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Abstract

Recent advances in the field of neuroscience have suggested that new generation brain computer
interfaces demand a critical step in biomedical signal processing requiring online/on-chip spike
sorting. Spike sorting is the process of grouping signals from an individual neuron by grouping
action potentials (spikes) into a specific cluster based on the similarity of their shapes. The
extraction of single-unit activity by sensors at a distance from specific neurons is necessary for a
widerange of clinical applications such as disorder treatments, muscular stimulation (e.g., epidural
spinal cord stimulation for treatment accel eration), cochlear implant and neural prostheses. A brain
machine interface, for example, can potentially substitute the missing motor pathway/sensory

information between the motor cortex and an artificial limb.

With the aim of developing an energy-efficient spike sorting chip for hardware implantable
systems, thisthesisintroduces anew feature extraction method based on extremaanalysis (positive
and negative peaks) of spike shapes and their discrete derivatives. The proposed method runsin
real-time and does not require any offline training. Compared to other methods it offers a better
tradeoff between accuracy and computational complexity using online sorting. It additionally
eliminates multiplications which are computationaly expensive, power hungry and require
appreciable silicon area.

A minimum power limit for implantable neural front-end interfacesisalso derived. It involved: 1)
system level optimization - the front-end specifications including the bandwidth, data converter
resolution and sampling rate were defined by exploring the effect of the parameters on spike
sorting viaastandard spike bank; 2) block level optimization - The front-end power was minimized
by using an opamp-less cyclic converter; and 3) estimating the power limit equation of the front-
end. The new optimization methodology addresses the future demands of neura recording

interfaces.

Finally the thesis presents the design, implementation and testing of the first generation of an
adaptive spike sorting processor. It enhances the accuracy-power characteristics by employing
self-calibration of processing features. The chip prototype was fabricated in a 180-nm CMOS
technology. It achieves an overall clustering accuracy of 84.5% using a standard spike data bank

and has a power consumption of 148-uyW from 1.8-V supply voltage. The fabricated spike



processor has amost 10% higher clustering accuracy than the state-of-the-art. M easurements show
good power-performance characteristics compared to the state-of-the-art online and offline

clustering methods.
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CHAPTER 1

Introduction

1.1 Motivation

Millions of people suffer from different neurodegenerative diseases around the world [1]. The
consequence of such diseasesis the devastating | oss-of-function and resulting emotional problems
such as depression for the patients and their families. In addition, treatment of such diseases
reguires significant financial support. For example, there were approximately 45 million cases of
brain disordersinthe UK, with acost of £110 billion per annum [2]. Thefive most costly disorders
were dementia, psychotic disorders, mood disorders, addiction and anxiety disorders. In addition,
figures show that there are currently 127,000 peopl e diagnosed with Parkinson's disease in the UK
and thisis predicted to rise to 162,000 by 2020, an increase of 28% [3].

One way of curing and managing diseases is the prescription of appropriate medication. It should
be noted that this treatment method is not very effective for types of disease such as Alzheimer’s.
For example, medicines (e.g., acetylcholine) can ease the Alzheimer's symptoms and slow down
the progress of the disease, but the effect lasts for alimited time with possible side effects such as
diarrhea, vomiting, insomniaand fatigue. On the other hand, the application of therapeutic devices
in the category of aternative treatment have offered more efficient and reliable treatment (e.g., in

the case of Parkinson's disease) with promising results and fewer side effects [4].

Detailed understanding of neuron-related activities such as the generation of thoughts/
perceptions/actions remains an important challenge for improved aternative treatments using
neuroprosthetic devices. The first step in any aternative treatment is the ability of interfacing and
decoding the interactions between neurons. This ability has already significantly changed the
development path of neuroprosthetic devices. Typically neuroprosthetic devices are categorized
into: 1) decoding sensory information (stimulation patterns) which is used for rehabilitation (e.g.,
spina cord injury) or to lessen symptoms (e.g., Parkinson's); and 2) devicesfor extraction of motor
pathways for controlling assistive technologies such as a prosthetic hand. There are nearly 2

million people living with limb-loss in the United States; the main cause is diabetes [5].
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Approximately 185,000 amputations occur in the United States each year and in 2009 [6], hospital
costs associated with amputation totaled more than $8.3 billion [7]. An increased projection of 2
million cases is estimated from 2005 to 2050 for those who require amputation surgery [5].

Studiesin the field of neuroscience have suggested that the realization of neuroprosthetic devices
for motor/sensory applications are significant within the concept of brain machine interfaces
(BMIs). The BMI concept is an interpreter for analysis of the characteristics of active neuronsin
the acquired data such as the number of neurons, their firing rates and the degree of correlation
between the identified neurons. These features help to build application-specific experimental
models (e.g., for neurodegenerative disease treatments). Nowadays reliable acquisition of high
channel count recording is possible thanks to astoni shing advancements in microtechnology such
as interfacing probes and CMOS integrated circuits [8-10]. The quality of neural data monitoring
depends on the level of invasiveness including: (1) electroencephaography (EEG); (2)
electrocortiography (ECoG); and (3) multi-electrode arrays (MEAS) with sub-micron resolution

features which all will be extensively discussed in Chapter 2.

The science of integration in the field of recording technology in conjunction with nanostructure
fabrication techniques (e.g., Michigan arrays) have significantly increased the number of recording
sites. The monitoring of the brain functionality down to individual neuron level [referred to as
extracellular action potentials (EAPSs) or spikes] allows the study of the underlying network
dynamics. Implantable neura recording systems follow amodified Moore'slaw asshown in Figure
1.1, where the number of recording channels since the 1960s has exponentially grown. The number

of neurons recorded doubles every 7 years [11].

On the other hand, the vast amount of data recorded from the distributed recording sites introduce
fundamental limitations in either processing data using highly complex processing methods or
transmission of raw data to an externa processing unit. In implantable devices there is a limited
power budget which limits the type of processing that can be included. Hence high channel count
processing of data using complex methods is extremey difficult. In addition, transmitting large
guantities of data to external units results in a transmitter bandwidth bottleneck. To aleviate the
issuesrelated to high channel count monitoring schemes, reduction of the data prior to transmission
is necessary. This can be achieved by on-chip spike sorting. Spike sorting is the process of

identifying individual neurons from the multiple signals sensed by an electrode tip. This process
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Figurel.1l: Examining 56 studies of neura recording systems published over the last five decades.
(8) Number of simultaneously recorded neurons; (b) Timeline of recording technologies. Adopted
from [11].

aims to extract some distinguishable features of each neuron and to subsequently classify each
neuron to its source of origin. Theresearchin thisthesisisprimarily devoted to providing advanced
processing using low power techniques suitable for implantable on-chip spike sorting. In addition
to overcoming these issues, retaining the useful information regarding active neurons can be
utilized for application-specific BMIs. The spike sorting concept hasits inherent signal processing
complexities, hence employing traditional power hungry agorithms such as principle component
analysis (PCA) are not suitable.

1.2 Research Objectives

Within this context, there is till a gap to fill in the realization of real-time, on-chip and highly
accurate spike sorting. Processing specifications are crucial in order to fulfill closed-loop and
open-loop application requirements. For example, in a closed-loop application (e.g., spinal cord
paralysis rehabilitation), it is important to develop a highly efficient on-chip sorting method for

generating stimulation commands with minimum del ay.

The research in this thesis aims to introduce an on-chip spike sorting framework from theory to

hardware design and implementation which is scalable with the number of recording sites and has
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high efficiency in terms of resource utilization to fulfill implantable applications in the future

generation of BMIs. The research has the following objectives:

To develop afeature extraction method which outperforms the available established state-
of-the-art. In addition to power efficiency, another concern relies on the fact that the
simplicity in spike waveform transformation should not result in information fidelity loss
which would directly affects the clustering performance. Other questions considered are
about scalability and reconfigurabilty (adaptivity) of feature extraction. An online method
with low complexity is of particular interest when a large number of channels are
monitored. This thesis develops a feature extraction methodology which provides better
power-area-accuracy compared to the state-of-the-art.

To identify the neural front-end interface (NFI) theoretical minimum power limit taking
account of all the analog processing chain key stages (amplification, filtering and
digitization) together with the spike sorting process. The NFl specifications have direct
effect on the performance of the spike sorting unit. Thisstudy hasthreeimportant potentials
including: 1) proper resource utilization in NFI design parameters without compromising
the spike sorting performance; 2) pushing the power envelope towards the predicted NFI
power limit using novel digitization methods; and 3) introducing a desired power region
for future NFI design.

To propose a new processing approach in the context of adaptivity for on-chip sorting
utilization. Spike sorting is a computationally demanding signal processing technique due
to its inherent chalenges, thus developing a novel hardware implantable processing
scheme with performance self-tuning and inherent power suppression capabilities is
required. To this extent, investigation of design methods and signal processor structures
with reference to “adaptivity” or “reconfigurability” to complement the conventional
synchronous digital signal processors (DSPs) is important. An adaptive processor is
capable of shaping its parameters (behaviors) according to the property of theinput neural
data stream. Embedding the adaptive framework in the classica synchronous processing
systems makes the processor operation “signal-dependent” which offers various benefits
from accuracy tuning to asynchronous power management.
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1.3 Outline of the Thesis

Thethesis proposes an advanced and effective algorithm for improving spike sorting performance

in its major stages, namely, feature extraction and clustering. The aim is to have the least amount

of supervision and complexity whilst obtaining high clustering performance. The feature

extraction and clustering of neural waveforms and the proposed approach to improve the results at

each stage are discussed. The thesis has the following chapters:

Chapter 1 has discussed the motivation, identifying the solution and laying out the
objectives of the research.

Chapter 2 provides the necessary background information on the subject of BMI. Some
physiological background regarding the nature of neural signals is discussed. The spike
sorting is defined and explained as a key component within the context of BMIs which
gives benefit for many important applications. The chapter continues with a genera
discussion on spike sorting and highlights the state-of-the-art. Study of the published
material demonstrates a shift from traditional offline spike sorting to online sorting, and
even performing in amathematically mapped domain (e.g., compressed domain) to cluster
the recorded neural data. To understand the detailed operation of the sorting process,
relatively high level descriptions of the spike sorting algorithms for each processing unit
are presented. The inherent associated challenges in the whole processing chain confirm
the fact that the spike sorting isnot atrivial task.

In Chapter 3, a new feature extraction algorithm suitable for implantable implementation
is described. The reasoning behind the use of this method is discussed at the beginning of
this chapter and will be highlighted throughout the chapter. The proposed method is based
on extrema analysis (positive and negative peaks) of spike shapes and their discrete
derivatives. It runs in rea-time and does not require any offline training. The proposed
method was simulated and compared with other feature extraction agorithms using a
standard neural database and well-established performance metrics. Compared to other
methods it offers a better tradeoff between accuracy and computational complexity using
an online sorting clustering method.

Chapter 4 aims at developing an optimization methodology for high channel count (e.g.,
1,000) recording and processing of neura data. A NFI including alow noise amplifier, a

programmable gain amplifier and a data converter are considered to derive the theoretical
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minimum power limit of the recording system. This chapter showsthe possibility of further
power reduction through utilization of more advanced techniques (i.e., CBSC[12]) for data
converter implementation. Since the focus of this research istowards on-chip spike sorting,
the effect of NFI key parameters on spike sorting performance is quantified. This is
performed via sweeping the considered parameters (e.g., amplifier bandwidth and bit
resolution) to evauate the sorting performance. This suggests a design must not only
investigate the sensitivity of NFI parameters on sorting performance but also optimize the
use of hardware resources. Findly, the derived theoretica NFI power bound using two
types of analog-to-digital converter are analyzed without compromising the spike sorting
performance. In addition, the desired power region for the design of ultra-low power NFIs
is defined and possible developments are briefly discussed.

In Chapter 5 an adaptive processing methodology is introduced to enhance the accuracy-
power characteristics by employing self-calibration of design features. In the feature
extraction block, an adaptive version of discrete derivatives (ADDs), is used for selective
spike waveform decomposition. The ADDs are used to extract the features (positive and
negative peaks) from the desired frequency bands of the neural data. In the clustering unit,
amulti-aspect optimization methodology (power, area and accuracy) is proposed to satisfy
strict hardware implantable criteria. A register bank memory structure provides up to twice
the dynamic power reduction in the training phase compared to the conventiona
implementation. This work is the first demonstration of a spike sorting processor with
feature extraction. The number of locations for saving the spike features is reduced almost
by 8X. Thisreducesthe number of locations for buffering the cluster means. The clustering
efficiency is improved using noise-tolerant ¢/-norm distance calculation and a modified
version of O-Sort [13] for sorting threshold calibration in an iterative validation phase. The
chip prototype was fabricated in a 180-nm CMOS technology. It achieves an overall
clustering accuracy of 84.5% using a standard spike data bank and has a power
consumption of 148-pW from 1.8-V supply voltage. The new spike processor has almost
10% higher clustering accuracy than the state-of-the-art.

Chapter 6 concludes the thesiswith a special emphasis on its most important contributions.

Additionally, adiscussion of possible future work and improvements is provided.

34



1.4 List of Publications

The research conducted during this work has led to the following published papers:

1)

2)

3)

4)

5)

6)

M. Zamani and A. Demosthenous, “An Efficient, Unsupervised Clustering Method
using Extrema Sampling of Discrete Derivatives and Online Sorting for Real time Spike
Sorting in Multi-Channel Neural Recording Systems,” | EEE Transactions on Neural
Systems and Rehabilitation Engineering., vol. 22, no.41, pp. 716726, July. 2014.

M. Zamani and A. Demosthenous, “Dimensionality Reduction Using Asynchronous
Sampling of First Derivative Features for Rea- Time and Computationally Efficient
Neural Spike Sorting,” 1EEE International Conference on Electronics, Circuits, and
Systems (1 CECS), Abu Dhabi, UAE, December 2013.

Y. Scolich, M. Zamani, A. Demosthenous , and M. R. D. Rodriguez, “Hardware
Efficient Features with Application to On-chip Neural Spike Sorting,” Accepted in
I nternational Conference of the | EEE Engineering in Medicine and Biology Society
(EMBYS), Milano, Italy, August 2015.

M. Zamani and A. Demosthenous, “Design Optimization of Analog Front-ends for
Neural Recording Interfaces,” International Symposium on Circuits and Systems (I SCAS),
Lisbon, Portugal, May 2015.

M. Zamani, E. Clemens and A. Demosthenous, “Power Dissipation Limits of CBSC-
Based Pipelined Analog-to-Digital Converters,” IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), Istanbul, Turkey, October 2013, pp. 352-
357.

M. Zamani, E. Clemens and A. Demosthenous, “CBSC-Based Pipelined ADC Design
Based on Power Bound Analysis,” IEEE International Conference on Electronics,
Circuits, and Systems (I CECS), Seville, Spain, December 2012, pp. 436-439.

35



CHAPTER 2

Background and State-of-the-Art

2.1. Brain-Machine Interfaces (BM1s)

The history of recording dates back to 1791 when Luigi Galvani discovered that the living tissue
of frog muscles exhibits contraction by applying stimulating current [14]. Since that time, it has
inspired interfacing machines to human brain to either read mind or controlling it. BMI concept is
becoming pervasivein the development of “smart” biomedica devices over the past decades, with

the significant advances in the field of micro-electronics and signal processing.

BMI provides an efficient interfacing for interpretation of neurons functionality in order to
investigate and model application specific processing set-up (e.g., see Figure 2.1). The BMI
concept is the result of a combination of neuroscience and engineering principles mainly aimed at

restoring lost functionalities [15].

The BMI concept can be employed in the development of therapeutic technologies such as
stimulation to control the tremors of Parkinson’s disease [16], decoding signals to drive neural
prostheses [17] control systems, cognitive prosthetic research to replace lost brain functionality
[18], defining practical translational pathway for rehabilitation [19] and behaviora anaysis of
some neurons when they respond to a specific drug in pharmacology science [20]. In clinical
research, analysis of single-unit activity is typicaly required to study the neuron response to a

specific stimulus.

The development of therapeutic and assistive devices has already changed the quality of life of
thousands of patients. Examples of commercia devices in the market include Medtronics' deep
brain stimulators (DBS) [21], prosthetic limbs by Advanced Arm Dynamics[22] and exoskel etons
such as hybrid assistive limb (HAL) [23].

BMIs are classed in two categories. The first category is related to the processing and analysis of
the recorded signal in order to extract the sensory stimuli patterns mimicking a neurological
function. In sensory systems, for example, sound can be processed for auditory prostheses for

individuals with profound deafness [24]. In addition, brain stimulation can be used for the control
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Figure 2.1: BMI demonstration for rehabilitation of a paralyzed monkey [19]. The stimulus
parameters are sent to the implanted site for adjusting the stimulation parameters using awireless
data transmission system.

and suppression of motor disorders such as in Parkinson’s diseases. This process is real time and
the relevant regions of brain are stimulated. The second category of BMIs performs real time data
processing of monitored brain activity to extract the motor commands in order to build a
communication bridge to deliver the lost motor commands to external assistive devices for people

with damaged sensory/motor functions (such as Deka Arm [25]).
2.1.1. Levelsof Interfacing

Figure 2.2 showsthe different existing neural recording approaches classified as afunction of their
invasiveness level in the brain. The illustrated methods are employed by BMIs through tapping
into the sensory and motor pathways. In invasive approaches, the quality of the recorded signal is
better and it provides clearer distinction between neurons resulting in better functionality. The
level of interfacing depends on the type of application and the level of the risk involved. The first
method which has been extensively used by BMIs is the electroencephalogram (EEG), which
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Figure 2.2: Various neural interface modalities with different levels of spatio-temporal resolution
and invasiveness. Adapted from [26-28].

reflects the averaged activity of millions of neurons. Thistype of recording is performed by means
of groups of electrodes placed at the surface of the scalp (top-right photo of Figure 2.2). The use
of EEG has provided numerous successful BMIs which include spelling devices [29], controlling
computer cursors [30] and driving a wheelchair [31]. As these electrodes are located about 2-cm
above the cortex, EEG isalimited method in terms of spatial and temporal resolution. The quality
of recording is severely affected by issues such as overlapping electrical activity of different
cortical areas and attenuation of signals through brain tissue, bone and layers of the scalp.

A more invasive approach such as electrocorticography (ECoG) [32] can be utilized to increase
the recording resolution. In this method the electrodes are placed on the brain surface to record

neural activity. Compared to EEG, this method is more localized and it increases the precision of

Table 2.1: Various neural interface modalities with different levels of spatio-tempora resolution and
invasiveness. Adapted from [33-39].

Amplitude Temporal Spatial
Signal Bandwidth I nvasiveness
(peak to peak) Resolution | Resolution
EEG 1-100 uV <50Hz ~50ms >cm? Surface (Scalp)
ECoG 1-500pV <200Hz ~5ms ~ cm? Surface (Brain)
LFP 500 pV - 5mV <300Hz ~3ms ~ mm? Intra-cortical
SUA 50 uV -500 uV | 250Hz-10kHz <0.2ms Sub- mm? Intra-cortica
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recording. In ECG, there exists abarrier between the recording sites and the cerebral cortex surface
which is avoided in the ECoG, thus improving the quality of the acquired signal both temporally
and spatially [40, 41]. Thisresults in successful demonstrations of BMI-related applications such
as cursor control [32]. In [33] it is shown that the ECoG-based BMIs are more effective than their
EEG-based counterparts [33].

Although EEG and ECoG have been demonstrated in different applications, research has moved
towards the use of micro-electrode arrays (e.g. Utah micro-electrode array [42]) implanted into
brain. This type of recording provides the highest the highest spatial and temporal recording
resolution, so it has gained considerable interest amongst neuroscientists since they can monitor
the neural activity at a higher resolution. Such high resolution of direct interfacing has enabled the
realization of the type of BMIs discussed in Section 2.1 (e.g., prosthetics with high degrees of
freedom [43]).The work presented in thisthesisisin the context of monitoring neura activity via
micro-electrodes. Table 2.1 presents the various neurd interface modalities with different levels

of spatio-temporal resolution and invasiveness.

2.1.2. Nature of Neurons and Action Potentials

Neurons generate and transmit impulses in the form of eectrical signas [44], [45]. They
communicate with other neurons via synapses. The role of a neuron is to receive, process and
transmit information by electrical or chemical signals. The structure of atypical neuron is shown
in Figure 2.3(a).

Due to the negative charge distribution along the inner and positive charge aong the outer surface
of aneuron, there is a steady potential difference between the interna and external environments
connected by open/closed ion channels. When the ion channels are inactive (resting stete), the
concentration of Potassium (K*) is high inside the cell and the concentration of Sodium (Na*)
and Chloride (CI") are relatively high outside the cell. The charge distribution difference in the
resting mode results in a membrane potential around (-70mV) [46].A stimulus provokes an
electrical response (postsynaptic potential) which generatesasignal, called action potential in axon
hillock. This excitatory synaptic input results in an electrical charge which travels across the cell
membrane in the form of ion flow through voltage-gated channels. The response of a cell to a

stimulus is as follows. If the ion movements result in a reduced charge difference across the
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Figure 2.3: (@) Partsof aneuron: body, dendrites and the axon; (b) typical action potential; and
(c) communication between neurons [47].

membraneit is depolarized, and if the ion movements result in an increased charge differenceit is
hyperpolarized. During this depolarization process, the voltage-gated channel (Na" channel) is
opened and Na* flows into the cell which causes the rising voltage of the action potential. This
process will continue up to a peak depolarization limit (40mV). The Na* channel is then closed
and the K* channel is activated to trigger the repolarization phase. The K* ion flow resultsin the
falling voltage of the action potential. After firing, an action potential enters the refractory period
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Figure 2.4: Structure for different types of neuron [47].

in which the membrane cannot respond to any stimulus. A neuron is non-excitable for
approximately up to 2 ms after the action potentials [48]. The procedure is depicted in Figure
2.3(b). This phase will continue until the neuron rest phase or the charge balance condition is
finished. The released action potential is carried away from the body of a neuron by an axon. The
end of each axon is composed of synapses which conduct the signals between two neurons. There
isno anatomical connection between the presynaptic and postsynaptic cells and the action potential
isemitted between two sitesthrough asmall spacewhichiscalled the synaptic cleft [Figure 2.3(c)].
Although many types of neuron exist in a number shapes (depending on their location and
functionality) [48], the typical structures are shown in Figure 2.4.
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2.2 Recorded Signal

Normally therecorded signal is composed of high-frequency extracel lular action potentials (EAPS)
and low frequency local field potentials (LFPs) (Figure 2.5). The frequency range of EAPs is
between 300 Hz and 6000 Hz and for the LFPsis below 300 Hz due to the superimposition of the
summed dendritic and synaptic activities (L FP peak-to-peak amplitude can be as much as 5 mV).
Since the signal of interest is the EAP, the recorded data stream is amplified, band-pass filtered
(300 Hz and 6000 Hz) with the specified cut-off frequencies and finally digitized before feeding
it to the processing chain. As discussed in Section 2.1.1, the main interest is to utilize micro-
electrode arraysin order to obtain high temporal and spatial resolution neuronal activity. Thistype
of recording isnecessary for devel opment of the next generation of BMIsfeaturing higher accuracy
than existing systems.

The typical reported detected amplitude of EAPs/spikes® is in the range of 60uV to 1 mV
depending on electrode position. The distance for observing high precision EAPsisin the region
of 50 um and 140 um from the electrode tip [49], beyond this range the monitored activity of the
EAPs is comparable to the underlying background noise and is not detectable.

4 LW. Recorded Data
N L A
W
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,ww\wmv%

P

Vg

MUA

Figure 2.5: Contribution of LFP and multi-unit activity (MUA) which is the sum of the EAPs.

1 Spikeis ageneral term which is used in spike sorting community for evaluation of the sorting methods.
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2.3 Spike Sorting

In the following discussions EAPs are referred to as ‘ spikes’ as commonly used in the literature.
Spike sorting is the process of assigning detected spikes to their originating neurons. The spike
sorting chain is depicted in Figure 2.6. The steps in the sorting procedure include: 1) detection, 2)
alignment, 3) feature extraction, 4) dimension reduction, and 5) clustering. The spike sorting
process is based on the concept of pattern recognition/machine learning which is extensively
discussed in [50].

The entire concept of spike sorting is developed based on the assumption that each spike has
distinct morphol ogy/features which enabl es the distinction between different neurons. Each spike
shape varies depending on some contributing factors such as neuron's tree topology, ion channel
distribution and topological placement of the micro-electrodes (i.e., orientation and proximity) as
shown in Figure 2.7 [51].

Typically thedigitized signal contains activity from 5t010 neurons [51], so the first step of sorting
isto detect the spiking events from the original data. The extracted spikes are aligned to an event
in time and then projected into a new space called ‘feature space’. In the feature space, some
distinguishable features are retained which are fed into the clustering stage. Finaly, spikes are

mapped to different clusters associated with the originating neurons.
2.3.1. Congtraintsin Hardwarefor | mplantable Devices

Introduction of real-time and online spike sorting processors requires the realization of highly
accurate processing algorithms which can be used within the context of the implementation
constraints of implantable devices (e.g., area and power). The benefit of developing such systems
isaready discussed in categorizing the BMIs and related discussed applications (section 2.1). For

Analog Ly Detection and Feature || Dimensionality Ly Classification Ly
Front End Alignment Extraction Reduction &Clustering
X(N) F(N) F(K), K<N C(Z), Z<K Cluster #3

Filtered data (1) 3 h" - (2) ’ ' i (3)M(4) #3h

Figure 2.6: Spike sorting chain for determining single unit activity. Data dimensionality is
reduced over processing units (Z <K< N).
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Figure 2.7: Variation in the observed extracellular action potential profile from a pyramidal
cell with spatial position. Variations depend on some cell proprieties such as the cell type
and the cell geometry, as well as the distance of the electrode from cell and position of the
recording electrode relative to the cell. Adapted from [51].

example in the first category of BMIs, spike sorting is used as a powerful neuroscientific tool for
identifying the behavior of specific neuron responses to a stimulus and then generating a fine-
tuned pattern in a closed-loop manner for rehabilitation. In implantable devices chip area, battery
life, power consumption and thermal dissipation density are important factors which need to be
taken into account including the design of on-chip spike sorting processors. For example, the
reported limit on thermal dissipation density to avoid tissue damage is 800 pW/mm [52].
Implantabl e devices consist of different blocks including arecording site, on-chip processing unit
and radio frequency (RF) unit for data transmission. Output data-rate reduction is another
important design constraint when designing implantable transceivers. Existing implantable
transceivers are not able to transmit very large amounts of recorded data. For example, in a 64

channelsrecordingwith an analogto digital converter having asampling frequency of fs=30kS/s
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and resolution of 7 bits, the input data entering the signal processing unit is at arate of 19.2Mb/s.
Reported transceivers cannot support such arate [53].

A guideline for data transmission in medical implant communication systems is between 0.5 and
1 nJ/b [54], [55]. Thus, the transmitter requires a total power up to 19.2 mW to transmit the raw
data. Depending on the type of implant including its location and packaging, this level of power
dissipation may be hazardous for surrounding tissue, especially for very small size implants. To
reduce the data transmission requirements for high channel count implantable recording systems,
on-chip signal processing is essential.

