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Abstract

Recent advances in the field of neuroscience have suggested that new generation brain computer

interfaces demand a critical step in biomedical signal processing requiring online/on-chip spike

sorting. Spike sorting is the process of grouping signals from an individual neuron by grouping

action potentials (spikes) into a specific cluster based on the similarity of their shapes. The

extraction of single-unit activity by sensors at a distance from specific neurons is necessary for a

wide range of clinical applications such as disorder treatments, muscular stimulation (e.g., epidural

spinal cord stimulation for treatment acceleration), cochlear implant and neural prostheses. A brain

machine interface, for example, can potentially substitute the missing motor pathway/sensory

information between the motor cortex and an artificial limb.

With the aim of developing an energy-efficient spike sorting chip for hardware implantable

systems, this thesis introduces a new feature extraction method based on extrema analysis (positive

and negative peaks) of spike shapes and their discrete derivatives. The proposed method runs in

real-time and does not require any offline training. Compared to other methods it offers a better

tradeoff between accuracy and computational complexity using online sorting. It additionally

eliminates multiplications which are computationally expensive, power hungry and require

appreciable silicon area.

A minimum power limit for implantable neural front-end interfaces is also derived. It involved: 1)

system level optimization - the front-end specifications including the bandwidth, data converter

resolution and sampling rate were defined by exploring the effect of the parameters on spike

sorting via a standard spike bank; 2) block level optimization - The front-end power was minimized

by using an opamp-less cyclic converter; and 3) estimating the power limit equation of the front-

end. The new optimization methodology addresses the future demands of neural recording

interfaces.

Finally the thesis presents the design, implementation and testing of the first generation of an

adaptive spike sorting processor. It enhances the accuracy-power characteristics by employing

self-calibration of processing features. The chip prototype was fabricated in a 180-nm CMOS

technology. It achieves an overall clustering accuracy of 84.5% using a standard spike data bank

and has a power consumption of 148-µW from 1.8-V supply voltage. The fabricated spike
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processor has almost 10% higher clustering accuracy than the state-of-the-art. Measurements show

good power-performance characteristics compared to the state-of-the-art online and offline

clustering methods.
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CHAPTER 1

Introduction

1.1 Motivation

Millions of people suffer from different neurodegenerative diseases around the world [1]. The

consequence of such diseases is the devastating loss-of-function and resulting emotional problems

such as depression for the patients and their families. In addition, treatment of such diseases

requires significant financial support. For example, there were approximately 45 million cases of

brain disorders in the UK, with a cost of £110 billion per annum [2]. The five most costly disorders

were dementia, psychotic disorders, mood disorders, addiction and anxiety disorders. In addition,

figures show that there are currently 127,000 people diagnosed with Parkinson's disease in the UK

and this is predicted to rise to 162,000 by 2020, an increase of 28% [3].

One way of curing and managing diseases is the prescription of appropriate medication. It should

be noted that this treatment method is not very effective for types of disease such as Alzheimer’s.

For example, medicines (e.g., acetylcholine) can ease the Alzheimer's symptoms and slow down

the progress of the disease, but the effect lasts for a limited time with possible side effects such as

diarrhea, vomiting, insomnia and fatigue. On the other hand, the application of therapeutic devices

in the category of alternative treatment have offered more efficient and reliable treatment (e.g., in

the case of Parkinson’s disease) with promising results and fewer side effects [4].

Detailed understanding of neuron-related activities such as the generation of thoughts/

perceptions/actions remains an important challenge for improved alternative treatments using

neuroprosthetic devices. The first step in any alternative treatment is the ability of interfacing and

decoding the interactions between neurons. This ability has already significantly changed the

development path of neuroprosthetic devices. Typically neuroprosthetic devices are categorized

into: 1) decoding sensory information (stimulation patterns) which is used for rehabilitation (e.g.,

spinal cord injury) or to lessen symptoms (e.g., Parkinson's); and 2) devices for extraction of motor

pathways for controlling assistive technologies such as a prosthetic hand. There are nearly 2

million people living with limb-loss in the United States; the main cause is diabetes [5].
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Approximately 185,000 amputations occur in the United States each year and in 2009 [6], hospital

costs associated with amputation totaled more than $8.3 billion [7]. An increased projection of 2

million cases is estimated from 2005 to 2050 for those who require amputation surgery [5].

Studies in the field of neuroscience have suggested that the realization of neuroprosthetic devices

for motor/sensory applications are significant within the concept of brain machine interfaces

(BMIs). The BMI concept is an interpreter for analysis of the characteristics of active neurons in

the acquired data such as the number of neurons, their firing rates and the degree of correlation

between the identified neurons. These features help to build application-specific experimental

models (e.g., for neurodegenerative disease treatments). Nowadays reliable acquisition of high

channel count recording is possible thanks to astonishing advancements in microtechnology such

as interfacing probes and CMOS integrated circuits [8-10]. The quality of neural data monitoring

depends on the level of invasiveness including: (1) electroencephalography (EEG); (2)

electrocortiography (ECoG); and (3) multi-electrode arrays (MEAs) with sub-micron resolution

features which all will be extensively discussed in Chapter 2.

The science of integration in the field of recording technology in conjunction with nanostructure

fabrication techniques (e.g., Michigan arrays) have significantly increased the number of recording

sites. The monitoring of the brain functionality down to individual neuron level [referred to as

extracellular action potentials (EAPs) or spikes] allows the study of the underlying network

dynamics. Implantable neural recording systems follow a modified Moore's law as shown in Figure

1.1, where the number of recording channels since the 1960s has exponentially grown. The number

of neurons recorded doubles every 7 years [11].

On the other hand, the vast amount of data recorded from the distributed recording sites introduce

fundamental limitations in either processing data using highly complex processing methods or

transmission of raw data to an external processing unit. In implantable devices there is a limited

power budget which limits the type of processing that can be included. Hence high channel count

processing of data using complex methods is extremely difficult. In addition, transmitting large

quantities of data to external units results in a transmitter bandwidth bottleneck. To alleviate the

issues related to high channel count monitoring schemes, reduction of the data prior to transmission

is necessary. This can be achieved by on-chip spike sorting. Spike sorting is the process of

identifying individual neurons from the multiple signals sensed by an electrode tip. This process
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aims to extract some distinguishable features of each neuron and to subsequently classify each

neuron to its source of origin. The research in this thesis is primarily devoted to providing advanced

processing using low power techniques suitable for implantable on-chip spike sorting. In addition

to overcoming these issues, retaining the useful information regarding active neurons can be

utilized for application-specific BMIs. The spike sorting concept has its inherent signal processing

complexities; hence employing traditional power hungry algorithms such as principle component

analysis (PCA) are not suitable.

1.2 Research Objectives

Within this context, there is still a gap to fill in the realization of real-time, on-chip and highly

accurate spike sorting. Processing specifications are crucial in order to fulfill closed-loop and

open-loop application requirements. For example, in a closed-loop application (e.g., spinal cord

paralysis rehabilitation), it is important to develop a highly efficient on-chip sorting method for

generating stimulation commands with minimum delay.

The research in this thesis aims to introduce an on-chip spike sorting framework from theory to

hardware design and implementation which is scalable with the number of recording sites and has

Figure1.1: Examining 56 studies of neural recording systems published over the last five decades.
(a) Number of simultaneously recorded neurons; (b) Timeline of recording technologies. Adopted
from [11].
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high efficiency in terms of resource utilization to fulfill implantable applications in the future

generation of BMIs. The research has the following objectives:

 To develop a feature extraction method which outperforms the available established state-

of-the-art. In addition to power efficiency, another concern relies on the fact that the

simplicity in spike waveform transformation should not result in information fidelity loss

which would directly affects the clustering performance. Other questions considered are

about scalability and reconfigurabilty (adaptivity) of feature extraction. An online method

with low complexity is of particular interest when a large number of channels are

monitored. This thesis develops a feature extraction methodology which provides better

power-area-accuracy compared to the state-of-the-art.

 To identify the neural front-end interface (NFI) theoretical minimum power limit taking

account of all the analog processing chain key stages (amplification, filtering and

digitization) together with the spike sorting process. The NFI specifications have direct

effect on the performance of the spike sorting unit. This study has three important potentials

including: 1) proper resource utilization in NFI design parameters without compromising

the spike sorting performance; 2) pushing the power envelope towards the predicted NFI

power limit using novel digitization methods; and 3) introducing a desired power region

for future NFI design.

 To propose a new processing approach in the context of adaptivity for on-chip sorting

utilization. Spike sorting is a computationally demanding signal processing technique due

to its inherent challenges, thus developing a novel hardware implantable processing

scheme with performance self-tuning and inherent power suppression capabilities is

required. To this extent, investigation of design methods and signal processor structures

with reference to “adaptivity” or “reconfigurability” to complement the conventional

synchronous digital signal processors (DSPs) is important. An adaptive processor is

capable of shaping its parameters (behaviors) according to the property of the input neural

data stream. Embedding the adaptive framework in the classical synchronous processing

systems makes the processor operation “signal-dependent” which offers various benefits

from accuracy tuning to asynchronous power management.
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1.3 Outline of the Thesis

The thesis proposes an advanced and effective algorithm for improving spike sorting performance

in its major stages, namely, feature extraction and clustering. The aim is to have the least amount

of supervision and complexity whilst obtaining high clustering performance. The feature

extraction and clustering of neural waveforms and the proposed approach to improve the results at

each stage are discussed. The thesis has the following chapters:

 Chapter 1 has discussed the motivation, identifying the solution and laying out the

objectives of the research.

 Chapter 2 provides the necessary background information on the subject of BMI. Some

physiological background regarding the nature of neural signals is discussed. The spike

sorting is defined and explained as a key component within the context of BMIs which

gives benefit for many important applications. The chapter continues with a general

discussion on spike sorting and highlights the state-of-the-art. Study of the published

material demonstrates a shift from traditional offline spike sorting to online sorting, and

even performing in a mathematically mapped domain (e.g., compressed domain) to cluster

the recorded neural data. To understand the detailed operation of the sorting process,

relatively high level descriptions of the spike sorting algorithms for each processing unit

are presented. The inherent associated challenges in the whole processing chain confirm

the fact that the spike sorting is not a trivial task.

 In Chapter 3, a new feature extraction algorithm suitable for implantable implementation

is described. The reasoning behind the use of this method is discussed at the beginning of

this chapter and will be highlighted throughout the chapter. The proposed method is based

on extrema analysis (positive and negative peaks) of spike shapes and their discrete

derivatives. It runs in real-time and does not require any offline training. The proposed

method was simulated and compared with other feature extraction algorithms using a

standard neural database and well-established performance metrics. Compared to other

methods it offers a better tradeoff between accuracy and computational complexity using

an online sorting clustering method.

 Chapter 4 aims at developing an optimization methodology for high channel count (e.g.,

1,000) recording and processing of neural data. A NFI including a low noise amplifier, a

programmable gain amplifier and a data converter are considered to derive the theoretical
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minimum power limit of the recording system. This chapter shows the possibility of further

power reduction through utilization of more advanced techniques (i.e., CBSC [12]) for data

converter implementation. Since the focus of this research is towards on-chip spike sorting,

the effect of NFI key parameters on spike sorting performance is quantified. This is

performed via sweeping the considered parameters (e.g., amplifier bandwidth and bit

resolution) to evaluate the sorting performance. This suggests a design must not only

investigate the sensitivity of NFI parameters on sorting performance but also optimize the

use of hardware resources. Finally, the derived theoretical NFI power bound using two

types of analog-to-digital converter are analyzed without compromising the spike sorting

performance. In addition, the desired power region for the design of ultra-low power NFIs

is defined and possible developments are briefly discussed.

 In Chapter 5 an adaptive processing methodology is introduced to enhance the accuracy-

power characteristics by employing self-calibration of design features. In the feature

extraction block, an adaptive version of discrete derivatives (ADDs), is used for selective

spike waveform decomposition. The ADDs are used to extract the features (positive and

negative peaks) from the desired frequency bands of the neural data. In the clustering unit,

a multi-aspect optimization methodology (power, area and accuracy) is proposed to satisfy

strict hardware implantable criteria. A register bank memory structure provides up to twice

the dynamic power reduction in the training phase compared to the conventional

implementation. This work is the first demonstration of a spike sorting processor with

feature extraction. The number of locations for saving the spike features is reduced almost

by 8X. This reduces the number of locations for buffering the cluster means. The clustering

efficiency is improved using noise-tolerant ℓ1-norm distance calculation and a modified

version of O-Sort [13] for sorting threshold calibration in an iterative validation phase. The

chip prototype was fabricated in a 180-nm CMOS technology. It achieves an overall

clustering accuracy of 84.5% using a standard spike data bank and has a power

consumption of 148-µW from 1.8-V supply voltage. The new spike processor has almost

10% higher clustering accuracy than the state-of-the-art.

 Chapter 6 concludes the thesis with a special emphasis on its most important contributions.

Additionally, a discussion of possible future work and improvements is provided.
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CHAPTER 2

Background and State-of-the-Art

2.1. Brain-Machine Interfaces (BMIs)

The history of recording dates back to 1791 when Luigi Galvani discovered that the living tissue

of frog muscles exhibits contraction by applying stimulating current [14]. Since that time, it has

inspired interfacing machines to human brain to either read mind or controlling it. BMI concept is

becoming pervasive in the development of “smart” biomedical devices over the past decades, with

the significant advances in the field of micro-electronics and signal processing.

BMI provides an efficient interfacing for interpretation of neurons functionality in order to

investigate and model application specific processing set-up (e.g., see Figure 2.1). The BMI

concept is the result of a combination of neuroscience and engineering principles mainly aimed at

restoring lost functionalities [15].

The BMI concept can be employed in the development of therapeutic technologies such as

stimulation to control the tremors of Parkinson’s disease [16], decoding signals to drive neural

prostheses [17] control systems, cognitive prosthetic research to replace lost brain functionality

[18], defining practical translational pathway for rehabilitation [19] and behavioral analysis of

some neurons when they respond to a specific drug in pharmacology science [20]. In clinical

research, analysis of single-unit activity is typically required to study the neuron response to a

specific stimulus.

The development of therapeutic and assistive devices has already changed the quality of life of

thousands of patients. Examples of commercial devices in the market include Medtronics’ deep

brain stimulators (DBS) [21], prosthetic limbs by Advanced Arm Dynamics [22] and exoskeletons

such as hybrid assistive limb (HAL) [23].

BMIs are classed in two categories. The first category is related to the processing and analysis of

the recorded signal in order to extract the sensory stimuli patterns mimicking a neurological

function. In sensory systems, for example, sound can be processed for auditory prostheses for

individuals with profound deafness [24]. In addition, brain stimulation can be used for the control
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and suppression of motor disorders such as in Parkinson’s diseases. This process is real time and

the relevant regions of brain are stimulated. The second category of BMIs performs real time data

processing of monitored brain activity to extract the motor commands in order to build a

communication bridge to deliver the lost motor commands to external assistive devices for people

with damaged sensory/motor functions (such as Deka Arm [25]).

2.1.1. Levels of Interfacing

Figure 2.2 shows the different existing neural recording approaches classified as a function of their

invasiveness level in the brain. The illustrated methods are employed by BMIs through tapping

into the sensory and motor pathways. In invasive approaches, the quality of the recorded signal is

better and it provides clearer distinction between neurons resulting in better functionality. The

level of interfacing depends on the type of application and the level of the risk involved. The first

method which has been extensively used by BMIs is the electroencephalogram (EEG), which

Figure 2.1: BMI demonstration for rehabilitation of a paralyzed monkey [19]. The stimulus
parameters are sent to the implanted site for adjusting the stimulation parameters using a wireless
data transmission system.
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reflects the averaged activity of millions of neurons. This type of recording is performed by means

of groups of electrodes placed at the surface of the scalp (top-right photo of Figure 2.2). The use

of EEG has provided numerous successful BMIs which include spelling devices [29], controlling

computer cursors [30] and driving a wheelchair [31]. As these electrodes are located about 2-cm

above the cortex, EEG is a limited method in terms of spatial and temporal resolution. The quality

of recording is severely affected by issues such as overlapping electrical activity of different

cortical areas and attenuation of signals through brain tissue, bone and layers of the scalp.

A more invasive approach such as electrocorticography (ECoG) [32] can be utilized to increase

the recording resolution. In this method the electrodes are placed on the brain surface to record

neural activity. Compared to EEG, this method is more localized and it increases the precision of

Figure 2.2: Various neural interface modalities with different levels of spatio-temporal resolution
and invasiveness. Adapted from [26-28].

Table 2.1: Various neural interface modalities with different levels of spatio-temporal resolution and

invasiveness. Adapted from [33-39].

Signal
Amplitude

(peak to peak)
Bandwidth

Temporal

Resolution

Spatial

Resolution
Invasiveness

EEG 1 - 100 µV ≤50Hz ~50ms >cm2 Surface (Scalp)

ECoG 1 - 500 µV ≤200Hz ~5ms ~ cm2 Surface (Brain)

LFP 500 µV - 5mV ≤300Hz ~3ms ~ mm2 Intra-cortical

SUA 50 µV - 500 µV 250Hz-10kHz ≤0.2ms Sub- mm2 Intra-cortical
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recording. In ECG, there exists a barrier between the recording sites and the cerebral cortex surface

which is avoided in the ECoG, thus improving the quality of the acquired signal both temporally

and spatially [40, 41]. This results in successful demonstrations of BMI-related applications such

as cursor control [32]. In [33] it is shown that the ECoG-based BMIs are more effective than their

EEG-based counterparts [33].

Although EEG and ECoG have been demonstrated in different applications, research has moved

towards the use of micro-electrode arrays (e.g. Utah micro-electrode array [42]) implanted into

brain. This type of recording provides the highest the highest spatial and temporal recording

resolution, so it has gained considerable interest amongst neuroscientists since they can monitor

the neural activity at a higher resolution. Such high resolution of direct interfacing has enabled the

realization of the type of BMIs discussed in Section 2.1 (e.g., prosthetics with high degrees of

freedom [43]).The work presented in this thesis is in the context of monitoring neural activity via

micro-electrodes. Table 2.1 presents the various neural interface modalities with different levels

of spatio-temporal resolution and invasiveness.

2.1.2. Nature of Neurons and Action Potentials

Neurons generate and transmit impulses in the form of electrical signals [44], [45]. They

communicate with other neurons via synapses. The role of a neuron is to receive, process and

transmit information by electrical or chemical signals. The structure of a typical neuron is shown

in Figure 2.3(a).

