conditioned 

medium three times per week. 

 

Finally, as organoid derivation was recently reported from cryopreserved primary tumors 

(Walsh et al., 2016), we investigated whether airway epithelial cell cultures could be 

initiated from cryopreserved patient samples. We generated cell cultures from 

cryopreserved samples with an efficiency of 89% for explant biopsies, 70% for biopsies 

digested prior to cryopreservation, 67% for biopsies digested after cryopreservation and 

100% for brushings (Figure 3A/3B). Again, we found that plating a single cell suspension, 

either by digesting a biopsy before or after cryopreservation or by using a brush biopsy, 

generated the highest number of cells (Figure 3C). To ensure that cryopreserved biopsy-

derived basal cells maintained their capacity for ciliated differentiation, we expanded cells 

for one further passage and used a 3D tracheosphere assay (Danahay et al., 2015) (Figure 

3D). 

 

To conclude, direct explant expansion of human airway epithelial cells in 3T3+Y culture 

conditions improves the early stages of culture compared with BEGM (88% culture success, 

~400,000 cells after 12 days versus 50% culture success, <250,000 cells after 2 weeks (Butler 

et al., 2016)). However, the cell yield of explant biopsies is inefficient compared with 

initiating cultures from a cell suspension, either by digestion of biopsy samples (88% culture 

success, ~4 x 106 cells after 12 days) or by collecting cells by brush biopsy (94% culture 

success, ~1.8 x 106 cells after 12 days). We estimate that isolation of cells from a cell 

suspension in 3T3+Y could reduce the time required for epithelial cell expansion to 3-4 

weeks in a case where only basal cells were to be transplanted on an adult tracheal scaffold. 

Colony formation assays suggested that airway epithelial cells required a continual supply of 
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feeder products that was not recreated by feeding three times per week with 3T3-J2-

conditioned medium: when cell-cell contact was prevented by adding 3T3-J2 feeder cells on 

a transwell membrane, epithelial colony growth was comparable to growth in direct co-

culture. Notably, our study reveals that patient tissue can be cryopreserved prior to the 

initiation of cell cultures. While cryopreservation did slow the initiation of epithelial cell 

cultures, this finding could remove the necessity for specialist clinical and research facilities 

to be in close proximity in future airway and mucosal tissue engineering clinical procedures. 

Current protocols limit the number of sites capable of performing autologous airway cell 

therapies to those with both appropriate clinical and research facilities, but samples could 

be cryopreserved for transportation, expanding the potential application of these 

techniques. Overall, our findings suggest methods to facilitate cell preparation in future 

bioengineered airway transplantation procedures. 
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Figure 1: Comparison of cell outgrowth from endobronchial biopsies and brush biopsies. 

A) Schematic representation of alternative methods to derive primary human airway 

epithelial cells from living donors. B) Total number of cells contained within endobronchial 

biopsies and brushings. Each point represents one biopsy sample from 5 donors (biopsy) or 

15 donors (brushing). C) Brightfield images showing cell outgrowth from endobronchial 

biopsies, cell suspensions produced by dispase/trypsin digestion of endobronchial biopsies 

or from endobronchial brushings in either 3T3+Y co-culture or 3T3-J2-conditioned medium + 

Y-27632 (CM+Y). Scale bars indicate 100 μm. D) Comparison of success rates of cell 

outgrowth. E) Cell counts after trypsinization of epithelial outgrowths at day 12 of culture. 

Statistical analysis was performed using a two-way ANOVA with Bonferroni post-test; * 

indicates p < 0.05; **** p<0.0001; n = 8-14 biopsy samples within each condition (with a 
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minimum of four donors sampled per group). F) Flow cytometric analysis of cell outgrowths 

for basal epithelial cell markers cytokeratin 5 (CK5) and integrin α6. Percentage represents 

mean ± SEM; n = 3-7 biopsy samples within each condition (with a minimum of two donors 

sampled per group).   
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Figure 2: Comparison of cell expansion from endobronchial biopsies and brush biopsies 

after passage. A) Brightfield images showing epithelial cell morphology of cultures derived 

from endobronchial biopsies, cell suspensions produced by dispase/trypsin digestion of 

endobronchial biopsies or from endobronchial brushings in either 3T3+Y co-culture or 3T3-

J2-conditioned medium + Y-27632 (CM+Y) after passage. Scale bars indicate 50 μm. B) Cell 

counts after trypsinization of epithelial outgrowths after 7 days of sub-culture. Statistical 

analysis was performed using a two-way ANOVA with Bonferroni post-test; * indicates p < 

0.05; ** p = 0.01, *** p<0.001; n = 7-13 donor cell cultures within each condition (with a 

minimum of 4 donors sampled per group). C) Flow cytometric analysis of passage one 

epithelial cells for basal epithelial cell markers CK5 and integrin α6.  Percentage represents 

mean ± SEM; n = 3-9 biopsy samples from 2-4 donors.  D) Representative images and 

quantification of colony-forming assays to investigate the nature of 3T3-J2 feeder cell 

support of human airway epithelial cells. Epithelial cells were grown in direct co-culture with 

3T3-J2 cells, in indirect co-culture with 3T3-J2 cells (separated by a transwell) or in 3T3-J2-

conditioned medium. Statistical analysis was performed using a Kruskal-Wallis test; * 
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indicates p < 0.05; colony-forming assays were performed in triplicate using cells derived 

from three donors. 
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Figure 3: Cryopreservation of endobronchial biopsies allows subsequent derivation of 

epithelial cell cultures. A) Comparison of success rates of epithelial cell outgrowth following 

cryopreservation. B) Brightfield images showing epithelial cell outgrowths. Scale bars 

indicate 100 μm. C) Cell counts after trypsinization of epithelial outgrowths from 

cryopreserved endobronchial biopsy/brushing samples after 14-17 days of culture (n = 6-8 

biopsy samples within each condition (with a minimum of 4 donors sampled per group)). D) 

Immunofluorescence staining showing the presence of basal cells (cytokeratin 5 (CK5); 

green) and multiciliated cells (acetylated α-tubulin (ACT); red) in tracheospheres derived 

from a biopsy (top left), a biopsy digested before cryopreservation (top right), a biopsy 

digested after cryopreservation (bottom left) and a brushing (bottom right). DAPI (blue) was 

used as a counterstain. Scale bars indicate 20 μm. 

 