2.3.2. State-of-the-Art Spike Sorting

There have been numerous methods proposed to solve the challenges of spike sorting over the past
years. Spike sorting methods are usually characterized based on their off-chip/on-chip application.
There are two main approaches for spike sorting. Firstly measurement and extraction of
morphological features of spikesin order to identify the number of clusters. In the feature based
method, some distinguishabl e features are extracted in order to identify the clustersin the recorded
data. Since (ideally) a small number of distinguishable features are kept for each spike, the
dimensionality is reduced based on the input/output ratio. Assume that the dimensionality
reduction ratio is N/K, where N is the number of sample points per spike and the K is the number
of chosen features. Secondly the use of spike templates to distinguish the clusters (template based

approach).

Three different categories are considered hereto review the spike sorting solutionsin theliterature,
including: 1) traditional implementation of spike sorting which requires off-chip/offline
processing; 2) development of on-chip spike sorting methods as an dternative to satisfy the
hardware impl antabl e devices constraints and the efficiency requirements of different applications;
and 3) the use of data compression techniques for either transmitting the data to an external unit
for decompression and spike sorting tasks or designing a specific type of processing method for
spike clustering.

The following section presents various spike sorting solutions proposed in literature and discusses
the state-of-the-art.
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2.3.2.1 Off-chip Spike Sorting

Many highly complex methods and statistical analysis tools can be considered in off-chip spike
sorting methods since power consumption and the computational complexity are not maor
constraints. There are some widely used automatic spike sorting algorithms such as KlustaKwik
[56], Plexon [57], spike2 [58] and Waveclus (whose interfaceis shown in Figure 2.8) [59]. In these
spike-sorting programs, asignal processing chain performs extraction of spike events and all ocates
them to the originating neurons. They all involve highly complex mathematical operations which
areinimical to hardware implantable device constraints. As aresult, data must be transmitted from
the subject to a computer or to an off-chip processing unit for detailed clustering analysis (Figure
2.9). These spike sorting platforms cannot provide a satisfactory solution for on-chip spike sorting
due to complexity and scalability issues. In addition to the methods above, there are other offline
approaches which require large amounts of power for extraction of the most important features
buried in the neural signals. One of the major categories of offline methods is related to the
conversion of correlated variables into linearly uncorrelated variables using orthogona

transformation such as principal component analysis (PCA) [60] and independent component
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Figure 2.8: Waveclus graphical user interface.
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analysis (ICA) [61]. Apart from these methods, there are many feature sets which are extracted via
Graph Laplacian features (GLFs) [62] and decomposed features of signals over different frequency
bands based on the discrete wavelet transform (DWT) [59]. Reference [63] presents an algorithm
in which a feature design framework is used to provide a hardware implantable version of PCA
and GLF. This approach provides a simple way of designing features which are compatible with
on-chip processing constraints. There are also statistical feature extraction methods such as
expectation maximization based competitive decomposition algorithms [64] and probabilistic

approaches such as Gaussian mixture models as described in [65].
2.3.2.2 On-chip Spike Sorting

The new trend in bio-acquisition systems aims at integrating on-chip signal processing as shown
in Figure 2.10. Significant research has been done on on-chip spike sorting to meet a tradeoff
between hardware resources utilization and sorting accuracy. The focus of published materialsin
thefield of on-chip spike processing realization is categorized into threeimplementation strategies.
There have been some studies on analog processing methods for multi-unit activity extraction and
analysis. Thefocusof other studies are either based on using off-the-shelf hardware platforms such

as FPGAs or designing custom digital implementations for implantation purposes.

In [66], the authors designed a fully integrated system for the detection and characterization of
action potentials. In this paper, the integrated circuit consists of an analog implementation of a
non-linear energy operator (NEO) and peak detectors to extract the maximum and minimum of the
detected spikes. The circuit was implemented in 0.13 pm CMOS technology; the chip area
External unit
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Figure 2.9: Block diagram of the conventional neural processing interface.
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occupies 0.17 mm? and consumes 1 pW from a1V supply. In [67], the authors introduced a new
feature extraction method, the integral transform (IT) and discussed its analog implementation.
They reported 98% off-chip classification accuracy while requiring only 2.5% of the commonly
used PCA computational complexity. Another paper which addresses the analogue
implementation of on-chip spike sorting is discussed in [68]. The design uses spike features such
as the peak and trough amplitudes and peak width for clustering. It was implemented in 0.35 um
CMOS technology with a power consumption of 70 pW per channel with over 90% off-chip

classification accuracy.

In [69], the authors describe the application of spike sorting for sensing the bladder volume.
Weighted Euclidean distance in conjunction with Levenberg-Marquardt variance estimator is used
asafeature extractor. The design wasimplemented in an Actel FPGA 1gloo AGL1000v2 platform.
It consumes 485 uW and the number of classes for classification needs to be defined. Another
spike sorting process which uses FPGA is discussed in [70]. It uses Hebbian Eigen filter based
PCA algorithm. The process seems to be efficient, although it requires a high amount of resources
for realization. The system requires neural signals to be stored, sinceit runs stetistical analysis of
thewhole data. Further to power consumption and complexity, the system requires significant time

for data analysis which suggests that the system is not real-rime.

A multi-channel spike-sorting DSP which performs detection and feature extraction has been
demonstrated in [71]. It uses a parallel-folding structure to reduce the hardware resources, but the
results show that the device is not compatible with hardware implantable constraints. A pulse-
based feature extractor using derivatives of the spikes (action potentials) has been proposed in
[72]. This method uses information encoding of spike derivativesin pulsetrains. The chip results
show that there is a difference between the simulation and the measured outputs. This suggests
that the hardware mismatch due to process variations causes an appreciable change to the results.
An asynchronous spike sorting DSP has been introduced in [73]. The asynchronous self-timed
methodology has inherent latency adjustment due to process variations. Furthermore, the
asynchronous scheme suppresses the leakage power and standby power in the presence of
unwanted variations. The crucia challenge in the asynchronous methodology isto design complex
circuits for the handshaking circuitry overhead and also the amount of process latency especially

in clustering circuit implementation.
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In [74], the authors demonstrate a digital implementation of a spike processor which performsthe
detection, alignment and feature extraction for 64 channels. The processor building blocks were
chosen based on the complexity-performance analysis. The fabricated chip in 90 nm CMOS
consumes 130 pW from a 0.55 V power supply. Reference [75] presents an online version of IT
which is called Zero-Crossing-Features (ZCF). ZCF is based on different neurons having spikes
with different area after the zero-crossing points. These features are compared to PCA, and found
to be equally good performing while using 5% of the resources. In [76], the authors introduce a
hardware-efficient multi-channel spike sorting processor. The processing chain includes the
absolute value detector and unsupervised clustering (i.e., a template matching feature extraction
method is used to sort the spikes). Since the sorting accuracy is decreased with increasing noise
level, the clustering is modified using the ¢1-norm metric to take differentiation of spikes in
assignment and training units. The 16 channel spike sorting chip was fabricated in a65 nm CMOS
technology and has a power dissipation of 75 uW with a power supply of 270mV. The online
processing of dataresults in 240X data reduction and the clustering performance of 75%. In [77],
the authors report a multi-channel neural recording integrated circuit with a spike processor. A
NEO based spike detector was implemented for identifying spikes. A digita frequency-shaping
filter removes the low frequency noise which results in better identification of similar neurons
from different origins. The peaks of the original spike waveforms and maximum and minimum
values of itsfirst derivatives are used to classify the spikes. The power consumption per channel
is 100 pW. Most of the developed on-chip spike sorting methods either do not include the

implementation of the necessary spike sorting stages or have below average clustering accuracy.
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Figure 2.10: Genera architecture of an implantable chip from recording (front-end neural
interface) to processing and transmissi on/stimulation/decoding (back-end).
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The primary objective of this thesis is to introduce and implement an on-chip spike processor
which outperforms the existing designs.

2.3.2.3 Compression-based Spike Sorting M ethods

A challengein on-chip processing systemsisto deal with thelarge amounts of generated data from
high channel count recording. In the compression based methods, dimensionality reduced data can
either be transmitted to an external unit for decompression (reconstruction) and spike sorting or
spike sorting can be performed directly to the compressed data by defining a suitable
communication protocol between the compressed data and spike processor [ 78] (see Figure 2.11).
Compression of spike processing has not gained popularity amongst the researchers due to the
inefficiency of the developed methods. For example, one of the existing strategies for data
compression is wavelet signal decomposition [79]. The wavelet technique in [79] reduces the
bandwidth but requires 120 mW which isimpractically large in implantable systems. In [80], the
use of event detection has been proposed in which the dataistypically limited to only thetime and

amplitude of neural spikes and therefore the encoded data often contains limited information. For
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Figure 2.11: Demonstration of processing stages used in each of the three approaches. (a) Nyquist
Analysis (NA), (b) Reconstructed Analysis (RA) and Compressed Analysis (CA). Reconstruction
is bypassed in CA to provide significant savings in computational energy. Adapted from [85].
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the compressed sensing approach in [81], the compressed datais reconstructed to apply the spike
processing for mapping the neuronal activities to their origins. Other techniques for data
compression are asynchronous sampling [82] and logarithmic compression [83]. Recently
researchers started working on the realization of processing methods in compressed domains [84].
In reference [85] communication between thousands of neurons (1K+ channel
recording/processing) as part of brain activity demands a shift in the processing paradigm, and

provides apreliminary representation of signal decomposition (DWT) in the compressed domain.
2.4 Spike Sorting Testing M ethodol ogy

2.4.1 Test Data

This section provides adetailed description of the datasets used throughout thisthesis. To compare
the performance of the proposed method with other work the Waveclus spike bank? was used.
Each dataset contains the true spike time and true spike classes for detection and clustering

accuracy calculation as shown in Figure 2.12.

The database contains different average spike waveforms recorded from human neocortex and
basal ganglia. To emulate the background noise activity, spike waveforms randomly chosen from
the data library have been added to the generated datasets. There are advantages in using this
database. Firstly, each dataset provides true spike classes, which is useful for accuracy
calculations, and the ground truth can be established. Secondly, the diversity of the data enables
evauation of spike sorting algorithms from the same source. Datasets with different degrees of
difficulty (i.e., similarity of spike shape) and noise levels are provided. The four datasets are
C_Easyl noise, C_Easy2 noise, C_Difficultl_noiseand C_Difficult2_noise, where noise denotes
thenoiselevel intermsof standard deviation, namely, 0.05, 0.1, 0.15and 0.2. ‘ Easy’ and ‘ Difficult’
is the similarity index between the spike shapes in each dataset. Thirdly, the characteristics of the
datasetsare similar to real practical recordings. Figure 2.13 showsthe three different types of spike
shape present in each of thefour test datasets and the cal culated Bray-Curtis similarity indices [86]
between all the spike shapes in each dataset. The Bray-Curtis similarity index Scyis:

2Available online: http://www2.1e.ac.uk/centres/csn/spike-sorting.
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where x and y are the two spike waveforms being compared and n is the number of sample points.
Sqy isin therange (0-1), with 1 corresponding to identical signals. The sorting difficulty becomes
more demanding with increasing the similarity between the spike shapes (width and amplitude
fluctuations). Figure 2.14(a) shows color-coded spikes corresponding to different neurons from
dataset 2 (C_Easy2 0.05), Figure 2.14(b) shows the two dimensional (2-D) projection of spike
clusters, and Figure 2.14(c) shows a short recording segment with colored markers (with prior
knowledge from simulation). Each color corresponds to a single-unit activity. As the difficulty of
adataset increases, sorting becomes more challenging. Furthermore, asthe noiselevel isincreased,
filtering might be required to reduce the effect of noise on the efficacy of the sorting procedure.
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Figure 2.12: Signa processing chain used to eval uate detection and clustering accuracies.
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C_Difficultl_noise and (d) C_Difficult2_noise.

2.4.2 Accuracy Calculations

To evaluate the performance of each building block of a spike processing chain, various metrics
can be defined to determine the overall system performance. The criteria considered are detection
accuracy (DAcc) and classification accuracy (CAcc). As discussed in Section 2.4.1, a neurd
simulator which provides datasets containing true spike times and classes is used for accuracy

calculation. Since the true spike times are known, the detection accuracy is defined as:

DA zi x100% (2.2)

TPS+FPS+MS
where true positive spike (TPS) shows truly detected spikes, false positive spike (FPS) isthe false
alarm due to noise or overlapping spikes and MSis the number of missed spikes. This equation is
designed to ensure that missed spikes and fase alarms carry the same weight in accuracy

caculations.

CAcc is the next quantitative metric for comparing the accuracy performance of different
algorithms. In each dataset the true spike classes and number of allocated spikes to each cluster
determines the CAcc. It is given by:
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TPCC
N_I_S><1OO% (2.3)

CAcc=

where TPCC is the number of true positive spikes (TPS) that correctly clustered and NTS is the

number of total spikes.
2.5 Explanations of the Spike Sorting Operators

In this section the description of the blocks in each step of spike sorting are presented. The

following algorithms are explained:

o For spike detection:
= Absolute value (ABYS)
» Nonlinear energy operator (NEO)
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=  Stationary-wavel et-transform product (SWTP)
e For alignment, representing the temporal tuning of extracted spikes at atemporal reference.
e For feature extraction:

» Principal component analysis (PCA)

» Discrete wavelet transform (DWT)

» Feature Set

» Template Matching (TM)

» Zero Crossing Features (ZCF)
e For dimensionality reduction:

= Asynchronous sampling
e For Clustering:

» k-Means Clustering

= Artificial Neural Networks (ANN)

= Superparamagnetic Clustering (SPC)

= Online Sorting (O-Sort) Clustering

2.5.1 Spike Detection

Most spike detection methods consist of two steps: 1) calculation of the detection threshold which
identifies the presence of a spike when exceeded; and 2) its use for spike activity identification. In
the first step there are different methods such as absolute value, nonlinear energy operator and
stationary wavelet transform product. In the second step, when neura or preprocessed signals
exceed the threshold, a window of 3 ms (1 ms before the threshold crossing and 2 ms after)
enveloping the spike is extracted for further processing. In some sampling modes the window
length to cover the duration of aspikeis different, but for normal sampling operationitisunlikely
that the spike is longer than 3ms. Spike detection can be implemented either in analog when the
data digitization requires higher resolution, or in digital structure. A comprehensive study has been
published in [87] for various detection methods. Normally these methods automatically generate
the threshold above which a spike event isidentified.

2.5.1.1 Deter mination of the Threshold Using the Nonlinear Energy Operator
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One unsupervised method to determine the threshold valuesis the Teager Energy Operator (TEO),
also called (NEO) [88]. This class of detector calculates the energy variation of the raw signal to
interpret the spike eventsin time. For the discrete signal, the NEO equation is defined as:

w [x(n)]= x*(n)- x(n+1). x(n-1) (2.4)

where X(n) isthe input digitized signal and y[(n)] isthe calculated signal energy value at sampling
time n. From the NEO equation, this operator highlights the variations which are large in power
and frequency. The essence of spike activity is instantaneous amplitude-energy variation, so the
NEO operator recognizes these localized variations. The detection threshold can be expressed as:

Ns
Thr =« Ni Z‘V [x(n)] (2.5)
S n=1

where Ns is the number of samplesin the signal x(n) and « isthreshold scaling factor. A short
segment of areal neural signal including the extracted spikes and corresponding Thr are shown in
Figure 2.15.

2.5.1.2 Determination of the Threshold Using the Absolute Value

Another method for spike detection is called absolute value [89] where the threshold level is
defined by using an estimate of the standard deviation of the noise (o). Anintuitive value for this
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Figure 2.15: A short segment of a real neural signal including the extracted spikes. The
extracted spikes (black color) are superimposed to the original waveform (blue color).

56



threshold would be a multiple of the standard deviation of the noise. However, with increasing
spike activity, the threshold level increases and detection error will increase, so the equation below

is suggested as a good estimation of noise standard deviation (on):

_ x(n
oy = Mmedian ((|)6(7£)1|5j (2.6)

where x(n) is asample of the origina signal x at time n. The detection threshold is defined as:
Thr =4a;, (2.7)

2.5.1.3 Stationary Wavelet Transform Product (SWTP)

One of the most effective methods for spike detection uses matched filtering. The correlation of
theincoming signal to thefilter bank showsthe probability of the existence of aspike. Oneefficient
method for template matching implementation uses SWT [90]. The SWT is calculated over some
dynamic scales (W(2,n), j = 1,...,5) and the scale 2= with the largest sum of absolute val ues (jmax)

IS

e = ATgMAX (i‘w(zi n)‘] jell...5) 2.8)
n=l

The point product between the SWT at this scale and the SWTs at the two previous scales is
calculated as:

ijX

=[] W(Z‘}n)| (2.9)

2

j:jmax

A Bartlett window W(n) is used for smoothing the convolution in order to attenuate the effect of

the spurious variations to cal culate the detection threshold which is expressed as:

1 N
Thr=CNZa) (n=P(n) (2.10)

n=l
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where N is the number of samples in the signa and C is a constant value which is chosen

empirically.

2.5.2 Alignment

Aligning the detected spikes is an important step in spike sorting before feature extraction.
Typically, feature extraction is the projection (mapping) of the spike waveforms to a reduced
dimensionality space. The efficiency of feature point positions can be severely compromised
without an accurate temporal spike alignment to a reference point. When the signal crosses the
calculated threshold in the detection unit a 3 ms window is applied to extract the spike as shown
in Figure 2.16. The extracted spikes are aligned to the threshold crossing point. There is an
uncertainty in threshold level due to sampling jitter and biological noise, and such uncertainty in
threshold crossing (misalignment) can affect the clustering accuracy. To improve the clustering
performance, all the spikes can be aigned to an event in time such as the positive peak [91],
maximum slope [92], maximum energy [93] or maximum peak (mixed-peak) [13] which could be
either positive or negative. The alignment process begins with upsampling of spikes, aligning them
to an event intime and finally downsampling to avoid high computational complexity in the sorting

stage (Figure 2.16).

Peak Alignment Mixed-Peak Alignment

1.5

-

Q
n

Amplitude
Amplitude

1ms 1ms

Figure 2.16: Examples of two different alignment methods. Left: peak-alignment method,
Right: mixed-peak alignment method.
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2.5.3 Feature Extraction

In order to extract meaningful information from n dimensional space, feature extraction is used to
transform the aligned spikes to a low-dimensional space which highlights the spike waveform
differences. Typically, this leads to dimensionality reduction from N to K (K<N), where K is the
number of selected features (see Figure 2.6). In this section analytical feature extraction methods
regardless of level of computational complexity and calibration time areinvestigated. They include
PCA, DWT, derivative-based feature extraction methods, and explanation of other existing feature
extraction methods.

2.5.3.1 Principle Component Analysis (PCA)

PCA has been the most commonly used a gorithm for feature extraction [94] because it yields an
efficient coding of spike waveforms (only the first 2-3 principal components need to be retained).
The idea behind the PCA is to change the orthogonal basis vectors in a way that the maximum
variance is achieved. The principle components are obtained viathe i largest elgenvectors from

the covariance matrix. So each spike is expressed as a series of scores[91]:

6= PG, s o1

where s(n) isaspike, N isthe number of samplesin aspike and PC; illustratesthei" PC. Retaining
more PCs represent an accurate estimation of largest variations in each spike (Figure 2.17). It is
assumed that thei largest eigenvectorsresultsin an efficient separation between the detected spikes
in alower dimension. However, PCA requires offline training and calculation of the covariance

matrix of the data demands high computational cost and hardware resources.

2.5.3.2 Discrete Wavelet Transform (DWT)

DWT [89] is atime-frequency representation that uses multi-resolution transformation. These are
obtained using variable window sizes at various decomposition levels. This approach gives a
detailed representation of the signal in the time-frequency domain. The DWT function (f)
represents the linear combination of convolutions between the spike waveform and wavelet basis

function, and is given by [95]:
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Figure2.17: Example of feature extraction using PCA. Left: alignment to maximum amplitude,
Right: PC coefficients in feature space. The neural data simulator explained in section 2.4.1is
used for PCA analysis.

fM) = s(n)y;) (212)
j.k
where s(n) is a spike and y is the wavelet basis function. The wavelet basis function derived from

the mother wavelet ¥, is defined as follows:
1 .
Wj,k(t)z 2j/2\P(21t_k) (213)

Index j (called the scaling index) changes the behavior of jkin frequency space, while index k
(called the tranglation index) shifts the wavel et along the time axis. The convolution between the
wavel et basis function and spike s(n) resultsin multi-resol ution time and frequency decomposition
of the original spikewaveform. In[89], four-level decomposition using Haar waveletsis proposed
as an efficient way to convert the extracted spikes to the wavelet coefficients. Furthermore, the
Haar DWT is an attractive approach since it can be implemented using filter banks. In order to
determine the wavelet coefficients the operator representation of filters can be used [96]. An
example to cover the entire signal bandwidth or band (BW), at each decomposition step a high-
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Figure 2.18: Wavelet decomposition by filter bank (from [96]). 3-level Haar wavelet
decomposition of a spike waveform using MATLAB DWT tool (dwtool) SP.
pass (HP) and a low-pass (LP) filter must be used (Figure 2.18). The advantage of DWT is that
each decomposition step requires half the computations of the previous step. When the
decomposition processis performed, the number of wavelet coefficientsissmaller than theorigina

sample number.

2.5.3.3 Feature Set

Feature set refers to the spike shape characteristics such as spike amplitude, peak-to-peak value
(spike height), maximum gradients (positive or negative), peak position and spike width. One or
more of these features or can be considered as a feature vector. These types of features are not
reliable in spike sorting and they have low classification accuracy especially in the spike datasets
with high similarity index between the templates. A comprehensive review of spike shape features
is provided in [97] (Table 2.2). Some of the spike features are highlighted with green color in
Figure 2.19.

2.5.3.4 Template Matching (TM)

In TM, the spike shapes (s(n) in Figure 2.19) or the features of different types of neurons are
collected and trained in order to identify the templates of the clusters. This process requires a

training period and different distance similarity functions (Table 2.3 [98]) can be used to compare
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Table 2.2: Overview of neurona signal features [97].

Feature

Advantages

Disadvantages

Negative amplitude

Positive amplitude

Easy to interpret

Stresses specific shape characteristics

Vulnerable to signa offset;

Only suitable in particular cases;
vulnerable to signal offset

Left/right spike angle

Stresses specific shape characteristics

Only suitable in particular cases;
vulnerable to noisedistortions

Neg./pos. signa energy

Robust features in terms of noise
distortions or low sample rates

Naturaly correlates with amplitude
and angle features, vulnerable to
signa offsets

Core spike duration

Stresses specific shape characteristics

Only suitable in particular cases;
vulnerable to noisedistortions

NEO coefficient

Higher resolution than negative
amplitude in particular cases

Naturaly correlates with negative
amplitude

Principal components

Usualy accurate description of datasets
with a set of uncorrelated parameters

Possible inaccuracies if more than
two spike shapes are present in the
dataset

Distribution/Shannon
Wavelet coefficients

Potent Wavelet scae features with no
significant correlation

High computational complexity
compared to other methods; muilti-
resolution analysis limited by
samplerate

the incoming spikes/spike features to set up the finalized cluster templates. The training is

performed periodically to track the changesin the recorded data.

2.5.3.5Zero Crossing Features (ZCF)

One of the most distinctive features of spike shapes are the integral of positive and negative lobes

which normally contain the information about the amplitude variations of the spike lobes, position

of the positive and negative spike peaks, and width of the spike lobes [75]. ZCF is a modified
version of the Integral Transform [67]. The ZCF equations ZC1 and ZC2 (see Figure 2.19) are
mathematically expressed as:

zm:i S(n), zC2= ZZ S(n)
n=0

n=n,
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Table 2.3: Distance and similarity measures used in template matching [98].

Measure Form
d 1p
Minkowski distance or L, norm D (%, ):LZ X —x“\p
=1
d 1/2
Euclidean distance or L2 norm D (xi /X ): (Z ‘x“ - X, ‘2
=1
d
City-block distance or L1 norm D (Xi X )= Z ‘X” - le‘
=1
Squared Mahal anobis distance D (. )= (= x; JTeov (. x;)(x ;)
Pearson correlation D (%,x)=(1-1;)®

where n; is the number of samplesin a spike and n; is the index of first zero crossing after the
spike has been detected (Figure 2.19).

2.5.4 Dimensionality reduction

As discussed in section 2.5.3.1, there are some feature extraction methods with inherent feature
encoding such as PCA. In some cases the dimensionality of the transformed spike waveformis as
same as the extracted spike, or even the features domain transformation results in higher
dimensionality. There are morphological features of a spike/feature waveform that can be chosen

for the processing stage which are susceptible to noise as discussed in [97].

63



max

>
T

Spike Template

Max
position

L EE LT TPy =

—>

min
position

Heocccccccncccccnnas

N zc2 n:

0

N
o
T

<

€ =mmmmmccccaad

min
Figure 2.19: Spiketemplate, s(n), for TM clustering. Illustration of zero crossing features (ZC1,
ZC2).
There are two advantages in selecting appropriate samples/features in spike sorting. Firstly, it

reduces the dimensionality of data, which improves classification accuracy. Secondly, it reduces

the required memory (hardware and area) and power consumption of clustering.

These advantages are achieved if the coefficients are selected properly. If true samples are not
chosen, valuable information is lost and the reduced-dimensionality feature vector is a limiting
factor for clustering. The simplest way that the dimensionality of features can be reduced is
uniform sampling. There is necessarily no guarantee of obtaining an appropriate reduction
performance when K (K<N) evenly spaced samples are chosen for clustering. This technique is
simple and its computation cost is lower than other sophisticated approaches, but this type of
sample selection might lead to non-segregation of clusters. Since the K samples are randomly
selected relatively poor clustering accuracy is expected.

An agorithm was produced in [98] to choose the optimal samples (features) for sorting. The metric
in [98] refines data based on mutual information of all the cluster combinations to retain the

coefficientswith multimodal distribution for clustering. Sampleswith bimodal distribution deviate
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Sampling Phase

Figure 2.20: Asynchronous sampling of first derivative features. M spikes are considered for
training period. Differences between two subsequent spikes are taken and weight W=1 allocated
to coefficients with maximum deviation from normality. Sampling pattern vector (SP) is the
summation of differences to find uncorrelated limits. Finally, sampling phase is done based on
the sampling pattern from feature waveforms (K=5). The model was adopted from [100].

from unimodality or Gaussian distribution, so they exhibit multiple peaks and valleys as asign of
multimodality. The selection procedure can be done using offline training with the Lilliefors test
[99]. However, the Lilliefors test is a statistical approach and cannot be used for implantable spike
sorting hardware due to its complexity. In addition to the Lilliefors test, independent component
analysis (ICA) [61] has been introduced as an efficient approach that minimizes the mutual
information which leads to finding non-Gaussian directions or maximum deviation from

normality.

Asan alternativeto the Lillieforstest and ICA (both need offline training), asynchronous sampling
(AS) of original spike waveforms (or feature waveforms) is proposed in [100] as an efficient
approach, not only in terms of computationa complexity but aso accuracy to reduce
dimensionality (N—K). The agorithm is divided into the sampling pattern generation phase and
the sampling phase (the process is shown in Figure 2.20). In the former phase the localized shape
differences between the aligned spike waveforms (feature waveforms) of spike templates are
noted. In the sampling phase the marked areas are extracted for sorting. In the first stage the
maximum-difference test [101] is used to generate the sampling pattern. M spike waveforms are

chosen and the differences between two consecutive spike waveforms are taken. Then for each
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Table 2.4: Dimensionality reduction procedure.