Due to the negative charge distribution along the inner and positive charge along the outer surface

of a neuron, there is a steady potential difference between the internal and external environments

connected by open/closed ion channels. When the ion channels are inactive (resting state), the

concentration of Potassium (K+) is high inside the cell and the concentration of Sodium (Na+)

and Chloride (CI-) are relatively high outside the cell. The charge distribution difference in the

resting mode results in a membrane potential around (-70mV) [46].A stimulus provokes an

electrical response (postsynaptic potential) which generates a signal, called action potential in axon

hillock. This excitatory synaptic input results in an electrical charge which travels across the cell

membrane in the form of ion flow through voltage-gated channels. The response of a cell to a

stimulus is as follows. If the ion movements result in a reduced charge difference across the
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membrane it is depolarized, and if the ion movements result in an increased charge difference it is

hyperpolarized. During this depolarization process, the voltage-gated channel (Na+ channel) is

opened and Na+ flows into the cell which causes the rising voltage of the action potential. This

process will continue up to a peak depolarization limit (40mV). The Na+ channel is then closed

and the K+ channel is activated to trigger the repolarization phase. The K+ ion flow results in the

falling voltage of the action potential. After firing, an action potential enters the refractory period

Figure 2.3: (a) Parts of a neuron: body, dendrites and the axon; (b) typical action potential; and

(c) communication between neurons [47].
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in which the membrane cannot respond to any stimulus. A neuron is non-excitable for

approximately up to 2 ms after the action potentials [48]. The procedure is depicted in Figure

2.3(b). This phase will continue until the neuron rest phase or the charge balance condition is

finished. The released action potential is carried away from the body of a neuron by an axon. The

end of each axon is composed of synapses which conduct the signals between two neurons. There

is no anatomical connection between the presynaptic and postsynaptic cells and the action potential

is emitted between two sites through a small space which is called the synaptic cleft [Figure 2.3(c)].

Although many types of neuron exist in a number shapes (depending on their location and

functionality) [48], the typical structures are shown in Figure 2.4.

Figure 2.4: Structure for different types of neuron [47].
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2.2 Recorded Signal

Normally the recorded signal is composed of high-frequency extracellular action potentials (EAPs)

and low frequency local field potentials (LFPs) (Figure 2.5). The frequency range of EAPs is

between 300 Hz and 6000 Hz and for the LFPs is below 300 Hz due to the superimposition of the

summed dendritic and synaptic activities (LFP peak-to-peak amplitude can be as much as 5 mV).

Since the signal of interest is the EAP, the recorded data stream is amplified, band-pass filtered

(300 Hz and 6000 Hz) with the specified cut-off frequencies and finally digitized before feeding

it to the processing chain. As discussed in Section 2.1.1, the main interest is to utilize micro-

electrode arrays in order to obtain high temporal and spatial resolution neuronal activity. This type

of recording is necessary for development of the next generation of BMIs featuring higher accuracy

than existing systems.

The typical reported detected amplitude of EAPs/spikes1 is in the range of 60µV to 1 mV

depending on electrode position. The distance for observing high precision EAPs is in the region

of 50 µm and 140 µm from the electrode tip [49], beyond this range the monitored activity of the

EAPs is comparable to the underlying background noise and is not detectable.

1 Spike is a general term which is used in spike sorting community for evaluation of the sorting methods.

Figure 2.5: Contribution of LFP and multi-unit activity (MUA) which is the sum of the EAPs.



43

2.3 Spike Sorting

In the following discussions EAPs are referred to as ‘spikes’ as commonly used in the literature.

Spike sorting is the process of assigning detected spikes to their originating neurons. The spike

sorting chain is depicted in Figure 2.6. The steps in the sorting procedure include: 1) detection, 2)

alignment, 3) feature extraction, 4) dimension reduction, and 5) clustering. The spike sorting

process is based on the concept of pattern recognition/machine learning which is extensively

discussed in [50].

The entire concept of spike sorting is developed based on the assumption that each spike has

distinct morphology/features which enables the distinction between different neurons. Each spike

shape varies depending on some contributing factors such as neuron's tree topology, ion channel

distribution and topological placement of the micro-electrodes (i.e., orientation and proximity) as

shown in Figure 2.7 [51].

Typically the digitized signal contains activity from 5 to10 neurons [51], so the first step of sorting

is to detect the spiking events from the original data. The extracted spikes are aligned to an event

in time and then projected into a new space called ‘feature space’. In the feature space, some

distinguishable features are retained which are fed into the clustering stage. Finally, spikes are

mapped to different clusters associated with the originating neurons.

2.3.1. Constraints in Hardware for Implantable Devices

Introduction of real-time and online spike sorting processors requires the realization of highly

accurate processing algorithms which can be used within the context of the implementation

constraints of implantable devices (e.g., area and power). The benefit of developing such systems

is already discussed in categorizing the BMIs and related discussed applications (section 2.1). For

Figure 2.6: Spike sorting chain for determining single unit activity. Data dimensionality is

reduced over processing units (Z <K< N).
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example in the first category of BMIs, spike sorting is used as a powerful neuroscientific tool for

identifying the behavior of specific neuron responses to a stimulus and then generating a fine-

tuned pattern in a closed-loop manner for rehabilitation. In implantable devices chip area, battery

life, power consumption and thermal dissipation density are important factors which need to be

taken into account including the design of on-chip spike sorting processors. For example, the

reported limit on thermal dissipation density to avoid tissue damage is 800 µW/mm [52].

Implantable devices consist of different blocks including a recording site, on-chip processing unit

and radio frequency (RF) unit for data transmission. Output data-rate reduction is another

important design constraint when designing implantable transceivers. Existing implantable

transceivers are not able to transmit very large amounts of recorded data. For example, in a 64

channels recording with an analog to digital converter having a sampling frequency of fS=30kS/s

Figure 2.7: Variation in the observed extracellular action potential profile from a pyramidal
cell with spatial position. Variations depend on some cell proprieties such as the cell type
and the cell geometry, as well as the distance of the electrode from cell and position of the
recording electrode relative to the cell. Adapted from [51].
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and resolution of 7 bits, the input data entering the signal processing unit is at a rate of 19.2Mb/s.

Reported transceivers cannot support such a rate [53].

A guideline for data transmission in medical implant communication systems is between 0.5 and

1 nJ/b [54], [55]. Thus, the transmitter requires a total power up to 19.2 mW to transmit the raw

data. Depending on the type of implant including its location and packaging, this level of power

dissipation may be hazardous for surrounding tissue, especially for very small size implants. To

reduce the data transmission requirements for high channel count implantable recording systems,

on-chip signal processing is essential.

2.3.2. State-of-the-Art Spike Sorting

There have been numerous methods proposed to solve the challenges of spike sorting over the past

years. Spike sorting methods are usually characterized based on their off-chip/on-chip application.

There are two main approaches for spike sorting. Firstly measurement and extraction of

morphological features of spikes in order to identify the number of clusters. In the feature based

method, some distinguishable features are extracted in order to identify the clusters in the recorded

data. Since (ideally) a small number of distinguishable features are kept for each spike, the

dimensionality is reduced based on the input/output ratio. Assume that the dimensionality

reduction ratio is N/K, where N is the number of sample points per spike and the K is the number

of chosen features. Secondly the use of spike templates to distinguish the clusters (template based

approach).

Three different categories are considered here to review the spike sorting solutions in the literature,

including: 1) traditional implementation of spike sorting which requires off-chip/offline

processing; 2) development of on-chip spike sorting methods as an alternative to satisfy the

hardware implantable devices constraints and the efficiency requirements of different applications;

and 3) the use of data compression techniques for either transmitting the data to an external unit

for decompression and spike sorting tasks or designing a specific type of processing method for

spike clustering.

The following section presents various spike sorting solutions proposed in literature and discusses

the state-of-the-art.
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2.3.2.1 Off-chip Spike Sorting

Many highly complex methods and statistical analysis tools can be considered in off-chip spike

sorting methods since power consumption and the computational complexity are not major

constraints. There are some widely used automatic spike sorting algorithms such as KlustaKwik

[56], Plexon [57], spike2 [58] and Waveclus (whose interface is shown in Figure 2.8) [59]. In these

spike-sorting programs, a signal processing chain performs extraction of spike events and allocates

them to the originating neurons. They all involve highly complex mathematical operations which

are inimical to hardware implantable device constraints. As a result, data must be transmitted from

the subject to a computer or to an off-chip processing unit for detailed clustering analysis (Figure

2.9). These spike sorting platforms cannot provide a satisfactory solution for on-chip spike sorting

due to complexity and scalability issues. In addition to the methods above, there are other offline

approaches which require large amounts of power for extraction of the most important features

buried in the neural signals. One of the major categories of offline methods is related to the

conversion of correlated variables into linearly uncorrelated variables using orthogonal

transformation such as principal component analysis (PCA) [60] and independent component

Figure 2.8: Waveclus graphical user interface.
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analysis (ICA) [61]. Apart from these methods, there are many feature sets which are extracted via

Graph Laplacian features (GLFs) [62] and decomposed features of signals over different frequency

bands based on the discrete wavelet transform (DWT) [59]. Reference [63] presents an algorithm

in which a feature design framework is used to provide a hardware implantable version of PCA

and GLF. This approach provides a simple way of designing features which are compatible with

on-chip processing constraints. There are also statistical feature extraction methods such as

expectation maximization based competitive decomposition algorithms [64] and probabilistic

approaches such as Gaussian mixture models as described in [65].

2.3.2.2 On-chip Spike Sorting

The new trend in bio-acquisition systems aims at integrating on-chip signal processing as shown

in Figure 2.10. Significant research has been done on on-chip spike sorting to meet a tradeoff

between hardware resources utilization and sorting accuracy. The focus of published materials in

the field of on-chip spike processing realization is categorized into three implementation strategies.

There have been some studies on analog processing methods for multi-unit activity extraction and

analysis. The focus of other studies are either based on using off-the-shelf hardware platforms such

as FPGAs or designing custom digital implementations for implantation purposes.

In [66], the authors designed a fully integrated system for the detection and characterization of

action potentials. In this paper, the integrated circuit consists of an analog implementation of a

non-linear energy operator (NEO) and peak detectors to extract the maximum and minimum of the

detected spikes. The circuit was implemented in 0.13 µm CMOS technology; the chip area

Figure 2.9: Block diagram of the conventional neural processing interface.
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occupies 0.17 mm2 and consumes 1 µW from a 1 V supply. In [67], the authors introduced a new

feature extraction method, the integral transform (IT) and discussed its analog implementation.

They reported 98% off-chip classification accuracy while requiring only 2.5% of the commonly

used PCA computational complexity. Another paper which addresses the analogue

implementation of on-chip spike sorting is discussed in [68]. The design uses spike features such

as the peak and trough amplitudes and peak width for clustering. It was implemented in 0.35 µm

CMOS technology with a power consumption of 70 µW per channel with over 90% off-chip

classification accuracy.

In [69], the authors describe the application of spike sorting for sensing the bladder volume.

Weighted Euclidean distance in conjunction with Levenberg-Marquardt variance estimator is used

as a feature extractor. The design was implemented in an Actel FPGA Igloo AGL1000v2 platform.

It consumes 485 µW and the number of classes for classification needs to be defined. Another

spike sorting process which uses FPGA is discussed in [70]. It uses Hebbian Eigen filter based

PCA algorithm. The process seems to be efficient, although it requires a high amount of resources

for realization. The system requires neural signals to be stored, since it runs statistical analysis of

the whole data. Further to power consumption and complexity, the system requires significant time

for data analysis which suggests that the system is not real-rime.

A multi-channel spike-sorting DSP which performs detection and feature extraction has been

demonstrated in [71]. It uses a parallel-folding structure to reduce the hardware resources, but the

results show that the device is not compatible with hardware implantable constraints. A pulse-

based feature extractor using derivatives of the spikes (action potentials) has been proposed in

[72]. This method uses information encoding of spike derivatives in pulse trains. The chip results

show that there is a difference between the simulation and the measured outputs. This suggests

that the hardware mismatch due to process variations causes an appreciable change to the results.

An asynchronous spike sorting DSP has been introduced in [73]. The asynchronous self-timed

methodology has inherent latency adjustment due to process variations. Furthermore, the

asynchronous scheme suppresses the leakage power and standby power in the presence of

unwanted variations. The crucial challenge in the asynchronous methodology is to design complex

circuits for the handshaking circuitry overhead and also the amount of process latency especially

in clustering circuit implementation.
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In [74], the authors demonstrate a digital implementation of a spike processor which performs the

detection, alignment and feature extraction for 64 channels. The processor building blocks were

chosen based on the complexity-performance analysis. The fabricated chip in 90 nm CMOS

consumes 130 µW from a 0.55 V power supply. Reference [75] presents an online version of IT

which is called Zero-Crossing-Features (ZCF). ZCF is based on different neurons having spikes

with different area after the zero-crossing points. These features are compared to PCA, and found

to be equally good performing while using 5% of the resources. In [76], the authors introduce a

hardware-efficient multi-channel spike sorting processor. The processing chain includes the

absolute value detector and unsupervised clustering (i.e., a template matching feature extraction

method is used to sort the spikes). Since the sorting accuracy is decreased with increasing noise

level, the clustering is modified using the ℓ1-norm metric to take differentiation of spikes in

assignment and training units. The 16 channel spike sorting chip was fabricated in a 65 nm CMOS

technology and has a power dissipation of 75 µW with a power supply of 270mV. The online

processing of data results in 240X data reduction and the clustering performance of 75%. In [77],

the authors report a multi-channel neural recording integrated circuit with a spike processor. A

NEO based spike detector was implemented for identifying spikes. A digital frequency-shaping

filter removes the low frequency noise which results in better identification of similar neurons

from different origins. The peaks of the original spike waveforms and maximum and minimum

values of its first derivatives are used to classify the spikes. The power consumption per channel

is 100 µW. Most of the developed on-chip spike sorting methods either do not include the

implementation of the necessary spike sorting stages or have below average clustering accuracy.

Figure 2.10: General architecture of an implantable chip from recording (front-end neural
interface) to processing and transmission/stimulation/decoding (back-end).
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The primary objective of this thesis is to introduce and implement an on-chip spike processor

which outperforms the existing designs.

2.3.2.3 Compression-based Spike Sorting Methods

A challenge in on-chip processing systems is to deal with the large amounts of generated data from

high channel count recording. In the compression based methods, dimensionality reduced data can

either be transmitted to an external unit for decompression (reconstruction) and spike sorting or

spike sorting can be performed directly to the compressed data by defining a suitable

communication protocol between the compressed data and spike processor [78] (see Figure 2.11).

Compression of spike processing has not gained popularity amongst the researchers due to the

inefficiency of the developed methods. For example, one of the existing strategies for data

compression is wavelet signal decomposition [79]. The wavelet technique in [79] reduces the

bandwidth but requires 120 mW which is impractically large in implantable systems. In [80], the

use of event detection has been proposed in which the data is typically limited to only the time and

amplitude of neural spikes and therefore the encoded data often contains limited information. For
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Figure 2.11: Demonstration of processing stages used in each of the three approaches. (a) Nyquist
Analysis (NA), (b) Reconstructed Analysis (RA) and Compressed Analysis (CA). Reconstruction
is bypassed in CA to provide significant savings in computational energy. Adapted from [85].
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the compressed sensing approach in [81], the compressed data is reconstructed to apply the spike

processing for mapping the neuronal activities to their origins. Other techniques for data

compression are asynchronous sampling [82] and logarithmic compression [83]. Recently

researchers started working on the realization of processing methods in compressed domains [84].

In reference [85] communication between thousands of neurons (1K+ channel

recording/processing) as part of brain activity demands a shift in the processing paradigm, and

provides a preliminary representation of signal decomposition (DWT) in the compressed domain.

2.4 Spike Sorting Testing Methodology

2.4.1 Test Data

This section provides a detailed description of the datasets used throughout this thesis. To compare

the performance of the proposed method with other work the Waveclus spike bank2 was used.

Each dataset contains the true spike time and true spike classes for detection and clustering

accuracy calculation as shown in Figure 2.12.

The database contains different average spike waveforms recorded from human neocortex and

basal ganglia. To emulate the background noise activity, spike waveforms randomly chosen from

the data library have been added to the generated datasets. There are advantages in using this

database. Firstly, each dataset provides true spike classes, which is useful for accuracy

calculations, and the ground truth can be established. Secondly, the diversity of the data enables

evaluation of spike sorting algorithms from the same source. Datasets with different degrees of

difficulty (i.e., similarity of spike shape) and noise levels are provided. The four datasets are

C_Easy1_noise, C_Easy2_noise, C_Difficult1_noise and C_Difficult2_noise, where noise denotes

the noise level in terms of standard deviation, namely, 0.05, 0.1, 0.15 and 0.2. ‘Easy’ and ‘Difficult’

is the similarity index between the spike shapes in each dataset. Thirdly, the characteristics of the

datasets are similar to real practical recordings. Figure 2.13 shows the three different types of spike

shape present in each of the four test datasets and the calculated Bray-Curtis similarity indices [86]

between all the spike shapes in each dataset. The Bray-Curtis similarity index Sx,y is:

2Available online: http://www2.le.ac.uk/centres/csn/spike-sorting.
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where x and y are the two spike waveforms being compared and n is the number of sample points.

Sx,y is in the range (0-1), with 1 corresponding to identical signals. The sorting difficulty becomes

more demanding with increasing the similarity between the spike shapes (width and amplitude

fluctuations). Figure 2.14(a) shows color-coded spikes corresponding to different neurons from

dataset 2 (C_Easy2_0.05), Figure 2.14(b) shows the two dimensional (2‐D) projection of spike

clusters, and Figure 2.14(c) shows a short recording segment with colored markers (with prior

knowledge from simulation). Each color corresponds to a single-unit activity. As the difficulty of

a dataset increases, sorting becomes more challenging. Furthermore, as the noise level is increased,

filtering might be required to reduce the effect of noise on the efficacy of the sorting procedure.

Figure 2.12: Signal processing chain used to evaluate detection and clustering accuracies.
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2.4.2 Accuracy Calculations

To evaluate the performance of each building block of a spike processing chain, various metrics

can be defined to determine the overall system performance. The criteria considered are detection

accuracy (DACC) and classification accuracy (CACC). As discussed in Section 2.4.1, a neural

simulator which provides datasets containing true spike times and classes is used for accuracy

calculation. Since the true spike times are known, the detection accuracy is defined as:

%100



MSFPSTPS

TPS
DACC (2.2)

where true positive spike (TPS) shows truly detected spikes, false positive spike (FPS) is the false

alarm due to noise or overlapping spikes and MS is the number of missed spikes. This equation is

designed to ensure that missed spikes and false alarms carry the same weight in accuracy

calculations.

CACC is the next quantitative metric for comparing the accuracy performance of different

algorithms. In each dataset the true spike classes and number of allocated spikes to each cluster

determines the CACC. It is given by:
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Figure 2.13: Spike bank mean waveforms (peak-aligned) used for testing with corresponding
Bray–Curtis similarity index (shown at the bottom). (a) C_Easy1_noise, (b) C_Easy2_noise, (c)
C_Difficult1_noise and (d) C_Difficult2_noise.
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%100
NTS

TPCC
CACC (2.3)

where TPCC is the number of true positive spikes (TPS) that correctly clustered and NTS is the

number of total spikes.