Sampling pattern generation phase

1. Takethe difference between two consecutive spikes and write its absolute value in local _difference.

2. Allocate W=1to the K largest coefficientsin local_difference.

3. Sum dl weight vectors W1 to Wm -1y to computer SP.

4. Identify the K largest value indicesin SP.

Sampling phase
Extract the coefficients corresponding to the selected K indices from the original spike or feature
waveforms. Sampling is performed asynchronously according to the location of the maximum
differences (e.g., MD1, MD2and MD3; amp(MD1) > amp(MD2) > amp(MD3)). An exampleis shown
in Figure 2.6.

pair of spikewaveforms W= 1 isallocated as aweight to the K samples with the highest difference
in value and W = 0, otherwise. The process continues up to the M spike to extract the differences

between all the spikesin the training period. The sampling pattern vector is written as follows:

M-1
P=>'W (2.15)
i=1

where W is the weight vector of the i" difference. SP represents the absolute value of the
accumulated local differences between all the clusters at the end of the training period. Length
reduction is obtained by identifying the K largest value indices in the sampling pattern. Finally, in
the sampling phase the coefficients corresponding to the identified K indices in the previous phase
are extracted from the original spike or feature waveforms. The main steps of the algorithm
(training period) arelisted in Table 2.4. In terms of complexity the proposed method is much less

complex than the Lilliefors test, and thusis suitable for efficient hardware implementation.

Figure 2.21 shows clustered spike waveforms with various difficulty levels (C_Easy2 01 and
C _Difficult2_01) with their corresponding sampling profiles. As seen in Figure 2.21(b) and
2.21(d) the marked local differences occur asynchronously between the spike templ ates.

Factors contributing to the sampling pattern generation include temporal alignment and
upsampling, the latter aleviatesthe effect of sampling jitter and noise. Thisleavesasmooth pattern
for sampling. For dimensionality reduction, two extraction models could be considered: i) select
the K largest coefficients from SP, and ii) select the K largest coefficients around the major peaks
(typically 2-3 main peaks could be chosen and around each peak 4-5 samples are selected). The
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Figure 2.21: Sorting results with absolute value of sampling pattern for different datasets from
original spike shapes. (@) and (b), C_Easy2 01. (c) and (d), C_Difficult2_01. Maximum
difference (MD) and zero difference (ZD) areas are annotated on the sampling profiles. The K
(=10 here) largest points are depicted with green squares. Adapted from [91].

second method is more computationally demanding but might result in performance improvement.
In addition, major peak selection and upsampling could be used for sample selection (but has
relatively high complexity). In the implementation used in this thesis the K largest coefficients
from SP were selected without upsampling.

255 Clustering

The final sorting stage is the assignment of spikes to their originating neurons as clustersin the
feature space. Online and unsupervised clustering is one of the most complex parts of sorting
process. In primitive sorting methods, cluster boundaries were defined by hand in feature space
[91] which might be resulted in human error during the separation process [102]. There exist
different clustering methods for classification/clustering including: K-means [91], fuzzy c-means
clustering [101], Bayesian clustering [103], expectation maximization (EM) [104], artificial neural
networks (ANN) [105], valley seeking clustering [106], superparamagnetic clustering (SPC) [89]
and online sorting (O-Sort) [13]. A comprehensive study of clustering methods is provided in

[107].
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2.5.5.1 k-Means Clustering

The k-means[50] algorithmis one of the most accurate clustering algorithms which can be utilized
in spike sorting process. The K-means clustering method aims to partition the selected feature
space into k clusters, in which each spike/feature template belongs to a cluster with the nearest
mean. The distance metric is defined as:

kK 1 2
agsmin=>" > [x - (2.16)

(i=D (XjeSi)

where (X1, Xo... Xn) IS the set of spike features, k is the number of clusters and S are the different
sets (i.e., spike classes). Although this method is very simple to implement, the major drawback is
that knowledge of the number of clustersis required for the training phase. This method cannot be
used for BMI applications since it is not an online, adaptive and unsupervised method. In some

BMI applications, monitoring the number of active neurons must be automatic. Thislimitation can
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Figure 2.22: Tragjectories for the means of the k-means clustering procedure applied to two-
dimensional data[50].

68



be addressed by estimating the number of neurons as proposed in [108] which can reliably estimate

the number of clusters but there are some invalid cases for K-means initialization.

2.5.5.2 Artificial Neural Networks (ANN)

ANN [105] is based on the elementary principles of the human neural operation system. A large
variety of networks have been constructed to imitate the human brain for redization of systems
with high order of complexity. All networks are composed of artificial neurons, and connections
between them, which determine the behavior of the network (Figure 2.23d)). The input layer is
characterized by input signals (X1...Xn).The number of neurons in the hidden layer is chosen
empirically by the user. Findly, the output layer comprises neurons for the k classes
(classl...classK). Each connection in the neuronal network is characterized by a weight factor

which is modified by successive iterations during the training process. The state of each neuronis

o . A
}L. Output

': A Threshold
Xn

Inputs

(a) (b)
A
5. g ¥ ¥ ¥ or x ¥ X
Input layer > { & @ ﬁ
Hidden layer > | ‘ .@
Ouput layer- > é ‘ ‘ Q

Figure 2.23: (a) Structure of a neural network used in the classification. (b) Basic artificial
neuron model, where f (*) is the activation function. The synaptic weights are updated in the
training phase by supervised or unsupervised agorithms. (Adapted from [105]).
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configured by the input variables and the state of the other existing neurons in hidden and output

layers are determined subsequently (Figure 2.23(b)).

2553 SPC

SPC is an unsupervised clustering algorithm that has been used in spike sorting application. The
first step of SPC clustering is interaction strength calculation between each data point and its K-
nearest neighbors. The agorithm is initiated by finding the interaction strength between the
selected features of each spike i by a point xi in an m-dimensional feature pace and the K-nearest

neighbors:

2
3 - Kiexp(%} if % isanearest neighbor of X;
L= i

ij n

(2.17)

0 else

where a is the average nearest-nei ghbors distance and Kn, is the number of nearest neighbors. The
interaction strength is decreased exponentially with increasing Euclidean distance which is
determined based on the similarity of x and its neighbors. In the second step, random states are
assigned to each point x; from 1 to g, where q is a constant representing the number of possible
spins. For each temperature (e.g. T=0:0.2:0.2), Monte Carlo ssimulation is performed. During each
iteration afrozen bond (state) between nearest neighbor points x; and X; is considered if they satisfy
the probability equation which is expressed as:

3
Py =1—exp[?’5g,q) (2.18)

where Js 5 is equal to 1 for the points in the frozen bond. This procedure is repeated for another
point several times in order to get representative statistics. Having performed the Monte Carlo
runs, the connectedness probability of a point is calculated and if it is greater than the specified
threshold (6), the point belongs to the cluster.
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2.5.5.4 Online Sorting (O-Sort) Clustering

This agorithm provides rea-time mapping of spikes to single neuron activity for closed-loop
applications. The operation of O-Sort is as follows: 1) Initialization: Assign the first data point to
its own cluster. 2) Calculate the distance between the next data point and each cluster centroid.
The distance metric could use, for example, the Euclidean norm or the ¢£1-norm. 3) If the smallest
distance is less than the merging threshold Ty, assign the point to the nearest cluster and re-
compute that cluster’s mean. Otherwise, start a new cluster. 4) Check the distances between each
cluster and every other cluster. If any distance is below the sorting threshold Ts, merge those two
clusters and recompute its mean. Steps 2-4 are then repeated indefinitely. In the simplified version
of the algorithm proposed in [13] (and used later in the thesis) Tw = Ts = T. The threshold T is
defined as T = S(or)?, where o isthe average standard deviation of the data computed continuously

with along (~1 min) sliding window, and Sis the number of datapoints of a single waveform.

O-Sort is simple in operation with good complexity-accuracy tradeoff and satisfies online sorting
constraints (memory and power). The algorithm is adaptive, thus nonstationarity of dataintimeis
applied to the cluster position and number of clusters. A disadvantage of O-Sort isthat it may split
clustersinto sub-clusters|eading to areduction in clustering performance. The created sub-clusters

are not matched with any source and are considered as noise clusters. An example illustrating the
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Figure 2.24: Clustering results using two different clustering methods, including (a) K-means
and (b) O-Sort. The overclusterig issue is illustrated using different colors and borders are

depicted with dashed line. The used datain this demonstration discussed previously in section
24.1.
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clustering results using K-means and O-Sort is shown in Figure 2.24. O-Sort tends to overcluster,

dividing a cluster to some sub-clusters especially when the noise level isincreased.

2.6 Conclusion

In this chapter the process of spike sorting which is an important concept for many scientific and
clinical applications has been examined. For each constituent building block of the sorting chain,
different methods have been detailed identifying advantages and disadvantages. There is a trade-
off between the accuracy of processing methods and computationa complexity. Nevertheless
careful design is needed to obtain a clustering accuracy of over 90% for on-chip spike processors
with real time operation capability. Clustering performance will be investigated by introducing
highly optimal and tunabl e spike-sorting methods in the Chapters 3 and 5.
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CHAPTER 3

New Feature Extraction M ethod Using Extrema Sampling of Discrete

Derivativesfor Spike Sorting

3.1 Introduction

As described in previous chapters, the spike-sorting concept has been a considerable interest in
recent years. There exist two approachesto realize highly efficient on-chip spike sorting: template-
based and feature-based spike sorting. In feature-based spike sorting methods the main trade-off
isabout introducing an additional step to reduce both dimensionality of extracted spike waveforms
and minimizing the buffering requirements in hardware implementation. Feature extraction is
usually performed by aninitial mathematical transformation which comprises selection of a subset

of critical features which are the best representatives of each spike waveform.

This chapter introduces anew energy efficient feature extraction method based on extremaanalysis
(positive and negative peaks) of spike shapes and their discrete derivatives [109] with different
sampling intervals. It runs in real-time and does not require any offline training. It is shown that
compared to other methods using online sorting it offers a better trade-off between accuracy and
computational complexity. Unlike other systems, the spike sorting procedure requires no
multiplication operation which is computationally expensive, power hungry and requires
appreciable silicon area. These are important features in implantable devices particularly when

there is a high channel count.
The key characteristics of the proposed feature extraction method are:

1) Simplicity and effectiveness.

2) Low complexity (power consumption) for compatibility to the hardware implantable
devicesrestriction as discussed in Chapter 2.

3) Simplicity of expansion for multi-channel processing.

4) Capability of reconfigurable (adaptive) hardware implementation.
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This chapter is organized as follows.

Section 3.2 describes prior-art and the new method. It demonstrates that the subset of features
obtained by extrema sampling of the decomposed spike waveform provide the magjority of
separation between the identified active neurons and has high immunity against spike similarity
and noise level. The computational requirements and spike sorting accuracy of the proposed
method are quantified and compared against commonly used feature extraction methods. The new
method achieves a relatively high spike sorting accuracy with very low computational
reguirements, hence is suitable for low power hardware implementation. Section 3.3 presents the
results and discussion of comparative performance analysis. These include simulation results for
clustering accuracy using synthetic data, clustering using synthetic and recorded in-vivo neural
data, and complexity analysis. A metric based on the projection test is proposed for quantifying
the discrimination degree of clusters. It is used to compare the sorting quality of the proposed
method against other work. In addition, the overall complexity for sorting is optimized using the

¢1-norm distance calculation. Finally Section 3.4 presents concluding remarks.
3.2 Algorithms

By way of example, Figure 3.1 shows the signal processing and control chain including spike
sorting for a prosthetic hand. Spike sorting is the process of grouping the recorded spikes into

clustersbased on the similarity of their shapes. The process can be divided into the following steps:

1) Spike detection and alignment, separating spikes from noise and aligning the spikes to a
common point;

2) Feature extraction, extracting features of the spike shapes which gives a dimensionality
reduction, i.e., going from a space of dimension N (with N the number of data points per
spike) to adimensional space of afew features,

3) Clustering, grouping spikes with similar features into clusters, corresponding to the

different neurons.

In this chapter, the focus is on feature extraction and clustering.

74



Analog Front End (AFE) #2

Detection and

Raw Data  BPF Fitered Data Alignment

«

@

g,

g N

g ’g% X(N)
o
S
Q%

#1 %

Implantable Neural Interface

y

Feature
Extraction

Y

of a Task

Visualization

. Dimensionality
. ﬂ Reduction
> Q ] .
Motor r”f*:’ ‘%’;O')//b o§_ s‘{’o é}'? '
Prosthesis (Ib{% O% 7 S @ X2) Clusteri
F 7ex ustering

Figure 3.1: Schematic description for a BMI that relies on real-time recording and processing of
neural activity to control arobotic prosthetic arm. The implanted electrodes in the recording site
are used to monitor the activity of large populations of single neurons simultaneously. Spike
sorting is used to classify the recorded spikes (active neurons) to their source of origin. The
combined activity of classified spikesistransformed by a decoding (mathematical) algorithm into
arm control signals (armtragjectory signals) that can be used to control the movements of the robotic
prosthetic arm. The closed-loop control system is stablished by providing the subject with both
visua and tactile feedback signals[110].

3.2.1 Off-Chip Feature Extraction Methods

Principal component analysis (PCA) [94] has been the most commonly used algorithm for spike
sorting becauseit yields an efficient coding of spikes (only the first 2-3 principal components need
be retained). However, PCA requires offline training which is not compatible with online rea -time
spike sorting, and cal culating the covariance matrix of the data demands high computational cost

and hardware resources. In addition there is no guarantee of optimal separation of clusters[89].

Another common technique is the discrete wavelet transform (DWT). This is a multi-resolution
algorithm that provides good time resolution at high frequencies and good frequency resolution at
low frequencies. But the convolution of the wavelet function and original signal requires many
multiplications and additions per spike, resulting in a high computational cost. Both PCA and
DWT have generally been used for off-chip spike sorting.

3.2.2 Proposed M ethod for On-Chip Featur e Extraction

A simplified model of the DWT was presented in [109]. In it, discrete derivatives (DDs) are
computed by calculating the slope at each sample point over anumber of different time scales:

DD,y(n) =s(n) —s(n - 5) (3.1)
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where s is the spike waveform, n is the sample point and ¢ is the scaling factor(time delay). The
equation shows subtraction between the samples n and (n—6). Normally P DDs can be cal culated
per spike with different scaling factors to give multi-resolution spike decomposition, which
corresponds to different frequency bands. This yields Px dimensionality expansion of feature
space compared to the number of samples of an aligned spike (i.e., N—P x N). For example, the
size of the feature space will be N = (P = 3) x (N = 45) samples per spike for DDs of three values
of ¢. Feature space dimensionaity directly impacts on the computational complexity of spike
sorting. As anillustration, the DDs of two typica spike waveformswith delay values of 6 equal to
1, 3 and 7are shown in Figure 3.2.

Feature extraction based on extrema sampling (positive and negative peaks of DDS) is proposed
here as an efficient approach not only in terms of computational simplicity but also accuracy.
Retention of a subset of features significantly reduces the dimensionality from P x N to K, where
K isthe number of selected features for the clustering stage (K < N). For example, usingd =1, 3,7
the following features are identified in Figure 3.2: @) positive peaks DD|s = 1,3 7max); b) negative
peaks DD|s=1,37(min); and ¢) peak-to-peak amplitude (Vpp)of each DD. Different combinations are
introduced in this section by sweeping the decomposition window length (3) in order to explore
the frequency sub-bands (from 6=1 to 6=7) which accommodate the most informative
(multimodal) features [100]. To compare with other work (in terms of classification accuracy and

computational complexity) the following nine permutations of feature sets are considered:

e Combination 1: DD| 5= 1,37(max) and DD| 5= 1,37(min).

e Combination 2: Vpp of DD|s=137(i.€., DD|s=137(max) — DD|s = 1,37(min))-

e Combination 3: DD| 5 =35(max) and DD| s = 35(min).

e Combination 4: DD|s = 35(max) @nd DD = 35(min), together with Vp.p of DD|s=35. DD|s=5iS
not annotated in Fig. 3 for brevity.

e Combination 5:DD|s = 37(max) and DD)|s= 3,7(min).

e Combination 6: Features in Combination5 together with V., of DD|s=37.

e Combination 7: DD|s = 37(maxy and DD|s= 37(min) together with original spike positive and
negative peaks.

e Combination 8: DD|s = 37(max) and DD|s= 3,7(min) together with original spike height.
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Figure 3.2: Two spike waveforms (spike shapes) and their discrete derivatives. The positive
peaks, negative peaks and peak-to-peak amplitudes are annotated. Other features such as spike
gradients and peak position are also depicted.
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e Combination9:DD|s=7(max) and DD|s=7(min) together with origina spike positive and negative
peaks.

In addition to the above permutations, various values of ¢ and geometric characteristics such as
positive (or negative) signal energy, half-height position, right (or left) spike gradients, peak
position and zero crossing points could be considered to define other possibilities. Some of the

mentioned features are annotated in Figure 3.2.
3.2.3 Comparison with Other Feature Extraction M ethods

1) Waveclus [89]: In this algorithm, the combination of the wavelet transform with super-
paramagnetic clustering (unsupervised clustering method with offline training) is used for
unsupervised and online spike sorting. Feature extraction is calculated based on four-level multi-
resolution decomposition using Haar wavelets which results in 64 wavelet coefficients for each
spike. Then the Kolmogorov-Smirnov test for normality is used to select the first 10 coefficients
with the largest deviation from normality for the sorting stage.

2) Discrete Derivatives and Maximum Difference Test (DDs-MDT) [101]: In this approach, the
maximum differencetest (MDT) isapplied to each scaling factor of DDsto extract the multimodal
coefficients. The MDT is a simplified model of the Lilliefors test for selecting the uncorrelated
directions (minimum mutual information) for blind signal separation. Samples with bimodal
distribution have deviation from unimodality or Gaussian distribution, thus they exhibit multiple

peaks and valleys as a sign of multimodality.

3) First and Second Derivatives [111]: Here the first and second derivatives of a spike represent
its geometrical characteristics. The first derivative (FDV) interprets the gradient variations of a
spike shape. It is defined as:

FDV (n)=s(n)-s(n-1) (3.2)

The second derivative (SDV) highlights low frequency coefficients by computing the difference
of the samplesn and (n— 1) of the FDV. That is,

SDV(n)=FDV (n)- FDV(n-1) (3.3)
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Inthe FDV and SDV extrema (maximum and minimum peaks) are used to distinguish the clusters.
This method is referred to as FDVSDV for the rest of the paper in the accuracy and complexity

discussions.

4) DDs and Uniform Sampling (DDs-USAMP) [101]: In this method, after computing the DDs of
the spike with three different values for the delay (0 = 1, 3, 7), uniform sampling is performed to
select the subset of features. Seven coefficients are selected for each DD level and 21 per spike
since the median accuracy was in the SNR range of 15-20 dB. Uniform sampling is a blind
approach to decrease the dimensionality from N to K (in this case from 3 x 48 to 21) but this type

of sample selection could lead to non-segregation of clusters.

5) Spike Shape [112]: In this method all the samples of detected and peak-aligned spikes (without
upsampling) are used for calculating the similarity measure between the mean of the spikes in

clustering.

3.2.4 Sorting (O-Sort Clustering)

For clustering, O-Sort has been selected. It is the only online, automatic and unsupervised
algorithm that is suitable for hardware implementation [13]. This algorithm provides real-time
mapping of spikes to single neuron activity for closed-loop applications. The operation of O-Sort

isasfollows:

1) Initiaize by assigning the first data point to its own cluster.

2) Calculate the distance between the next data point and each cluster centroid. The distance
metric could use, for example, the Euclidean norm or the £1-norm.

3) If thesmallest distanceislessthan the merging threshold Tw, assign the point to the nearest
cluster and re-compute that cluster’s mean. Otherwise, start anew cluster.

4) Check the distances between each cluster and every other cluster. If any distance is below
the sorting threshold Ts, merge those two clusters and recompute its mean. Steps 2-4 are
then repeated indefinitely. In the simplified version of the algorithm (proposed in [13] and
used herein), Tv = Ts=T. Thethreshold T is defined as T = S(or)?, where o isthe average
standard deviation of the data computed continuously with along (~1 min) sliding window,

and Sisthe number of datapoints of a single waveform.
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Figure 3.3: 2-D representation of feature space for two clusters from dataset 4 with the highest
similarity. The effect of increasing (or decreasing) the threshold T is depicted. Different threshold
levels (Topt, Tmax @nd Tmin) and sorting range are indicated. For T > Tmax the risk of missing a
cluster and artificia clusteringishigh. For T < Tmin themain cluster would artificially be split into
two or more sub-clusters.

O-Sort is simple in operation with good complexity-accuracy tradeoff and satisfies online sorting
constraints (memory and power). This algorithm is adaptive thus nonstationarity of dataintimeis
applied to the cluster position and number of clusters. A disadvantage of O-Sort isthat it may split
clustersinto sub-clusters|eading to areduction in clustering performance. The created sub-clusters

are not matched with any source and are considered as noise clusters.

3.3 Results and Discussions

3.3.1 Deter mination of the Optimal Threshold
The procedure adopted to determine the optimal threshold T is as follows:

1) The range of threshold values is determined via the dataset with the highest similarity index
between the spike shapes. The maximum limit for threshold (Tmax) is defined using dataset 4
(which has the highest similarity measure) when no clusters are missed and thereis no artificial
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clustering (Figure 3.3). Artificial clustering erroneously allocates spikes to a cluster. The
threshold value can be decreased to a minimum limit (Tmin) below which overclustering occurs.
Overclustering isthe splitting of asingle cluster into multiple clusters. Tminis determined when
clustersin dataset 4 start to overcluster. For Tmin < T < Tmax NO clusters will be missed and no
overclustering will occur.

2) To determine the sorting accuracy, the optimal threshold (Topt) for each method (published and
proposed) is found by sweeping the threshold value through the range Tmax — Tmin USINg the
spike data bank in section 2.4.1.

Using this procedure determines Topt for each method when investigating its effectiveness using
different metrics. Finding optimal (Topt) threshold is resulted in 5-8% improvement in clustering

performance.

3.3.2 Classification Accuracy

In this subsection the nine combinations of feature set proposed in Section 3.2.2 are evaluated in
terms of classification accuracy to determine the be one in conjunction with O-Sort. Thisis then
compared with the feature extraction methods outlined in Section 3.2.3. Classification accuracy is
defined as:

TPCC

CAce =~ = *100% (3.4)

where TPCC isthe number of truly detected and correctly classified spikesand NTSisthe number
of truly detected spikes. NTS= DTS- (FPS+ MS), where DTS is the number of detected spikes,
FPS is the number of false alarm spikes due to noise or overlapping spikes, and MSis the number

of missed spikes.

The average sorting results are summarized in Table 3.1. The methods were evaluated across al
datasets and noise levels. Combination 5 with dimensionality (K) of 4 achieves the highest CAcc
whereas Combination 8 (with K = 9) achieves the lowest CAcc. The methods were also examined
with overclustering ratio criteria. It was observed that Combination 5 achieves the lowest
overclustering whereas Combination 2 in conjunction with O-Sort generally tends to divide a
cluster into sub-clusters. The set of features used in Combination 5 is therefore selected and will

from hereon be referred to as the DD |>-Extrema method.
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For comparison, the CAcc of the methods listed in Section 3.2.3 was investigated, in particular,
Waveclus (K = 10), DDs-MDT (K = 21), DDs-USAMP (K = 21), Spike Shape (K = 45) and PCA3
(projection of first three principal components). The results (averaged across all noise levels) are
shown in Figure 3.4. The CAcc of DDs-MDT drops significantly in datasets 2 and 3 due to the
intense overclustering effect. The number of coefficients (K) representing deviation from
normality is 21, i.e., 7 from each scaling factor (0 = 1, 3, 7). The results show that DD|.-Extrema
and DDs-MDT perform equally across datasets 1 and 4°. The former has better similarity tolerance
in datasets 2 and 3 which means significant reduction in complexity or required memory. Spike
Shape works satisfactorily for datasets 1 and 2 only. It significantly increases the computational
complexity without improvement in performance. In this method the simplest metric to sort the
spikes is the distance (e.g., Euclidean distance) between the unclassified spikes and the stored
templates. As discussed in [113] the classification accuracy of Spike Shape declines when the
spike waveforms have similar patterns (increasing the similarity index).

Table3.1:
Classification accuracy comparison of the examined feature set combinations

Average Classification Accuracy
Combination Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 | Mean
Combination 1
(K = 6) 94.8% 92% 88% 85.8% | 90.2%
Combination 2
(K = 3) 76.2% 78.6% 73.4% 68.6% | 74.2%
Combination 3
(K = 4) 91% 86% 77.2% 79.8% | 83.6%
Combination 4
(K = 6) 91.4% 86.8% 83. 6% 81.4% | 85.8%
Combination 5
(K = 4) 95.8% 93.4% 87.8% 89.6% | 91.6%
Combination 6
(K = 6) 91.2% 89.6% 80.4% 79.8% | 85.2%
Combination 7
(K = 6) 89.6% 84.6% 79.2% 74.8% 82.%
Combination 8
(K = 5) 75.6% 77.4% 70.4% 68.8% 73%
Combination 9
(K = 4) 80.4% 76.4% 75.4% 71.2% | 75.8%

*K = number of features

3 The used datasets for spike sorting methods evaluation are discussed in Chapter2, section 2.4.1.
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Figure 3.4: Comparison of classification accuracy between the DD|>-Extrema method and other
methods as a function of noise level for the four datasets. The result of Waveclusin [89] is used
for comparison. The optimum threshold (Topt) is calculated for each feature extraction method.

PCA uses maximum variance, correlated coefficients, unlike the Waveclus and DDs-MDT. In the
test for C_Difficultl_noise and C_Difficult2_noise the sorting algorithm did not distinguish one of
the three clusters with PCA feature vectors. Although PCA is computationally complex, there is
no guarantee of efficient results. Selecting the coefficients with the largest variance does not
necessitate deviation from normality and it may compromise the sorting performance. Feature
gpace probability density function of two different clusters using PCA overlap (correlated
directions) was investigated in [114]. PCA and DDs-USAMP did not perform well in the tests.
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Figure 3.5: Test dataset 3 (C_ Difficultl _0.05) showing: (a) Detected and peak-aligned spikes.
(b) Color-coded spikes corresponding to different neurons(#1 yellow,#2 red,#3 green). (c) 2-D
projection of feature space as seen by the spike classifier. (d) 2-D projection of spike clusters.
Themarkers“o”, “A”, and “*” refer to the features for the members of the first, second, and third
spike templates, respectively.

Their average CAcc with the O-Sort classifier is 66.4% and 61%, respectively, and therefore they

are not plotted in Figure 3.4.

In conclusion, the best performance for accuracy-dimensionality is DD[>-Extrema (K = 4). It

exhibits superior similarity and noise immunity.

3.3.3 Clustering Results with Synthetic Data

The evaluation of spike sorting with DDJ>-Extrema is shown in Figure 3.5 using dataset 3 (C_
Difficultl_0.05). Figure 3.5(a) shows detected and aligned spikes, Figure 3.5(b) shows col or-coded
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Figure 3.6: Sorting results of C_Difficult2_005. (a) Color-coded clusters with number of assigned
spikes in each cluster (#1 yellow, #2 red, #3 green. Note: The colors are not matched with Fig.
4). The amplitude is of arbitrary units. (b) Corresponding firing pattern which depicts firing rate
of each neuron (0-28 s). Approximated firing rate determined by the Gaussian window function.
The mean firing rate (FR) is annotated in each plot. (c) Inter-spike interval histogram (1SIH) of
each cluster. (d) 2-D projection of clusters for C_Difficult2_0.05, C Difficult2_0.01 and
C Difficult2_0.15. (Spikes have been colored according to the ground truth). (e) Illustrates
projection test using probability density functions for the three combinations of cluster
(C_Difficult2_0.05).For each combination of neurons the distance between the two distributions
is described by how many standard deviations they are apart (D value in each plot).
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spikes in each cluster, Fig.5(c) shows mapping of the spikes on the feature space as seen by the
spike classifier, and Figure 3.5(d) shows color-coded mapping to distinguish between the neurons.
The clusters are distinguished with the knowledge of true identities from the neural simulator. For
clarity, noise events and overlapping spikes were not plotted.The typical way of illustrating the

isolated units is superimposing detected spikes with different colors.

The detailed sorting results using dataset 4 are shown in Figure 3.6. The two statistical tests,
namely the inter-spike interval histogram (ISIH) test and the projection test as discussed in [115],
were used to quantitatively assess the sorting quality. A total of 3040 raw waveforms were
detected, 2929 (96.4%) of which were assigned to one of the three well-separated single units (969,
986, and 974 for each cluster, respectively). Figure 3.6(a) shows the normalized raw waveforms
and the mean waveform for each of the three clusters. Each neuron is col or-coded across the whole
figure (#1 yellow, #2red, #3 green). Figure 3.6(b) shows the firing pattern of each neuron across a
time window of 0-28 s. The mean firing rate (FR) [116] of neurons #1, #2 and #3 is 10.28 Hz,
10.64 Hz and 9.98 Hz, respectively. Each diagram in Figure 3.6(b) also hasthe raster plot (or spike
times) corresponding to the temporal firing of each neuron. Figure 6(c) shows the ISIH for each
neuron. The ISIH window should not be less than the action potential refractory period (< 2 ms
after alignment). Single-unit activity is stated when the spike waveform is clearly distinguishable
with no ISIH less than the refractory period. Figure 3.6(d) shows from left to right the 2-D
projection of clusters with increasing noise level (0.05, 0.1 and 0.15). Increasing the noise level
adversely affects the projection and may result in some degree of overlap, but it is observed that
the borders of clusters are clear even in the most difficult dataset with noise level of 0.15. Figure
3.6(e) shows the results of the projection test using probability density functions for three
combinations of cluster in C_Difficult2_005. The projection test [13], [117] is a one-dimensional
representation between two known means with a distance indicator (D) which assesses the quality
of clustering. Thistest shows whether or not spikes from multiple neurons are artificially assigned
to aparticular cluster by the sorting algorithm. Furthermore, it detects the invalid merging of two
clusters. In Figure 3.6(e) the normalized distance between probability density functions for the
three combinations of cluster are sufficiently large to permit correct assignment of spikesto unique

neurons.

86



1

I
. I
intercluster I
I
I
I
I
I

I
intragluster
T
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Inspired by [114] a quantitative metric based on the projection test is proposed for assessing the
level of distinctness of the generated clusters. The metric for quantifying the discrimination degree

of clustersistheratio of intercluster distance to intracluster distance, defined as

mn;_, y [iiqu}

inter =12 y:i# i

DisDeg = =
intra T

(3.5)

where PDj; is the projection test distance between clustersi and j. Thisratio isametric for cluster
quality measurements and is useful for optimization. The higher the value of DisDeg the better the
cluster separation quality (Figure 3.7).

Figure 3.8 compares the separation confidence level of the Graph-Laplacian feature (GLF) [114],
for DDJ>-Extrema and DDs-MDT. DisDeg verifies the efficiency of sorting compared to other
techniques. Increasing the similarity in each dataset from Easyl to Difficult2 and noise level
adversely affects the cluster separation. The results of the statistical tests verify the efficiency of
the proposed method.

3.3.4 Clustering Results with Recorded In-Vivo Neural Data

Collected neural signals from the peripheral median nerve in pig (obtained with a multi-electrode
cuff in-vivo) were used to test the sorting performance of the DDI>-Extrema. 6564 spike
waveforms were detected from 24 single neurons in four different channels: eight in channel 1,

fivein channel 2, fivein channel 3 and six in channel 4. The analysis of the sorting resultsis shown
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Figure 3.8: Discrimination degree of GLF, DDs-MDT and DD|.-Extrema. For simplicity T=1.

DisDeg of GLF was calculated using the quality metric in [114].

Noise Level

in Figure 3.8 for three of the channels. Figure 3.9(a) shows the mean spike waveforms of channels
[-3; each color corresponds to a unique neuron. Figure 3.9(b) shows the sorting results of three
similar neurons from channel 1. The ISIH test shown in Figure 3.9(c) verifies the accurate
segregation between the chosen neurons. In Figure 3.9(d), the projection test quantifies the
distance between every pair of clustersin channel 2. The normalized distance between each pair
(standard deviation criterion) is large enough to conclude the efficient separation of clusters. In
total 5973 (91%) of all detected spikes were assigned to the identified neurons.
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Figure 3.9: Sorting results of the recorded in-vivo neural data. (a) Illustration of found mean
waveforms in channels 1-3. The amplitude is of arbitrary units.(b) Color-coded clusters with
number of assigned spikes in each cluster form channd 1 (#7 red, #5 blue, #4 cyan). (c) ISIH of
the neurons form channel 1. (d) Results of projection test using estimated probability density
functions for all possible combinations of channel 2. 2-D projection of clusters is included for
visual clarity. The vertical axis shows the distribution amplitude and the horizontal axisis the
distance between the two distributions.



3.3.5 Complexity Analysis

In order to assess the hardware requirements of different methods the computation complexity
metric was used. It isdefined as [101], [118]:

ComputComp = N 44.gp) + 10N (3.6)

mult(div)

where Nadd is the number of additions (or subtractions), and Nmut IS the number of multiplications
(or divisions) required. A 10-bit multiplier uses almost 10X the hardware resources of a 10-bit
adder. Table 3.2 compares the proposed method and seven other published methods in terms of
estimated computational complexity, clustering agorithm used, average classification accuracy
(CAc) and number of features (dimesionality). Compared to DDs-MDT, DD|>-Extrema has 3.6x
lower complexity with 19.8% higher average accuracy. FDVSDV has 5.76x and 1.62x higher
complexity compared withDD|-Extrema and DDs-MDT, respectively. It was reported in [110]
that FDVSDV has 6.97% classification error with varying noise levels across all four synthetic
(Section 3.3) datasets and M(2N — 3) complexity with the k-means classifier.

Since in FDVSDV extrema are selected using the attenuated projections of a spike shape, the O-
Sort sorting threshold needs to be reduced to distinguish the clusters. The threshold level for
FDVSDV wasfound using T = §(a-¢)? where (a = 0.25) is afactor derived from simulation. There
are disadvantages with the calculated threshold. They include: 1) the possible creation of an
impractically small threshold value (e.g., 0.001) which is then very sensitive to noise variations,
and 2) determining the sorting threshold involves an extra multiplication (evaluating T for

Table3.2:
Computational complexity comparison of various feature extraction and dimensionality reduction methods.

Method Feature Extraction Dimensionality Reduction Clustering | *Average Number of ADC
Additions Multiplications Algorithm CAc Features (K) Simulator
DDJ-Extrema M(2N - 10) - Max / Min/ V., 0f DDl = 37) O-Sort 91.6% 4 v
PCA M(N? + 1) M(N? + N) - O-Sort 66.4% 3first PCs v
FDVSDV M(2N-3) - Max / Minof FDV and SDV O-Sort 73.6% 4 v
2DDs-MDT M(3N—11) - MDT—(M —1)(3N) O-Sort 71.8% 21 v
aDDs-USAMP M(3N -11) - Uniform Sampling O-Sort 61% 21 v
Spike Shape - - O-Sort 68.4% 45 v/
ZCH75] M(N) - - k-means >94.0% 2ZCFs=3 x
**DWT M(4N) M(8N —10) Kolmogorov-Smirnov SPC ®92.6% 10 x

M = number of spikes; N = sample number per spike

* Averaged across 4 datasets with varying degrees of noise level
** DWT (four-level Haar wavelet) and Kolmogorov-Smirnov used in Waveclus

a- DDs-MDT with scaling factorsd =1, 3,7
b - Theresultsin [89] are used for comparison

¢ — ZFC performance was evaluated with a different spike bank
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recalculating the average standard deviation when using a dliding window). FDVSDV was
implemented with O-Sort to provide a fair comparison with the method proposed in this paper.
The average accuracy of FDVSDV is 73.6%.DDs-MDT has an average accuracy of 71.8% with
O-Sort. Six of the eight methods listed in Table 3.2 use the O-Sort clustering algorithm. It should
be mentioned that the average accuracy of O-Sort isaround 70% while both k-means and fuzzy c-
means have over 90% discrimination accuracy. However, the only online and unsupervised
algorithm in the context of implantable sorting hardware is O-Sort. In addition, k-means and fuzzy

c-means clustering require prior knowledge of the number of clusters.

To test the accuracy of the classifiers, original spike shapes were applied (without upsampling) to
establish the accuracy with unprocessed data. Waveclus is very efficient with an acceptable
classification error (7.4%). However, its computational complexity is much higher than that of
either DD,-Extrema or DDs-MDT. DD|>-Extrema without offline training requires less than 5%
of the computational complexity of Waveclus (the computational complexity of Kolmogorov-
Smirnov is not considered). Although DD|>-Extrema and Waveclus have comparable similarity
immunity, there is a sustained improvement in DD|>-Extrema performance with increasing noise

level (noiseimmunity).
The overall sorting complexity consists of creating clusters and merging phases. It is defined as:

SortComp = (MK (3C-3)+K(3C-3)}+20 MKC (3.7)

Add Mult

where M is the number of feature vectors, K is the number of features representing each spike in
feature space, and C is the number of clusters. The Euclidean distance calculation requires the
multiplication operation in Eq.(3.7) which leads to high sorting complexity. ¢1-norm distance
metric makes O-Sort a particularly good choice for hardware implementation since it is much less
dependent on the dimensionality of feature space. The ¢1-norm distance is less susceptible to
biological noise than the Euclidean distance [76], hence resulting in a better average CAcc. Figure
3.10 shows the classification error versus computational complexity of feature extraction and
sorting. The DD2-Exrema has better tradeoff between classification error and complexity. Figure
3.11 displays the average classification error versus dimensionality factor for various methods.
The dimensionality factor is the ratio of feature space dimensions to the number of samples per

spike. As can be seen, there are significant differences between DD|-Extrema (K = 4) and
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Figure 3.10: Classification error versus computational complexity for the different feature
extraction and sorting methods considered herein. The red square (DD|.-Extrema) shows the
average accuracy amongst all datasets and all noise levels. The green square (DD|>-Extrema)
shows the average accuracy amongst all datasets using noise with a standard deviation of 0.05.

FDVSDV (K = 4), Spike Shape (K = 45), DDs-MDT (K = 21), DDs-USAMP (K = 21) and PCA
(K = 3). The competing methods for DD}-Extrema are ZCF [75] (2ZCFs = 3) and Waveclus
(K = 10) with 2.4% and 1% lower classification error, respectively. It can be clearly observed that
DDJy-Extrema outperforms all the other methods and provides the best tradeoff in complexity,

accuracy and dimensionality.

3.3.6 Proposed Data Reduction Application Example

As noted in Section 3.2, one of targeted applications is the development of a custom integrated
circuit for animplantable multi-electrode neural interface for upper-limb prostheses. The chip will
amplify and reduce the data rate needed to represent the many spike signals. Each interface will
typically have 20+ channels (microelectrodes) and there are four nerves in the upper arm which
carry most of the motor axons. Prior to spike sorting the recorded data will be digitized by an
anaog-to-digital converter (ADC, see Figure 3.1). Assuming each channel is sampled a 30 kHz
with 7-bit ADC resolution, the average data rate at the input of the digital spike sorting processor
will be (4x20x30 kHzx7bits) 16.8 Mb/s (Figure 3.12). A typical neuron generates on average 40
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Figure 3.11: Classification error versus dimensionality factor for the different feature extraction
methods.

spikes per second when active [119], and up to 25 active neurons are estimated in each channel.
Therefore, after detection and aignment the data rate will become 1.26 Mb/s
(100 neurons x 40 spikes/(neuron.second) x 45 samples/spike x 7 bits/sample). Using DD|.-
Extremato encode the spikes into four features (28bits/spike) the extracted coefficients will yield
a data rate of 112 kb/s or 0.007% of the original data rate. In the fina step typically the cluster
number and channel number will be processed via O-Sort, which will yield afinal transmission
data rate of 56 kb/s (i.e., 0.004% of the original data rate). Such a low data rate is feasible for
wireless transmission using asingle pair of coilsfor both power and data[120]. Reducing the data
rate to only 0.004% of the original data rate should also be attractive for high channel count
recording front-ends for other applications[121], [122].

3.4 Conclusion

This chapter has proposed and investigated a new feature extraction method based on spike
waveforms and their discrete derivatives. Nine combinations of extrema features have been
examined with the proposed DD|>-Extrema method offering the highest average classification
accuracy. Specifically, DDJ-Extremawith M(2N — 10) complexity and dimensionality factor of 4,
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Figure 3.12: The spike-sorting process, annotated with an example of typical datarates. The data
rate at the end of spike sorting is lower than that of the raw data. (Assumptions are annotated on
thefigureinred italics)
achieves 91.6% average classification accuracy. It requires about 1% of the computational
complexity of PCA while providing higher accuracy. The combination of DDJ>-Extremawith O-
Sort provides a considerabl e accuracy-complexity tradeoff. This should allow on-chip processing
without any assumption of high level of fidelity for sorting multi-unit activity. The results confirm
that the average classification error is less than 4% across all the datasets tested using noise with a
standard deviation of 0.05.Thistheoretical limit can be used to determine the design parameters of
the analog front-end including data converter resolution and sampling rate, filter type, bandwidth
and order, and amplifier noise, bandwidth and gain. The overall complexity of spike sorting has
been optimized using the ¢1-norm distance calculation [76]. The clustering performance of the
proposed method has been eval uated using both synthetic and recorded in-vivo neural data. DD|-
Extrema outperforms various online and offline agorithms which have significantly more
complexity. In addition, it offers a better trade-off between complexity, accuracy and
dimensionality than al the other methods considered herein. DD|>-Extrema could be used as an
integral part of afuture neural amplifying and spike sorting chip for a range of neural prostheses
applications such as prosthetic hand (see Figure 3.1), cortical neural recording [123], and bladder
control after spinal cord injury [124].
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CHAPTER 4

Design Techniques and Power Limit Analysisof Neural Front-end I nterfaces

Targeting Ultralow Power | mplantable Devices

4.1 Introduction

Neural front-end interface (NFI) isacritical pre-processing stage in all neural recording systems.
The quality of neural data monitoring is directly affected by the NFI. As discussed in the
introduction (Figure 1.1), the trend in signal acquisition is towards a large number of recording
channels (e.g., 1K channels). Conventional design has high front-end specifications which result
in power and area utilization in hardware which is not compatible with high channel count
recording. A design framework is required to achieve sufficiently low power and area utilization.

With reference to Figure 4.1 this chapter has the following ams:

1- Development of a NFI power optimization framework suitable for high channel count
(1K+) recording. By optimizing each channel in terms of power and area, there is a
capability for 1K+ recording and processing for future generation of implantable BMIs.

2- An optimization procedure which results in a power efficient NFI, allowing provision
of more functions such as spike sorting for a given amount of power consumption per

channel, and reducing the energy cost associated with the transmitter (e.g., nJ/bit).

The optimization framework [125] isillustrated in Figure 4.2. The power consumption of the NFl
is assessed by examination of the constituent building blocks comprising a low noise amplifier
(LNA), aprogrammable gain amplifier (PGA) and an analog-to-digital converter (ADC).

The minimum power required for the NFI is theoretically derived based on its constituent building
blocks. In addition to deriving the NFI power bound, it is shown that the noise-power
contribution can further minimize the NFI power bound by appropriate selection of data
conversion design such as comparator-based switched-capacitor (CBSC) [12], [126-127].
Following the NFI power dissipation bound analysis a parametric optimization methodology is
developed to define the optimal values of NFI practical parameters including signal bandwidth,
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Figure 4.1: Multi-channel signal monitoring with (a) conventional recording and (b) the spike
sorting chain is included in the neural interface. () The power reduction due to the proposed
power optimization framework allows the integration of spike sorting into the implant for the
same power consumption asin thetraditional model. The amount of saved power budget for spike

processor integration is 30% which is discussed in section 4.4.3.

sampling rate and resolution. The underlying suggestion is that the current NFI state-of-the-art
designs are not optimally engineered. This optimization tool is developed by an FPGA-MATLAB
interface and alows designers to assess spike sorting robustness to variations in the NFI practical
parameters. The NFI behavioral model is simulated in MATLAB, which provides a flexible way
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to investigate the effect of different topologies on neural data. A spike sorting processor was
implemented on an FPGA to complete the assessment loop. This FPGA-MATLAB is a simple
realization of the whole processing chain to achieve a good balance between resource efficiency
and outright spike sorting performance. The NFI optimum parameter sel ection procedureis applied
to standard datasets with different signal-to-noise ratios (SNRs) and various spike similarity levels.

The analysis tests the robustness of spike processing accuracy.

It is shown that for a resolution of 7 bits (optimum for spike sorting) using a comparator-based
switched-capacitor (CBSC) cyclic ADC reduces power consumption by approximately 30%

compared to a successive approximation register (SAR) ADC.
The design steps are:

1. Estimation of the NFI Theoretical Minimum Power: The theoretical minimum power of
the NFI is derived by considering its individual building blocks. This limit provides a
minimum design target.

2. Choice of ADC: The commonly used SAR ADC is compared to the CBSC cyclic ADC.
Other data converter architectures such as zero-crossing-based [128] and pulsed bucket
brigade [129] are possible alternatives.

3. Sdection of NFI Key Parameters: These include LNA bandwidth, ADC resolution and
sampling rate, specified by exploring their effect on the accuracy of the spike sorting
processor. An online, unsupervised spike sorting processor was implemented on an FPGA
to verify the extracted NFI parameters. The derived parameters take into account the
accuracy requirements for spike sorting and are compared with a number of NFIs in the

literature.

To validate the study, the derived minimum power limits are compared with published designs
obtained from the state of the art. Optimizing the NFI design prevents over-engineering and

significantly reduces the power cost of recording to transmission.

Therest of the Chapter is organized as follows. In Section 4.2 the power models of the LNA, PGA
and ADC (SAR and CBSC cyclic) are presented. In Section 4.3 an online FPGA implementation
of the spike sorting processor is presented. In Section 4.4 the design optimization of the NFI is

examined based on spike sorting requirements. By considering the ADC and proper selection of
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Figure 4.2: The optimization framework.
NFI parameters, NFI power bounds using two types of ADC are derived and compared. A
parametric NFI designisalso briefly discussed in this section. Conclusionsare presented in Section
4.5.

4.2 NFI Power Model

The genera architecture of atypical implantable bio-potential recording system isshown in Figure
4.1. The NFI comprises: @ LNA, b) PGA, and ¢) ADC. The LNA is used to record the neurona
activity (the amplitude of the extracellular potentialsisin the range of 50 uV to 1 mV4) and in a
specific frequency range (between 300Hz and 10kHz). Thus the recorded signals must be
amplified and filtered before being processed. It also removes any dc level generated at the
recording site across the electrode-tissue interface. The PGA provides further (programmable)
amplification. It typically has a bandpass response to eliminate unwanted signal components (e.g.,
local field potentials and high frequency noise), to prevent aliasing and to provide offset
adjustment. The ADC performs digitization for the subsequent processing operations (e.g., spike

4This range is based on various neural interface modalities with different levels of spatio-tempora resolution and
invasiveness as discussed in Chapter 2.
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V7 woring - NEUrA recorded signal noise power, v?2 . : Overall input referred NFI noise power,
vZ e - LNA Input referred noise power, (Vrﬁ,pGA ~ 0): PGA Input referred noise power, and

Vi aoc - ADC Input referred noise power which is composed of thermal noise power (
. the LNA input referred

Vioema soc ) @Nd quantization noise power (vZ . ). v3

niADC , source

thermal noise power of the ADC.

sorting). Since the focus of the next two sections concerns noise-power anaysis, the noise sources
from different blocks of NFI areillustrated and defined in Figure 4.3. The input referred noise of
the PGA is assumed to be zero for simplicity in cal culations when demonstrating the contribution

of the data converter thermal noise on the NFI power limit.
4.2.1 LNA Power Analysis

A figure of merit for LNA design is introduced and discussed in [130]. The minimum power
consumption of the LNA isdictated by the input referred noise voltage (vnirms). It should be noted
that the 1/f noiseis not the dominant noise source in the circuit dueto large gate areas of the pMOS
input devices and contributes about 0.1 uV/Hz (0.5 Hz to 50 KHz [131]) to the total noise voltage
(vnirms). Hence the power bound of the LNA is based only on thermal noise considerations. The
noise efficiency factor (NEF) introduced in [130] identifiesthe trade-off between vnirms (integrated
over bandwidth) and LNA power consumption:

21
NEF=V; s’ LRA
Lrms \/ .U 4KT. (BW xa= fLp— iip) (4.1)

where Ina is the total LNA supply current, BWina is the 3-dB bandwidth of the LNA and Ut is
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the thermal voltage (kT/g), k is Boltzmann's constant and T is temperature in Kelvin. An LNA
with programmable bandwidthisincluded in Eq.(4.1). Therequired LNA power consumption Pina

IS

PLNA =VDD - LNA

(NEF)? 7.Ut.4KT.BW ya (4.2)
:VDD . > . 2
Vni,rms

where Vpp is the power supply. The noise constraint on the LNA isinfluenced by the quantization

noise of the ADC. The total amount of noise at the input of data converter should be less than the

_— : 2
quanti zation noise power (Vgn, apc ):

2 272 2 2
Gina " Gpoa ™ Vi rms + Vinermal .apc < Van,Abc (4.3)

Guna and Gpga are the gains of the LNA and PGA, respectively, and Vtzherma| .Apcis the ADC

. . 2 2
thermal input referred noise power. Vinermal, Anc Can be expressed as a percentage of Vi rms , hence

Eq.(4.3) isrewritten as below:

GLNAZ'GPGAZ'VrZﬂ,rmS + GLNAZ'GPGAZ'(a'Vﬁi,rmsj < Vgn,ADc (4-4)
GLNAZ-GPGAZ-Vr%i,ms-(l‘* a)< Vgn,ADc (4.5)
- V2
2 22 qn, ADC
Gina Gpoa Vi rms < (L+a) (4.6)
2
a= the'm"ADcz is a noise multiplying factor (NMF) (its selection is discussed in Section

2 2
Gina Gpea Viims

4.2.2). It is calculated by dividing the ADC thermal noise power contribution by the LNA noise

power referred to the input of the ADC. qun Apc isreplaced by Vi /12.2%":

- V 2
Gia Groa N BipmsS ( ES (4.7)

1+a).12.2%"

where Vrs (e.g., 1V) is the full scale voltage considered for quantization and n is the ADC
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. . 2 . . .
resolution. a is set to >0.1 when the calculated value Vinermal ,ADcC iS Noticeable. This means that

vﬁi,rmsmust be designed to be extremely low in the LNA to compensate for the effect of a. When

o 1S set to zero, the LNA design can be more relaxed which means no additional power isrequired
to nullify the effect of « in Eq.(4.6). The simplified models of Eq. (4.7) for ¢>0.1 and a=0 are:

2
s 273 Ves — ©€0.SAR a>01
GLna Groa Vaigms <1 (L+@)12.2 (4.8)

(\/58/12 22“) eg.CBSC =0

When ththzherml apcislow (CBSC a=0), the LNA power consumption is dependent on the ADC

guantization noise which is defined by Vesand the converter resolution n. On the other hand, for
0>0.1, the LNA requires more rigorous requirements in terms of power consumption to reduce the

LNA input-referred noise. Hence, the minimum LNA power consumption is:

L+a)1227 R gso1
> . .
» 27(KT)2%.BW, Vs
Plna = GENA'GE‘GA(NEF) -%- 12920 (4-9)
—~ eg.CBX a=0
Vs

4.2.2 Assigning Noise M ultiplying Factor (NM F= «) through Data Converter Noise Analysis

This section provides a study of the input referred-noise in the CBSC gain stage and SAR data
converter. For the purpose of the CBSC gain stage noise analysis, a single pipeline stage (1.5
bit/stage) is considered. As shown in Figure 4.4 the input referred noise (IRN) of a CBSC gain
stage consists of a contribution from the threshold detection comparator (TDC), switches (Ss, S)
over their operation time, and charging capacitance (C.). The overall therma noise of a CBSC

gan stageis:
Vtzhermal,CBSC:V%DQin‘*' SNitcheﬁin+V|2n,CL (4.10)
where 7., is the TDC noise power, vZ,.. ., is the switches noise power and v . is the

capacitive load noise contribution. An example comparator (TDC) with added noise current
sourcesis shown in Figure 4.5 [132] (TDC operation is discussed in section 4.2.4.2.2). The noise
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Figure 4.4: CBSC gain stage noise analysis. The effect of noise contribution from different
elements are depicted via green (TDC noise), blue (load sampling capacitance C.) and red
(switches Rs and R.). The overall input referred noise of gain stage is represented via (IRN).
D(i)Vreristhe output of analog multiplexer in 1.5-bit/stage. Vcm is the common mode voltage.

current generated in M1 is mirrored in M4 (also M3). Thetotal current noise at the output node of

TDC isthe product of the power spectral density and equivalent noise bandwidth is:

: : : - 1
V12',out = (II\Z/Il,n + II%IIZ,n + Il\2/I3,n + II\2/I4,nj . (r02 I r04)2' 2t
d, TDC
" X ) (4.11)
——— ——
w00 3 -t 45
d, TDC d,TDC

where i2 | is the current noise introduced by the i transistor, (R=rozlro4) is the impedance

observed at the output node and 1/2tqoc is the CBSC noise bandwidth [133] where tq1oc is the

delay of comparator. The input-referred voltage noiseis given by:

Amc
(16KT y).{R.gm}R

2t d,TDC

8KTy.R _ 8KTy

Armctatoc  Imlatoc

Viocin = 2 (4.12)

ATDC

where Arpc is the total gain of the TDC. The second noise source in the CBSC gain stage is the
contribution from the switches (Ss, S.), shown in Figure 4.4. During the charge transfer phase, S
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ison and in serieswith CLand Ssison and in series with Cs. Therefore the input-referred voltage

noise due to the switches is expressed as.

Vg/vitch% Jin = 4KTRtot'; (413)
d, TDC
where Ryt is the total resistance which is seen at the input node of the TDC ( ) which is
equal to:
o 2 c 2
_ fL S
. (410

where Cx_is the series combination of the C; and C.. It should be noted that the switch noise is
filtered via the noise bandwidth of TDC (1/2tqoc).