2.5 Explanations of the Spike Sorting Operators

In this section the description of the blocks in each step of spike sorting are presented. The

following algorithms are explained:

 For spike detection:

 Absolute value (ABS)

 Nonlinear energy operator (NEO)

Figure 2.14: Test dataset 2 (C_Easy2_0.05) showing: (a) Color-coded spikes corresponding to
different neurons (#1 yellow, #2 red, #3 green). (b) 2‐D projection of spike clusters. (c) Segment
of simulated dataset 2.
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 Stationary-wavelet-transform product (SWTP)

 For alignment, representing the temporal tuning of extracted spikes at a temporal reference.

 For feature extraction:

 Principal component analysis (PCA)

 Discrete wavelet transform (DWT)

 Feature Set

 Template Matching (TM)

 Zero Crossing Features (ZCF)

 For dimensionality reduction:

 Asynchronous sampling

 For Clustering:

 k-Means Clustering

 Artificial Neural Networks (ANN)

 Superparamagnetic Clustering (SPC)

 Online Sorting (O-Sort) Clustering

2.5.1 Spike Detection

Most spike detection methods consist of two steps: 1) calculation of the detection threshold which

identifies the presence of a spike when exceeded; and 2) its use for spike activity identification. In

the first step there are different methods such as absolute value, nonlinear energy operator and

stationary wavelet transform product. In the second step, when neural or preprocessed signals

exceed the threshold, a window of 3 ms (1 ms before the threshold crossing and 2 ms after)

enveloping the spike is extracted for further processing. In some sampling modes the window

length to cover the duration of a spike is different, but for normal sampling operation it is unlikely

that the spike is longer than 3ms. Spike detection can be implemented either in analog when the

data digitization requires higher resolution, or in digital structure. A comprehensive study has been

published in [87] for various detection methods. Normally these methods automatically generate

the threshold above which a spike event is identified.

2.5.1.1 Determination of the Threshold Using the Nonlinear Energy Operator
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One unsupervised method to determine the threshold values is the Teager Energy Operator (TEO),

also called (NEO) [88]. This class of detector calculates the energy variation of the raw signal to

interpret the spike events in time. For the discrete signal, the NEO equation is defined as:

        1.12  nxnxnxnx (2.4)

where x(n) is the input digitized signal and ψ[(n)] is the calculated signal energy value at sampling

time n. From the NEO equation, this operator highlights the variations which are large in power

and frequency. The essence of spike activity is instantaneous amplitude-energy variation, so the

NEO operator recognizes these localized variations. The detection threshold can be expressed as:
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where Ns is the number of samples in the signal x(n) and α is threshold scaling factor. A short

segment of a real neural signal including the extracted spikes and corresponding Thr are shown in

Figure 2.15.

2.5.1.2 Determination of the Threshold Using the Absolute Value

Another method for spike detection is called absolute value [89] where the threshold level is

defined by using an estimate of the standard deviation of the noise (σN). An intuitive value for this

Figure 2.15: A short segment of a real neural signal including the extracted spikes. The

extracted spikes (black color) are superimposed to the original waveform (blue color).
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threshold would be a multiple of the standard deviation of the noise. However, with increasing

spike activity, the threshold level increases and detection error will increase, so the equation below

is suggested as a good estimation of noise standard deviation (σN):
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where x(n) is a sample of the original signal x at time n. The detection threshold is defined as:

NThr 4 (2.7)

2.5.1.3 Stationary Wavelet Transform Product (SWTP)

One of the most effective methods for spike detection uses matched filtering. The correlation of

the incoming signal to the filter bank shows the probability of the existence of a spike. One efficient

method for template matching implementation uses SWT [90]. The SWT is calculated over some

dynamic scales (W(2j,n), j = 1,…,5) and the scale 2jmax with the largest sum of absolute values (jmax)

is:
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The point product between the SWT at this scale and the SWTs at the two previous scales is

calculated as:
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A Bartlett window W(n) is used for smoothing the convolution in order to attenuate the effect of

the spurious variations to calculate the detection threshold which is expressed as:
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where N is the number of samples in the signal and C is a constant value which is chosen

empirically.

2.5.2 Alignment

Aligning the detected spikes is an important step in spike sorting before feature extraction.

Typically, feature extraction is the projection (mapping) of the spike waveforms to a reduced

dimensionality space. The efficiency of feature point positions can be severely compromised

without an accurate temporal spike alignment to a reference point. When the signal crosses the

calculated threshold in the detection unit a 3 ms window is applied to extract the spike as shown

in Figure 2.16. The extracted spikes are aligned to the threshold crossing point. There is an

uncertainty in threshold level due to sampling jitter and biological noise, and such uncertainty in

threshold crossing (misalignment) can affect the clustering accuracy. To improve the clustering

performance, all the spikes can be aligned to an event in time such as the positive peak [91],

maximum slope [92], maximum energy [93] or maximum peak (mixed-peak) [13] which could be

either positive or negative. The alignment process begins with upsampling of spikes, aligning them

to an event in time and finally downsampling to avoid high computational complexity in the sorting

stage (Figure 2.16).
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Figure 2.16: Examples of two different alignment methods. Left: peak-alignment method,

Right: mixed-peak alignment method.
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2.5.3 Feature Extraction

In order to extract meaningful information from n dimensional space, feature extraction is used to

transform the aligned spikes to a low-dimensional space which highlights the spike waveform

differences. Typically, this leads to dimensionality reduction from N to K (K<N), where K is the

number of selected features (see Figure 2.6). In this section analytical feature extraction methods

regardless of level of computational complexity and calibration time are investigated. They include

PCA, DWT, derivative-based feature extraction methods, and explanation of other existing feature

extraction methods.

2.5.3.1 Principle Component Analysis (PCA)

PCA has been the most commonly used algorithm for feature extraction [94] because it yields an

efficient coding of spike waveforms (only the first 2-3 principal components need to be retained).

The idea behind the PCA is to change the orthogonal basis vectors in a way that the maximum

variance is achieved. The principle components are obtained via the i largest eigenvectors from

the covariance matrix. So each spike is expressed as a series of scores [91]:
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where s(n) is a spike, N is the number of samples in a spike and PCi illustrates the ith PC. Retaining

more PCs represent an accurate estimation of largest variations in each spike (Figure 2.17). It is

assumed that the i largest eigenvectors results in an efficient separation between the detected spikes

in a lower dimension. However, PCA requires offline training and calculation of the covariance

matrix of the data demands high computational cost and hardware resources.

2.5.3.2 Discrete Wavelet Transform (DWT)

DWT [89] is a time-frequency representation that uses multi-resolution transformation. These are

obtained using variable window sizes at various decomposition levels. This approach gives a

detailed representation of the signal in the time-frequency domain. The DWT function (f)

represents the linear combination of convolutions between the spike waveform and wavelet basis

function, and is given by [95]:
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where s(n) is a spike and ψ is the wavelet basis function. The wavelet basis function derived from

the mother wavelet Ψ, is defined as follows: 
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1
2/, (2.13)

Index j (called the scaling index) changes the behavior of ψj,k in frequency space, while index k

(called the translation index) shifts the wavelet along the time axis. The convolution between the

wavelet basis function and spike s(n) results in multi-resolution time and frequency decomposition

of the original spike waveform. In [89], four-level decomposition using Haar wavelets is proposed

as an efficient way to convert the extracted spikes to the wavelet coefficients. Furthermore, the

Haar DWT is an attractive approach since it can be implemented using filter banks. In order to

determine the wavelet coefficients the operator representation of filters can be used [96]. An

example to cover the entire signal bandwidth or band (BW), at each decomposition step a high-

Figure 2.17: Example of feature extraction using PCA. Left: alignment to maximum amplitude,

Right: PC coefficients in feature space. The neural data simulator explained in section 2.4.1 is

used for PCA analysis.
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pass (HP) and a low-pass (LP) filter must be used (Figure 2.18). The advantage of DWT is that

each decomposition step requires half the computations of the previous step. When the

decomposition process is performed, the number of wavelet coefficients is smaller than the original

sample number.

2.5.3.3 Feature Set

Feature set refers to the spike shape characteristics such as spike amplitude, peak-to-peak value

(spike height), maximum gradients (positive or negative), peak position and spike width. One or

more of these features or can be considered as a feature vector. These types of features are not

reliable in spike sorting and they have low classification accuracy especially in the spike datasets

with high similarity index between the templates. A comprehensive review of spike shape features

is provided in [97] (Table 2.2). Some of the spike features are highlighted with green color in

Figure 2.19.

2.5.3.4 Template Matching (TM)

In TM, the spike shapes (s(n) in Figure 2.19) or the features of different types of neurons are

collected and trained in order to identify the templates of the clusters. This process requires a

training period and different distance similarity functions (Table 2.3 [98]) can be used to compare

Figure 2.18: Wavelet decomposition by filter bank (from [96]). 3-level Haar wavelet

decomposition of a spike waveform using MATLAB DWT tool (dwtool) SP.
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the incoming spikes/spike features to set up the finalized cluster templates. The training is

performed periodically to track the changes in the recorded data.

2.5.3.5 Zero Crossing Features (ZCF)

One of the most distinctive features of spike shapes are the integral of positive and negative lobes

which normally contain the information about the amplitude variations of the spike lobes, position

of the positive and negative spike peaks, and width of the spike lobes [75]. ZCF is a modified

version of the Integral Transform [67]. The ZCF equations ZC1 and ZC2 (see Figure 2.19) are

mathematically expressed as:

,)(1
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nn
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Table 2.2: Overview of neuronal signal features [97].

Feature Advantages Disadvantages

Negative amplitude

Positive amplitude

Easy to interpret

Stresses specific shape characteristics

Vulnerable to signal offset;

Only suitable in particular cases;
vulnerable to signal offset

Left/right spike angle Stresses specific shape characteristics
Only suitable in particular cases;
vulnerable to noise distortions

Neg./pos. signal energy
Robust features in terms of noise
distortions or low sample rates

Naturally correlates with amplitude
and angle features; vulnerable to
signal offsets

Core spike duration Stresses specific shape characteristics
Only suitable in particular cases;
vulnerable to noise distortions

NEO coefficient
Higher resolution than negative
amplitude in particular cases

Naturally correlates with negative
amplitude

Principal components
Usually accurate description of datasets
with a set of uncorrelated parameters

Possible inaccuracies if more than
two spike shapes are present in the
dataset

Distribution/Shannon
Wavelet coefficients

Potent Wavelet scale features with no
significant correlation

High computational complexity
compared to other methods; multi-
resolution analysis limited by
sample rate
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where n2 is the number of samples in a spike and n1 is the index of first zero crossing after the

spike has been detected (Figure 2.19).

2.5.4 Dimensionality reduction

As discussed in section 2.5.3.1, there are some feature extraction methods with inherent feature

encoding such as PCA. In some cases the dimensionality of the transformed spike waveform is as

same as the extracted spike, or even the features domain transformation results in higher

dimensionality. There are morphological features of a spike/feature waveform that can be chosen

for the processing stage which are susceptible to noise as discussed in [97].

Table 2.3: Distance and similarity measures used in template matching [98].

Measure Form
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p
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There are two advantages in selecting appropriate samples/features in spike sorting. Firstly, it

reduces the dimensionality of data, which improves classification accuracy. Secondly, it reduces

the required memory (hardware and area) and power consumption of clustering.

These advantages are achieved if the coefficients are selected properly. If true samples are not

chosen, valuable information is lost and the reduced-dimensionality feature vector is a limiting

factor for clustering. The simplest way that the dimensionality of features can be reduced is

uniform sampling. There is necessarily no guarantee of obtaining an appropriate reduction

performance when K (K<N) evenly spaced samples are chosen for clustering. This technique is

simple and its computation cost is lower than other sophisticated approaches, but this type of

sample selection might lead to non-segregation of clusters. Since the K samples are randomly

selected relatively poor clustering accuracy is expected.

An algorithm was produced in [98] to choose the optimal samples (features) for sorting. The metric

in [98] refines data based on mutual information of all the cluster combinations to retain the

coefficients with multimodal distribution for clustering. Samples with bimodal distribution deviate

Figure 2.19: Spike template, s(n), for TM clustering. Illustration of zero crossing features (ZC1,

ZC2).
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from unimodality or Gaussian distribution, so they exhibit multiple peaks and valleys as a sign of

multimodality. The selection procedure can be done using offline training with the Lilliefors test

[99]. However, the Lilliefors test is a statistical approach and cannot be used for implantable spike

sorting hardware due to its complexity. In addition to the Lilliefors test, independent component

analysis (ICA) [61] has been introduced as an efficient approach that minimizes the mutual

information which leads to finding non-Gaussian directions or maximum deviation from

normality.

As an alternative to the Lilliefors test and ICA (both need offline training), asynchronous sampling

(AS) of original spike waveforms (or feature waveforms) is proposed in [100] as an efficient

approach, not only in terms of computational complexity but also accuracy to reduce

dimensionality (N→K). The algorithm is divided into the sampling pattern generation phase and

the sampling phase (the process is shown in Figure 2.20). In the former phase the localized shape

differences between the aligned spike waveforms (feature waveforms) of spike templates are

noted. In the sampling phase the marked areas are extracted for sorting. In the first stage the

maximum-difference test [101] is used to generate the sampling pattern. M spike waveforms are

chosen and the differences between two consecutive spike waveforms are taken. Then for each







1

1

M

i

iWSP

Figure 2.20: Asynchronous sampling of first derivative features. M spikes are considered for

training period. Differences between two subsequent spikes are taken and weight W=1 allocated

to coefficients with maximum deviation from normality. Sampling pattern vector (SP) is the

summation of differences to find uncorrelated limits. Finally, sampling phase is done based on

the sampling pattern from feature waveforms (K=5). The model was adopted from [100].
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pair of spike waveforms W = 1 is allocated as a weight to the K samples with the highest difference

in value and W = 0, otherwise. The process continues up to the Mth spike to extract the differences

between all the spikes in the training period. The sampling pattern vector is written as follows:







1

1

M

i

iWSP (2.15)

where Wi is the weight vector of the ith difference. SP represents the absolute value of the

accumulated local differences between all the clusters at the end of the training period. Length

reduction is obtained by identifying the K largest value indices in the sampling pattern. Finally, in

the sampling phase the coefficients corresponding to the identified K indices in the previous phase

are extracted from the original spike or feature waveforms. The main steps of the algorithm

(training period) are listed in Table 2.4. In terms of complexity the proposed method is much less

complex than the Lilliefors test, and thus is suitable for efficient hardware implementation.

Figure 2.21 shows clustered spike waveforms with various difficulty levels (C_Easy2_01 and

C_Difficult2_01) with their corresponding sampling profiles. As seen in Figure 2.21(b) and

2.21(d) the marked local differences occur asynchronously between the spike templates.

Factors contributing to the sampling pattern generation include temporal alignment and

upsampling, the latter alleviates the effect of sampling jitter and noise. This leaves a smooth pattern

for sampling. For dimensionality reduction, two extraction models could be considered: i) select

the K largest coefficients from SP, and ii) select the K largest coefficients around the major peaks

(typically 2-3 main peaks could be chosen and around each peak 4-5 samples are selected). The

Table 2.4: Dimensionality reduction procedure.

Sampling pattern generation phase
1. Take the difference between two consecutive spikes and write its absolute value in local_difference.
2. Allocate W=1 to the K largest coefficients in local_difference.
3. Sum all weight vectors W1 to W(M – 1) to computer SP.
4. Identify the K largest value indices in SP.

Sampling phase
Extract the coefficients corresponding to the selected K indices from the original spike or feature

waveforms. Sampling is performed asynchronously according to the location of the maximum

differences (e.g., MD1, MD2 and MD3; amp(MD1) > amp(MD2) > amp(MD3)). An example is shown

in Figure 2.6.
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second method is more computationally demanding but might result in performance improvement.

In addition, major peak selection and upsampling could be used for sample selection (but has

relatively high complexity). In the implementation used in this thesis the K largest coefficients

from SP were selected without upsampling.

2.5.5 Clustering

The final sorting stage is the assignment of spikes to their originating neurons as clusters in the

feature space. Online and unsupervised clustering is one of the most complex parts of sorting

process. In primitive sorting methods, cluster boundaries were defined by hand in feature space

[91] which might be resulted in human error during the separation process [102]. There exist

different clustering methods for classification/clustering including: K-means [91], fuzzy c-means

clustering [101], Bayesian clustering [103], expectation maximization (EM) [104], artificial neural

networks (ANN) [105], valley seeking clustering [106], superparamagnetic clustering (SPC) [89]

and online sorting (O-Sort) [13]. A comprehensive study of clustering methods is provided in

[107].
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Figure 2.21: Sorting results with absolute value of sampling pattern for different datasets from

original spike shapes. (a) and (b), C_Easy2_01. (c) and (d), C_Difficult2_01. Maximum

difference (MD) and zero difference (ZD) areas are annotated on the sampling profiles. The K

(=10 here) largest points are depicted with green squares. Adapted from [91].
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2.5.5.1 k-Means Clustering

The k-means [50] algorithm is one of the most accurate clustering algorithms which can be utilized

in spike sorting process. The K-means clustering method aims to partition the selected feature

space into k clusters, in which each spike/feature template belongs to a cluster with the nearest

mean. The distance metric is defined as:

2

)1(

1

)(

minarg  
 


k

i Sx

ijS

ij

x  (2.16)

where (x1, x2... xn) is the set of spike features, k is the number of clusters and SK are the different

sets (i.e., spike classes). Although this method is very simple to implement, the major drawback is

that knowledge of the number of clusters is required for the training phase. This method cannot be

used for BMI applications since it is not an online, adaptive and unsupervised method. In some

BMI applications, monitoring the number of active neurons must be automatic. This limitation can

Figure 2.22: Trajectories for the means of the k-means clustering procedure applied to two-

dimensional data [50].
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be addressed by estimating the number of neurons as proposed in [108] which can reliably estimate

the number of clusters but there are some invalid cases for K-means initialization.

2.5.5.2 Artificial Neural Networks (ANN)

ANN [105] is based on the elementary principles of the human neural operation system. A large

variety of networks have been constructed to imitate the human brain for realization of systems

with high order of complexity. All networks are composed of artificial neurons, and connections

between them, which determine the behavior of the network (Figure 2.23a)). The input layer is

characterized by input signals (X1…Xn).The number of neurons in the hidden layer is chosen

empirically by the user. Finally, the output layer comprises neurons for the k classes

(class1…classK). Each connection in the neuronal network is characterized by a weight factor

which is modified by successive iterations during the training process. The state of each neuron is

Figure 2.23: (a) Structure of a neural network used in the classification. (b) Basic artificial

neuron model, where f (*) is the activation function. The synaptic weights are updated in the

training phase by supervised or unsupervised algorithms. (Adapted from [105]).
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configured by the input variables and the state of the other existing neurons in hidden and output

layers are determined subsequently (Figure 2.23(b)).