The last noise source is the contribution of the noise sampled onto the load capacitance from the

capacitor network. The total capacitance value at the output node is defined as:

Lo €L (4.15)

C =
¢ +C,

series
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where CsriesiS the series combination of the Cr; and Cs. Therefore, the noise value of Ciis:

2
V=Kl Caie | _KT[ Cue (4.16)
' C Cseries_'_CL CL Cseries+CL

tot

The input referred noise of Ciis calculated by dividing it by the gain value (G1s.it) of the 1.5bit
gain stage (Cs= Cy):

2

) C

Ve =KT[_ Coie || =r 1 (4.17)
"t CL (Caies ¥CL JICs +Cg 2

The nominal thermal input referred noise value is around <2 (differential architecture)x25uV rms
for fs = 30kHz. In [134], detailed statistical analysis for calculating IRN of three types of SAR

ADCs is proposed. The popular model for ideal quantization noise power (chln,SAR ) calculation

is shown in Figure 4.6(a). In Figure 4.6(b), the difference between the output of digital to analog

(DAC) converter Vpac and Vip, V|2RN, AR, IS then ameasure of the combined effect of quantization
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and thermal noise in the noisy system. When the ideal quantization noise ( Vgn,sar ) is subtracted

from V|2RN,5AR, thermal noise power VtzhermaI,SAR is derived. The input-referred noise of a SAR

ADC 2 in conversion phaseis:

IRN,SAR

2 2 2
ViRNSAR™ Vihermal, saRT Vi, saR (4.18)

2 2 L .
where Viperma, sar @nd Vo, sar are thermal and quantization power terms. The typical value for

Vihermal SAR IS in the range of 0.7-2.2mV. This value can be justified through different constituent

building blocks noise contributions in the bit-conversion phase (switching noise is not included).
In the bit-resolve phase, the bits are resolved one-by-one by comparator and capacitor arrays. The
thermal noise contribution of capacitor arraysis equal to KT/Ciot Where Ciot iS the total capacitance

of the capacitor array (64uV for a Ciot =1 pF). The second unit, the digitization phase, isadynamic

comparator which intrinsically has 10X higher noise (v >0.5-2mV = Vhermal, SAR) [134-

n,comp

137]. Thisimpliesthat the dynamic comparator noise power term (Vﬁ,comp), dominates by afactor

of 100X over other terms. The noise study in this section, a CBSC 1.5-bit/stage® architecture
suggests that it is more suitable for biomedical applications due to its noise behavior. In order to
provide a simplified model for power analysis, noise multiplying factor (NMF= «), isadded in the
LNA power model to show the effect of converter input referred therma noise voltage on this

block. The next two points devel op the power-noise analysis in this section:

(NMF= o) selection: To calculate a, first the ADC IRN is reflected to the input of analog section.
It isassumed that an ideal LNA is used in designing of NFI, so the ADC IRN can be modeled as

an independent noise source (v ) inthe input of anal og section:

niADC ,source

2
Vihermal, ADC
2 2
GLNA 'GPGA

(4.19)

2
\4 niADC,source =

5 More efficient noise behavior is expected from ZCB gain stage [128].
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2 2
. . Vé v .
o isthe defined as o = “'AZC'S‘”CE = ;he'”‘a'"*chz . Sothevalue of a depends on input referred
Vni,rms GLNA 'GPGA 'Vni,rms

noise power of LNA v2 . For example, in an NFI with (vnirms ®=4uVins), employing SAR ADC
for digitization, a isin the range of (0.175-0.55). The NFI systems employing SAR ADC demand
more stringent requirement for noise suppression in LNA compared with the CBSC architecture
where a ~0 due to the fact that the nominal input referred noise value of a CBSC 1.5-bit/stage is

much lower compared to SAR data converter.

IRN of analog section: the NFI IRN (V25 = V3 s + Vianc wouee ) ShOUI be lower than the

background noise of the neural recorded signal (v2,.an, ) (SE€Figure4.7). Inadditionto thislimit,

the overall amplified noise of NFI at the input of the ADC should not be higher than the

guantization noise to avoid any information loss in the digitization process. The limits are:

2 2
(Vn,NFI < Vn,recording) A

2 (4.20)
V2 Van,ADC B
nNFI S5 5
GLNA 'GPGA
nOiSe vl el
Electrode £
. c
noise P RMS «g
$3
= [T signal
\ 4
— > (6 2c.2)i | ADC [,
Vs,NF|<V§,recordmg —>»| |LNA| |[PGA —)Vn'NF' LNA T=PGA )1.) ‘HJJ_,-F" L5
<2 H
gn,ADC
Biological
noise

Figure 4.7: illustration of conditionsin Eq.(4.21).

6 This value can be ca culated based on different circuit architectures such as[131].
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Figure 4.8: Block diagram for NFI power evaluation using different converters. The overall
power consumption is expressed as Pnri=(PLna).(1+ @) +(Ppca)+ (Papc).

2
Van,ADC
A& B c qr; 2 <Vr%,recording (421)
Gina Groa

The Vhrecording Of @ LNA can be set at a reasonable upper limit which is 10uVms (it satisfies
Eq.(4.21)). Thislimit is estimated by extracting the spikes from neural data and subtracting them
from the original waveform. The remaining signal is pure noise and the noise root-mean square

(RMYS) of thissignal is an accurate indication of noise level prior to LNA.

The power bound evaluation procedure of NFIs employing different types of data convertersisin
Figure 4.8.

4.2.3 Programmable Gain Amplifier (PGA)

Assumethat thereisasample-and-hold (S/H) as part of adata converter which operates at Nyquist
rate 2BWina where BWina is the LNA bandwidth. Further assume that the LNA has one dominant
pole and the output of the LNA goesthrough afirst linear settling. Asillustrated in Figure 4.9, S/H
tracking sampling time (Tsanpling) and hold time (Thod). The sum of the S/H processing time
(Tsm=Tsampling+Thoid) Must be less than the conversion time (Tsx <Tapc). In a conventional single

amplifier with asingle dominant pole, it istakes some time to settle to an acceptable residual error
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Asaresult thetimeleft for data conversion is significantly reduced and the conversion speed must
operate at a higher speed. In order to deal with the residual issue, alow power system is proposed
in [138] that differs from the conventional approach. In addition to the LNA, the system consists
of a PGA that drivesthe S'H. The benefits of this system are:

= The optimum power can be obtained via proper design of PGA and ADC parameters.

* Finetuning of the gainis available.
The PGA drivesthe ADC and must meet aslew rate constraint. Typically, the time constant of the
PGA is:

Ceer ¢ e (4.22)
m, PGA

Tpea = RpeaClL pea =

where Rrca is PGA output resistance, Cy pea is the load capacitance seen at PGA output node and
Om rca iISPGA transconductance. The required bias current during the slew time (Tgew) in the PGA

is:

VA

<

1/2 fs Thold
1/4 fs
TSleW+TSettIe
< > < >
Thold Tsampling
<
Tapc

0 >t

Figure 4.9: Illlustration of PGA operation timing. PGA drivesthe S/H of data converter.
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CL,PGA 'GPGA 'VFS
TSew

(4.23)

IPGA, Sew™

where Vrs is the full scale range of the ADC. Typically, the time constant of the circuit must be
small enough to make the circuit settle to within 2" for an alowable settling time Tsatei €.

e—(Tseme/ Thoa)=2" (4 24)
which leads to rea=Tsate/(N.IN2). For a given capacitance Cy, pea, this result bounds gmpca and,
therefore, yields a minimum supply current of the circuit based on linear settling lpca,setie= gm,

PGA Vet

g :GPGA-CL,PGA-n' In2
e Toete (4.25)

I peasatie= Om pea- Veit

The total time allowed for lewing (Tsewx) and linear settling (Tsawe) Can be set at Tpea = 1/4fs

(Figure 4.9). The minimum PGA power consumption is:

(4.26)

Peca = Perca Sew T Poca Settle

Cupca Can be equated to the capacitor network in the sampling path of S/H (Cy). Cy is determined
by equating the sampling noise with the quantization noise [139]:

12 KT.2%"
C, - ﬂvT (4.27)

where 5 isaconstant factor between 2-5 [140], and Vrsisthe full-scale voltage of the ADC. Since
the theoretical limit for the unit capacitance Cy obtained by equating the sampling and quantization
noise can be hardly reached in practice because other non-ideal effects such as mismatch, parasitic
capacitances or charge injection from switches, the 5 coefficient is added to make the value of Cy
more realistic. PGA and power consumption values then take into account some practical effects.

4.2.4 ADC Power Consumption

The theoretical minimum power consumption is examined in this section, firstly of a SAR ADC

and secondly a power-scalable cyclic ADC using the CBSC approach.

4.2.4.1 SAR ADC:

The conversion processin a SAR ADC is performed by three basic building blocks (Figure 4.10):
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a dynamic latch comparator (DLC), a capacitive DAC and a successive-approximation register
(with its associated control logic). Assuming the power consumption of the noise-limited
capacitive DAC is negligible, the power consumption of the SAR ADC is.

(4.28)

where PoLc is the power consumption of the DLC, Pregiser IS the power consumption of the
registers, and Psuitch IS the switching power.

4.24.1.1 Dynamic Latch Comparator (DLC): This section explains the DLC power
consumption in regeneration (reconfiguration phase) and reset phases. For simplicity of the
analysis during regeneration phase, the DLC is modeled as two back-to-back inverters as shown

in Figure 4.11. The output voltage equation (Vo=Vx-Vy) of comparator [141] is:

Vo = AV, g eXp(WJ (4.29)

TbLc

where Ay acts as a gain factor from the inputs to the initial imbalance of the inverters, V, 44 isthe

input voltage difference to the DLC, typLc is the DLC decision time, and the time constant
to.c =CoLc/gmpLc Where Copic is the capacitive load of the DLC and gmpic is the total
transconductance of the DLC simplified model.

In the binary search algorithm in an bit DAC, n steps are needed to compl ete one conversion as

the DAC output gradually approaches theinput voltage. The V, 4« for thei-step can be expressed

VI diff — SAR & Dout
—| S/H >Q »Df V=1 Logic A
Vin y il out
DAC va

Figure 4.10: Charge-redistribution SAR ADC.
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Figure 4.11: Simple model for dynamic latch comparator.

Y/ Y :
V] i :‘—\/,N+D_1%+...+%,1£|£n (4.30)

where Vinistheinput voltage, Vrer isthe DAC reference voltage and D1 isthe binary digit (either
‘0" or ‘1'). Eq.(4.29) isrewritten as:

t
Vo = AV, i eXp[d’DLCJ

‘oic (4.31)
=exp
AN dite TpLc
Assuming that tqpLc = 1/2fs = Ts (i.e., the DLC works continuously) the required gmpLc iS:
CDLC . { VDD J
OmpLc = In 4.32
" tdvDLC; (_ AMN +A/(VREF/2k)) (4:32)

The sigma () term is expanded as:

e T 0 (LGOI LS (o | B

k=1 ANV +A (VREF lzk» k=1
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nIn(\Vpp)+nIn(AV,y) Z(In (A Veer ) |n(2k))

k=1

(4.34)

n

= n.(l n(Vpp)+ In(A\,\/IN ))— n.l n(AV .VREF)+ In(2).) (k) (4.35)

k=1

zn.Ir(VDD)—n.In(A,.VREF)+nln(2).g (4.36)

Replacing the sigma (X) term of Eq. (4.36) into Eq. (4.32) is results in:

V, n
OmbLe = 2nfs.CDLc{n(ln A/\ZTEFJJFEIM} (4.37)

The simplified total input-referred noise voltage of the DLC has a fundamental kT/C limitation
given by [142]:

-y KT (4.38)

where y is a noise parameter (y = 2/3 to 2). Equating this noise to the quantization noise, the

minimum capacitive load of the DLC (under noise constraint) is:

22n
CDLC = 48KT7/

(4.39)

Ves®

Substituting Eq.(4.39) in Eq.(4.37) the minimum value of gmpLc and thus l¢ = gmpLcVerr can be

found 7. The minimum DLC power consumption is:

7 For bipolar transistors Vet = kT/q (~26 mV), for MOStransistorsin strong inversion Vet = (Ve —V1)/2, and for MOS transistor
in sub-threshold Vett = mKT/q with m (sub-threshold slope factor) dightly larger than one. For typical transistors in 90-350 nm
processes Veit is 100-300 mV.
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Figure 4.12: SAR digital logic.

22“ VDD n2
I:)DLC,regeneratbn = 96nfs-KT7 2 VDDVeff In +—In2 (440)
Vs REF 2

In addition to the regeneration power during reset phase, the capacitive load at the comparator
output is reset to the supply voltage Vpbp. The power consumption during the reset phase is
expressed as:

PoLcresst =Nfs UM DZD (4.41)

The total amount of consumed power in operation phasesis equal to:

PoLc = PoLc, regeneration T PoLc, resst (4.42)

4.2.4.1.2 SAR Register: Normally the register logic consists of 2n D-type flip-flops (DFFs) for n-
bit resolution [143] (see Figure 4.12). It is assumed that each DFF can be model ed with aminimum
of twelve transistors if they are replaced with NMOS pass transistors (almost six inverters) [144].
Typically an inverter consists of one minimum geometry nMOS and 3X wider pMOS transistors.
Chin is defined as the input capacitance of a minimum-sized inverter; Cmin = 1 fFand 5 fF for 90-
nm and 180 nm technologies respectively. The entire register logic could be considered as a

capacitive load (Ciogic = 24nCnin). To drive the capacitance within the sampling phase requires a
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Figure 4.13: SAR ADC switching.

current of | = (CiogicVop) / Ts Which leads to the following minimum power consumption for the

register logic:
Pregister= 9%6n? fscminVDzD (443)

4.2.4.1.3 Binary Weighted Charge-Scaling DAC: The DAC in a SAR ADC uses a binary-
weighted capacitor array (with a unit capacitance Cy) to attenuate Vrer by charge scaling. In the
conversion phase, the switchesin the capacitor array arerecursively setto ‘1’ (close) or ‘O’ (open)
to adjust the binary-weighted valuesto theinput samplevalue. In fact the DAC power consumption
depends on the units contributing to the power consumption of SAR ADC including the loading
value of the capacitive array, input signal swing and the employed switching approach. For an n-

bit conventional SAR ADC, the average switching energy is[145]:
Eavg, conv— Q/ZZ -2 (ZI _1) q} VF%EF (4 44)
i=l

where Vrer isthe reference voltage, and {is anormalized switching scheme-dependent parameter.
For conventional switching approach [145], { = 1 (for advanced approaches with bypassing

methods { = 0.6-0.7). Hence, the power consumption due to the switching action is:

EaV \") 3 —2i i
PS"’itCh:% - 2§z 2me (2| _1)CUVR2EFfS (4.44)

S i=1
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Figure4.14: Block diagram of acyclic ADC. (a) CBSC gain stage core and (b) timelinefor output
voltage (Vo).

4.2.4.2 CBSC Cyclic ADC:

Althoughthe SAR ADC isgenerally used for converting bio-signals, there are drawbacks with this
architecture including area occupation (which increases exponentially with resolution), the design
of the capacitive array with matched elements and the necessary switching activity. An alternative
ADC isthe CBSC cyclic data converter which has not previously been considered for NFI design.
The CBSC gain stage has been reported in [126-127] which replaces the op-amp with comparator
and current sources, allowing more efficient use of power. As shown in Figure 4.14 acyclic ADC
uses asimple analog circuit that isrepeatedly re-used to perform the conversion cyclically in time.
Thisresultsin avery compact ADC but is obtained at the cost of along conversiontime. It requires
n+ 1 clock periods to provide an n-bit output. The overall power consumption (Pcylic, bound) Of @
CBSC cyclic ADC is estimated as follows:

IDCycIicbound ~ (n)-(PTDC + Pecarse + I:)Fine) (4.46)
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where Prbc, Pcoarse 8d Prine are the power consumed by comparator, coarse current source and
fine current source during their operation mode.

4.2.4.2.1 Current Sources

This section discusses the requirements for the current sources, necessary to achieve a certain
accuracy in the gain stage during the charge transfer period. To meet accuracy, appropriate values
of design parameters are andytically discussed and a procedure to select them is presented.
Consider the positive half-circuit output voltage of a gain stage, as shown in Figure 4.14 (a), (b).
The settling time required to complete the settling phase, tsate= Tsa, iS[146]:

o= tprst +Teoarse™ Trine (447)

where tprs 1S the preset time duration, Tcoarse IS the coarse charge transfer phase (charging time)
and Trine is the fine charge transfer phase (discharging time). The initial charging time, Tcoarse, IS
given by:

V.
Teoarse = M_a +1lp (448)

C

where Mc is the coarse phase ramp rate, tq: is the delay time during the coarse phase and Va is
equal to the voltage difference between the common mode voltage, Vcm, and the negative preset
level (Vrern), (Va=Venr—Vrern). During the fine transfer phase, the primary overshoot (Vovr)
produced at the end of the coarse phase, has to be compensated. The overshoot recovery time,

Trine, IS given by:

Vowe

Trine = I\(ZV +1g2 (449)
f

where Mt is the fine phase ramp rate and tq. is the delay time during the fine phase. Vowp iS given
by.

I oarse-t
Vovp = %: Mc g (4.50)

Here, I coarse 1S the coarse current and Cy is the total loading capacitance at the output of the gain
stage. Eq.(4.49) can be rewritten as:
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M
Trine :M_C'tdl o (4.51)
f
Substituting Eq.(4.48) and Eq.(4.51) into Eq.(4.47) givesthetotal charge transfer time in terms of

the comparator delays, tq1 and tq, the coarse ramp rate Mc, and the fine phase ramp rate My, as:

V, M
tSettIe:M_z'i'tdl'i'M_f'tdl"'tdZ (4.52)
For simplicity, ts1= teo= tq iS assumed in the succeeding discussion. For a specific accuracy
requirement the final overshoot is set by x.LSB where k (e.9.1/8) is the accuracy factor which
determines the allowabl e variation at the end of the charge transfer phase. The maximum allowed
output voltage overshoot for the first stage is Vot =«.(VFs.(2"))= x.(LSB). This overshoot value

determines the maximum final ramp rate for stage:

Vovi kLSB «Veg
Mf = = =

ty ty  tg.2"

(4.53)

By substituting Eq.(4.53) into Eq.(4.51), the required time to complete the fine charging transfer
isgiven by:

Trine= (K'\’L'—;B](tg + td) (4.54)

Assuming the sampling capacitor size is determined from section 4.2.3, the maximum fine phase
current can be determined. In addition the total charge transfer time must be less than half of the
sampling clock period (Ts/2=1/2fs). It indicates that the | coarse aNd Irine are suitable to satisfy the
charge transfer phase. Substituting Eq.(4.52) into the sampling clock constraint leads to:

1 V, M

=2 C t 42t
2fs Mo M, 4" M (4.55)
Rearranging Eq.(4.55) yields:
) 1
MC.td—MC.Mf{F—Zdj+Mf.Va (4.56)
S

Solving EQ.(4.56) for the coarse ramp rate Mc, resultsin:
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M, = (457)

The power consumption of coarse current source Pcoarse IS given by:
Recarse= 2(MC'CU ) Voo '(TCoarse+ td) (4- 58)

where Vpp isthe supply voltage. For the fine phase, the operation of an inverter during discharging
can be considered. During this phase the overshoot voltage induced in the coarse phase is drawn
from the capacitor network. In this situation the displacement current through the capacitor is

caused by the pull-down current source and flows into ground. Thus the energy Prine iS.
I:?:ine: CU ( (MC- td +Va)2 _VCMZ)-(TFine+td) (4 59)

4.2.4.2.2 Threshold Detection Comparator (TDC)

In this section power analysis for the threshold detection comparator (TDC) is examined. The
comparator translates crossovers into a change in output logic value which controls the current
sources. The TDC can be implemented by cascading several identical band-limited comparators
[147] as shown in Figure 4.15. gn is the transconductance and C is the capacitance of the output
node at each stage, The delay between the comparator decison and the output logic unit for
activation of the current sources is susceptible to process variations which can cause instability in
the CBSC gain stage. In addition, the harmonic distortion at the output node of a CBSC gain stage
is inversely proportional to the TDC delay time (tqroc). The effective open-loop gain Arpoc of a
CBSC circuit [148] isinversely proportional to TDC delay (tq.toc):

1

Arpc Sryy (4.60)
d,TDC

An optimum design strategy is to minimize the TDC delay (tqtoc) by cascading the N identical
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Figure 4.15: Illustration of a cascaded comparator. Atpc=Vout /Vin.

amplifiers. The step response of a cascaded amplifier is:

1t g
VOl :EIO gm\/indt:?mvin t

2
_1f _Om ([ Gmy g Om )\ 2
Voz—CJ.0 OnVoydt = CJ.O Cdet—Z(Cijt
g g O )
Vos=—= Ingoz Cr:n {2( cr:nj } Zdt_é(fmj Vi, t°
1t 9 g 3 9 4
Vo, == g V. .dt=2m m v |t 3dt=—| 2m | v/t
o4 cj.ogm o« cjole(cj } 24((:}

Therefore, the output voltage of stage N is generalized as:

Vout = {C} [—(t_t(‘:\lTSC) ]Vin

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

where for each comparator stage z = C/gm is the unity gain time constant and N is the number of

stages. The bandwidth (g-/C) is given by:

{%}:N (N Vo L

C Vin 1:d ,TDC
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Figure 4.16: Driving logic by TDC (N=1).

where (Atoc=Vout /Vin) is the total gain of the cascaded TDC. For a comparator composed of a
cascade of gain stages, only the noise of the first stage is important. The input-referred noise of
the subsequent stages will be suppressed by the gain of the first stage gain. The number of
cascading stages is chosen as one (N=1) in this analysis, since there is no need for high speed
conversion rates in biomedical applications (e.g. spike sorting requires 30Ks/s). For example in
[149], atwo stage cascading topology is considered to implement a highly accurate data converter
for 26M S/s digitization rate. The use of alogic unit followed by the TDC in CBSC ensures that
the settling issue is less significant compared with op-amp based architectures. The performance
of the TDC islimited by itsfinite slew rate and its delay (tq,toc). The TDC bias current level must
be chosen to provide ahigh slew rate. The required current to drive thelogic unit input capacitance
(C=CLogic) to Vpop is (Icomp=CLogic-Vop/td, Toc) Where Cyogic IS equal to the input capacitance of the
logic unit which is composed of a switch and 2 DFFs (Figure 4.16). So the TDC must be capable
of driving a capacitive load in the order of 48Cyin. In addition, the tq, tocis designed in the order
of 1/20fs. The power consumption of TDC is calculated as Prpc=Itoc.Vop.

CLogic 'ATDC 'VDZD (

Froc = tyoC
’ (4.67)

CL i 'ATDC 'VDZD
= '(TCoarse + TFi ne t 2td )

ty Toc
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where Tcomp= Tsx iS the time when comparator is active. Furthermore, the Arpc.gm (for N=1) can
be investigated via E.q. (4.63).

4.3 MATLAB-FPGA Interfacing

Figure 4.17 shows the system used to accuratel y characterize the effect of NFI parameters on spike
sorting. The FPGA board interfacesthe devel oped NFI behavioral tool inMATLAB usingaUART
connection. The spike processor is programmed on an FPGA to cluster the input neural data. It
readsthe neural datafrom MATLAB viatheinterface, executes spike sorting, and finally the sorted
data are sent back to MATLAB for cluster accuracy analysis. The MATLAB-FPGA Interfacing
provides an assessment tool to avoid over-engineered NFIs by taking into account their impact on
subsequent spike processing during the design process. The design specifications can then be

adapted in order to maximize power efficiency and minimize hardware resource utilization.
4.3.1 Spike Sorting Processor

Instead of using Matlab the spike sorting processor based on the DD|.-Extrema and online
clustering method was implemented in an FPGA. This was to demonstrate the potential online
hardware capability when applied in an ASIC. The Xilinx Artix-7 (XC7A200T) FPGA was
programmed with Verilog using the Xilinx ISE 2014 tool. To satisfy power and area constraints a
serial-paralel approach was adopted for the system architecture. Figure 4.18 shows the functiona
block diagram of the synchronous spike sorting processor. It implements spike detection,
alignment to positive or negative peaks, mapping of aligned spikes to feature domains (feature
extraction using DD|>-Extrema [150]), and finally clustering by assigning feature vectors to their
origins based on the £/-norm metric. The detection block constantly receives the raw data for

calculating the detection threshold. The captured spike is applied to the alignment block for

Raw Data
NFI behavioral tool ’ Spike Sorter
in MATLAB l on FPGA
Results

Figure 4.17: MATLAB-FPGA Interfacing used for NFI key parameters optimization.
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calculating the alignment address based on a sel ected configuration such as maximum peak, mixed
peak, maximum slope etc. The alignment address provides 45 samples for each aligned spike to
the feature extraction block. Aligned valid is used for buffering the Aligned spike. The spike
sorting processor performs clustering by reading the buffered feature vectors (Feature vec).

Figure 4.19 shows the buffering structure of the feature vectors. It comprises a bank of register

Digitized . .
X ( n) neural data / n = = Aligned_spike
11 Shift Register Bank gl £ _ .
|nput 3 ol Aligned_valid || @
| 8] = 53
signal 28
NEO processor 0 £ n
O. m Peak L o 3
() detector| g I
+ —31 NEO Peak_addr S
- I—» ;
Features
feature_vec buffering
A next_fv
Y A4
Training unit
Cluster 3 = Status ID
ID C .
] engine -E - generator
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Figure 4.18: Block diagram of the spike sorting processor.
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Figure 4.19: Block diagram of the features buffering memory.

memories. Each register is used to save a feature vector (fv). When a spike is saved in aregister
(e.g. Iv0), the writing pointer is incremented by one to save the next fv. In the reading section,
when the training or assignment for the current spike is performed, the next fv is called for
processing. The decoder enables the address and the reading enable (Rd_en) signal for reading the
fv. Incrementing the reading address (Addr_rd) at each clock cycle access to al the buffered
samplesisavailable for either the training or assignment phase.

The clustering step uses online sorting (O-Sort) [13] which iscomposed of training and assignment
units to perform unsupervised, real time mapping of spikes to single neuron activity. The O-Sort
steps are as follows:

1. Initialization — assign the first feature vector (fv) to a cluster.

2. The distance (Dist) between the next received spike fv(n) and other known cluster means
[c(n)] is computed using the £1-norm metric for the number of samples (Ns) representing
fv(n) where

r Ng

Dist=>">" | (n)-c(n)| (4.68)

i=1 n=1

where i denotes the row number and r denotes the sample number of each feature vector.

3. If the smallest distance is less than the merging threshold Tw, the spike is assigned to the
nearest cluster and that cluster’ s mean is computed asthe weighted average of theinput spike

and the current cluster:

Wc(n)+s(n) (4.69)

Cupdate (n) = Wl
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where W is the number of spikes representing a specific class and * denotes multiplication.
Otherwise, anew cluster is generated.

4. Check the distances between each cluster and every other cluster. If any distance is below
the sorting threshold Ts, merge those two clusters and re-compute its mean.

5. Once the cluster means are identified in the training phase, cluster assignment isinitiated to
simultaneously process and assign the incoming spikes to one of the recognized cluster
means in the training phase according to the minimum distance (Dist).

Steps 2—4 are then repeated continuously. The design uses a threshold T = 4(on) for both Tw and
Ts, where oy is the noise standard deviation of the data computed continuously with along sliding
window. The outputs of the clustering block, namely Cluster 1D, feature vector (fv) and Spiketime,
are used for sorting performance calculation and feature space anaysis.

The results of the spike sorting processor are based on 250 feature vectors composed of extrema
of discrete derivatives. Compared to the only other spike sorting processor that providesreal time,
multi-channel clustering [76], the hardware model devel oped for DD |>-Extrema has approximately
8X smaller memory size. The proposed spike sorting processor provides detection, alignment,

feature extraction and clustering for real time processing.