2.5.5.3 SPC

SPC is an unsupervised clustering algorithm that has been used in spike sorting application. The

first step of SPC clustering is interaction strength calculation between each data point and its K-

nearest neighbors. The algorithm is initiated by finding the interaction strength between the

selected features of each spike i by a point xi in an m-dimensional feature pace and the K-nearest

neighbors:
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where a is the average nearest-neighbors distance and Knn is the number of nearest neighbors. The

interaction strength is decreased exponentially with increasing Euclidean distance which is

determined based on the similarity of xi and its neighbors. In the second step, random states are

assigned to each point xi from 1 to q, where q is a constant representing the number of possible

spins. For each temperature (e.g. T=0:0.2:0.2), Monte Carlo simulation is performed. During each

iteration a frozen bond (state) between nearest neighbor points xi and xj is considered if they satisfy

the probability equation which is expressed as:


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p ,exp1  (2.18)

where δsi,sj is equal to 1 for the points in the frozen bond. This procedure is repeated for another

point several times in order to get representative statistics. Having performed the Monte Carlo

runs, the connectedness probability of a point is calculated and if it is greater than the specified

threshold (θ), the point belongs to the cluster.
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2.5.5.4 Online Sorting (O-Sort) Clustering

This algorithm provides real-time mapping of spikes to single neuron activity for closed-loop

applications. The operation of O-Sort is as follows: 1) Initialization: Assign the first data point to

its own cluster. 2) Calculate the distance between the next data point and each cluster centroid.

The distance metric could use, for example, the Euclidean norm or the ℓ1-norm. 3) If the smallest

distance is less than the merging threshold TM, assign the point to the nearest cluster and re-

compute that cluster’s mean. Otherwise, start a new cluster. 4) Check the distances between each

cluster and every other cluster. If any distance is below the sorting threshold TS, merge those two

clusters and recompute its mean. Steps 2-4 are then repeated indefinitely. In the simplified version

of the algorithm proposed in [13] (and used later in the thesis) TM = TS = T. The threshold T is

defined as T = S(σr)2, where σr is the average standard deviation of the data computed continuously

with a long (~1 min) sliding window, and S is the number of datapoints of a single waveform.

O-Sort is simple in operation with good complexity-accuracy tradeoff and satisfies online sorting

constraints (memory and power). The algorithm is adaptive, thus nonstationarity of data in time is

applied to the cluster position and number of clusters. A disadvantage of O-Sort is that it may split

clusters into sub-clusters leading to a reduction in clustering performance. The created sub-clusters

are not matched with any source and are considered as noise clusters. An example illustrating the

Figure 2.24: Clustering results using two different clustering methods, including (a) K-means

and (b) O-Sort. The overclusterig issue is illustrated using different colors and borders are

depicted with dashed line. The used data in this demonstration discussed previously in section

2.4.1.
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clustering results using K-means and O-Sort is shown in Figure 2.24. O-Sort tends to overcluster,

dividing a cluster to some sub-clusters especially when the noise level is increased.

2.6 Conclusion

In this chapter the process of spike sorting which is an important concept for many scientific and

clinical applications has been examined. For each constituent building block of the sorting chain,

different methods have been detailed identifying advantages and disadvantages. There is a trade-

off between the accuracy of processing methods and computational complexity. Nevertheless

careful design is needed to obtain a clustering accuracy of over 90% for on-chip spike processors

with real time operation capability. Clustering performance will be investigated by introducing

highly optimal and tunable spike-sorting methods in the Chapters 3 and 5.
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CHAPTER 3

New Feature Extraction Method Using Extrema Sampling of Discrete

Derivatives for Spike Sorting

3.1 Introduction

As described in previous chapters, the spike-sorting concept has been a considerable interest in

recent years. There exist two approaches to realize highly efficient on-chip spike sorting: template-

based and feature-based spike sorting. In feature-based spike sorting methods the main trade-off

is about introducing an additional step to reduce both dimensionality of extracted spike waveforms

and minimizing the buffering requirements in hardware implementation. Feature extraction is

usually performed by an initial mathematical transformation which comprises selection of a subset

of critical features which are the best representatives of each spike waveform.

This chapter introduces a new energy efficient feature extraction method based on extrema analysis

(positive and negative peaks) of spike shapes and their discrete derivatives [109] with different

sampling intervals. It runs in real-time and does not require any offline training. It is shown that

compared to other methods using online sorting it offers a better trade-off between accuracy and

computational complexity. Unlike other systems, the spike sorting procedure requires no

multiplication operation which is computationally expensive, power hungry and requires

appreciable silicon area. These are important features in implantable devices particularly when

there is a high channel count.

The key characteristics of the proposed feature extraction method are:

1) Simplicity and effectiveness.

2) Low complexity (power consumption) for compatibility to the hardware implantable

devices restriction as discussed in Chapter 2.

3) Simplicity of expansion for multi-channel processing.

4) Capability of reconfigurable (adaptive) hardware implementation.
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This chapter is organized as follows.

Section 3.2 describes prior-art and the new method. It demonstrates that the subset of features

obtained by extrema sampling of the decomposed spike waveform provide the majority of

separation between the identified active neurons and has high immunity against spike similarity

and noise level. The computational requirements and spike sorting accuracy of the proposed

method are quantified and compared against commonly used feature extraction methods. The new

method achieves a relatively high spike sorting accuracy with very low computational

requirements, hence is suitable for low power hardware implementation. Section 3.3 presents the

results and discussion of comparative performance analysis. These include simulation results for

clustering accuracy using synthetic data, clustering using synthetic and recorded in-vivo neural

data, and complexity analysis. A metric based on the projection test is proposed for quantifying

the discrimination degree of clusters. It is used to compare the sorting quality of the proposed

method against other work. In addition, the overall complexity for sorting is optimized using the

ℓ1-norm distance calculation. Finally Section 3.4 presents concluding remarks.

3.2 Algorithms

By way of example, Figure 3.1 shows the signal processing and control chain including spike

sorting for a prosthetic hand. Spike sorting is the process of grouping the recorded spikes into

clusters based on the similarity of their shapes. The process can be divided into the following steps:

1) Spike detection and alignment, separating spikes from noise and aligning the spikes to a

common point;

2) Feature extraction, extracting features of the spike shapes which gives a dimensionality

reduction, i.e., going from a space of dimension N (with N the number of data points per

spike) to a dimensional space of a few features;

3) Clustering, grouping spikes with similar features into clusters, corresponding to the

different neurons.

In this chapter, the focus is on feature extraction and clustering.
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3.2.1 Off-Chip Feature Extraction Methods

Principal component analysis (PCA) [94] has been the most commonly used algorithm for spike

sorting because it yields an efficient coding of spikes (only the first 2-3 principal components need

be retained). However, PCA requires offline training which is not compatible with online real-time

spike sorting, and calculating the covariance matrix of the data demands high computational cost

and hardware resources. In addition there is no guarantee of optimal separation of clusters [89].

Another common technique is the discrete wavelet transform (DWT). This is a multi-resolution

algorithm that provides good time resolution at high frequencies and good frequency resolution at

low frequencies. But the convolution of the wavelet function and original signal requires many

multiplications and additions per spike, resulting in a high computational cost. Both PCA and

DWT have generally been used for off-chip spike sorting.

3.2.2 Proposed Method for On-Chip Feature Extraction

A simplified model of the DWT was presented in [109]. In it, discrete derivatives (DDs) are

computed by calculating the slope at each sample point over a number of different time scales:

DD ( ) ( ) ( )n s n s n    (3.1)

Figure 3.1: Schematic description for a BMI that relies on real-time recording and processing of
neural activity to control a robotic prosthetic arm. The implanted electrodes in the recording site
are used to monitor the activity of large populations of single neurons simultaneously. Spike
sorting is used to classify the recorded spikes (active neurons) to their source of origin. The
combined activity of classified spikes is transformed by a decoding (mathematical) algorithm into
arm control signals (arm trajectory signals) that can be used to control the movements of the robotic
prosthetic arm. The closed-loop control system is stablished by providing the subject with both
visual and tactile feedback signals [110].



76

where s is the spike waveform, n is the sample point and δ is the scaling factor(time delay). The

equation shows subtraction between the samples n and (n – δ). Normally P DDs can be calculated

per spike with different scaling factors to give multi-resolution spike decomposition, which

corresponds to different frequency bands. This yields P× dimensionality expansion of feature

space compared to the number of samples of an aligned spike (i.e., N→P × N). For example, the

size of the feature space will be N = (P = 3) × (N = 45) samples per spike for DDs of three values

of δ. Feature space dimensionality directly impacts on the computational complexity of spike

sorting. As an illustration, the DDs of two typical spike waveforms with delay values of δ equal to

1, 3 and 7are shown in Figure 3.2.

Feature extraction based on extrema sampling (positive and negative peaks of DDs) is proposed

here as an efficient approach not only in terms of computational simplicity but also accuracy.

Retention of a subset of features significantly reduces the dimensionality from P × N to K, where

K is the number of selected features for the clustering stage (K < N). For example, using δ = 1, 3, 7

the following features are identified in Figure 3.2: a) positive peaks DD|δ = 1,3,7(max); b) negative

peaks DD|δ = 1,3,7(min); and c) peak-to-peak amplitude (Vp-p)of each DD. Different combinations are

introduced in this section by sweeping the decomposition window length (δ) in order to explore 

the frequency sub-bands (from δ=1 to δ=7) which accommodate the most informative 

(multimodal) features [100]. To compare with other work (in terms of classification accuracy and

computational complexity) the following nine permutations of feature sets are considered:

 Combination 1: DD| δ = 1,3,7(max) and DD| δ = 1,3,7(min).

 Combination 2: Vp-p of DD|δ = 1,3,7(i.e., DD|δ = 1,3,7(max) – DD|δ = 1,3,7(min)).

 Combination 3: DD| δ = 3,5(max) and DD| δ = 3,5(min).

 Combination 4: DD|δ = 3,5(max) and DD|δ = 3,5(min), together with Vp-p of DD|δ = 3,5. DD|δ = 5 is

not annotated in Fig. 3 for brevity.

 Combination 5:DD|δ = 3,7(max) and DD|δ= 3,7(min).

 Combination 6: Features in Combination5 together with Vp-p of DD|δ= 3,7.

 Combination 7: DD|δ = 3,7(max) and DD|δ= 3,7(min) together with original spike positive and

negative peaks.

 Combination 8: DD|δ = 3,7(max) and DD|δ= 3,7(min) together with original spike height.
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Figure 3.2: Two spike waveforms (spike shapes) and their discrete derivatives. The positive
peaks, negative peaks and peak-to-peak amplitudes are annotated. Other features such as spike
gradients and peak position are also depicted.
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 Combination9:DD|δ =7(max) and DD|δ=7(min) together with original spike positive and negative

peaks.

In addition to the above permutations, various values of δ and geometric characteristics such as

positive (or negative) signal energy, half-height position, right (or left) spike gradients, peak

position and zero crossing points could be considered to define other possibilities. Some of the

mentioned features are annotated in Figure 3.2.

3.2.3 Comparison with Other Feature Extraction Methods

1) Waveclus [89]: In this algorithm, the combination of the wavelet transform with super-

paramagnetic clustering (unsupervised clustering method with offline training) is used for

unsupervised and online spike sorting. Feature extraction is calculated based on four-level multi-

resolution decomposition using Haar wavelets which results in 64 wavelet coefficients for each

spike. Then the Kolmogorov-Smirnov test for normality is used to select the first 10 coefficients

with the largest deviation from normality for the sorting stage.

2) Discrete Derivatives and Maximum Difference Test (DDs-MDT) [101]: In this approach, the

maximum difference test (MDT) is applied to each scaling factor of DDs to extract the multimodal

coefficients. The MDT is a simplified model of the Lilliefors test for selecting the uncorrelated

directions (minimum mutual information) for blind signal separation. Samples with bimodal

distribution have deviation from unimodality or Gaussian distribution, thus they exhibit multiple

peaks and valleys as a sign of multimodality.

3) First and Second Derivatives [111]: Here the first and second derivatives of a spike represent

its geometrical characteristics. The first derivative (FDV) interprets the gradient variations of a

spike shape. It is defined as:

     1 nsnsnFDV (3.2)

The second derivative (SDV) highlights low frequency coefficients by computing the difference

of the samples n and (n – 1) of the FDV. That is,

     1 nFDVnFDVnSDV (3.3)
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In the FDV and SDV extrema (maximum and minimum peaks) are used to distinguish the clusters.

This method is referred to as FDVSDV for the rest of the paper in the accuracy and complexity

discussions.

4) DDs and Uniform Sampling (DDs-USAMP) [101]: In this method, after computing the DDs of

the spike with three different values for the delay (δ = 1, 3, 7), uniform sampling is performed to

select the subset of features. Seven coefficients are selected for each DD level and 21 per spike

since the median accuracy was in the SNR range of 15-20 dB. Uniform sampling is a blind

approach to decrease the dimensionality from N to K (in this case from 3 × 48 to 21) but this type

of sample selection could lead to non-segregation of clusters.

5) Spike Shape [112]: In this method all the samples of detected and peak-aligned spikes (without

upsampling) are used for calculating the similarity measure between the mean of the spikes in

clustering.

3.2.4 Sorting (O-Sort Clustering)

For clustering, O-Sort has been selected. It is the only online, automatic and unsupervised

algorithm that is suitable for hardware implementation [13]. This algorithm provides real-time

mapping of spikes to single neuron activity for closed-loop applications. The operation of O-Sort

is as follows:

1) Initialize by assigning the first data point to its own cluster.

2) Calculate the distance between the next data point and each cluster centroid. The distance

metric could use, for example, the Euclidean norm or the ℓ1-norm.

3) If the smallest distance is less than the merging threshold TM, assign the point to the nearest

cluster and re-compute that cluster’s mean. Otherwise, start a new cluster.

4) Check the distances between each cluster and every other cluster. If any distance is below

the sorting threshold TS, merge those two clusters and recompute its mean. Steps 2-4 are

then repeated indefinitely. In the simplified version of the algorithm (proposed in [13] and

used herein), TM = TS = T. The threshold T is defined as T = S(σr)2, where σr is the average

standard deviation of the data computed continuously with a long (~1 min) sliding window,

and S is the number of datapoints of a single waveform.
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O-Sort is simple in operation with good complexity-accuracy tradeoff and satisfies online sorting

constraints (memory and power). This algorithm is adaptive thus nonstationarity of data in time is

applied to the cluster position and number of clusters. A disadvantage of O-Sort is that it may split

clusters into sub-clusters leading to a reduction in clustering performance. The created sub-clusters

are not matched with any source and are considered as noise clusters.

3.3 Results and Discussions

3.3.1 Determination of the Optimal Threshold

The procedure adopted to determine the optimal threshold T is as follows:

1) The range of threshold values is determined via the dataset with the highest similarity index

between the spike shapes. The maximum limit for threshold (Tmax) is defined using dataset 4

(which has the highest similarity measure) when no clusters are missed and there is no artificial

Figure 3.3: 2-D representation of feature space for two clusters from dataset 4 with the highest
similarity. The effect of increasing (or decreasing) the threshold T is depicted. Different threshold
levels (Topt, Tmax and Tmin) and sorting range are indicated. For T > Tmax the risk of missing a
cluster and artificial clustering is high. For T < Tmin the main cluster would artificially be split into
two or more sub-clusters.
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clustering (Figure 3.3). Artificial clustering erroneously allocates spikes to a cluster. The

threshold value can be decreased to a minimum limit (Tmin) below which overclustering occurs.

Overclustering is the splitting of a single cluster into multiple clusters. Tmin is determined when

clusters in dataset 4 start to overcluster. For Tmin < T < Tmax no clusters will be missed and no

overclustering will occur.

2) To determine the sorting accuracy, the optimal threshold (Topt) for each method (published and

proposed) is found by sweeping the threshold value through the range Tmax – Tmin using the

spike data bank in section 2.4.1.

Using this procedure determines Topt for each method when investigating its effectiveness using

different metrics. Finding optimal (Topt) threshold is resulted in 5-8% improvement in clustering

performance.

3.3.2 Classification Accuracy

In this subsection the nine combinations of feature set proposed in Section 3.2.2 are evaluated in

terms of classification accuracy to determine the be one in conjunction with O-Sort. This is then

compared with the feature extraction methods outlined in Section 3.2.3. Classification accuracy is

defined as:

%100
NTS

TPCC
CACC (3.4)

where TPCC is the number of truly detected and correctly classified spikes and NTS is the number

of truly detected spikes. NTS = DTS – (FPS + MS), where DTS is the number of detected spikes,

FPS is the number of false alarm spikes due to noise or overlapping spikes, and MS is the number

of missed spikes.

The average sorting results are summarized in Table 3.1. The methods were evaluated across all

datasets and noise levels. Combination 5 with dimensionality (K) of 4 achieves the highest CAcc

whereas Combination 8 (with K = 9) achieves the lowest CAcc. The methods were also examined

with overclustering ratio criteria. It was observed that Combination 5 achieves the lowest

overclustering whereas Combination 2 in conjunction with O-Sort generally tends to divide a

cluster into sub-clusters. The set of features used in Combination 5 is therefore selected and will

from hereon be referred to as the DD|2-Extrema method.
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For comparison, the CAcc of the methods listed in Section 3.2.3 was investigated, in particular,

Waveclus (K = 10), DDs-MDT (K = 21), DDs-USAMP (K = 21), Spike Shape (K = 45) and PCA3

(projection of first three principal components). The results (averaged across all noise levels) are

shown in Figure 3.4. The CAcc of DDs-MDT drops significantly in datasets 2 and 3 due to the

intense overclustering effect. The number of coefficients (K) representing deviation from

normality is 21, i.e., 7 from each scaling factor (δ = 1, 3, 7). The results show that DD|2-Extrema

and DDs-MDT perform equally across datasets 1 and 43. The former has better similarity tolerance

in datasets 2 and 3 which means significant reduction in complexity or required memory. Spike

Shape works satisfactorily for datasets 1 and 2 only. It significantly increases the computational

complexity without improvement in performance. In this method the simplest metric to sort the

spikes is the distance (e.g., Euclidean distance) between the unclassified spikes and the stored

templates. As discussed in [113] the classification accuracy of Spike Shape declines when the

spike waveforms have similar patterns (increasing the similarity index).