4.4 Validation Tests and Results

4.4.1 Test Setup
As explained in previous section, the MATLAB-FPGA interface is established to accurately

characterize the impact of front-end circuitry on back-end processing. The implemented NFI
simulator in MATLAB sweeps the parameters and assesses the sorting accuracy based on the
FPGA hardware implementation. The demand for sorting performance determines the minimum
NFI specifications. Data is processed by the FPGA platform, and the results are written to the
output buffers for accuracy analysis. For each spike, the spike sorter outputs the Cluster_ID,
Assign 1D, Spike time and feature vector (fv). Outputs are used for sorting accuracy analysis.
After initializing the FPGA, the spike processor runs for a specific time (user programmable) to
establish the cluster meansin each channel. The entire dataset is then processed based on the tuned
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Figure 4.20: Block diagram of the processing elements on the FPGA.

parameters in detection and sorting units. The spike sorter FPGA implementation is depicted in
Figure 4.20.

4.4.2 Design Optimization

In the following sections, key parameters of the NFI are optimized based on the spike sorting
performance of the processor implementing the DD |-Extremafeature extraction method described
in chapter 3. A second order bandpass Bessel filter was used in the NFI mode to reject the
undesired out-of-band frequency components, namely low-frequency local field potentials and
high-frequency noise. The Matlab function resample was used to down sample the bandpass
filtered data. The function quant was used to quantize the sampled data.

The low and high corner frequencies of the LNA were swept and the performance of the spike
sorting processor was observed to define an optimized bandwidth for the LNA. In each iteration,
the clustering accuracy (CAcc) was cal culated for the optimum values:

TPCC
NTS

~

CAcc =

%100 % (4.70)

where TPCC isthe number of truly detected and correctly classified spikesand NTSisthe number
of truly detected spikes. NTS= DTS — (FPS + MS), where DTS is the number of detected spikes,
FPS is the number of false alarm spikes due to noise or overlapping spikes, and MSis the number
of missed spikes. The spike processor clustering test using template matching (TM) feature
extraction isdepicted in Figure 4.21.

The performance of the spike sorting processor was aso evaluated when the sampling frequency
and the resolution of the ADC were swept. The specifications of the key components of the NFI

were optimally defined having both efficiency and efficacy in mind. The derived optimum values
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Figure 4.21: The spike sorting processor clustering test using template matching (TM) FPGA
platform. The sample output from one of the channels is shown in this figure. (a) Segment of
neural signal. (b) Distinguished cluster means from 250 spikes in training phase. The spike
processor for TM is developed for this test. (c) A 2-D projection of the clustered spikes color-
coded, each represents a cluster. (d) The relation of clustering accuracy to noise level.

from classifier robustness analysis were used to compare the NFI power limit of two types of data

converter.

4.4.2.1 Defining Band-pass Response With Respect to Spike Sorting Performance

The obtained dataset introduced in chapter 2 (section 2.4.1) was already high-pass filtered. Low
frequency noise was added to this data to examine the performance of the spike sorting processor
given different low corner frequencies. Low frequency noise was extracted from adifferent dataset
[151]8 and superimposed on the dataset under examination. Figure 4.22 shows the result of

variations in high and low corner frequencies on CAcc. It can be seen that for good performance,

8http://crens.org/data-sets/hc/.exp
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Figure 4.22: Effect of low pass (a) and high pass (b) filtering on spike sorting accuracy (mean
over al spike datasets). The loca field potential was extracted from in-vivo recording and
superimposed on the dataset under examination. (¢) PCA feature space for the feature vectors of
three neurons. (d) Euclidean distance analysis of feature vectors.

the low corner frequency for the high pass should be set to approximately 500 Hz [Figure 4.22
(b)]. Similarly, the corner frequency of the low pass should set at approximately 7 kHz [Figure
4.22 (a)], below which the performance is degraded Principal component analysis (PCA) feature
space can also be used to demonstrate the separation quality of the clusters. Increasing the high-
pass cut-off frequency marginally increases the overall spike sorting accuracy. There is small
degradation in the sorting performance when the LNA bandwidth (BW.na = fLp — fhp) iSs reduced to
about 4 or 5 kHz. The sorting performance rapidly deteriorates for bandwidths of less than 3 kHz.
Figure 4.22 (c) shows the PCA feature space when the bandwidth is set to 3 kHz. The Euclidean
distance of the feature vectors for different sampling frequencies is shown in Figure 4.22 (d). A
high Euclidian distance means higher error rate and lower accuracy. It shows that bandwidths of
less than 4 kHz cause considerable deterioration in feature space (note that the spike energy
concentration isin the frequency range of 6—7 kHz).
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Figure 4.23: Effect of data conversion (@) resolution, and (b) sampling rate on spike sorting
accuracy (mean over all datasets). (c) PCA features when the sampling rateisreduced to 15 kHz
for three neurons. The effect of cluster splitting is highlighted in the figure. (d) Euclidean
distance analysis of feature vectors.

4.4.2.2 Resolution (n) and Sampling Rate (fs) Versus Spike Processing Perfor mance

The performance of the spike sorting processor for different ADC resolutions was investigated.
As shown in Figure 4.23 (a), when the ADC resolution increases the CAcc of the spike sorting
processor increases up to a limit beyond which there is little improvement. This limit depends on
the degree of variations of the spikes where some of the variations are not represented in the
digitized signal. The limit is approximately 7 bits in Figure 4.23 (a). Similarly the ADC sampling
rate should be high enough to represent the shape of the spikes. This may be significantly higher
than the Nyquist frequency because the variations in the shape of the spikes associated with
different classes may be considerably subtler. In Figure 4.23 (b), a sampling frequency of about
30 kHz is sufficient to provide accurate spike sorting. The aim was to identify the lower limit of
the ADC resolution and the sampling rate because higher levels correspond to higher power

consumption.
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The effect of reducing the sampling rate on the spike sorting process is aso identified in PCA
feature space. The sampling rate was decimated to 15 kHz using the resample Matlab function.
The Euclidean distance analysis shown in Figure 4.23 (d) shows that the sorting performance
degrades rapidly when the sampling rate decreases below 30 kHz. Reducing the sampling
frequency causes creation of sub-clusters corresponding to one original cluster so cluster splitting
resultsin large sorting performance degradation. The more the sampling frequency isreduced, the
more spurious sub-clusters are generated. Figure 4.23 (c) shows the PCA feature space
representation when the sampling frequency is reduced to 15 kHz. Additionally, it was observed
that the PCA features space does not significantly change when the number of bitsis reduced to
as low as 4, which shows that the features are robust to the quantization bit depth.

4.4.3 NFI power bound

The overall minimum power consumption of a noise-limited NFl is:
Rurt =((a+1). R )+ (Foea)+ (Panc) (4.71)

A survey of Pnri for published neura recording systems versus bit resolution is shown in Figure
4.24. There is reasonable agreement between the calculated NFI power limit and published
measured results. Notably, the BioBolt [152] has very similar power consumption to the proposed
model. The reported specifications are 1.3 pW/ch and fs = 31.25 kS/'s which results in a figure-of-
merit (P/fs) of 42 pJ. The estimated NFI power limit using the CBSC cyclic ADC with the
optimized design parameters (BW, fs, n) is 8 pJ which is about 5 times smaller. In addition, for
n = 7 the P/fs ratio of the noise-limited NFI using the CBSC cyclic ADC is about (1.52X) (33%)
times|ower than the NFI using the SAR ADC. Thedifference between the NFIs can beinvestigated
through the noise-power contribution of the data converter. It is assumed that the reported NFl
parameters in [152] are designed based on power bound anaysis, so they can be used for
scrutinizing the theoretical power dissipations difference between the NFI using SAR and CBSC
data converters for a given resolution. In [152], for digitization purposes, atraditional SAR ADC
with sampling frequency tunability is implemented. It should be noted that, the analysis of noise-
power in this chapter covers different SAR ADC implementation methodologies considering
(NMF=a) and efficient power modelling of data converters. Based on [152], the reported LNA
IRN for the bandwidth of (0KHz -10Hz) is 5.62uVrms. This results in an o range of (0.13-0.4)
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which means (13-40%) power differenceif the aim is obtain afixed amount of LNA IRN. For the
resolution (n<8), which covers the optimized NFI required resolution (n=7 or even n<7), the data

converter behaves like a digital block. So the power ratio (B raio) between the considered

data converters can be written as;

P R ionT P
SAR,bound DLC,regeneration register y)
~ ~ (4.72)

P .=
bound, ratio
I:)Cycl ic,bound PCoarse + I:)TDC

where A isaconstant term which represents the power bound ratio between the converters and a
range is considered for A (3-6). This range which applies to lower-limit (advanced SAR ADC)
and upper-limit (traditional SAR ADC) is extracted based on running different simulations in
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Figure 4.24: Estimated minimum power limit of NFIs based on SAR converter (dashed black
line), CBSC cyclic ADC (dashed blue line) versus converter resolution. The following typical
process parameters were used (180-nm CMOS): Vrs = 1V, T = 300 K, Vet = 180 mV and
Cmin = 5 fF. The NFI parameters were Gina =100 V/V, Gpea = 10 V/V, NEF = 2 [7],
BWina = fup — fup = 6.5 kHz and fs = 30 kS/s. Data for published neural recording interfaces are
also shown (A ) for comparison. a=0.5 is defined based on the reported vnirms=2.2 pV/Hz (0.5 Hz to
50KHz in[131].
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MATLAB. In the SAR ADC, for aresolution of n <8, the ( Ppc, regeneration + Pregisier ) dOMinates

the total power consumption which is proportional to ¥.n’Cninwhere V is a constant term which
represents the other parameters contributing to the power bound of an SAR ADC. The overall
minimum power limit of the CBSC cyclic ADC is proportiona to nCmin (which shows the
domination of the coarse current source). The CBSC operation is similar to a clocked-inverter®
which charges/discharges a capacitor. This model is totally compatible with voltage scaling and
technology scaling [153], [154] concepts. Asreported in [152], the SAR ADC power consumption
is 87.41nW which after dividing it by (1 =4), resultsin Peygic bound =21.85NW.

The overal power ratio (PR) is:

PRl 01304 = o+ 1) Pl + P + Pose =(1.22-1.47)X (4.73)

Pnat Pega+ (jm]

Prca is assumed to be same in both NFIs. According to the earlier discussion, there is good
agreement between the observed power bound difference (1.52X) (33%) in Figure 4.24 and
calculated theoretical minimum power range PR (1.22-1.47) X. In fact this type of digitization,
radically improves noise-power product (NPP) which is demanded by recording and processing
of 1K+ channels (see section 4.1). The NPP can be considered as a new figure of merit in design
of biomedical NFls.

4.4.4 Towards Parametric NFI Design

In previous sections, the noise-power effect of a data converter on NFI power bound has been
studied. It aso identified that using advanced techniques in the design of a data converter results
in thermal noise minimization. This sub-section presents a brief explanation on the continuation
of this research using the parametric NFI design. The block level system of the parametric NFI is

shown in Figure 4.25. The digitized signal Vit @ the output of the ADC can be written as:

Vtot = Vndata+vnnoi set VLNA +VPGA +VADC thermal +VADC, agn (4- 74)

whereVjgata is the neural input signal, Vi 1S the pre-NFI system noise voltage (e.g., biological

9 In ZCB gain stage, the operation is practically based on a clocked-inverter and it is estimated that in [153] the
practical power conception is equal to theoretical power bound.
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Figure 4.25: parametric NFI design. The system calibration is performed by recording channel
NR. A, B and C are the tuning parameters.

and biological noise), |\, isthe LNA noise voltage, \pg, isthe PGA noise voltage, Vapc. thermal 1S

the ADC thermal noise voltage and Vapc g, IS Noise due to quantization. Removing the effect of

PGA noise and thermal noise of the ADC (NMF/a~0) in Eq.(4.74):

ON 9q

Viot =Vidata + Vinoise T Vina+Vapc,gn (4.75)

The system noise (o ) and quantization noise (o ) are assumed to be independent, making the
total noise variance:

Ol =0N + 0% (4.76)

In aparametric NFI design, the aim is to implement a calibration scheme via better estimation of

the recording channel SNR ( S\R= Vo-p ) asshown in Figure 4.25. Hence, it isdesired to minimize
ON

the quantization noise to realize a single-parameter-dependent calibration method. The noise

standard deviation (SD) of the recording channel (o), is a reliable measure to perform the
parametric tuning of NFI parameters as a result of reducing the effect of quantization noise (o).
In most of the published systems, uniform sampling is used where the quantization steps are

uniformly spaced and the binsizeis (v, .. = Ves ). In Figure 4.26(a), the distribution of quantization
LB on

steps are uniform, so each quantization bin supplies the same amount of noise regardless of the
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(024) Gaussian pdfs. This curve reveals that the decision levels are densely located in high-
probability region of the x-axis and coarsely in the low-probability region.

input probability density function (pdf) of neural datato the total quantization noise. On the other
hand, the optimal quantizer [155] minimizes the quantization error (oq ) for each Gaussian pdf by
more binsin higher probability regionsand fewer binsin lower-probability regions Figure 4.26(b).
It can be seen that the uniform quantizer reduces the quantization performance when there is a

pdf/variance mismatch. Two important factors as a result of using the optimal quantization will
be the future focus of this research:

1- Optimal quantization (OQ) and power-clustering performance: The application of

guantization noise shaping provides the same quantization performance with lower
resolution (n) by modifying the signal to quantization noise (SNQR). The effect of optimal
guantization (OQ) on the performance of spike sorting has been observed. Evaluation of
detection and sorting accuracy show that an optimal quantizer saves 2-3bits to resolve the
signal for the same degree of sorting accuracy compared to uniform quantizer. OQ has the
capability of noise shaping, and improves the signal to noise ratio which results in fewer
resolution bits. Consequently it saves power and area in designing the NFI and spike

[processor.

133



10 [l e CORRERRAEEEREEEEE 1 100
TBIOCASS5.0-09um - JSSC5.0-07um
JSSC35 0- 09|Jszgsc11 A : e
: ; JSSC18.0-10pm 36:0-pm Jssc1s 1 S
. 2 bits Jssc13A 18.0-ym
! < : 5 $18.0-um 2 _ _
: % CICC35.0-09um
_ eI A
o CAST30] HMmA 1805 ® 5 90
—10 ke v/ JSSC13.0- 3mA.TBI.OQA_$.1.0__ SO S
o ’ ESSCIRC13. -OA11pmA 350}
3 obaIVLSI-Symp-iT | 4BIOCAS10 ; g
= i 25.0uM 0 18.0- : ; : ©
L H ) p( : : :
o ! : / : : :
e : ¢ : : :
= m 2 - X f I_______‘____________ ........... ........... ......... - 80
- . 2X N : NFl:power : : :
3 3 ,l’ i bound ; : :
o o S \ : :
o~ Desjlred
. power area
10 ‘ ; i i i i 70
4 5 6 7 8 9 10 11 12
ENOBJIbits]

Figure 4.27: Power (blue)-CAcc (black) analysis when OQ is used. Using OQ saves 2-3 bitsin

digitization. Desired power-areaisillustrated with green square.

2- Optimal quantization (OQ) and NFI parametric design: As o5 decreases, the total noise

variance approaches o , then the Eq.(4.76) is re-written as:

2 2
O'Ntotal ® ON

where, 62 =62 5w+ 0na. If 62 IS CONsidered to be equal to oy, , then:

Onotal 1S @@N @ccurate estimation for determining SNR in NFI parametric modelling. Inthe

parametric model, there is potential to design an ultra-low power NFI (Pnr < 500nW)
compared to state-of-the-art [156], [157]. This would alow not only monitoring of >1K
channels but also additional digital processing would be possible on the recorded data.

Ontotal 140 mnoise
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4.5 Conclusion

Future implantable devices which may have many hundreds of recording channels, involve
increasingly complex processing, requiring power whose availability is very limited. This chapter
hasidentified the minimum power limitsthat can be attained by considering fundamental concepts
in the design of the NFI containing alow noise amplifier (LNA), a programmable gain amplifier
(PGA) and an analog-to-digital converter (ADC) followed by a spike sorting processor. For the
LNA the optimal low pass and high pass cutoff frequencies have been found to be about 500 Hz
and 7 kHz, respectively. Examination of the lower power limit of NFIs has shown that the CBSC
cyclic ADC isup to 30% more energy-efficient than the conventional SAR ADC. A power efficient
spike sorting processor has been implemented on a FPGA capable of online and unsupervised
clustering which has been used to identify the precise definition of NFI design parameters. The
results have shown that 7-bit processing is sufficient for efficient spike sorting. The spike sorting
process is robust to the ADC resolution but clustering accuracy is quite sensitive to the sampling
rate. Analysis of the NFI to identify the optimized key parameters has suggested that the
acquisition system has a minimum power limit set by spike sorting processing constraints rather
than noise limitation. As discussed in section 4.2.2, there is significant potential for power saving
by implementing an efficient management/calibration system in the using parametric NFI. The
parametric power optimization methodology proposed provides aguide toward the design of future

ultra-low power and extremely efficient acquisition methods.
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CHAPTER 5

Biomedical Signal Processing Using Adaptive Techniques

5.1 Introduction

This chapter introduces a complementary processing framework to the non-adaptive classical
synchronous processing systems (SPSs). This type of processor realizes an adaptive paradigm
which in functionality or structure of the processor tailorsitself viathe characteristics of the input
data and the defined processing frames. From the viewpoint of system level design, the proposed
processing scheme combi nes three well-known processing approaches synchronous, asynchronous
and self-tuning in the adaptive paradigm. As a result, unlike the SPS, which has been used for
many years due to their ssmple realization, the adaptive processor’s operation becomes signal
dependent. The monolithic structure of SPSs does not dlow the designers to implement a
reconfigurable processing system which is robust to the input signal variations (e.g. signal noise
standard deviation (on)). At system level, any adaptive processor can be broken into two main
parts. firstly the main processing path which utilizes the classical synchronous system (no ability
to sensethe signal characteristics) which operates with amaster clock, and secondly the embedded
processing frames (also referred to as modules or layers) which are defined based on the targeted
application. Basically, the adaptive processing frames sense the input signal statistics and shape
the processing path for maintaining optimal performance. Hence, the whole system is able to
operate in two distinct processing modes: 1) synchronous processing and 2) adaptive processing
mode. In summary, this chapter delivers a new class of a well-suited processing platform for

biomedical applications, particularly for spike sorting. This chapter is organized as follows:

Section 5.2 focuses on developing embedding adaptive frames for spike sorting methodology
developed in Chapter3 by characterizing the recorded neural data. Extraction of these frames are
developed by the concept of re-definition of the spike processing through reverse-adjustment (RA).
This section also compares the properties for this class of processing with the SPS. Section 5.3
provides detailed description of acomplete design methodology for an implantable, unsupervised,
on-chip and adaptive spike sorting processor. The circuit techniques for inserting the devel oped

frames to the spike processor are described. In addition to the adaptive frames the choices on
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architectures and circuit techniques regarding a multi-aspect optimization methodol ogy (accuracy-
power-area) are enumerated. The spike processor implementation details and measurement results
are presented and compared with the state-of-the-art in Section 5.4. This section aso has a brief
description of the next generation of the proposed adaptive spike processors. Section 5.5

summarizes and concludes the chapter.
5.2 System-L evd Illustration of Adaptive Spike Sorting

5.2.1 Development of Adaptive Framesfor the Spike Sorting Application

Adaptive spike processing is introduced in this section as an advantageous alternative to the
classical spike sorting systems. This section discusses the motivation behind the selection of
embedding frames for spike sorting application to maintain the optimal clustering performance
under any conditions. Hence the processing outcome is independent from the input signal. As
explained in Chapter 3, the two key factors in spike sorting performance degradation are the noise
of recorded data and the similarity index between the spike waveforms. The am isto develop a
spike processor in which the performance is adjusted to an optimal level (maintaining lowest
clustering error) with the varying difficulty between the recorded spike waveforms in recording

channdl and different noise levels.

The concept of the frame extraction procedure is shown in Figure 5.1. Figure 5.1(a) is the block
diagram of atraditional spike processor whose performance varies as afunction of noise (f(noise))
and similarity of extracted spikes (f(similarity)). Figure 5.1(b) shows the spike sorting concept
devel oped with added reverse-adjustment (RA) flow. Inthisclass of spike processing, it isrequired
that the resulting clustering performance (CAcc) is independent (L) of noise and spike shape
similarity between the detected spikes. As aresult, the processing frames are devel oped based on
the RA concept in spike sorting as shown in Figure 5.1(c). Adding the created frames (Framel and
Frame2) to the traditional spike processor presents afundamentally new approach for mapping the
recorded spikes to the individua neurons. The newly created frames provide the functions of
adaptivity or reconfigurability by in the recording channel distinguishing the noise property of
neural data stream (Framel) and the similarity between active neurons (Frame2) to maintain the
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Figure 5.1: (a) Traditiona spike sorting which in the performance is the function of noise
(f(noise)) and similarity (f(similarity)). (b) Illustration of spike processor independent (L) of
recorded data noise and similarity of spike waveforms. In this class of processing it is
expected that the CAcc is matched with ground truth and at any condition set in neural signal
simulator (c) Abstract view of mapping the proposed reverse-adjusted spike processor
characteristics into the frames (Framel and Frame2) for implementing adaptive concept.
Frame 1 increases the processor noise robustness while Frame 2 is adapts the similarity level
between the extracted spike waveforms. (d) Transformation of developed spike processor in
Chapter3 based on developed frames (Frame 1 and Frame 2). The created frames are
embedded to the main processing line.



clustering performance at an optimal level. Figure 5.1(d) shows the two frames added to the spike
sorting system previously described in Chapter 3. The adaptive processing provides an on-chip
tuning mechanism for programming the key coefficientsin the relevant building blocks. As noted
earlier, thisclass of processing uses the design concepts from online, self-tuning, synchronous and

asynchronous domains.
5.2.2 Transforming the Defined Adaptive Framesinto Processing Units

Asdiscussed in previous section it is desired to implement spike processor effectively independent
of the main issues causing errors in the clustering performance namely noise variations in
recording channel and the similarity measure between the existing spike waveforms (Figure
5.1(c)). The previously explained frames are translated into mathematic models in the appropriate
circuit blocks. Frame 1 provides noise robustness to the processing chain by modelling the noise
standard deviation of the recorded neural signal (on) 1°. This value can be cal culated by the median
processing of the recorded neural data. Frame 2 provides similarity robustness by modelling with
the localized difference extraction of the aligned spikes which isexplained in 2.5.4. The similarity
pattern extractor (SP) unit is initiated intermittently to update the similarity information of the
existing spike waveforms in the recording channel. The (SP) is sent to the FE unit to synthesize
the behavioural analysis of the extracted local differences (amount of dilation/contraction) for

activation of the decomposition lines. Providing similarity robustness to the spike sorting chain.
5.2.3 Overall System Description

This section illustrates the system level implementation of an adaptive spike processor based on
the concept detailed in previous section 5.2.1 and highlights the resulting properties Figure 5.2
shows the adaptive spike sorting diagram. The created adaptive frames are integrated into the
sorting system. Frame 1 records the noise variance (on) and defines the (S7hr=4%*on) [89] which
is distributed to the detection block, adaptive FE block and the sorting threshold look-up-table
(SThr LUT) block. Frame 2 isdevel oped for the SP unit in the adaptive FE block. SPisagenerated
similarity pattern generated between the aligned spikes. The addition of the two frames in the

synchronous sorting system introduces an adaptive architecture to allow realization of a highly

0 g\ is calculated by median processor.
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adaptive on-chip spike sorting with on-chip parametric tunability! which is can simply be added
to the neural acquisition systems. In the spike-sorting process, the amplified, band-pass filtered
and digitized neural dataisfed to the spike processor. Normally the recorded signal contains multi-

unit activity from all the neurons close to the implanted microel ectrodes.

Each spike is extracted using a2.5mswindow and aligned to acommon temporal reference. In the
detection unit (which uses non-linear energy operator (NEO) [158]) a conditional activation (On-
hold capability) method is utilized. The calculated threshold (S7hr=4* o) after median estimation
is used to control the main detection block. With this method, the processing of worthless datais
masked in the main detection block and the detection initiation is a function of input spike stream.
Thus the power dissipation of NEO and the spike processor can be significantly reduced through
asynchronous initiation of processing chain. So the processor operates at normal speed once the
process starts and returns to standby mode when processor does not detect any spike activity. This
capability helps to minimize power consumption without applying hand-shaking or power gating

techniques.

In the adaptive FE block, extrema sampling of adaptive discrete derivatives (ADDs) isintroduced
to provide an efficient method not only in computational simplicity but aso in accuracy to

transform the recorded action potentialsto afeature space that better separates spikes coming from
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Figure 5.2: Adaptive spike sorting block diagram. The created framesin Figure 5.1(Frame
1 and Frame 2) are embedded in the spike processor as (Framel= on) and (Frame 2= SP).
The introduced adaptive processor scheme obeys the built-in principals for on-chip tuning
of sorting parameters. n=1,...,6 represents the number of existing clusters in the recorded
data.

1 Thisis also called processor with open input format. The processor is insensitive to the input signal variations. The spike
processor is robust to the general spike sorting challenges[91].
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different neurons. The selective spike decomposition is performed by generating a similarity
pattern based on the aligned spike waveforms (SP). The (SP) is updated over time to monitor the
similarity level between the extracted and peak-aligned spikes. The FE is tuned to the sub-bands
(decomposition range) with the most informative samples. The maximum separation between the
spikes is achieved by extrema sampling of selected sub-bands. The feature vectors (FVs) are sent

to the features monitoring unit and subsequently to the clustering unit.

Finally, the FVs are sent to the clustering unit for training. The training engine is the most power
consuming part of clustering due to its inherent complexity and the size of memory required for
implementation. The training unit power dissipation is minimized using an advanced power
management methodology: 1) using a unique register bank memory structure for built-in
computation power suppression (self-power management), 2) choosing interleaving/logic-reusing
topologies to obtain high level of integration in the training engine. It reduces the power-area
simultaneously and 3) using feature extraction to reduce the feature space dimensionality. The
feature space dimensionality (K) of ADDsisamost 8X lower than the state-of-the-art. The cluster
means identified in this training phase are saved to the memory of the assignment unit. During the
cluster-mapping phase, the input FVs are mapped based on their minimum distance to one of the

identified cluster means saved during the training phase.

The output of the assignment block can be configured to the detected spikes, cluster means, or the
spike IDs. Asshown in Figure 5.2, two controlling units (performance check, training control and
SThr LUT) are added to the clustering block to implement clustering performance monitoring in
validation phase which is discussed in section 5.3.7. Having clustered the spikes, the performance
check unit monitors and evaluates the clustered data based on the defined performance metrics. It
decides whether the level if of the sorting threshold should be adjusted to an optimal level (Topt) 2
and a so triggers retraining to compute the cluster meansif needed. To realize the validation phase,
alook up table (LUT) based threshold adjustment scheme is designed within the online sorting
(O-Sort) clustering method. It uses the noise analysis of recorded data and evaluation of the
clustered spikes to obtain the self-performance lock capability recursively. In performance check
monitoring if the conditions are met, the identified cluster means are not substituted with new

patterns in the assignment unit unless the enable signal initiates the training phase due to either

12 Deriving optimal sorting threshold is discussed in Chapter3.
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clustering inaccuracy issues or variation in the action potentials. The sorting threshold (SThr) can

aternatively be overridden by user-specified values.

This concept enables the implementation of fully online spike sorting accounting for the
characteristics of the recorded signal and high clustering accuracy performance. The concept of
adaptive processing is aso extendable to all processor constituent building blocks, which would
be embedded in the next generation of adaptive sorting DSP. In the next sections, design of all

spike processor units and their operation are discussed in detail.