3 The used datasets for spike sorting methods evaluation are discussed in Chapter2, section 2.4.1.

Table 3.1:
Classification accuracy comparison of the examined feature set combinations

Average Classification Accuracy
Combination Dataset 1 Dataset 2 Dataset 3 Dataset 4 Mean

Combination 1
(*K = 6) 94.8% 92% 88% 85.8% 90.2%

Combination 2
(K = 3) 76.2% 78.6% 73.4% 68.6% 74.2%

Combination 3
(K = 4) 91% 86% 77.2% 79.8% 83.6%

Combination 4
(K = 6) 91.4% 86.8% 83. 6% 81.4% 85.8%

Combination 5
(K = 4) 95.8% 93.4% 87.8% 89.6% 91.6%

Combination 6
(K = 6) 91.2% 89.6% 80.4% 79.8% 85.2%

Combination 7
(K = 6) 89.6% 84.6% 79.2% 74.8% 82.%

Combination 8
(K = 5) 75.6% 77.4% 70.4% 68.8% 73%

Combination 9
(K = 4) 80.4% 76.4% 75.4% 71.2% 75.8%

*K = number of features
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PCA uses maximum variance, correlated coefficients, unlike the Waveclus and DDs-MDT. In the

test for C_Difficult1_noise and C_Difficult2_noise the sorting algorithm did not distinguish one of

the three clusters with PCA feature vectors. Although PCA is computationally complex, there is

no guarantee of efficient results. Selecting the coefficients with the largest variance does not

necessitate deviation from normality and it may compromise the sorting performance. Feature

space probability density function of two different clusters using PCA overlap (correlated

directions) was investigated in [114]. PCA and DDs-USAMP did not perform well in the tests.
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Figure 3.4: Comparison of classification accuracy between the DD|2-Extrema method and other
methods as a function of noise level for the four datasets. The result of Waveclus in [89] is used
for comparison. The optimum threshold (Topt) is calculated for each feature extraction method.
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Their average CAcc with the O-Sort classifier is 66.4% and 61%, respectively, and therefore they

are not plotted in Figure 3.4.

In conclusion, the best performance for accuracy-dimensionality is DD|2-Extrema (K = 4). It

exhibits superior similarity and noise immunity.

3.3.3 Clustering Results with Synthetic Data

The evaluation of spike sorting with DD|2-Extrema is shown in Figure 3.5 using dataset 3 (C_

Difficult1_0.05). Figure 3.5(a) shows detected and aligned spikes, Figure 3.5(b) shows color-coded

Figure 3.5: Test dataset 3 (C_ Difficult1_0.05) showing: (a) Detected and peak-aligned spikes.
(b) Color-coded spikes corresponding to different neurons(#1 yellow,#2 red,#3 green). (c) 2‐D
projection of feature space as seen by the spike classifier. (d) 2‐D projection of spike clusters.
The markers “□”, “∆”, and “*” refer to the features for the members of the first, second, and third
spike templates, respectively.
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Figure 3.6: Sorting results of C_Difficult2_005. (a) Color-coded clusters with number of assigned
spikes in each cluster (#1 yellow, #2 red, #3 green. Note: The colors are not matched with Fig.
4). The amplitude is of arbitrary units. (b) Corresponding firing pattern which depicts firing rate
of each neuron (0-28 s). Approximated firing rate determined by the Gaussian window function.
The mean firing rate (FR) is annotated in each plot. (c) Inter-spike interval histogram (ISIH) of
each cluster. (d) 2-D projection of clusters for C_Difficult2_0.05, C_Difficult2_0.01 and
C_Difficult2_0.15. (Spikes have been colored according to the ground truth). (e) Illustrates
projection test using probability density functions for the three combinations of cluster
(C_Difficult2_0.05).For each combination of neurons the distance between the two distributions
is described by how many standard deviations they are apart (D value in each plot).
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spikes in each cluster, Fig.5(c) shows mapping of the spikes on the feature space as seen by the

spike classifier, and Figure 3.5(d) shows color-coded mapping to distinguish between the neurons.

The clusters are distinguished with the knowledge of true identities from the neural simulator. For

clarity, noise events and overlapping spikes were not plotted.The typical way of illustrating the

isolated units is superimposing detected spikes with different colors.

The detailed sorting results using dataset 4 are shown in Figure 3.6. The two statistical tests,

namely the inter-spike interval histogram (ISIH) test and the projection test as discussed in [115],

were used to quantitatively assess the sorting quality. A total of 3040 raw waveforms were

detected, 2929 (96.4%) of which were assigned to one of the three well-separated single units (969,

986, and 974 for each cluster, respectively). Figure 3.6(a) shows the normalized raw waveforms

and the mean waveform for each of the three clusters. Each neuron is color-coded across the whole

figure (#1 yellow, #2red, #3 green). Figure 3.6(b) shows the firing pattern of each neuron across a

time window of 0-28 s. The mean firing rate (FR) [116] of neurons #1, #2 and #3 is 10.28 Hz,

10.64 Hz and 9.98 Hz, respectively. Each diagram in Figure 3.6(b) also has the raster plot (or spike

times) corresponding to the temporal firing of each neuron. Figure 6(c) shows the ISIH for each

neuron. The ISIH window should not be less than the action potential refractory period (< 2 ms

after alignment). Single-unit activity is stated when the spike waveform is clearly distinguishable

with no ISIH less than the refractory period. Figure 3.6(d) shows from left to right the 2-D

projection of clusters with increasing noise level (0.05, 0.1 and 0.15). Increasing the noise level

adversely affects the projection and may result in some degree of overlap, but it is observed that

the borders of clusters are clear even in the most difficult dataset with noise level of 0.15. Figure

3.6(e) shows the results of the projection test using probability density functions for three

combinations of cluster in C_Difficult2_005. The projection test [13], [117] is a one-dimensional

representation between two known means with a distance indicator (D) which assesses the quality

of clustering. This test shows whether or not spikes from multiple neurons are artificially assigned

to a particular cluster by the sorting algorithm. Furthermore, it detects the invalid merging of two

clusters. In Figure 3.6(e) the normalized distance between probability density functions for the

three combinations of cluster are sufficiently large to permit correct assignment of spikes to unique

neurons.
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Inspired by [114] a quantitative metric based on the projection test is proposed for assessing the

level of distinctness of the generated clusters. The metric for quantifying the discrimination degree

of clusters is the ratio of intercluster distance to intracluster distance, defined as
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min
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y y
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(3.5)

where PDij is the projection test distance between clusters i and j. This ratio is a metric for cluster

quality measurements and is useful for optimization. The higher the value of DisDeg the better the

cluster separation quality (Figure 3.7).

Figure 3.8 compares the separation confidence level of the Graph-Laplacian feature (GLF) [114],

for DD|2-Extrema and DDs-MDT. DisDeg verifies the efficiency of sorting compared to other

techniques. Increasing the similarity in each dataset from Easy1 to Difficult2 and noise level

adversely affects the cluster separation. The results of the statistical tests verify the efficiency of

the proposed method.

3.3.4 Clustering Results with Recorded In-Vivo Neural Data

Collected neural signals from the peripheral median nerve in pig (obtained with a multi-electrode

cuff in-vivo) were used to test the sorting performance of the DDǀ2-Extrema. 6564 spike

waveforms were detected from 24 single neurons in four different channels: eight in channel 1,

five in channel 2, five in channel 3 and six in channel 4. The analysis of the sorting results is shown

Figure 3.7: Representation of intracluster and intracluster for DisDeg calculation.
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in Figure 3.8 for three of the channels. Figure 3.9(a) shows the mean spike waveforms of channels

l-3; each color corresponds to a unique neuron. Figure 3.9(b) shows the sorting results of three

similar neurons from channel 1. The ISIH test shown in Figure 3.9(c) verifies the accurate

segregation between the chosen neurons. In Figure 3.9(d), the projection test quantifies the

distance between every pair of clusters in channel 2. The normalized distance between each pair

(standard deviation criterion) is large enough to conclude the efficient separation of clusters. In

total 5973 (91%) of all detected spikes were assigned to the identified neurons.
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Figure 3.8: Discrimination degree of GLF, DDs-MDT and DD|2-Extrema. For simplicity T=1.

DisDeg of GLF was calculated using the quality metric in [114].
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Figure 3.9: Sorting results of the recorded in-vivo neural data. (a) Illustration of found mean
waveforms in channels 1-3. The amplitude is of arbitrary units.(b) Color-coded clusters with
number of assigned spikes in each cluster form channel 1 (#7 red, #5 blue, #4 cyan). (c) ISIH of
the neurons form channel 1. (d) Results of projection test using estimated probability density
functions for all possible combinations of channel 2. 2‐D projection of clusters is included for
visual clarity. The vertical axis shows the distribution amplitude and the horizontal axis is the
distance between the two distributions.
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3.3.5 Complexity Analysis

In order to assess the hardware requirements of different methods the computation complexity

metric was used. It is defined as [101], [118]:

add(sub) mult (div)Com put Comp 10N N  (3.6)

where Nadd is the number of additions (or subtractions), and Nmult is the number of multiplications

(or divisions) required. A 10-bit multiplier uses almost 10X the hardware resources of a 10-bit

adder. Table 3.2 compares the proposed method and seven other published methods in terms of

estimated computational complexity, clustering algorithm used, average classification accuracy

(CAcc) and number of features (dimesionality). Compared to DDs-MDT, DD|2-Extrema has 3.6×

lower complexity with 19.8% higher average accuracy. FDVSDV has 5.76× and 1.62× higher

complexity compared withDD|2-Extrema and DDs-MDT, respectively. It was reported in [110]

that FDVSDV has 6.97% classification error with varying noise levels across all four synthetic

(Section 3.3) datasets and M(2N – 3) complexity with the k-means classifier.

Since in FDVSDV extrema are selected using the attenuated projections of a spike shape, the O-

Sort sorting threshold needs to be reduced to distinguish the clusters. The threshold level for

FDVSDV was found using T = S(ɑ·σ)2 where (ɑ = 0.25) is a factor derived from simulation. There

are disadvantages with the calculated threshold. They include: 1) the possible creation of an

impractically small threshold value (e.g., 0.001) which is then very sensitive to noise variations,

and 2) determining the sorting threshold involves an extra multiplication (evaluating T for

Table 3.2:
Computational complexity comparison of various feature extraction and dimensionality reduction methods.

Method Feature Extraction

Additions Multiplications

Dimensionality Reduction Clustering

Algorithm

*Average

CAcc

Number of

Features (K)

ADC

Simulator

DD|2-Extrema M(2N – 10) - Max / Min / Vp-p of DD|2(δ = 3,7) O-Sort 91.6% 4 ✓

PCA M(N2 + 1) M(N2 + N) - O-Sort 66.4% 3 first PCs ✓

FDVSDV M(2N – 3) - Max / Minof FDV and SDV O-Sort 73.6% 4 ✓
aDDs-MDT M(3N – 11) - MDT→(M – 1)(3N) O-Sort 71.8% 21 ✓

aDDs-USAMP M(3N – 11) - Uniform Sampling O-Sort 61% 21 ✓

Spike Shape - - - O-Sort 68.4% 45 ✓
cZCF[75] M(N) - - k-means >94.0% 2ZCFs = 3 ×

**DWT M(4N) M(8N – 10) Kolmogorov-Smirnov SPC b92.6% 10 ×

M = number of spikes; N = sample number per spike
*Averaged across 4 datasets with varying degrees of noise level
**DWT (four-level Haar wavelet) and Kolmogorov-Smirnov used in Waveclus

a - DDs-MDT with scaling factors δ = 1, 3, 7

b - The results in [89] are used for comparison

c – ZFC performance was evaluated with a different spike bank
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recalculating the average standard deviation when using a sliding window). FDVSDV was

implemented with O-Sort to provide a fair comparison with the method proposed in this paper.

The average accuracy of FDVSDV is 73.6%.DDs-MDT has an average accuracy of 71.8% with

O-Sort. Six of the eight methods listed in Table 3.2 use the O-Sort clustering algorithm. It should

be mentioned that the average accuracy of O-Sort is around 70% while both k-means and fuzzy c-

means have over 90% discrimination accuracy. However, the only online and unsupervised

algorithm in the context of implantable sorting hardware is O-Sort. In addition, k-means and fuzzy

c-means clustering require prior knowledge of the number of clusters.

To test the accuracy of the classifiers, original spike shapes were applied (without upsampling) to

establish the accuracy with unprocessed data. Waveclus is very efficient with an acceptable

classification error (7.4%). However, its computational complexity is much higher than that of

either DD2-Extrema or DDs-MDT. DD|2-Extrema without offline training requires less than 5%

of the computational complexity of Waveclus (the computational complexity of Kolmogorov-

Smirnov is not considered). Although DD|2-Extrema and Waveclus have comparable similarity

immunity, there is a sustained improvement in DD|2-Extrema performance with increasing noise

level (noise immunity).

The overall sorting complexity consists of creating clusters and merging phases. It is defined as:

  
MultAdd

CKMCKCMKSortComp 20)33(33  (3.7)

where M is the number of feature vectors, K is the number of features representing each spike in

feature space, and C is the number of clusters. The Euclidean distance calculation requires the

multiplication operation in Eq.(3.7) which leads to high sorting complexity. ℓ1-norm distance

metric makes O-Sort a particularly good choice for hardware implementation since it is much less

dependent on the dimensionality of feature space. The ℓ1-norm distance is less susceptible to

biological noise than the Euclidean distance [76], hence resulting in a better average CACC. Figure

3.10 shows the classification error versus computational complexity of feature extraction and

sorting. The DD2-Exrema has better tradeoff between classification error and complexity. Figure

3.11 displays the average classification error versus dimensionality factor for various methods.

The dimensionality factor is the ratio of feature space dimensions to the number of samples per

spike. As can be seen, there are significant differences between DD|2-Extrema (K = 4) and
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FDVSDV (K = 4), Spike Shape (K = 45), DDs-MDT (K = 21), DDs-USAMP (K = 21) and PCA

(K = 3). The competing methods for DD|2-Extrema are ZCF [75] (2ZCFs = 3) and Waveclus

(K = 10) with 2.4% and 1% lower classification error, respectively. It can be clearly observed that

DD|2-Extrema outperforms all the other methods and provides the best tradeoff in complexity,

accuracy and dimensionality.

3.3.6 Proposed Data Reduction Application Example

As noted in Section 3.2, one of targeted applications is the development of a custom integrated

circuit for an implantable multi-electrode neural interface for upper-limb prostheses. The chip will

amplify and reduce the data rate needed to represent the many spike signals. Each interface will

typically have 20+ channels (microelectrodes) and there are four nerves in the upper arm which

carry most of the motor axons. Prior to spike sorting the recorded data will be digitized by an

analog-to-digital converter (ADC, see Figure 3.1). Assuming each channel is sampled at 30 kHz

with 7-bit ADC resolution, the average data rate at the input of the digital spike sorting processor

will be (4×20×30 kHz×7bits) 16.8 Mb/s (Figure 3.12). A typical neuron generates on average 40

Figure 3.10: Classification error versus computational complexity for the different feature
extraction and sorting methods considered herein. The red square (DD|2-Extrema) shows the
average accuracy amongst all datasets and all noise levels. The green square (DD|2-Extrema)
shows the average accuracy amongst all datasets using noise with a standard deviation of 0.05.
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spikes per second when active [119], and up to 25 active neurons are estimated in each channel.

Therefore, after detection and alignment the data rate will become 1.26 Mb/s

(100 neurons × 40 spikes/(neuron.second) × 45 samples/spike × 7 bits/sample). Using DD|2-

Extrema to encode the spikes into four features (28bits/spike) the extracted coefficients will yield

a data rate of 112 kb/s or 0.007% of the original data rate. In the final step typically the cluster

number and channel number will be processed via O-Sort, which will yield a final transmission

data rate of 56 kb/s (i.e., 0.004% of the original data rate). Such a low data rate is feasible for

wireless transmission using a single pair of coils for both power and data [120]. Reducing the data

rate to only 0.004% of the original data rate should also be attractive for high channel count

recording front-ends for other applications [121], [122].

3.4 Conclusion

This chapter has proposed and investigated a new feature extraction method based on spike

waveforms and their discrete derivatives. Nine combinations of extrema features have been

examined with the proposed DD|2-Extrema method offering the highest average classification

accuracy. Specifically, DD|2-Extrema with M(2N – 10) complexity and dimensionality factor of 4,

Figure 3.11: Classification error versus dimensionality factor for the different feature extraction
methods.



94

achieves 91.6% average classification accuracy. It requires about 1% of the computational

complexity of PCA while providing higher accuracy. The combination of DD|2-Extremawith O-

Sort provides a considerable accuracy-complexity tradeoff. This should allow on-chip processing

without any assumption of high level of fidelity for sorting multi-unit activity. The results confirm

that the average classification error is less than 4% across all the datasets tested using noise with a

standard deviation of 0.05.This theoretical limit can be used to determine the design parameters of

the analog front-end including data converter resolution and sampling rate, filter type, bandwidth

and order, and amplifier noise, bandwidth and gain. The overall complexity of spike sorting has

been optimized using the ℓ1-norm distance calculation [76]. The clustering performance of the

proposed method has been evaluated using both synthetic and recorded in-vivo neural data. DD|2-

Extrema outperforms various online and offline algorithms which have significantly more

complexity. In addition, it offers a better trade-off between complexity, accuracy and

dimensionality than all the other methods considered herein. DD|2-Extrema could be used as an

integral part of a future neural amplifying and spike sorting chip for a range of neural prostheses

applications such as prosthetic hand (see Figure 3.1), cortical neural recording [123], and bladder

control after spinal cord injury [124].

Figure 3.12: The spike-sorting process, annotated with an example of typical data rates. The data
rate at the end of spike sorting is lower than that of the raw data. (Assumptions are annotated on
the figure in red italics)
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CHAPTER 4

Design Techniques and Power Limit Analysis of Neural Front-end Interfaces

Targeting Ultralow Power Implantable Devices

4.1 Introduction

Neural front-end interface (NFI) is a critical pre-processing stage in all neural recording systems.

The quality of neural data monitoring is directly affected by the NFI. As discussed in the

introduction (Figure 1.1), the trend in signal acquisition is towards a large number of recording

channels (e.g., 1K channels). Conventional design has high front-end specifications which result

in power and area utilization in hardware which is not compatible with high channel count

recording. A design framework is required to achieve sufficiently low power and area utilization.

With reference to Figure 4.1 this chapter has the following aims:

1- Development of a NFI power optimization framework suitable for high channel count

(1K+) recording. By optimizing each channel in terms of power and area, there is a

capability for 1K+ recording and processing for future generation of implantable BMIs.

2- An optimization procedure which results in a power efficient NFI, allowing provision

of more functions such as spike sorting for a given amount of power consumption per

channel, and reducing the energy cost associated with the transmitter (e.g., nJ/bit).

The optimization framework [125] is illustrated in Figure 4.2. The power consumption of the NFI

is assessed by examination of the constituent building blocks comprising a low noise amplifier

(LNA), a programmable gain amplifier (PGA) and an analog-to-digital converter (ADC).

The minimum power required for the NFI is theoretically derived based on its constituent building

blocks. In addition to deriving the NFI power bound, it is shown that the noise-power

contribution can further minimize the NFI power bound by appropriate selection of data

conversion design such as comparator-based switched-capacitor (CBSC) [12], [126-127].