5.3 Adaptive Spike Sorting Processor for Accuracy Self-tuning and Inherent
Power Suppression

Therest of this chapter provides the hardware implementation of an adaptive spike processor with
the new processing framework and highlighted properties. The spike processor fabricated in a 180-
nm CMOS process, it has apower consumption of 148 uW from 1.8 V supply voltage, and a84.5%
overal clustering accuracy (CAcc). By providing 150/240X data reduction, atransmitter can also

simply be integrated to the front-end and processing unit in implantation site.
5.3.1 Detection and Alignment

One unsupervised method to determine threshold value is the nonlinear energy operator (NEO)
[158]. This class of detector calculates the energy variation of the raw signal to interpret the spike
events in time. For the discrete signal, the NEO equation is defined as:

v (n)=x%(n)-x(n+1).x(n-1) (5.1)

where x(n) istheinput digitized signa and w(n) isthe NEO vaue at sampling time n. From the
NEO equation, this operator highlights the large variations in power and frequency. The
characteristic of spike activity is instantaneous amplitude-energy variation, and the NEO operator
emphasi ses these |ocalized variations. NEO significantly improves the signal to noise ratio (SNR)

level in anoisy environment.

However, NEO is sensitive to the poor detection of spikes having low frequency components. To
overcome this issue and increase robustness to the spike amplitude variations or to reduce NEO

out of band noise sensitivity, amodified version of NEO is used by adding the constant value o to
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Eq. (5.1) which becomesy (n) = x%(n)-x(n+w).X(n— o), where o is experimentaly found to be

between 1 and 3.

In the spike sorting process, the noise variance calculation is needed to set the clustering threshold
using absolute value method. To obtain high detection accuracy while keeping the power
consumption low, acomplementary approach is used in which the clustering threshold can be used
as conditional activation function of the @ NEO. This method has two advantages: 1) conditional
enabling is directly applied to the wNEO which is composed of two multipliers. Thus when the
input exceeds the clustering threshold (SThr), the true identity of the spikes is examined using
»NEO which provides adouble check on accuracy. And 2) power saving due to dual-threshol ding
which results 30% power reduction based on Cadence synthesis simulation. The block diagram of
the system is depicted in Figure 5.3.

The conventional method used for threshold calculation at the output of wNEO is energy
accumulation and dividing it to the window sample numbers. The power variations in different
simulations show that the output of the ®NEO is sensitive to noise disturbances. The output of
oNEO can be influenced by noise variations. Normally the input signal to the @ NEO unit is
composed of spike events which exhibit localized energy of a specific duration and other samples
asaresult of noiseinterference. The noise perturbations are projected in the calcul ated energy, and
asimplefilter can be added before the threshold cal culation to reduce the effect of noise
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Figure 5.4: (a) Detection and alignment block diagram. (b) Operation timing diagram.

A simple moving-average filter can be applied to y(n) to reduce the effect of projected noise. The
filtered signal energy l(n) isthen used for detection threshold cal culation. The approach to set the
detection threshold is a scaled version of the filtered energy that can be expressed as:

Thr =« %Z{i (n) (5.2)

Where o is a constant, empirically chosen to be 8 in this implementation. In order to reduce the
buffering of threshold calculation, the detection threshold is updated per window rather than per
sample where N is the number of samples per window. The calculated threshold is used for the

next segment of data; the accumulator will be reset and start again for the next data window.

Figure 5.4 shows the detection and alignment block diagram. The neural data to the detection
block isfed to both a preamble buffer and wNEO. The preamble buffer isashift register composed
of 24 delay cells. The purpose of using delay line is to synchronize the @ NEO output with the
starting point of a spike. It buffers the samples before the spike exceeds the threshold level. The
delayed datais constantly written to acircular buffer. When a spike is detected, the corresponding
writing index (wr-idex) is sent to the peak detection block. With this method, the sample counting
and the peak address are synchronized. The output of the peak detector (peak-1D) is used to define
the extraction window length. The peak-1D serves as offset to correspond to the 15th sample of
the 45 samples in the aligned window. Finally the rd-index which represents the first sample of
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Figure 5.5: Adaptive Feature extraction unit. The MAF suppresses the effect of random and
high frequency noise. The ADDs and frequency synthesizer blocks provide the adaptive
decomposition. The DR block reduces dimensionality by retaining the most informative
features of decomposed spike waveforms. Extrema (max/min) sampling is used in DR unit.
It should be noted that other DR methods also can be employed for distinguishing the most
appropriate featuresin the sel ected sub-bands (e.g. integral of a selected sub-band or spectral
analysis of adecomposed signal).
window is set to the reading unit of circular buffer and aligned spike (alsp(n)) samples are
transferred to the next processing unit which is feature extraction. The reading clock rate is 4x

faster writing clock rate to ensure capturing spikes which are close in time.
5.3.2 Adaptive Feature Extraction

Feature extraction (FE) transforms the aligned spikes to a low-dimensional space which
emphasizes the spike waveform differences. The block diagram of the modified and adaptive
version of FE [150] is shown in Figure 5.5. The FE block consists of three main units namely a
moving average filtering (MAF), adaptive discrete derivatives (ADDs) and dimensionality
reduction (DR) unit. The MAF acts as a denoising filter to improve the FE robustness to random
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noise (out-of-band noise) while retaining the crucial encoded information buried in spikes 3. The
output from Frame 1 (on) is fed to MAF to increase the noise insensitivity and increase feature
extraction separability by adjusting the length of MAF. The MAF is the most popular choice for
hardware implantable devices due to its simplicity and efficiency. The MAF concept is based on
averaging aspecific number of samples of incoming aigned spike al sp(n) to produce the smoothed

output signal s(n):
1 .
s(n) = ™M JZ_(; alsp(n-j) (5.3

where M isthefilter length. Thenext block of the adaptive FE, arethe adaptive discrete derivatives
(ADDs) which calcul ate the slope at each sample point over a number of different time scales:

ADDs=amp|gn)-s(n-5)] (5.4)

ADDs= amp [s(n)-s(n-5 )]
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Figure 5.6: Demonstration of feature extraction processor employing spectral analysis a)
parameterized ADDs (amp=1) and b) illustration of ADDs as an adaptive filtering.

3The MAF length is adjusted by the signal-to-noise (SNR).
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lines based on the selected scaling factors. FV is extracted based on the extremaof the delay
lines (delay linel-3) outputs.

Where (amp=1)* is the amplitude of the decomposition window, sisthe spike waveform, nisthe
sample point, ¢ is the scaling factor (time delay) and amp depicts the amplitude of ADDs. The

4amp can be used for weighted adaptive discrete derivatives (WADDS) decomposition implementation.
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equation shows subtraction between the samples n and (»—d). Multi-resolution decomposition of a
spike can be obtained if the scaling factor () is swept over awide range as demonstrated in Figure
5.6. Here the adaptive discrete derivatives (ADDs) is proposed to retain features of focused
decomposition from specific sub-bands for the succeeding clustering stage. In ADDs, the window
length (9) is not fixed and will be tuned based on the recorded spike waveforms over time.
Adjusting the trandlation parameter (o) is based on the frequency bands which correspond to the
most useful information for clustering. To obtain high accurate selectivity in setting the translation
parameter (J), a sampling pattern generation method explained in [100]*° is used. Three useful
factors can be observed from the generated sampling pattern based on the localized shape
differences between the aligned spikes: 1) similarity (dissimilarity) measurement, 2) localized

differences and 3) active frequency sub-bands in the generated sampling pattern.

The asynchronous sampling pattern generation filters out the non-useful frequency bands before
applying the FE. Having generated the sampling pattern, slope variations anaysisis accomplished
to characterize and assign weight to the range of variationsfrom high (6==1) to low (6==7). Once
the weight allocation process is performed, three scaling factors with the highest weights are
chosen for tuning the ADDs. The processis shown in Figure 5.7. The illustrated figure explains a

simple approach of frequency synthesizer implementation for sub-band selection over awiderange

B

aligned E T e R S feature
spike e vector

external tuning < >
tunable delay lines (0)

Figure 5.8: ADDs hardware implementation block diagram. Selecting the number of
decomposition lines will be investigated further in future work. In this analysis three
decomposition lines are used and six feature (K=6) are selected for clustering.

15This method is explained in Chapter2, section 2.3.5.
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of frequencies which is used in the feature extraction block. The hardware implementation of
ADDs is depicted in Figure 5.8. The main units are adjustable delay lines, subtractions and DR
unit which performs extrema selection. The proposed FE is quite flexible in terms of frequency
band selection and extraction of wide range of features. These processes result in robustness to
spike similarity and noise level in the FE unit.

5.3.3 Feature Vector Monitoring

The captured features are fed into the next stage for buffering as illustrated in Figure 5.9. When
the FE_doneis set, the writing control block generates the address and enable signal for storing
theincoming FV from FE unit (FV_in) to the memory (writing unit). A monitoring unit is deployed
to constantly check the new incoming FVs. Based on the status flags (write_status and read-status)
of the buffering unit the feature vector monitoring unit decides whether to pick new FV for training
(assignment) or needs to scan the line for new FV (FV_in) in waiting mode. This approach allows
the clustering unit to be put in stand-by mode during the FV intervals. When the FV is detected,
theread flag is set to one for activation of the reading control block. Once the reading of FV has
been completed, the monitoring unit will be activated to repeat the process.

FE_done write_addr l *
| write_en writing
v Vv control
i writin _
Al ) : g write_status
unit
(®)]
- . .
£ _ m
= omtc_)rmg s
5 > unit =
FV out .
= €4 reading unit read_status + read_flag
reading
4 f read_en control
read_addr [

Figure 5.9: Feature vector monitoring unit.
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5.3.4 Online Sorting (O-Sort)

Real-time identification of spike waveforms is required, to scrutinize the functionality of neural
circuits. The algorithm in [13] is well suited for real-time neuron mapping. The method is called
O-Sort which it provides the possibility of tracking neuron activity and closed-loop experiments.
Although O-Sort is a fully online and unsupervised method, the average clustering accuracy is
lower than the state-of-the-art clustering methods such as K-means[91]. A disadvantage of O-Sort
isthat it may split clustersinto sub-clusters leading to areduction in clustering performance. The
created sub-clusters are not matched with any source and are considered as noise clusters.
Therefore the aim is to modify the hardware implementation of O-Sort to achieve acceptable
accuracy. Commonly known termsin O-Sort, namely, cluster splitting and artificia clustering, are
used to implement fine tuning of the sorting threshold in the feedback loop. To keep the power
consumption of O-Sort low, the core structure of the training unit, the transient memory, is
designed in way that the status of memory locations are updated after each iteration in the training
phase. Using this method, the unwanted memory locations are excluded from the next iteration
phase. In addition to this unique and adaptive approach, other optimisation techniques to reduce
power and chip area will also be examined. Another contributing factor in power and chip area
reduction is the dimensionality of feature vectors (K=6) used for training which has ailmost 8X
lower dimensionality compared with [76]. In summary, a modified version of O-Sort to reduce
power consumption and chip area is presented. Figure 5.10 shows the flow chart of the O-Sort

algorithm.
5.3.4.1 Unsupervised Clustering Using O-Sort

The training phase of the algorithm is initiated by assigning the first FV to its own cluster. The
extracted features of the next spike are used to calcul ate the distance to the already created cluster.
The distance between the FV(n) and created cluster c(n) is computed using the £7-norm metric for
the number of samples (Ns) representing the number of featuresin FV(n):

Ns
Crrin= Y |FV(n) —c(n) (5.5)

n=1
If the minimum distance at this stage (Cmin) is Smaller than the sorting threshold (SThr), the FV is
assigned to existing cluster and the cluster mean is updated to be the weighted average of the first
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two spikes, otherwise a new cluster is automatically created and the FV isassigned to it. The SThr
is defined as SThr=4*on where oy IS the noise standard deviation of the data computed
intermittently. The SThr is automatically and continuously calculated in median processor unit.
Thisprocessis performed recursively for al theincoming FVs from feature monitoring unit. Every
time a FV is assigned to an existing cluster, the cluster centroid is recomputed as the weighted

average of the FV and the existing transient cluster is given by:

_Wxc(n)+FV (n)
Update(n)_ W+1

(5.6)

where W is the number of FVsin a specific cluster. The updating scheme alows the tracking of
changes in the incoming data and adaptively modify calibration of the system without user
intervention. As interpreted from EQ.(5.6), during the training phase the W term becomes more
significant compared to the second term. This means that after sufficient training time the
contribution of the incoming FV isinsignificant in the weighted average. This point is used in the
hardware implementation to avoid over-processing for the clusters with (W>40). It is used as a
condition to bypass the mean update and consequently merging check for the clusters with enough

members.

During each iteration, after assignment and the mean update phase, a shift in the updated mean
waveform over the feature spaceis expected which might cause overlap between the cluster means.
After each mean update, the mutual distance between all possible pair of means is calculated. If
the distance between any pair is less than (Mmin< SThr), clusters are indistinguishable and are
merged. The merging phase reassigns the weighted mean update to one cluster and eliminates the
content of another cluster. The process of sorting is based on sequentia comparisons between the
mean waveforms thus after a specific training phase, the main cluster mean eventually starts

converging.

O-Sort issimple in operation with good complexity-accuracy trade off and satisfies online sorting
constraints which adaptively track the incoming spike data and autonomously determines the
number of spike classes. This agorithm is adaptive and nonstationarity of datain timeis applied
to the cluster position and number of clusters.
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5.3.4.2 Clustering Operation M ethodology

A single-channel clustering timing diagram is shown in Figure 5.11. The clustering operation is
divided into four sub-phases: hold time, training phase, validation phase and finally assignment
phase. The clustering execution is starts with the hold time. In hold time which starts at (to) the
median processor starts cal cul ating the noise standard deviation (on). Asexplained in the processor
general structure, (on) is used to calculate the threshold value for detection and sorting threshold
look up table (LUT) units. The training begins at (t1) when the threshold has been identified. The
(SThr) isfed to the sorting LUT as theinitial value for training phase. Over the training phase, the
FV monitoring unit sends the FVs to the training unit to identify the number of active neuronsin
the recorded data. The validation phase (t2) isinitiated after training to evaluate the mapped data
to the converged cluster means. In this phase the performance check unit is used to adaptively fine-
tune the (SThr) for increasing the clustering performance which is explained later. Once the
validation is performed (maximum of three iterations) the identified cluster means are transferred
to the assignment unit. At (t3) the recorded spikes are continuously mapped to their origins. The
process time depends on the contributing factors from validation to assignment such as training
and validation. The performance check unit (Figure 5.2) constantly eval uates the efficiency of the
clustering to monitor either the error deviation in cluster means calculation or the changes of the
action potentials over time. The retraining command is issued (t4) when any of these issues occur.
In addition to all adaptive settings, user-programmable tuning is also considered in case of worst-

case scenarios.
This process is simply expandable for high channel count processing. One approach for multi-
channel processing is to embed a processor in each recording channel. Thus, each processor

Single channel clustering
timing diagram

c lhold time| |

7 | training |, [ training |mam
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Figure 5.11: Multiphase clustering timing diagram.
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Figure 5.12: Example of multi-channel processing of recorded data.

periodically generates certain amount of information corresponding to the captured neural signal.
Thisisan expensive method for processing since each channel requires alarge amount of memory
to cover al the transient clusters in training phase. The area and power consumption of the
processor is dominated by the memories. To avoid these issues, the training unit in Figure 5.12 is
shared between all the channels and the converged cluster means are buffered in the individual

assignment unit for each recording line.
5.3.5 Training Unit Structure

The block diagram of the training memory structure and training unit main processing blocks (e.g
Status engine) are shown in Figure 5.13. The transient memory core is implemented in a matrix
format for simple highly flexible access to the memory locations. The structure is chosen based on
factors such as adaptive power saving, conditional training and logic reusing which are explained
in the next section. The training unit processing core includes implementations of the key blocks
which are used in different phases of operations over the training period. Since O-Sort is a serial
algorithm, each FV has to go through different paths for processing. In each path access to some
units is necessary for performing different combinations of operations. For example for mean
update operation, the sequences of statesare (£/-norm — mean update — merging check — merge
update — waiting for next FV) which represents the worst-case processing chain. In the next
section the operation of each block and its communication to the training memory is explained in
detail.
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Figure 5.13: Training memory structure and main processing units. Each row of training
memory consists of six locations for accommodating extracted feature vectors (FVo-FVs),
1bit status flag; 6bits represents number of spikes per cluster (NOSPC) and 1bit for finalized

flag.

5.3.5.1 Training Memory Structure

The genera structure of the transient memory is shown in Figure 5.13. There are important

advantages in the proposed structure:

1- Number of memory rows: One of the most significant factors contributing to the power
consumption is the number of memory locations for buffering the transient clusters in training
phase. The depth of training (number of training locations) is designed to accommodate 64
transient clusters, so the chip power is dominated by the buffering of the cluster means. Using
ADDs extracts six distinguishable features from the signa decomposition which results in

substantial power and area reduction compared to spike template buffering.

2- Adaptive power saving: One of the embedded columns in training memory structure is status
flag (see Figure 5.13). The status flag of zero (Status=0) shows that the memory row is empty and
its contribution to the training process can be ignored. The flag is updated after cluster creation
and merging phases to show that the buffered values in the memory locations are accessible for
processing. It is updated recursively during training, and the memory locations with status of zero
are excluded from the processing in ¢/-norm and merging phases. The status flag is adaptively

adjusted provides adaptive power saving over the training period. Another advantage of this flag
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isin ID generation. Since flag shows whether the memory location is used or unused, the reuse of
memory location to saves the number of memory locations required in the core of the training
block.

3- Conditional training: In the mean update phase, the contribution of incoming FVs becomes
less more insignificant after each iteration Eq.(5.6) The cluster mean value becomes less sensitive
to noise variations and it is observed that if the cluster weight (W) is more than 40, the cluster
centroids converge to their true values and the finalized flag (see Figure 5.13) is set to one. The

finalized location will alows conditional mean updating and merging.

4-Memory location reusing: number of spikes per cluster (NOSPC) and status flag locations are

used for memory location reuse in cluster creation, mean update and merging update phases.

These additions in the proposed training memory structure make it a very efficient choice for
hardware implementation. The number of locations for buffering the features is defined via FE
unit. The algorithm is completely adaptive in terms of power consumption and self-initiaizing. To
satisfy the power requirement of implantable devices, register-bank memories are used to
implement the proposed efficient memory core structure. The block diagram of the register bank
memory is shown in Figure 5.14. The implemented design is composed of functional blocks such

as writing decoder, reading decoder and the 1/0Os which are represented by FV_in and cluster
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Figure5.14: Block diagram of theregister bank memory. Writing and reading of FVsare shown
in thisfigure. Other memory locations include status, NOSPC and finalized flags.
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FV_out. Based on the number of transient clusters in training, the number of memory locations
are 64 in this design (FVo-FVe3), which can be reduced to 45 using memory location reusing
technique in the cluster generation phase. In the writing control block a 6 bits address
(rowaddr_wr) decodes the row address of the memory array. columnddr_wr and Wr_en are aso
used to control the sequential writing process in different columns. Each row is used to buffer a
FV. The writing processis performed in cluster creation, mean update and merging update phases.
The same decoder and pointers are used for reading the process in transient memory as shown in
Figure 5.14.

5.3.5.2 Status Engine

The status engine (Figure 5.15) screens the activity of training unit and monitors the duration of
training using control flags which are explained in this section. The controlling 1/Os are divided
into three different categories: initiation of training, progress of the cluster convergence and flags
regarding the termination of the recording channel evauation. The training phase begins with
training_ini. The retrain flag make the training engine flexible by providing training whenever is
needed. Although the whole training phaseis fixed for a specific number of spikes, training_coeff
is used to manipulate the training time which can be overwritten manually or adaptively based on
the sorting performance analysis as illustrated in Figure 5.15. The second bunch of terminasis
related to the training progress. The considered flags, train_perl, train_per2 and train_per3 arethe

result of different units which are cluster creation, mean update and merging update phases. In the

training_ini
trai »
retrain ini
i ﬁ_’ training_busy
raining_coe —>
—A—P Status training_performed
. >
train_per1 transfer_performed
AN engine P
train_per2
train_per3

Figure 5.15: Status engine block diagram with inputs/outputs.
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final category, training_busy defines the training and evaluation phases’ progress. As long as this
flag is set to zero, the training phase is on hold and when it is set to one the assignment phase is
on hold. Thisflag isaso used in the feature monitoring unit for switching the datatransfer between
assignment and training. The rest of the flags are relate to the termination of training and

transferring of the converged cluster means to the assignment unit.

5.3.5.3 Cluster Generation (ID Generator)

Figure 5.16 shows cluster ID generation unit. The cluster creation unit performs ID generation for
new transient clusters in training phase. New cluster generation occurs when the distance of the
incoming FV islarger than the sorting threshold Crin> SThr (Figure 5.10). When this condition is
satisfied, the ID generation unit starts looking for a free memory location to assign the FV. This
process begins with sequential evaluation of memory locations step by step. In each step, based on
the generated address in ID generation block (row-addr), the status flag and the NOSPC of each
memory row (e.eg rowo) are called from transient memory for investigation. If the status flag of
the memory location is zero, it meansthat the found location can be used for buffering the awaiting
FV. Another condition isaso considered to apply the logic reusing technique exploiting the status
flag and NOSPC. In this condition if the status flag is high but the weight of the existing cluster

@©
—
[} ©
o —P FV monitoring unit ?
: 8
> ke
£ 5
o
row-addr status flag  NOSPC
tatus check and ID "l 0 O Jrows
Status checK an status
generation u 0O O |rows
NOSPC _| O 0 |rOW2
. =
row-1D ]
cluster creation ——P [
control P [rowss
wr-enable
Cluster generation transient memory in
phase cluster creation phase

Figure 5.16: Cluster 1D generation flow.
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Figure 5.17: Block diagram of the £/-norm engine. £/-norm consists of eight parallel engines
and it isreused eight timesto calculate the £7-norm difference accumulation for al the 64 rows
(rowo-rowss) as shown in Figure 5.13.

(NOSPC) is less than five (NOSPC<5), it means that the created cluster is due to noise or
overlapping spikes so the memory location is reused. This technique can reduce significantly the
number of locations in the training memory. When the proper location is found, the proportional

cluster ID is created (row-1D) for cluster generation.

5.3.5.4 ¢1-norm Unit Structure

Figure 5.17 shows the block diagram of the £1-norm engine. When a FV is sent to the training
enginefor processing, in afirst stepitiscompared to the created transient cluster meansin previous
phases. Data 0 to Data 7 are the representative of transient clusters which are transferred to the

¢1-norm unit for difference calculation and accumulation. The status flag in £/-norm distance
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metric is used as a condition for reading the memory rows which contain the transient clusters.
The status flags of memory rows are updated during each training iteration. This merit allows the
exclusion of non-important memory rows (status=0) from training and consequently results in
inherent power management. The ¢/-norm distance operator introduces two crucial advantages
over Euclidean distance. Firstly ¢7-norm simplifies the distance calculation operation in units
where it is exploited compared to the squared distance and squared root calculations used in the
Euclidean distance requiring more power consumption and extra wordlength for buffering the
calculated values. Secondly, ¢/-norm metric is more immune to noise which is discussed in [76].
In the £1-norm engine the degree of interleaving is chosen to be 8-unit to reuse the logic blocks

for multiple runs in order to reduce power and area simultaneously. Minimum distance
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Figure 5.18: Demonstration of a moving merging matrix which is interleaved between all
the transient memory rows (rowo-rowes).
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determination (Dmin) is performed sequentially on the buffered values in the search unit to either

activate the cluster generation (cluster_gen) or to enable update the mean value (mean_update).
5.3.5.5Merging Unit Structure

Each incoming FV is assigned to the closest cluster based on the £7-norm between the FV and
closest centroid in feature space and cluster mean is updated accordingly. The mean update phase
might result in cluster shift in feature space. Dueto the cluster shift, there might be overlap between
the clusters. In this case, two clusters with distance of less than a threshold Mmin< SThr (Figure
5.10) in feature domain are indistinguishable and they are merged. To evaluate the merging
possibility, the distance between all cluster means are calculated and the candidates are sent for
merge update. The approach for finding the overlapping clustersisillustrated in Figure 5.18. An
interleaving of eight parallel merging-check units is employed to move between the matrix
memory rows. The merging engineis ableto evaluate the overlapping between the clustersin eight
rows simultaneously. One of the important points in merging design flow is that only the upper-
half of the matrix memory is used for distance calculation and the lower-half of the matrix is
masked in this analysis. The whole merging phase is performed recursively for eight consecutive
runs to cover all the memory rows (see Figure 5.13). In mutual difference computation mode, al
clusters are reconfigured and if the status flags of the memory rows are one, the mutual difference
istaken and accumulated for further processing. A two-step sequential search method is developed
to find minimum distance at the end of merging phase. At each run the minimum values are found
in search_engl-8 (see Figure 5.19), are stored in search memory as depicted in Figure 5.19. At the
end of merging phase, it is decided whether to start merging update (merge _ini) or termination of
training is issued for the current data (training_done). In case of merge update, the content of the
transient memory rows based on the chosen IDs (first_ID and second_ID) are called for merge

update phase. The centroid of the new merged cluster is then calculated as a wei ghted mean:

)= W, x ¢ (n) + W, x ¢, (n)

C .
MergeUpdate( ) Vvl +W2 (5 7)

where c1 and c; are the centroids, and W1 and W- are the respective spike populations of each
cluster. The updated centroid (Cwergeupdate) 1S Stored in one memory location and the content of

other locations is erased to be reused for the cluster generation phase. In the first iterations of the
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Figure 5.19: Hardware implementation of the merging unit. The first section depicts the



training phase merging occurs frequently dueto the small clusters created in the cluster generation
phase but after a specific time the main clusters start to converge to steady state values.

5.3.5.6 Finalized Cluster M eans Transfer Unit

It should be mentioned that the amount of training time is different based on number of active
neurons, spike shapes and their firing rates in the captured data. In the status engine, a specific
number of spikes is considered for the duration of training (e.9.250 spikes). Over the training
process, the IDs of thefinalized clusters are saved in ID memory (Figure 5.20). It should be noted
that the spike processor is capable of simultaneous assignment to six clusters. If within the
specified processing time limit, the number of the finalized converged spikes reaches six, training
is stopped and the identified cluster means are stored in the assignment unit. A second option is
designed for sequential search to find the settled cluster means which meet the convergence criteria
as discussed in section 5.3.4.1 (W>40). This phase is initiated when the number of the finalized
cluster means are less than six. In this phase the conditions flags are evaluated for transferring the
cluster means which are used in the cluster mapping phase according to the minimum distance of
theincoming FVs.
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Figure 5.20: Converged cluster means check.
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5.3.6 Assignment Unit

Figure 5.21 shows the assignment block diagram. Having identified the cluster means in the
training phase, clusters 1-6 change are transferred to the assignment unit for updating the mean
values. The assignment unit is capable of mapping up to six neurons in the stream of neural data.
Having updated the clusterl-6 mean values at the end of the training phase, the spikes are
constantly processed and assigned to one of the clusters according to the minimum ¢/-norm
distance measurement. The difference values (DIFF1-6) are computed simultaneously from the
comparison of the incoming FV to each cluster mean (Clusterl-6) and the values are sent to the
search engine (see Figure 5.21) to recognize the spike ID. The outputs of the assignment unit are
clustered_FV and assign-notvalid flag which both are also used in the performance check block.
The clustered FV consists of six locations covering feature values and one location which
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Figure 5.21: Assignment block diagram. Accumulator is depicted by ACC.
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demonstrates the spike ID. The Assign-notvalid flag is set due to faulty noise FV assignment or it

due to the unwanted issues in O-Sort operation such as artificial clustering.