Following the NFI power dissipation bound analysis a parametric optimization methodology is

developed to define the optimal values of NFI practical parameters including signal bandwidth,
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sampling rate and resolution. The underlying suggestion is that the current NFI state-of-the-art

designs are not optimally engineered. This optimization tool is developed by an FPGA-MATLAB

interface and allows designers to assess spike sorting robustness to variations in the NFI practical

parameters. The NFI behavioral model is simulated in MATLAB, which provides a flexible way

Figure 4.1: Multi-channel signal monitoring with (a) conventional recording and (b) the spike

sorting chain is included in the neural interface. (c) The power reduction due to the proposed

power optimization framework allows the integration of spike sorting into the implant for the

same power consumption as in the traditional model. The amount of saved power budget for spike

processor integration is 30% which is discussed in section 4.4.3.
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to investigate the effect of different topologies on neural data. A spike sorting processor was

implemented on an FPGA to complete the assessment loop. This FPGA-MATLAB is a simple

realization of the whole processing chain to achieve a good balance between resource efficiency

and outright spike sorting performance. The NFI optimum parameter selection procedure is applied

to standard datasets with different signal-to-noise ratios (SNRs) and various spike similarity levels.

The analysis tests the robustness of spike processing accuracy.

It is shown that for a resolution of 7 bits (optimum for spike sorting) using a comparator-based

switched-capacitor (CBSC) cyclic ADC reduces power consumption by approximately 30%

compared to a successive approximation register (SAR) ADC.

The design steps are:

1. Estimation of the NFI Theoretical Minimum Power: The theoretical minimum power of

the NFI is derived by considering its individual building blocks. This limit provides a

minimum design target.

2. Choice of ADC: The commonly used SAR ADC is compared to the CBSC cyclic ADC.

Other data converter architectures such as zero-crossing-based [128] and pulsed bucket

brigade [129] are possible alternatives.

3. Selection of NFI Key Parameters: These include LNA bandwidth, ADC resolution and

sampling rate, specified by exploring their effect on the accuracy of the spike sorting

processor. An online, unsupervised spike sorting processor was implemented on an FPGA

to verify the extracted NFI parameters. The derived parameters take into account the

accuracy requirements for spike sorting and are compared with a number of NFIs in the

literature.

To validate the study, the derived minimum power limits are compared with published designs

obtained from the state of the art. Optimizing the NFI design prevents over-engineering and

significantly reduces the power cost of recording to transmission.

The rest of the Chapter is organized as follows. In Section 4.2 the power models of the LNA, PGA

and ADC (SAR and CBSC cyclic) are presented. In Section 4.3 an online FPGA implementation

of the spike sorting processor is presented. In Section 4.4 the design optimization of the NFI is

examined based on spike sorting requirements. By considering the ADC and proper selection of
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NFI parameters, NFI power bounds using two types of ADC are derived and compared. A

parametric NFI design is also briefly discussed in this section. Conclusions are presented in Section

4.5.

4.2 NFI Power Model

The general architecture of a typical implantable bio-potential recording system is shown in Figure

4.1. The NFI comprises: a) LNA, b) PGA, and c) ADC. The LNA is used to record the neuronal

activity (the amplitude of the extracellular potentials is in the range of 50 µV to 1 mV4) and in a

specific frequency range (between 300Hz and 10kHz). Thus the recorded signals must be

amplified and filtered before being processed. It also removes any dc level generated at the

recording site across the electrode-tissue interface. The PGA provides further (programmable)

amplification. It typically has a bandpass response to eliminate unwanted signal components (e.g.,

local field potentials and high frequency noise), to prevent aliasing and to provide offset

adjustment. The ADC performs digitization for the subsequent processing operations (e.g., spike

4This range is based on various neural interface modalities with different levels of spatio-temporal resolution and

invasiveness as discussed in Chapter 2.

Figure 4.2: The optimization framework.
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sorting). Since the focus of the next two sections concerns noise-power analysis, the noise sources

from different blocks of NFI are illustrated and defined in Figure 4.3. The input referred noise of

the PGA is assumed to be zero for simplicity in calculations when demonstrating the contribution

of the data converter thermal noise on the NFI power limit.

4.2.1 LNA Power Analysis

A figure of merit for LNA design is introduced and discussed in [130]. The minimum power

consumption of the LNA is dictated by the input referred noise voltage (νni,rms). It should be noted

that the 1/f noise is not the dominant noise source in the circuit due to large gate areas of the pMOS

input devices and contributes about 0.1 µV/Hz (0.5 Hz to 50 KHz [131]) to the total noise voltage

(νni,rms). Hence the power bound of the LNA is based only on thermal noise considerations. The

noise efficiency factor (NEF) introduced in [130] identifies the trade-off between νni,rms (integrated

over bandwidth) and LNA power consumption:

 HPLPLNAT

LNA
rmsni

ffBWkTU

I
vNEF




.4..

2
,


(4.1)

where ILNA is the total LNA supply current, BWLNA is the 3-dB bandwidth of the LNA and UT is

2
,recordingn

2
,

2
, recordingnNFIn  

2
,NFIn

2
,rmsni

2
,sourceniADC

2
,PGAni 2

,ADCIRNv
2

,ADCthermalv

2
,ADCqnv

Figure 4.3: Illustration of noise sources in the NFI. The definition of each noise source is:

2
,recordingn : neural recorded signal noise power, 2

, NFIn : Overall input referred NFI noise power,

2
,rmsni : LNA Input referred noise power,  02

, PGAni : PGA Input referred noise power, and

2
, ADCIRN : ADC Input referred noise power which is composed of thermal noise power (

2
, ADCthermal ) and quantization noise power ( 2

, ADCqn ). 2
,sourceniADC : the LNA input referred

thermal noise power of the ADC.
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the thermal voltage (kT/q), k is Boltzmann’s constant and T is temperature in Kelvin. An LNA

with programmable bandwidth is included in Eq.(4.1). The required LNA power consumption PLNA

is:

 
2

.4..
..

.

2
,

2
LNAT

rmsni

DD

LNADDLNA

BWkTUNEF
V

IVP








(4.2)

where VDD is the power supply. The noise constraint on the LNA is influenced by the quantization

noise of the ADC. The total amount of noise at the input of data converter should be less than the

quantization noise power (
2

, ADCqnv ):

2
,

2
,

2
,

22 .. ADCqnADCthermalrmsniPGALNA vvGG  (4.3)

GLNA and GPGA are the gains of the LNA and PGA, respectively, and
2

, ADCthermalv is the ADC

thermal input referred noise power.
2

, ADClthermav can be expressed as a percentage of
2

,rmsniv , hence

Eq.(4.3) is rewritten as below:

2
,

2
,

222
,

22 ..... ADCqnrmsniPGALNArmsniPGALNA vvGGvGG 




  (4.4)

  2
,

2
,

22 1... ADCqnrmsniPGALNA vvGG   (4.5)
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2
,

22

2
,

.. rmsniPGALNA

ADCthermal

GG

v


  is a noise multiplying factor (NMF) (its selection is discussed in Section

4.2.2). It is calculated by dividing the ADC thermal noise power contribution by the LNA noise

power referred to the input of the ADC.
2

,ADCqnv is replaced by n
FSV 22 2.12/ :

  n
FS

rmsniPGALNA

V
vGG

2

2
2

,
22

2.12.1
..


 (4.7)

where VFS (e.g., 1V) is the full scale voltage considered for quantization and n is the ADC
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resolution. α is set to ≥0.1 when the calculated value 
2

, ADCthermalv is noticeable. This means that

2
,rmsniv must be designed to be extremely low in the LNA to compensate for the effect of α. When

α is set to zero, the LNA design can be more relaxed which means no additional power is required

to nullify the effect of α in Eq.(4.6). The simplified models of Eq. (4.7) for α≥0.1 and α=0 are:

 

 
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
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rmsniPGALNA (4.8)

When the
2

, ADCthermalv is low (CBSC α=0), the LNA power consumption is dependent on the ADC

quantization noise which is defined by VFS and the converter resolution n. On the other hand, for

α≥0.1, the LNA requires more rigorous requirements in terms of power consumption to reduce the 

LNA input-referred noise. Hence, the minimum LNA power consumption is:
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4.2.2 Assigning Noise Multiplying Factor (NMF= α) through Data Converter Noise Analysis

This section provides a study of the input referred-noise in the CBSC gain stage and SAR data

converter. For the purpose of the CBSC gain stage noise analysis, a single pipeline stage (1.5-

bit/stage) is considered. As shown in Figure 4.4 the input referred noise (IRN) of a CBSC gain

stage consists of a contribution from the threshold detection comparator (TDC), switches (SS, SL)

over their operation time, and charging capacitance (CL). The overall thermal noise of a CBSC

gain stage is:

2
,

2
,

2
,

2
, LCininswitchesinTDCCBSCthermal vvvv  (4.10)

where 2
,inTDCv is the TDC noise power, 2

,inswitchesv is the switches noise power and 2
, LCinv is the

capacitive load noise contribution. An example comparator (TDC) with added noise current

sources is shown in Figure 4.5 [132] (TDC operation is discussed in section 4.2.4.2.2). The noise
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current generated in M1 is mirrored in M4 (also M3). The total current noise at the output node of

TDC is the product of the power spectral density and equivalent noise bandwidth is:
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where 2
, nMii is the current noise introduced by the ith transistor, (R=ro2ǁro4) is the impedance

observed at the output node and 1/2td,TDC is the CBSC noise bandwidth [133] where td,TDC is the

delay of comparator. The input-referred voltage noise is given by:
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where ATDC is the total gain of the TDC. The second noise source in the CBSC gain stage is the

contribution from the switches (SS, SL), shown in Figure 4.4. During the charge transfer phase, SL

Figure 4.4: CBSC gain stage noise analysis. The effect of noise contribution from different

elements are depicted via green (TDC noise), blue (load sampling capacitance CL) and red

(switches RS and RL). The overall input referred noise of gain stage is represented via (IRN).

D(i)VREF is the output of analog multiplexer in 1.5-bit/stage. Vcm is the common mode voltage.
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is on and in series with CL and SS is on and in series with CS. Therefore the input-referred voltage

noise due to the switches is expressed as:

TDCd
totinswitches

t
KTRv

,

2
,

2

1
.4 (4.13)

where Rtot is the total resistance which is seen at the input node of the TDC (IRN node) which is

equal to:
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where CfL is the series combination of the Cf and CL. It should be noted that the switch noise is

filtered via the noise bandwidth of TDC (1/2td,TDC).

The last noise source is the contribution of the noise sampled onto the load capacitance from the

capacitor network. The total capacitance value at the output node is defined as:

Lseries

Lseries
tot

CC

CC
C




. (4.15)
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Figure 4.5: Comparator with noise sources. TDC is active when TSet is on.
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where Cseries is the series combination of the Cf and Cs. Therefore, the noise value of CL is:
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The input referred noise of CL is calculated by dividing it by the gain value (G1.5-bit) of the 1.5bit

gain stage (CS= Cf):
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The nominal thermal input referred noise value is around <2 (differential architecture)×25µVrms

for fs = 30kHz. In [134], detailed statistical analysis for calculating IRN of three types of SAR

ADCs is proposed. The popular model for ideal quantization noise power (
2

,SARqnv ) calculation

is shown in Figure 4.6(a). In Figure 4.6(b), the difference between the output of digital to analog

(DAC) converter VDAC and Vin,
2

,SARIRNv , is then a measure of the combined effect of quantization

SARqnv ,

SARIRNv , SARthermalv ,

SARqnv ,

Figure 4.6: Model for ideal quantization noise and (b) Proposed model for thermal noise

voltage in an SAR ADC.
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and thermal noise in the noisy system. When the ideal quantization noise (
2

,SARqnv ) is subtracted

from
2

,SARIRNv , thermal noise power
2

, SARthermalv is derived. The input-referred noise of a SAR

ADC 2
,SARIRNv in conversion phase is:

2
,

2
,

2
, SARqnSARthermalSARIRN vvv  (4.18)

where
2

, SARthermalv and
2

, SARqnv are thermal and quantization power terms. The typical value for

SARthermalv , is in the range of 0.7–2.2mV. This value can be justified through different constituent

building blocks noise contributions in the bit-conversion phase (switching noise is not included).

In the bit-resolve phase, the bits are resolved one-by-one by comparator and capacitor arrays. The

thermal noise contribution of capacitor arrays is equal to kT/Ctot where Ctot is the total capacitance

of the capacitor array (64μV for a Ctot =1 pF). The second unit, the digitization phase, is a dynamic

comparator which intrinsically has 10X higher noise ( compnv , > 0.5–2mV ≈ SARthermalv , ) [134-

137]. This implies that the dynamic comparator noise power term (
2
,compnv ), dominates by a factor

of 100X over other terms. The noise study in this section, a CBSC 1.5-bit/stage5 architecture

suggests that it is more suitable for biomedical applications due to its noise behavior. In order to

provide a simplified model for power analysis, noise multiplying factor (NMF≈ α), is added in the

LNA power model to show the effect of converter input referred thermal noise voltage on this

block. The next two points develop the power-noise analysis in this section:

(NMF= α) selection: To calculate α, first the ADC IRN is reflected to the input of analog section.

It is assumed that an ideal LNA is used in designing of NFI, so the ADC IRN can be modeled as

an independent noise source ( 2
,sourceniADC ) in the input of analog section:

22

2
,2

,
. PGALNA

ADCthermal
sourceniADC

GG

v
 (4.19)

5 More efficient noise behavior is expected from ZCB gain stage [128].
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α is the defined as
2

,
22

2
,

2
,

2
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.. rmsniPGALNA

ADCthermal

rmsni

sourceniADC

vGG

v

v

v
 . So the value of α depends on input referred

noise power of LNA 2
,rmsni . For example, in an NFI with (νni,rms

6=4µVrms), employing SAR ADC

for digitization, α is in the range of (0.175-0.55). The NFI systems employing SAR ADC demand

more stringent requirement for noise suppression in LNA compared with the CBSC architecture

where α ≈0 due to the fact that the nominal input referred noise value of a CBSC 1.5-bit/stage is 

much lower compared to SAR data converter.

IRN of analog section: the NFI IRN ( 2
,

2
,

2
, sourceniADCrmsniNFIn vvv  ) should be lower than the

background noise of the neural recorded signal ( 2
,recordingnv ) (see Figure 4.7). In addition to this limit,

the overall amplified noise of NFI at the input of the ADC should not be higher than the

quantization noise to avoid any information loss in the digitization process. The limits are:
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6 This value can be calculated based on different circuit architectures such as [131].
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Figure 4.7: illustration of conditions in Eq.(4.21).
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The Vn,recording of a LNA can be set at a reasonable upper limit which is 10µVrms (it satisfies

Eq.(4.21)). This limit is estimated by extracting the spikes from neural data and subtracting them

from the original waveform. The remaining signal is pure noise and the noise root-mean square

(RMS) of this signal is an accurate indication of noise level prior to LNA.

The power bound evaluation procedure of NFIs employing different types of data converters is in

Figure 4.8.

4.2.3 Programmable Gain Amplifier (PGA)

Assume that there is a sample-and-hold (S/H) as part of a data converter which operates at Nyquist

rate 2BWLNA where BWLNA is the LNA bandwidth. Further assume that the LNA has one dominant

pole and the output of the LNA goes through a first linear settling. As illustrated in Figure 4.9, S/H

tracking sampling time (Tsampling) and hold time (Thold). The sum of the S/H processing time

(TS/H=Tsampling+Thold) must be less than the conversion time (TS/H <TADC). In a conventional single

amplifier with a single dominant pole, it is takes some time to settle to an acceptable residual error

Figure 4.8: Block diagram for NFI power evaluation using different converters. The overall
power consumption is expressed as PNFI=(PLNA).(1+ α) +(PPGA)+ (PADC).
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As a result the time left for data conversion is significantly reduced and the conversion speed must

operate at a higher speed. In order to deal with the residual issue, a low power system is proposed

in [138] that differs from the conventional approach. In addition to the LNA, the system consists

of a PGA that drives the S/H. The benefits of this system are:

 The optimum power can be obtained via proper design of PGA and ADC parameters.

 Fine tuning of the gain is available.

The PGA drives the ADC and must meet a slew rate constraint. Typically, the time constant of the

PGA is:

PGAL
PGAm

PGA
PGALPGAPGA C

g

G
CR ,

,
,  (4.22)

where RPGA is PGA output resistance, CL,PGA is the load capacitance seen at PGA output node and

gm, PGA is PGA transconductance. The required bias current during the slew time (TSlew) in the PGA

is:

Figure 4.9: Illustration of PGA operation timing. PGA drives the S/H of data converter.
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Slew
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..,
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where VFS is the full scale range of the ADC. Typically, the time constant of the circuit must be

small enough to make the circuit settle to within 2-n for an allowable settling time TSettle i.e.:

  n
PGAsettleTe

 2/ (4.24)

which leads to τPGA=TSettle/(n.ln2). For a given capacitance CL, PGA, this result bounds gm,PGA and,

therefore, yields a minimum supply current of the circuit based on linear settling IPGA,Settle= gm,

PGA.Veff:
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The total time allowed for slewing (TSlew) and linear settling (TSettle) can be set at TPGA = 1/4fs

(Figure 4.9). The minimum PGA power consumption is:

SettlePGASlewPGAPGA PPP ,,  (4.26)

CL,PGA can be equated to the capacitor network in the sampling path of S/H (Cu). Cu is determined

by equating the sampling noise with the quantization noise [139]:

2

.22..12.

VFS

KT
C

n

U


 (4.27)

where β is a constant factor between 2–5 [140], and VFS is the full-scale voltage of the ADC. Since

the theoretical limit for the unit capacitance Cu obtained by equating the sampling and quantization

noise can be hardly reached in practice because other non-ideal effects such as mismatch, parasitic

capacitances or charge injection from switches, the β coefficient is added to make the value of Cu

more realistic. PGA and power consumption values then take into account some practical effects.

4.2.4 ADC Power Consumption

The theoretical minimum power consumption is examined in this section, firstly of a SAR ADC

and secondly a power-scalable cyclic ADC using the CBSC approach.

4.2.4.1 SAR ADC:

The conversion process in a SAR ADC is performed by three basic building blocks (Figure 4.10):
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a dynamic latch comparator (DLC), a capacitive DAC and a successive-approximation register

(with its associated control logic). Assuming the power consumption of the noise-limited

capacitive DAC is negligible, the power consumption of the SAR ADC is:

SwitchregisterDLCboundSAR PPPP ,
(4.28)

where PDLC is the power consumption of the DLC, Pregister is the power consumption of the

registers, and PSwitch is the switching power.

4.2.4.1.1 Dynamic Latch Comparator (DLC): This section explains the DLC power

consumption in regeneration (reconfiguration phase) and reset phases. For simplicity of the

analysis during regeneration phase, the DLC is modeled as two back-to-back inverters as shown

in Figure 4.11. The output voltage equation (VO=VX-VY) of comparator [141] is:











DLC

DLCd
diffIVO

t
VAV


,

, exp (4.29)

where AV acts as a gain factor from the inputs to the initial imbalance of the inverters, diffIV , is the

input voltage difference to the DLC, td,DLC is the DLC decision time, and the time constant

τDLC =CDLC/gm,DLC where CDLC is the capacitive load of the DLC and gm,DLC is the total

transconductance of the DLC simplified model.