5.3.7 Performace Check Unit

As explained in [13], there are two main approaches for calculating the sorting threshold, either
threshold approximation which is computationally cheap or using statistical approach to find
optimal threshold through the noise covariance matrix calculation. Running simulations for hardly
distinguishable neurons or neura data with ahigh background noiselevel show that the clustering
accuracy is severely affected when using the sorting threshold approximation approach. This
normally causestwo well-defined phenomenain clustering which are cluster splitting and artificia
clustering. As shown in Figure 5.22, cluster splitting is the division of single cluster into multiple
clusterswhileartificial clustering is merging of two single clusters (or more) into one cluster. With
threshold values larger than (Tmax) the probability of missing a cluster or artificial clustering is

2D-feature space

- representation

Missing a Y
cluster _,e="TTT e 2.

\ " _____ ~\ OQ& .
¢ T T T ~ W\
’ -ClUSter 1.7 s

Artificial
Clustering

Decreasing (T)

»

Figure 5.22: 2-D representation of feature space for two clusters. The effect of increasing
(decreasing) the threshold is shown. Different threshold levels (Topt, Tmax and Tivin) and sorting
range are shown. With increasing the threshold (T>Twax), the probability of missing a cluster
and artificia clustering is high. In addition, with declining the threshold (T<Twin), the main
cluster would artificially be split into two or more sub-clusters.
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high. Thereis aso alower limit (Tmin) below which the over-clustering effect is expected. In this
section, a novel and simple approach is presented for evaluation of the clusters status. Based on
the clusters status analysis, an optimal threshold (Topt) is adaptively set which enhances and locks
the clustering unit on its mean average accuracy. The proposed method is called performance lock
scheme. The hardware implementation of the proposed methods is shown in Figure 5.23. The SThr
tuning chain is composed of clustering status analysis and SThr fine-tune blocks. The inputs to the
status analysis block are the finalised cluster means (C1-Ce), assign-notvalid and assigned FV
(clustered-FV). In the SThr self-tuning design, assign-notvalid monitors the rate of assignment
error and clustered-FV (six features representing the FV) and cluster ID from the mapping unit.
Statistical operationsare performed on the input valuesfor fine-tuning the SThr such as calcul ating
the correl ation between thefinalized cluster means and monitoring the assignment error rate (AER)
over validation phase (see Figure 5.11). Indicators of the issues in clustering are interpreted from
the statistically evaluated data as below:

1)- In case of artificial splitting of a single unit into multiple clusters, the correlation factor (Cof)
between the identified cluster meansis high (more than 0.9) and their corresponding firing rate is
less than other active neurons. The SThr isincreased (+) in this case to avoid cluster splitting.

2)-In case of artificial clustering, a spurious cluster is created and the rate of assign-notvalid flag

is high. In addition to the AER, such cluster represents multi-unit activity and it has normal/high
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Figure 5.23: Sorting threshold (SThr) self-tuning methodology.
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firing rate due to spike allocation from multiple neural activities. The SThr is adjusted to a lower

level (-) for optimal clustering.

3- It adso should be noted that the spike shapes may vary over time. The performance check unit
also tracks this issue and reinitialises the training for detection of any changes in the recording
data.

The adaptive threshold adjustment scheme is implemented on FPGA. The threshold fine-tuning
steps are performed during the validation phase and the best threshold in terms of performanceis
chosen amongst three iteration phases. The progress of trimming the threshold is computed viathe
mentioned metrics over different runs. It should be noted that in each iteration, 10% variation is
added/subtracted for SThr calibration. The threshold self-tuning method results in 5-8% median

clustering performance improvement.
5.4 ASIC Implementation

5.4.1 FPGA-Based ASIC Verification

To evauate the ASIC performance, a data streaming scheme using universal asynchronous
receiver/transmitter (UART) was developed which continuously sends data to the FPGA and
receives the processed data from FPGA (Figure 5.24). The control of data streaming is performed
in MATLAB. Due to buffering limitations, the entire quantity of data cannot be transferred to the
FPGA to driving the spike sorting DSP. The neural datais divided into different segments based
on the input buffer of UART in MATLAB. The received datain UART is deserialized and based

PGA PCB
S RX [ oo testbench
N E T selection
<C processed data v
g E — [~ Synchronization ike sorting
TX[ T "1 " 5ap

Figure 5.24: Data-streaming interface. RX is the symbol of receiver and TX is the symbol
of transmitter.
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on the controlling signals between UART/RX theincoming datais buffered in data buffering unit.
The spike sorting DSP starts receiving the neural samples from the data buffering unit for
processing. The test-bench is quite flexible and can be reconfigured to implement different test-
benches. Based on the chosen test set up, processed data is sent back to the FPGA for
synchronization. The output rate of the processed data in the defined test systems are different and
they need to be synchronized for using in UART at afixed transmit rate. The TX unit decides the
timing intervals for transmitting data from FPGA to PC viathe UART controlling signas. In the
UART datais serialized and transferred to MATLAB. This process is repeated until al the data
has been processed. The processed data from the spike sorter is evaluated in MATLAB to measure
the detection and clustering accuracy. Figure 5.25 shows the developed processor and setup used
for chip testing. The FPGA board interfaces to the ASIC board using universal asynchronous
RX/TX system (UART). A MATLAB-based platform was used to drive the FPGA and read the
corresponding outputs from the chip.

Fig. 5.25: Fabricated ASIC and MATLAB-based ASIC verification setup. FPGA isused to drive
ASIC.
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5.4.2 Chip Measurement Results

The adaptive spike sorting processor was fabricated in a 180-nm CMOS technology. The die is
shown in Figure 5.26. It occupies an area of 10 mm?. The processor uses four different clock rates
(30kHz, 120kHz, 240kHz, 960kHz) to obtain the best processing efficiency which results in
148uW of power from a 1.8V supply voltage. The power density of the chip is54.8 pW/mm? (the
training area is excluded from the power density calculation) which is 14.6 times lower than the
power density known to damage brain cells[159]. A standard dataset'® with a known ground truth
(spike times and cluster 1Ds) is used to validate the functionality of the fabricated processor. To
eva uate the spike detection performance two well-known metrics are use: 1) the probability of
detection, which is computed as the number of truly detected spikes (TDS) divided by the total

\ 4

< — 3.33mm

Figure 5.26: Illustration of ASIC die photo. The area distribution is illustrated based on the
Cadence synthesize resullts.

16 The datasets are explained in Chapter 2.
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number of spikes (TNS): Po = TDSTNS. And 2) the probability of false alarm which is computed
number of false detections (FD) divided by true positives (TDS): Pra = FD/TDS.

To improve accuracy and power efficiency some modifications are made. The outputs of the
detection unit was compared with the results obtained from Matlab simulations using the signals
with known ground truths. The detection performance was characterized by the probability of
detection of (92%) and the probability of fase alarms of (1%). The wNEO (see section 5.3.1)
obtains the best detection accuracy when w is chosen to be 2 or 3. This accuracy improvement is
due to the modifications applied into the conventional NEO. In addition, the overal power
consumption of wNEO is reduced in simulations by 3X (30%) compared to standard NEO
implementation. Figure 5.27 shows a sample recorded neural signal input on the logic analyzer

and the corresponding collected aligned spikesin MATLAB.

The goal of FE isto choose a few distinguishable features for obtaining the best differentiation
between the clusters. Normally features with multimodal distributions are chosen for efficient
clustering using advance statistical methods such as asynchronous sampling [100] and
Kolmogorov-Smirnov (KS) [160]. Having performed the FE, features with the largest deviation
are sent for clustering. In ADDs, the hardware implementable version of KSis moved in front of
the FE block for frequency band separability analysisin order to obtain high clustering accuracy.
The proposed approach performs sub-band frequency selection and maximizes the separation
probability between the spike features using proper scaling factor selection. Figure 5.28 showsthe
specific cases in which different scaling factors are used for decomposition. Using the identified
scaling factorsin ADDsintroduces more discrimination for clustering. The extremas (max/min) of
the decomposed spike waveforms can be used to represent the frequency band separability. The
analysis of ADDs validates that the better performance is obtained through frequency sub-band
selection approach. As depicted in Figure 5.28, the extracted max/min peak valuesin the identified
frequency bands in two different datasets provide enough separability for clustering unit.

The identified scaling factors for each dataset can be compared with the manua decomposition
approach (see Chapter 3, Table 3.1). For the Easy2 dataset, a comparison with Table 3.1 shows
that the selected scaling factors are similar with the definition of combination 3 which achieves
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(b)

Figure 5.27: (a) A segment of neura signal depicted on logic analyzer and (b) the recorded
spike waveformsin MATLAB using the interfacing system.

86% CAcc. For Difficultl, the chosen scaling factors are equal to the best combination
(combination 3) in Table 3.1 which obtains 87.8% CAcc.

The clustering accuracy of the adaptive spike sorting chip was tested and evaluated across all
datasets and noise levels. In the FE unit six features (K=6) are used for clustering where K shows
the feature space dimensionality. As described previoudly, there is an initial phase for clustering
self-tuning. The clusters are re-evaluated in the retraining phase if the implemented criteriaare not
satisfied. The evaluation of the spike sorting chip is performed over the steady-state phase, such
that the final cluster means are converged. Figure 5.29 shows from (@) to (d) the 2-D projection of
the clusters in different datasets form Easyl to Difficult2. The boundaries of the clusters are

marked with dotted lines. The overall clustering accuracy of 84.5% is obtained over all different
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Figure 5.28: An illustration of extrema features using different sets of scaling factors. The
scaling factors are selected based on ADDs methodology for (a) C_Easy2 0.05 (b)
C_Difficultl_0.05. The identified scaling factors for each dataset can be compared with the
manual decomposition approach discussed in Chapter3.

datasets and noise levels. The adaptive processor accuracy compares well with the most powerful
clustering methods such as Waveclus [89]. The average accuracy of the developed processor can
be compared to median clustering accuracy of the state-of-the-arts classifiers such k-means or
SPC. Figure 5.30 shows a plot of the estimated performance of the three clustering and
classification methods.

Thetotal system performance consists of contributions from the detection, FE and clustering units.
As explained earlier, the architecture of training memory is designed for self-power management
(status flag in Figure 5.13) purposes. The register bank memory implementation with the
introduced architecture provides up to 2X power reduction compared to the memory
implementation without considering the exploited status flags. This value is the average power
reduction ratio, since the degree of power saved variesin different iterations. In addition to power
reduction, the areais aso reduced significantly due to the use of six features (K=6) for buffering
the transient clusters.
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Figure 5.30: Performance comparison of implemented processor and the state-of-the-art spike
processors. The mean accuracy of K-means and SPC is calculated based on the template
matching FE.
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Table5.1:
Adaptive spike processor summary.

Technology 180-nm
CoreVpp 1.8V
Power 148uwW
Operation frequency 30KHz
Processor type Adaptive
Median Pp, Fa 92%, 1%
Median CAcc 84.5%
Compression factor 150X, 240X *
Coresize 10mm?

* Compression factor in different modes.

Training controlling FV Feature Detected
signals monitoring vectors spikes

aseyd Bulures|
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pazieus
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v

Figure 5.31: The operation phases of adaptive processor in Cadence simulator.
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Figure 5.32: The data generation based on random data selection. Datais generated based on
the tuning parameters (data selector, NTP and tgen).

The main characteristics of the chip are summarized isin Table 5.1. Figure 5.31 shows the entire
spike processing operation. The operations of different unitsarelabelled in the figure. This unique
balance between good accuracy and low complexity makes the adaptive spike processor a

particularly good candidate for implantable devices.
5.4.3 Dynamic Test M ethodol ogy

In this section, a dynamic test protocol is adopted to fully evaluate the effectiveness of the new
adaptive spike processor under variable input signal conditions. The input based on random data
selection is proposed as an optimal approach for imitating the dynamic nature of neural data
encountered in practice. For random data generation, all the datasets discussed in section 2.4.2
form a matrix of data as shown in Figure 5.32. In the neural simulator four tuning parameters are
considered. They include a dataset selector (from Easy1, Easy?2, Difficultl and Difficult2), a noise
tuning parameter (NTP) for adjusting the noise standard deviation (e.g. 0.05, 0.1, 0.015 and 0.2),
a generation time (tgen) and the number of active neurons selector (ActNeuSel). Based on tuning

parameters, data is chosen randomly from each unit (e.g. unit (1,1) in Figure 5.32) and
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Figure 5.33: Dedicated set-up for comparing the performance between the non-adaptive and
adaptive processors.
concatenated in time for a specific duration. The variable conditions in data represent variations
over time such as non-stationaritiesin background noise, and appearance (disappearance) of active
neurons in a recording channel. They are used for examine the robustness of the adaptive spike

processor to input data variations.

The model used for data variation performance analysis is shown in Figure 5.33. In one path
(model A), a synchronous processor without adaptive frames is used to test the classification
accuracy performance. The constituent building blocks in a synchronous spike processor are NEO
based detection, multi-resolution decomposition based on fixed scaling factors (dl1,37) and O-Sort
clustering. In a second path (model B), the spike processor with adaptive frames is used. The
adaptive spike processor comprises conditional spike detection with dua thresholding (SThr-
NEO), adaptive multi-resolution decomposition and O-Sort clustering with capability for setting
the optimal threshold. In both processing paths, the O-Sort clustering unit is equipped with channel

change sensing.

The clustering performance of both processors (adaptive and non-adaptive) is shown in Figure
5.34. The adaptive processor with the embedded adaptive frames (Frame 1 and Frame 2) and
clustering unit with the capability of setting the optimal threshold outperforms the synchronous
spike processor. The average classification accuracy of the adaptive processor is 10.9% higher

compared to the non-adaptive model (84.5% versus 73.6%).
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Figure 5.34: Comparison of clustering accuracy between the non-adaptive (model A) and
adaptive (model B) processing chains. The data at input of the processor is generated based on
the dynamic test methodology.

5.4.4 Comparison with Prior Work

Table 5.2 shows a performance summary of published previous spike sorting ASICs. This work
introducesthefirst fully adaptive, online and unsupervised sorting processor with al the necessary
building blocks to obtain the optimum performance with ultra-low power consumption. The
fabricated processor is the first design with integration of synchronous/asynchronous/self-tuning
capabilities. Although the system operation is synchronous, novel additions and circuit techniques
are used to emulate the synchronous and asynchronous concepts in an adaptive form. Since the
processors are implemented in different technologies, a power density (Power/Area) figure of
merit (FOM) can be used for fair efficiency comparison. Power density can also be modified to

express the processor efficiency to take account of the effective contributing factors in a processor
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Table5.2:
Comparison to the state-of-the—art processors.

Reference | [161] | [162] | [74] | [163] | [164] | [73]@ | [73]® | [76] | [165] | ThisWork

Detection v v v v v v v v v v
Alignment X X v X X v v v v v
Feature
Extraction X v v X ve ve ve X X v
Clustering X X X X X X X v v v
Compression | 15 5y | gox | 11x | 15 | -* - - |240x | - | 150x/240%
factor
Power
(UW/channel) 75 100 | 2.03 | 104 146 | 0.46 1.04 4.68 | battery 148
Area 011 | 158 [006| - | 001|003 | 002 |007 | - 27
(mm?/channdl)
Power density
2 680 63.3 30 - 1460 | 15.33 52 66.8 - 54.8
(MW/mm#)
Process (nm) 500 350 | 90 | FPGA | 90 65 65 65 DSP 180
Core (\\//()J“age 3 | 33 |o55| - | 108|025 | 025 | 027 - 18
CAcc X X X X X X X 75% 93% 84.5%
Self-tgnl g X X X X X X X X X v
design
EF . . . s . s . 3.71 s 0.43

* The output of FE contains 53bits for transmission.

(a) Fabricated asynchronous processor in [73].

(b) Fabricated synchronous processor in [73].
design such as power, area, processor chain performance (PCP) and compression factor (CF). The
processor efficiency factor EF is:

_ Power
PCP.CF.Area

(5.10)

In addition to EF, the effect of technology scaling can be discussed for the digital power

consumption. The power consumption downscaling factor (DF) is given by:
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(Nt .Cavg V. f dlock )Hmh

DF =
(Nt 'Cavg -Vzdd f clock )L[

(5.11)

ech

where Ntis the number of transistorsin design, Cay is average capacitance load, Vad is the power
supply and faock is the operating clock frequency. Hiech and Liech are the representatives of higher
and lower technologies respectively. As an example, the DF comparison between the technology
used in the fabricated processor is Hiech (180nm, 1.8V) and that in [76] Ltech (65nm, 0.27V), for the
same faock and Nt isequal to Cavg (Htech)/ Cavg(Ltech)= 133. The Nt parameter is significantly affected
by the feature space dimensionality (K) which results in number of logic cells for designing the

clustering unit.

Compared to the state-of-the-art spike processor in [76], the adaptive design has 8.6X better EF.
The estimated power consumption using DF is 4.2X lower than the reported power in [76]. The
power density of the adaptive processor is 3.6X higher than in [73] due to the inclusion of
clustering unit. Nevertheless, the clustered data provides a higher compression factor which is
advantageous in terms of EF and transmission power. The processor in [76] has a clustering
accuracy which isamost 10% lower than the overall performance of the adaptive spike processor
in this chapter. Future implementation of the adaptive spike processor in a deep submicron

technology would offer improved performance in terms of area and power consumption.
5.4.5 Interleaved Architecture

The optimal number of parallel processing engines in ¢£/-norm and merging units is obtained by
interleaving processing methodology. Interleaving allows the reuse of a designed processing
engine for optimizing the dynamic and |eakage power which is due to the area of the silicon used
in processor design. A detailed investigation of chip areaand power consumption product reveals
an optimal interleaving ratio (R). Risatrade-off between the |eakage power, which is proportional
to chip area, and dynamic power due to registers using in different operation phases. R is defined
as total processing channels (e.g 64 in £/-norm unit) divided by number of parallel processing
engines (e.g. 4 or 8 parallel engines to perform £7-norm phase). For R=1 the largest area and

slowest operation frequency are obtained and the total power consumption isdominated by leakage
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Figure 5.35: The normalized area and power trade-off versus interleaving ratio (R).

power. When R is increased, a faster operation clock is required which means more switching
activity (dynamic power) but the leakage power is reduced. Therefore, at a specific R, the power-
area product becomes minimum. It should be mentioned that the interleaving optimization
methodology is strongly related to the fabrication process and circuit architectures. In this design,
the interest is to optimize the area ad power simultaneously due to the hardware implantable
circuit’s constraints. Figure 5.35 shows the area-power product versus interleaving ratio (R). The
R value is calculated by the extracted power and area information from the Cadence synthesize
reports. It can be seen that the optimal ratio for power-area saving is 8 in £1-norm and merging
units. For more power savingin thetraining phase, R can be set at 4. The adaptive sorting processor
is fabricated in 180-nm CMOS technology which exhibits less |eakage current compared to more
advanced technologies. It means that the dynamic power consumption plays the main role in
defining thetotal processing power in the training phase because the higher frequency interleaving

clock increases power consumption.
5.4.6 Power Management Techniques

This section elaborates on techniques which could further minimize power consumption of the

spike sorting processor. Power gating [166] is atechnique which may reduce the power dissipation
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due to CMOS gate leakage in inactive processing units. For example, the power gating technique
can be applied to the training unit in clustering once the active neurons in recording channel have
been identified. Dynamic voltage scaling (DV S) [167] isanother power efficient low-power design
technique. In DV'S, a higher supply voltage is considered when a processor is running a a high
speed and a lower supply voltage is applied when it is not in its peak performance such as
noncritical path. In the DV'S technique, a dedicated power supply generator is essential which
generates an adaptive supply voltage according to the operational frequency. For example, in the
designed spike processor, a sequential DV S method may be used to activate the processing chain
when a spike has been detected.

5.4.7 Towardsthe Next Generation of Adaptive Processing
5.4.7.1 Feature Extraction Development phases

The block diagram of the next ADDs model is depicted in Figure 5.36.

FV scaling: acrucial block in completing ahighly reliable FE isthe FV scaling unit. Themain aim
of this unit is to map the FVs from feature space to a distinguishable space. One possibility for

implementation of FV scaling is using of the decomposition window amplitude (amp).

Dimensionality reduction methods: various number of geometric characteristics such as positive
(or negative) signa energy, half-height position, right (or left) spike gradients, peak position, zero
crossing points and positive(negative) lobes can be considered for alternative dimensionality
reduction units. For example the conceptua illustration of power spectral density calculation for
the decomposed ranges from high (6=1) to low (0=7) in the DR unit is shown in Figure 5.37.

5.4.7.2 Clustering Algorithm

The O-Sort clustering method can also be improved by applying the embedding frames in the
clustering concept. The modification can be performed by employing other additiona data

clustering techniques, such as a tunable nearest neighbour setting, in the clustering unit to avoid
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WADDs is the acronym of weighted adaptive discrete derivatives.

the cluster splitting and artificial clustering issuesin O-Sort which may increase CAccto over 85%

without the use of FE.
5.5 Conclusion

In this chapter, an adaptive processing methodology is introduced to enhance the accuracy-power
characteristics of SPSs by employing self-calibration of design features. As proof of the efficacy
of the proposed processing framework, an adaptive spike processor is designed, fabricated in
180nm CMOS technology and evaluated using standard neural datasets. The adaptive adjustment
strategy allows the alleviation of issues in spike sorting design such as low-power, low-area and
high-accuracy by exploiting optimal processing technigquesin each constituent block of the sorting
chain. Conditional activation is considered for the detection unit to reduce the power consumption

by 30%. Regarding detection performance, the probability of the presence of a spike is examined
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Figure 5.37: Demonstration of power spectral density calculation for the decomposed ranges
from high (0=1) to low (6=7) in DR unit.

through two different metrics which are sorting threshold calculated based on noise standard
deviation (on), and modified power analysis (wNEO) which results in significant detection
improvement. Thiswork is the first demonstration of a spike sorting processor with FE. Inthe FE
block, a modified version of [148], ADDs, is used for selective spike waveforms decomposition.
The ADDsis used to extract the features (positive and negative peaks) from the desired frequency
bands. ADDs significantly improves the clustering accuracy by retaining the features with the
highest level of non-Gaussianity while improving the in-band and out-band noise robustness using
derivatives noise shaping property and moving average (MA) respectively. The number of
locations for saving the spike features is reduced by almost 8X compared to processing the aligned

spike waveforms.

In the clustering unit, amulti-aspect optimization methodology (power, area, accuracy) is proposed
due to strict hardware implantable criteria. The register bank memory structure provides up to 2X
dynamic power minimization in the training phase compared to the conventional implementation
by using adaptive activation of the training memory locations. Aninterleaving techniqueisutilized
to share computing resources in £1-norm and merging units. Another technique employed is the
reuse of logic in the cluster creation phase. This reduces the number of locations for buffering the

transient cluster means. The clustering efficiency is improved using noise-tolerant £/-norm
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distance calculation and a modified version of O-Sort for sorting threshold calibration in the
validation phase.

The prototype of the complete adaptive spike sorting processor is fabricated in 180nm CMOS
technology with 84.5% overal accuracy and 148uW power consumption from 1.8V supply
voltage. Better power performance characteristics are demonstrated compared to the state-of-the-
art online and offline clustering methods. The focus of future work will be towards the
development of more sophisticated FE methods, improving the clustering performance by
development of highly accurate processing methods based on adaptive frameworks and realizing

multi-channel processing.
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CHAPTER 6

Conclusion

6.1 Original Contributions

This thesis has investigated a novel feature extraction method for hardware implementable
purposes. Detailed in Chapter3 it uses discrete derivatives which isasimplified model of DWT as
a reliable approach with low complexity for implanted hardware. The preservation of discrete
derivative extremas successfully generates well-separated clusters. A standard dataset has been
used to provide an efficient and unbiased comparison between the state-of-art spike sorting
algorithms. This dataset contains spike waveforms similar to real recorded data with different
levels of difficulty and noise. The results show that the feature extraction outperforms traditional
and online feature extraction methods in terms of template similarity and noise immunity. To
satisfy the main aim of increasing clustering performance while substantially reducing the
complexity, the system is designed to be independent of multiplication from feature extraction to
clustering ¢1-norm based O-Sort classifier. For a fair comparison against existing published
systems, accuracy-complexity of al methods is discussed and compared using O-Sort.

To optimize the overall amount of power consumption in NFI, an optimization methodology has
been introduced in Chapter 4 based on data conversion technique selection (e.g. CBSC) and NFI
key parameters sensitivity examining on spike sorting accuracy. As shown in Figure 6.1, a
hierarchical optimization scheme is considered to optimize the total power used in the neura
acquisition path. In Chapter4 the thermal input referred noise of an ADC is considered as a
contributing factor in LNA power consumption (NMF=a). Two types of data converters for
biomedical applications have been used to evaluate the effect of noise-power of each dataconverter
on NFI design (Layer 1). It is also explained that the behavior of the CBSC operation is similar to
a clocked-inverter that charges/discharges the load capacitance and provides more power
efficiency compared to the SAR ADC.

To estimate the theoretical NFI power bound, the effect of NFI key parameters (low-passfiltering,
high-passfiltering, converter resol ution and sampling frequency) have been examined on the spike

sorting process (Layer 2). Defining the optima NFI parameters were performed by utilizing a
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Figure 6.1: Proposed flow chart for NFI power optimization methodol ogy.

variety of synthetic neural signals having different numbers of spike templates (e.g. different
numbers of neurons), and different signal-to-noise ratios via an implemented spike processor on
FPGA.

The NFI power bound (Layer3) has been estimated and compared with state-of-the-art. This
chapter concluded that the NFI power consumption can be reduced by amost 30%.

The first generation of an adaptive spike sorting processor has been introduced and developed in
Chapter 5 which significantly advances the state-of-the-art performance. The adaptive spike
sorting enhances the accuracy-power characteristics by employing self-calibration of processing
features by the concept of re-definition of the spike processing through reverse-adjustment (RA).
The adaptive adjustment strategy improves performance in spike sorting such as low-power, low-
area and high-accuracy by exploiting optimal processing techniques in each constituent block of
the sorting chain. The processing method was designed especially for high density neural recording
arrays (e.g., 512 recording channels) while satisfying the implantable devices restrictions. The
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proposed method was implemented and verified in MATLAB/SIMULINK via complexity—
performance metrics. Since the design of energy-efficient spike-sorting application specific
integrated circuits (ASICs) is necessary to allow real-time multi-channel processing, the
functionality verification of the proposed method was first examined on a programmabl e hardware
development platform (i.e., FPGA).

The prototype of the complete adaptive spike sorting processor has been fabricated in 180 nm
CMOS technology with 84.5% overall accuracy and 148uW power consumption from 1.8V supply
voltage. The power-performance characteristics comparison to the state-of-the-art online and

offline clustering methods has been demonstrated in Chapter 5.

6.2 Future Work
6.2.1 Multi-channel Processing

Future work will be on the devel opment of multi-channel neural processing systemsto satisfy strict
limitations such as area and power consumption. The satisfactory performance of the complete
processor will be followed by completing the implementation of an adaptive spike processor for
multi-channel processing. The main am is to design a scalable processor in order to accomplish
processing of different number of channels (e.g 16, 32, 48, or 64 channels) for aternative BMI

applications.

6.2.2 Brain Activity Analysis

The work presented in this thesis can be applied to the design of an implantable system as a
powerful research tool for neuroscience applications. The am is to investigate novel processing
methods to increase the number of processing channels (e.g. >1K) for the same amount of power
budget in the current state-of-the-art. This can be achieved by introducing a new processing

paradigm for projection of recorded signals.
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