In the binary search algorithm in a n bit DAC, n steps are needed to complete one conversion as

the DAC output gradually approaches the input voltage. The diffIV , for the ith-step can be expressed

diffIV ,

Figure 4.10: Charge-redistribution SAR ADC.
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as:
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where VIN is the input voltage, VREF is the DAC reference voltage and Dn–1 is the binary digit (either

‘0’ or ‘1’). Eq.(4.29) is rewritten as:
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Assuming that td,DLC = 1/2fs = Ts (i.e., the DLC works continuously) the required gm,DLC is:
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The sigma (Σ) term is expanded as:  

      




































n

k
k
REFV

INVDD

n

k
k

REFVINV

DD VA
VAV

VAVA

V

11 2

.
lnlnln

2/
ln (4.33)



















L

L

L

V

R

Vx

dt

dVx
CVy

R

A



















L

L

L

V

R

Vy

dt

dVy
CVx

R

A

Figure 4.11: Simple model for dynamic latch comparator.
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Replacing the sigma (Σ) term of Eq. (4.36) into Eq. (4.32) is results in: 
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The simplified total input-referred noise voltage of the DLC has a fundamental kT/C limitation

given by [142]:

DLCC

KT
Vn 42  (4.38)

where γ is a noise parameter (γ = 2/3 to 2). Equating this noise to the quantization noise, the

minimum capacitive load of the DLC (under noise constraint) is:

2

22
48

FS

n

DLC
V

KTC  (4.39)

Substituting Eq.(4.39) in Eq.(4.37) the minimum value of gm,DLC and thus Id = gm,DLCVeff can be

found 7. The minimum DLC power consumption is:

7 For bipolar transistors Veff = kT/q (~26 mV), for MOS transistors in strong inversion Veff = (VG – VT)/2, and for MOS transistor
in sub-threshold Veff = mkT/q with m (sub-threshold slope factor) slightly larger than one. For typical transistors in 90–350 nm
processes Veff is 100–300 mV.
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In addition to the regeneration power during reset phase, the capacitive load at the comparator

output is reset to the supply voltage VDD. The power consumption during the reset phase is

expressed as:

2
, ... DDUSresetDLC VCfnP  (4.41)

The total amount of consumed power in operation phases is equal to:

resetDLConregeneratiDLCDLC PPP ,,  (4.42)

4.2.4.1.2 SAR Register: Normally the register logic consists of 2n D-type flip-flops (DFFs) for n-

bit resolution [143] (see Figure 4.12). It is assumed that each DFF can be modeled with a minimum

of twelve transistors if they are replaced with NMOS pass transistors (almost six inverters) [144].

Typically an inverter consists of one minimum geometry nMOS and 3X wider pMOS transistors.

Cmin is defined as the input capacitance of a minimum-sized inverter; Cmin = 1 fF and 5 fF for 90-

nm and 180 nm technologies respectively. The entire register logic could be considered as a

capacitive load (Clogic = 24nCmin). To drive the capacitance within the sampling phase requires a

Figure 4.12: SAR digital logic.
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current of I = (ClogicVDD) / Ts which leads to the following minimum power consumption for the

register logic:

2
min

296 DDsregister VCfnP  (4.43)

4.2.4.1.3 Binary Weighted Charge-Scaling DAC: The DAC in a SAR ADC uses a binary-

weighted capacitor array (with a unit capacitance Cu) to attenuate VREF by charge scaling. In the

conversion phase, the switches in the capacitor array are recursively set to ‘1’ (close) or ‘0’ (open)

to adjust the binary-weighted values to the input sample value. In fact the DAC power consumption

depends on the units contributing to the power consumption of SAR ADC including the loading

value of the capacitive array, input signal swing and the employed switching approach. For an n-

bit conventional SAR ADC, the average switching energy is [145]:
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where VREF is the reference voltage, and ζ is a normalized switching scheme-dependent parameter.

For conventional switching approach [145], ζ = 1 (for advanced approaches with bypassing

methods ζ = 0.6-0.7). Hence, the power consumption due to the switching action is:
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Figure 4.13: SAR ADC switching.
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4.2.4.2 CBSC Cyclic ADC:

Although the SAR ADC is generally used for converting bio-signals, there are drawbacks with this

architecture including area occupation (which increases exponentially with resolution), the design

of the capacitive array with matched elements and the necessary switching activity. An alternative

ADC is the CBSC cyclic data converter which has not previously been considered for NFI design.

The CBSC gain stage has been reported in [126-127] which replaces the op-amp with comparator

and current sources, allowing more efficient use of power. As shown in Figure 4.14 a cyclic ADC

uses a simple analog circuit that is repeatedly re-used to perform the conversion cyclically in time.

This results in a very compact ADC but is obtained at the cost of a long conversion time. It requires

n + 1 clock periods to provide an n-bit output. The overall power consumption (PCyclic, bound) of a

CBSC cyclic ADC is estimated as follows:

 FineCoarseTDCboundCyclic PPPnP  ).(, (4.46)

Figure 4.14: Block diagram of a cyclic ADC. (a) CBSC gain stage core and (b) timeline for output

voltage (VO).
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where PTDC, PCoarse and PFine are the power consumed by comparator, coarse current source and

fine current source during their operation mode.

4.2.4.2.1 Current Sources

This section discusses the requirements for the current sources, necessary to achieve a certain

accuracy in the gain stage during the charge transfer period. To meet accuracy, appropriate values

of design parameters are analytically discussed and a procedure to select them is presented.

Consider the positive half-circuit output voltage of a gain stage, as shown in Figure 4.14 (a), (b).

The settling time required to complete the settling phase, tSettle=TSet, is [146]:

FineCoarseprstSettle TTtt  (4.47)

where tprst is the preset time duration, TCoarse is the coarse charge transfer phase (charging time)

and TFine is the fine charge transfer phase (discharging time). The initial charging time, TCoarse, is

given by:

1d
C

a
Coarse t

M

V
T  (4.48)

where MC is the coarse phase ramp rate, td1 is the delay time during the coarse phase and Va is

equal to the voltage difference between the common mode voltage, Vcm, and the negative preset

level (VREFN), (Va=Vcm–VREFN). During the fine transfer phase, the primary overshoot (VOVP)

produced at the end of the coarse phase, has to be compensated. The overshoot recovery time,

TFine, is given by:

2d
f

OVP
Fine t

M

V
T  (4.49)

where Mf is the fine phase ramp rate and td2 is the delay time during the fine phase. VOVP is given

by.

1
1 .

.
dC

U

dCoarse
OVP tM

C

tI
V  (4.50)

Here, ICoarse is the coarse current and CU is the total loading capacitance at the output of the gain

stage. Eq.(4.49) can be rewritten as:
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Substituting Eq.(4.48) and Eq.(4.51) into Eq.(4.47) gives the total charge transfer time in terms of

the comparator delays, td1 and td2, the coarse ramp rate MC, and the fine phase ramp rate Mf, as:
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For simplicity, td1= td2= td is assumed in the succeeding discussion. For a specific accuracy

requirement the final overshoot is set by к.LSB where к (e.g.1/8) is the accuracy factor which

determines the allowable variation at the end of the charge transfer phase. The maximum allowed

output voltage overshoot for the first stage is Vovf =к.(VFS.(2-n))= к.(LSB). This overshoot value

determines the maximum final ramp rate for stage:
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By substituting Eq.(4.53) into Eq.(4.51), the required time to complete the fine charging transfer

is given by:
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Assuming the sampling capacitor size is determined from section 4.2.3, the maximum fine phase

current can be determined. In addition the total charge transfer time must be less than half of the

sampling clock period (Ts/2=1/2fs). It indicates that the ICoarse and IFine are suitable to satisfy the

charge transfer phase. Substituting Eq.(4.52) into the sampling clock constraint leads to:
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Rearranging Eq.(4.55) yields:
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Solving Eq.(4.56) for the coarse ramp rate MC, results in:
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The power consumption of coarse current source PCoarse is given by:

   dCoarseDDUCCoarse tTVCMP  ...2 (4.58)

where VDD is the supply voltage. For the fine phase, the operation of an inverter during discharging

can be considered. During this phase the overshoot voltage induced in the coarse phase is drawn

from the capacitor network. In this situation the displacement current through the capacitor is

caused by the pull-down current source and flows into ground. Thus the energy PFine is:

    dFineCMdCUFine tTVVatMCP  .. 22 (4.59)

4.2.4.2.2 Threshold Detection Comparator (TDC)

In this section power analysis for the threshold detection comparator (TDC) is examined. The

comparator translates crossovers into a change in output logic value which controls the current

sources. The TDC can be implemented by cascading several identical band-limited comparators

[147] as shown in Figure 4.15. gm is the transconductance and C is the capacitance of the output

node at each stage, The delay between the comparator decision and the output logic unit for

activation of the current sources is susceptible to process variations which can cause instability in

the CBSC gain stage. In addition, the harmonic distortion at the output node of a CBSC gain stage

is inversely proportional to the TDC delay time (td,TDC). The effective open-loop gain ATDC of a

CBSC circuit [148] is inversely proportional to TDC delay (td,TDC):

TDCd
TDC

t
A

,

1
 (4.60)

An optimum design strategy is to minimize the TDC delay (td,TDC) by cascading the N identical
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amplifiers. The step response of a cascaded amplifier is:
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Therefore, the output voltage of stage N is generalized as:
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where for each comparator stage τ = C/gm is the unity gain time constant and N is the number of

stages. The bandwidth (gm/C) is given by:
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Figure 4.15: Illustration of a cascaded comparator. ATDC=Vout /Vin.
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where (ATDC=Vout /Vin) is the total gain of the cascaded TDC. For a comparator composed of a

cascade of gain stages, only the noise of the first stage is important. The input-referred noise of

the subsequent stages will be suppressed by the gain of the first stage gain. The number of

cascading stages is chosen as one (N=1) in this analysis, since there is no need for high speed

conversion rates in biomedical applications (e.g. spike sorting requires 30Ks/s). For example in

[149], a two stage cascading topology is considered to implement a highly accurate data converter

for 26MS/s digitization rate. The use of a logic unit followed by the TDC in CBSC ensures that

the settling issue is less significant compared with op-amp based architectures. The performance

of the TDC is limited by its finite slew rate and its delay (td,TDC). The TDC bias current level must

be chosen to provide a high slew rate. The required current to drive the logic unit input capacitance

(C=CLogic) to VDD is (IComp=CLogic.VDD/td, TDC) where CLogic is equal to the input capacitance of the

logic unit which is composed of a switch and 2 DFFs (Figure 4.16). So the TDC must be capable

of driving a capacitive load in the order of 48Cmin. In addition, the td, TDC is designed in the order

of 1/20fS. The power consumption of TDC is calculated as PTDC=ITDC.VDD.
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Figure 4.16: Driving logic by TDC (N=1).
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where TComp= TSet is the time when comparator is active. Furthermore, the ATDC-gm (for N=1) can

be investigated via E.q. (4.63).

4.3 MATLAB-FPGA Interfacing

Figure 4.17 shows the system used to accurately characterize the effect of NFI parameters on spike

sorting. The FPGA board interfaces the developed NFI behavioral tool in MATLAB using a UART

connection. The spike processor is programmed on an FPGA to cluster the input neural data. It

reads the neural data from MATLAB via the interface, executes spike sorting, and finally the sorted

data are sent back to MATLAB for cluster accuracy analysis. The MATLAB-FPGA Interfacing

provides an assessment tool to avoid over-engineered NFIs by taking into account their impact on

subsequent spike processing during the design process. The design specifications can then be

adapted in order to maximize power efficiency and minimize hardware resource utilization.

4.3.1 Spike Sorting Processor

Instead of using Matlab the spike sorting processor based on the DD|2-Extrema and online

clustering method was implemented in an FPGA. This was to demonstrate the potential online

hardware capability when applied in an ASIC. The Xilinx Artix-7 (XC7A200T) FPGA was

programmed with Verilog using the Xilinx ISE 2014 tool. To satisfy power and area constraints a

serial-parallel approach was adopted for the system architecture. Figure 4.18 shows the functional

block diagram of the synchronous spike sorting processor. It implements spike detection,

alignment to positive or negative peaks, mapping of aligned spikes to feature domains (feature

extraction using DD|2-Extrema [150]), and finally clustering by assigning feature vectors to their

origins based on the ℓ1-norm metric. The detection block constantly receives the raw data for

calculating the detection threshold. The captured spike is applied to the alignment block for

Figure 4.17: MATLAB-FPGA Interfacing used for NFI key parameters optimization.
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calculating the alignment address based on a selected configuration such as maximum peak, mixed

peak, maximum slope etc. The alignment address provides 45 samples for each aligned spike to

the feature extraction block. Aligned_valid is used for buffering the Aligned_spike. The spike

sorting processor performs clustering by reading the buffered feature vectors (Feature_vec).

Figure 4.19 shows the buffering structure of the feature vectors. It comprises a bank of register

Figure 4.18: Block diagram of the spike sorting processor.
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memories. Each register is used to save a feature vector (fv). When a spike is saved in a register

(e.g. fv0), the writing pointer is incremented by one to save the next fv. In the reading section,

when the training or assignment for the current spike is performed, the next fv is called for

processing. The decoder enables the address and the reading enable (Rd_en) signal for reading the

fv. Incrementing the reading address (Addr_rd) at each clock cycle access to all the buffered

samples is available for either the training or assignment phase.

The clustering step uses online sorting (O-Sort) [13] which is composed of training and assignment

units to perform unsupervised, real time mapping of spikes to single neuron activity. The O-Sort

steps are as follows:

1. Initialization – assign the first feature vector (fv) to a cluster.

2. The distance (Dist) between the next received spike fv(n) and other known cluster means

[c(n)] is computed using the ℓ1-norm metric for the number of samples (NS) representing

fv(n) where
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where i denotes the row number and r denotes the sample number of each feature vector.

3. If the smallest distance is less than the merging threshold TM, the spike is assigned to the

nearest cluster and that cluster’s mean is computed as the weighted average of the input spike

and the current cluster:
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Figure 4.19: Block diagram of the features buffering memory.
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where W is the number of spikes representing a specific class and * denotes multiplication.

Otherwise, a new cluster is generated.

4. Check the distances between each cluster and every other cluster. If any distance is below

the sorting threshold TS, merge those two clusters and re-compute its mean.

5. Once the cluster means are identified in the training phase, cluster assignment is initiated to

simultaneously process and assign the incoming spikes to one of the recognized cluster

means in the training phase according to the minimum distance (Dist).

Steps 2–4 are then repeated continuously. The design uses a threshold T = 4(σN) for both TM and

TS, where σN is the noise standard deviation of the data computed continuously with a long sliding

window. The outputs of the clustering block, namely Cluster ID, feature vector (fv) and Spike time,

are used for sorting performance calculation and feature space analysis.

The results of the spike sorting processor are based on 250 feature vectors composed of extrema

of discrete derivatives. Compared to the only other spike sorting processor that provides real time,

multi-channel clustering [76], the hardware model developed for DD|2-Extrema has approximately

8X smaller memory size. The proposed spike sorting processor provides detection, alignment,

feature extraction and clustering for real time processing.

4.4 Validation Tests and Results

4.4.1 Test Setup

As explained in previous section, the MATLAB-FPGA interface is established to accurately

characterize the impact of front-end circuitry on back-end processing. The implemented NFI

simulator in MATLAB sweeps the parameters and assesses the sorting accuracy based on the

FPGA hardware implementation. The demand for sorting performance determines the minimum

NFI specifications. Data is processed by the FPGA platform, and the results are written to the

output buffers for accuracy analysis. For each spike, the spike sorter outputs the Cluster_ID,

Assign_ID, Spike_time and feature vector (fv). Outputs are used for sorting accuracy analysis.

After initializing the FPGA, the spike processor runs for a specific time (user programmable) to

establish the cluster means in each channel. The entire dataset is then processed based on the tuned
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parameters in detection and sorting units. The spike sorter FPGA implementation is depicted in

Figure 4.20.

4.4.2 Design Optimization

In the following sections, key parameters of the NFI are optimized based on the spike sorting

performance of the processor implementing the DD|2-Extrema feature extraction method described

in chapter 3. A second order bandpass Bessel filter was used in the NFI model to reject the

undesired out-of-band frequency components, namely low-frequency local field potentials and

high-frequency noise. The Matlab function resample was used to down sample the bandpass

filtered data. The function quant was used to quantize the sampled data.

The low and high corner frequencies of the LNA were swept and the performance of the spike

sorting processor was observed to define an optimized bandwidth for the LNA. In each iteration,

the clustering accuracy (CACC) was calculated for the optimum values:

%100
NTS

TPCC
CACC (4.70)

where TPCC is the number of truly detected and correctly classified spikes and NTS is the number

of truly detected spikes. NTS = DTS – (FPS + MS), where DTS is the number of detected spikes,

FPS is the number of false alarm spikes due to noise or overlapping spikes, and MS is the number

of missed spikes. The spike processor clustering test using template matching (TM) feature

extraction is depicted in Figure 4.21.

The performance of the spike sorting processor was also evaluated when the sampling frequency

and the resolution of the ADC were swept. The specifications of the key components of the NFI

were optimally defined having both efficiency and efficacy in mind. The derived optimum values

Figure 4.20: Block diagram of the processing elements on the FPGA.
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from classifier robustness analysis were used to compare the NFI power limit of two types of data

converter.

4.4.2.1 Defining Band-pass Response With Respect to Spike Sorting Performance

The obtained dataset introduced in chapter 2 (section 2.4.1) was already high-pass filtered. Low

frequency noise was added to this data to examine the performance of the spike sorting processor

given different low corner frequencies. Low frequency noise was extracted from a different dataset

[151]8 and superimposed on the dataset under examination. Figure 4.22 shows the result of

variations in high and low corner frequencies on CACC. It can be seen that for good performance,

8http://crcns.org/data-sets/hc/.exp
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Figure 4.21: The spike sorting processor clustering test using template matching (TM) FPGA

platform. The sample output from one of the channels is shown in this figure. (a) Segment of

neural signal. (b) Distinguished cluster means from 250 spikes in training phase. The spike

processor for TM is developed for this test. (c) A 2-D projection of the clustered spikes color-

coded, each represents a cluster. (d) The relation of clustering accuracy to noise level.
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the low corner frequency for the high pass should be set to approximately 500 Hz [Figure 4.22

(b)]. Similarly, the corner frequency of the low pass should set at approximately 7 kHz [Figure

4.22 (a)], below which the performance is degraded Principal component analysis (PCA) feature

space can also be used to demonstrate the separation quality of the clusters. Increasing the high-

pass cut-off frequency marginally increases the overall spike sorting accuracy. There is small

degradation in the sorting performance when the LNA bandwidth (BWLNA = fLP – fHP) is reduced to

about 4 or 5 kHz. The sorting performance rapidly deteriorates for bandwidths of less than 3 kHz.

Figure 4.22 (c) shows the PCA feature space when the bandwidth is set to 3 kHz. The Euclidean

distance of the feature vectors for different sampling frequencies is shown in Figure 4.22 (d). A

high Euclidian distance means higher error rate and lower accuracy. It shows that bandwidths of

less than 4 kHz cause considerable deterioration in feature space (note that the spike energy

concentration is in the frequency range of 6–7 kHz).
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Figure 4.22: Effect of low pass (a) and high pass (b) filtering on spike sorting accuracy (mean

over all spike datasets). The local field potential was extracted from in-vivo recording and

superimposed on the dataset under examination. (c) PCA feature space for the feature vectors of

three neurons. (d) Euclidean distance analysis of feature vectors.
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4.4.2.2 Resolution (n) and Sampling Rate (fs) Versus Spike Processing Performance

The performance of the spike sorting processor for different ADC resolutions was investigated.

As shown in Figure 4.23 (a), when the ADC resolution increases the CACC of the spike sorting

processor increases up to a limit beyond which there is little improvement. This limit depends on

the degree of variations of the spikes where some of the variations are not represented in the

digitized signal. The limit is approximately 7 bits in Figure 4.23 (a). Similarly the ADC sampling

rate should be high enough to represent the shape of the spikes. This may be significantly higher

than the Nyquist frequency because the variations in the shape of the spikes associated with

different classes may be considerably subtler. In Figure 4.23 (b), a sampling frequency of about

30 kHz is sufficient to provide accurate spike sorting. The aim was to identify the lower limit of

the ADC resolution and the sampling rate because higher levels correspond to higher power

consumption.
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Figure 4.23: Effect of data conversion (a) resolution, and (b) sampling rate on spike sorting

accuracy (mean over all datasets). (c) PCA features when the sampling rate is reduced to 15 kHz

for three neurons. The effect of cluster splitting is highlighted in the figure. (d) Euclidean

distance analysis of feature vectors.
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The effect of reducing the sampling rate on the spike sorting process is also identified in PCA

feature space. The sampling rate was decimated to 15 kHz using the resample Matlab function.

The Euclidean distance analysis shown in Figure 4.23 (d) shows that the sorting performance

degrades rapidly when the sampling rate decreases below 30 kHz. Reducing the sampling

frequency causes creation of sub-clusters corresponding to one original cluster so cluster splitting

results in large sorting performance degradation. The more the sampling frequency is reduced, the

more spurious sub-clusters are generated. Figure 4.23 (c) shows the PCA feature space

representation when the sampling frequency is reduced to 15 kHz. Additionally, it was observed

that the PCA features space does not significantly change when the number of bits is reduced to

as low as 4, which shows that the features are robust to the quantization bit depth.

4.4.3 NFI power bound

The overall minimum power consumption of a noise-limited NFI is:

      ADCPGALNANFI PPPP  .1 (4.71)

A survey of PNFI for published neural recording systems versus bit resolution is shown in Figure

4.24. There is reasonable agreement between the calculated NFI power limit and published

measured results. Notably, the BioBolt [152] has very similar power consumption to the proposed

model. The reported specifications are 1.3 µW/ch and fs = 31.25 kS/s which results in a figure-of-

merit (P/fs) of 42 pJ. The estimated NFI power limit using the CBSC cyclic ADC with the

optimized design parameters (BW, fs, n) is 8 pJ which is about 5 times smaller. In addition, for

n = 7 the P/fs ratio of the noise-limited NFI using the CBSC cyclic ADC is about (1.52X) (33%)

times lower than the NFI using the SAR ADC. The difference between the NFIs can be investigated

through the noise-power contribution of the data converter. It is assumed that the reported NFI

parameters in [152] are designed based on power bound analysis, so they can be used for

scrutinizing the theoretical power dissipations difference between the NFI using SAR and CBSC

data converters for a given resolution. In [152], for digitization purposes, a traditional SAR ADC

with sampling frequency tunability is implemented. It should be noted that, the analysis of noise-

power in this chapter covers different SAR ADC implementation methodologies considering

(NMF=α) and efficient power modelling of data converters. Based on [152], the reported LNA

IRN for the bandwidth of (0KHz -10Hz) is 5.62μVrms. This results in an α range of (0.13-0.4)
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which means (13-40%) power difference if the aim is obtain a fixed amount of LNA IRN. For the

resolution (n<8), which covers the optimized NFI required resolution (n=7 or even n<7), the data

converter behaves like a digital block. So the power ratio ( ratioboundP , ) between the considered

data converters can be written as:







TDCCoarse

registeronregeneratiDLC

boundCyclic

boundSAR
ratiobound

PP

PP

P

P
P

,

,

,
, (4.72)

where  is a constant term which represents the power bound ratio between the converters and a

range is considered for  (3-6). This range which applies to lower-limit (advanced SAR ADC)

and upper-limit (traditional SAR ADC) is extracted based on running different simulations in
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Figure 4.24: Estimated minimum power limit of NFIs based on SAR converter (dashed black

line), CBSC cyclic ADC (dashed blue line) versus converter resolution. The following typical

process parameters were used (180-nm CMOS): VFS = 1 V, T = 300 K, Veff = 180 mV and

Cmin = 5 fF. The NFI parameters were GLNA =100 V/V, GPGA = 10 V/V, NEF = 2 [7],

BWLNA = fLP – fHP = 6.5 kHz and fs = 30 kS/s. Data for published neural recording interfaces are

also shown (▲) for comparison. α=0.5 is defined based on the reported νni,rms =2.2 µV/Hz (0.5 Hz to

50 KHz in [131].
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MATLAB. In the SAR ADC, for a resolution of n ≤ 8, the ( registeronregeneratiDLC PP , ) dominates

the total power consumption which is proportional to У.n2Cmin where У is a constant term which

represents the other parameters contributing to the power bound of an SAR ADC. The overall

minimum power limit of the CBSC cyclic ADC is proportional to nCmin (which shows the

domination of the coarse current source). The CBSC operation is similar to a clocked-inverter9

which charges/discharges a capacitor. This model is totally compatible with voltage scaling and

technology scaling [153], [154] concepts. As reported in [152], the SAR ADC power consumption

is 87.41nW which after dividing it by (  =4), results in boundCyclicP , =21.85nW.

The overall power ratio (PR) is:

   X
P

PP

PPP
PR

SAR
PGALNA

SARPGALNA 47.122.1
.1

4.013.0 

















 (4.73)

PPGA is assumed to be same in both NFIs. According to the earlier discussion, there is good

agreement between the observed power bound difference (1.52X) (33%) in Figure 4.24 and

calculated theoretical minimum power range PR (1.22-1.47) X. In fact this type of digitization,

radically improves noise–power product (NPP) which is demanded by recording and processing

of 1K+ channels (see section 4.1). The NPP can be considered as a new figure of merit in design

of biomedical NFIs.

4.4.4 Towards Parametric NFI Design

In previous sections, the noise-power effect of a data converter on NFI power bound has been

studied. It also identified that using advanced techniques in the design of a data converter results

in thermal noise minimization. This sub-section presents a brief explanation on the continuation

of this research using the parametric NFI design. The block level system of the parametric NFI is

shown in Figure 4.25. The digitized signal Vtot at the output of the ADC can be written as:

qnADCthermalADCPGALNAnnoisendatatot VVVVVVV ,,  (4.74)

where ndataV is the neural input signal, nnoiseV is the pre-NFI system noise voltage (e.g., biological

9 In ZCB gain stage, the operation is practically based on a clocked-inverter and it is estimated that in [153] the

practical power conception is equal to theoretical power bound.
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and biological noise), LNAV is the LNA noise voltage, PGAV is the PGA noise voltage, thermalADCV , is

the ADC thermal noise voltage and qnADCV , is noise due to quantization. Removing the effect of

PGA noise and thermal noise of the ADC (NMF/α≈0) in Eq.(4.74): 

 QN

qnADCLNAnnoisendatatot VVVVV



, (4.75)

The system noise ( N ) and quantization noise ( Q ) are assumed to be independent, making the

total noise variance:

222
QNNtotal   (4.76)

In a parametric NFI design, the aim is to implement a calibration scheme via better estimation of

the recording channel SNR (
N

ppV
SNR




 ) as shown in Figure 4.25. Hence, it is desired to minimize

the quantization noise to realize a single-parameter-dependent calibration method. The noise

standard deviation (SD) of the recording channel ( N ), is a reliable measure to perform the

parametric tuning of NFI parameters as a result of reducing the effect of quantization noise ( Q ).

In most of the published systems, uniform sampling is used where the quantization steps are

uniformly spaced and the bin size is (
n

FS
LSB

V
V

2
 ). In Figure 4.26(a), the distribution of quantization

steps are uniform, so each quantization bin supplies the same amount of noise regardless of the

N

PPV
SNR




S
N

R

Figure 4.25: parametric NFI design. The system calibration is performed by recording channel

SNR. A, B and C are the tuning parameters.
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input probability density function (pdf) of neural data to the total quantization noise. On the other

hand, the optimal quantizer [155] minimizes the quantization error ( Q ) for each Gaussian pdf by

more bins in higher probability regions and fewer bins in lower-probability regions Figure 4.26(b).

It can be seen that the uniform quantizer reduces the quantization performance when there is a

pdf/variance mismatch. Two important factors as a result of using the optimal quantization will

be the future focus of this research:

1- Optimal quantization (OQ) and power-clustering performance: The application of

quantization noise shaping provides the same quantization performance with lower

resolution (n) by modifying the signal to quantization noise (SNQR). The effect of optimal

quantization (OQ) on the performance of spike sorting has been observed. Evaluation of

detection and sorting accuracy show that an optimal quantizer saves 2-3bits to resolve the

signal for the same degree of sorting accuracy compared to uniform quantizer. OQ has the

capability of noise shaping, and improves the signal to noise ratio which results in fewer

resolution bits. Consequently it saves power and area in designing the NFI and spike

processor.

2
blue

2
red

Figure 4.26: Examples of uniform and optimal quantization levels for narrow ( 2
blue ) and wide

( 2
red ) Gaussian pdfs. This curve reveals that the decision levels are densely located in high-

probability region of the x-axis and coarsely in the low-probability region.
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2- Optimal quantization (OQ) and NFI parametric design: As 2
Q decreases, the total noise

variance approaches 2
N , then the Eq.(4.76) is re-written as:

22
NNtotal   (4.77)

where, 222
LNAnnoiseN   . If 2

nnoise is considered to be equal to
2
LNA , then:

nnoiseNtotal  4.1 (4.78)

Ntotal is a an accurate estimation for determining SNR in NFI parametric modelling. In the

parametric model, there is potential to design an ultra-low power NFI (PNFI < 500nW)

compared to state-of-the-art [156], [157]. This would allow not only monitoring of >1K

channels but also additional digital processing would be possible on the recorded data.

Figure 4.27: Power (blue)-CACC (black) analysis when OQ is used. Using OQ saves 2-3 bits in

digitization. Desired power-area is illustrated with green square.
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4.5 Conclusion

Future implantable devices which may have many hundreds of recording channels, involve

increasingly complex processing, requiring power whose availability is very limited. This chapter

has identified the minimum power limits that can be attained by considering fundamental concepts

in the design of the NFI containing a low noise amplifier (LNA), a programmable gain amplifier

(PGA) and an analog-to-digital converter (ADC) followed by a spike sorting processor. For the

LNA the optimal low pass and high pass cutoff frequencies have been found to be about 500 Hz

and 7 kHz, respectively. Examination of the lower power limit of NFIs has shown that the CBSC

cyclic ADC is up to 30% more energy-efficient than the conventional SAR ADC. A power efficient

spike sorting processor has been implemented on a FPGA capable of online and unsupervised

clustering which has been used to identify the precise definition of NFI design parameters. The

results have shown that 7-bit processing is sufficient for efficient spike sorting. The spike sorting

process is robust to the ADC resolution but clustering accuracy is quite sensitive to the sampling

rate. Analysis of the NFI to identify the optimized key parameters has suggested that the

acquisition system has a minimum power limit set by spike sorting processing constraints rather

than noise limitation. As discussed in section 4.2.2, there is significant potential for power saving

by implementing an efficient management/calibration system in the using parametric NFI. The

parametric power optimization methodology proposed provides a guide toward the design of future

ultra-low power and extremely efficient acquisition methods.
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CHAPTER 5

Biomedical Signal Processing Using Adaptive Techniques

5.1 Introduction

This chapter introduces a complementary processing framework to the non-adaptive classical

synchronous processing systems (SPSs). This type of processor realizes an adaptive paradigm

which in functionality or structure of the processor tailors itself via the characteristics of the input

data and the defined processing frames. From the viewpoint of system level design, the proposed

processing scheme combines three well-known processing approaches synchronous, asynchronous

and self-tuning in the adaptive paradigm. As a result, unlike the SPS, which has been used for

many years due to their simple realization, the adaptive processor’s operation becomes signal

dependent. The monolithic structure of SPSs does not allow the designers to implement a

reconfigurable processing system which is robust to the input signal variations (e.g. signal noise

standard deviation (σN)). At system level, any adaptive processor can be broken into two main

parts: firstly the main processing path which utilizes the classical synchronous system (no ability

to sense the signal characteristics) which operates with a master clock, and secondly the embedded

processing frames (also referred to as modules or layers) which are defined based on the targeted

application. Basically, the adaptive processing frames sense the input signal statistics and shape

the processing path for maintaining optimal performance. Hence, the whole system is able to

operate in two distinct processing modes: 1) synchronous processing and 2) adaptive processing

mode. In summary, this chapter delivers a new class of a well-suited processing platform for

biomedical applications, particularly for spike sorting. This chapter is organized as follows:

Section 5.2 focuses on developing embedding adaptive frames for spike sorting methodology

developed in Chapter3 by characterizing the recorded neural data. Extraction of these frames are

developed by the concept of re-definition of the spike processing through reverse-adjustment (RA).

This section also compares the properties for this class of processing with the SPS. Section 5.3

provides detailed description of a complete design methodology for an implantable, unsupervised,

on-chip and adaptive spike sorting processor. The circuit techniques for inserting the developed

frames to the spike processor are described. In addition to the adaptive frames the choices on
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architectures and circuit techniques regarding a multi-aspect optimization methodology (accuracy-

power-area) are enumerated. The spike processor implementation details and measurement results

are presented and compared with the state-of-the-art in Section 5.4. This section also has a brief

description of the next generation of the proposed adaptive spike processors. Section 5.5

summarizes and concludes the chapter.

5.2 System-Level Illustration of Adaptive Spike Sorting

5.2.1 Development of Adaptive Frames for the Spike Sorting Application

Adaptive spike processing is introduced in this section as an advantageous alternative to the

classical spike sorting systems. This section discusses the motivation behind the selection of

embedding frames for spike sorting application to maintain the optimal clustering performance

under any conditions. Hence the processing outcome is independent from the input signal. As

explained in Chapter 3, the two key factors in spike sorting performance degradation are the noise

of recorded data and the similarity index between the spike waveforms. The aim is to develop a

spike processor in which the performance is adjusted to an optimal level (maintaining lowest

clustering error) with the varying difficulty between the recorded spike waveforms in recording

channel and different noise levels.

The concept of the frame extraction procedure is shown in Figure 5.1. Figure 5.1(a) is the block

diagram of a traditional spike processor whose performance varies as a function of noise (f(noise))

and similarity of extracted spikes (f(similarity)). Figure 5.1(b) shows the spike sorting concept

developed with added reverse-adjustment (RA) flow. In this class of spike processing, it is required

that the resulting clustering performance (CACC) is independent (⊥) of noise and spike shape

similarity between the detected spikes. As a result, the processing frames are developed based on

the RA concept in spike sorting as shown in Figure 5.1(c). Adding the created frames (Frame1 and

Frame2) to the traditional spike processor presents a fundamentally new approach for mapping the

recorded spikes to the individual neurons. The newly created frames provide the functions of

adaptivity or reconfigurability by in the recording channel distinguishing the noise property of

neural data stream (Frame1) and the similarity between active neurons (Frame2) to maintain the
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Figure 5.1: (a) Traditional spike sorting which in the performance is the function of noise
(f(noise)) and similarity (f(similarity)). (b) Illustration of spike processor independent (⊥) of
recorded data noise and similarity of spike waveforms. In this class of processing it is
expected that the CAcc is matched with ground truth and at any condition set in neural signal
simulator (c) Abstract view of mapping the proposed reverse-adjusted spike processor
characteristics into the frames (Frame1 and Frame2) for implementing adaptive concept.
Frame 1 increases the processor noise robustness while Frame 2 is adapts the similarity level
between the extracted spike waveforms. (d) Transformation of developed spike processor in
Chapter3 based on developed frames (Frame 1 and Frame 2). The created frames are
embedded to the main processing line.
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clustering performance at an optimal level. Figure 5.1(d) shows the two frames added to the spike

sorting system previously described in Chapter 3. The adaptive processing provides an on-chip

tuning mechanism for programming the key coefficients in the relevant building blocks. As noted

earlier, this class of processing uses the design concepts from online, self-tuning, synchronous and

asynchronous domains.

5.2.2 Transforming the Defined Adaptive Frames into Processing Units

As discussed in previous section it is desired to implement spike processor effectively independent

of the main issues causing errors in the clustering performance namely noise variations in

recording channel and the similarity measure between the existing spike waveforms (Figure

5.1(c)). The previously explained frames are translated into mathematic models in the appropriate

circuit blocks. Frame 1 provides noise robustness to the processing chain by modelling the noise

standard deviation of the recorded neural signal (σN) 10. This value can be calculated by the median

processing of the recorded neural data. Frame 2 provides similarity robustness by modelling with

the localized difference extraction of the aligned spikes which is explained in 2.5.4. The similarity

pattern extractor (SP) unit is initiated intermittently to update the similarity information of the

existing spike waveforms in the recording channel. The (SP) is sent to the FE unit to synthesize

the behavioural analysis of the extracted local differences (amount of dilation/contraction) for

activation of the decomposition lines. Providing similarity robustness to the spike sorting chain.

5.2.3 Overall System Description

This section illustrates the system level implementation of an adaptive spike processor based on

the concept detailed in previous section 5.2.1 and highlights the resulting properties Figure 5.2

shows the adaptive spike sorting diagram. The created adaptive frames are integrated into the

sorting system. Frame 1 records the noise variance (σN) and defines the (SThr=4*σN) [89] which

is distributed to the detection block, adaptive FE block and the sorting threshold look-up-table

(SThr LUT) block. Frame 2 is developed for the SP unit in the adaptive FE block. SP is a generated

similarity pattern generated between the aligned spikes. The addition of the two frames in the

synchronous sorting system introduces an adaptive architecture to allow realization of a highly

10 σN is calculated by median processor.
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adaptive on-chip spike sorting with on-chip parametric tunability11 which is can simply be added

to the neural acquisition systems. In the spike-sorting process, the amplified, band-pass filtered

and digitized neural data is fed to the spike processor. Normally the recorded signal contains multi-

unit activity from all the neurons close to the implanted microelectrodes.

Each spike is extracted using a 2.5ms window and aligned to a common temporal reference. In the

detection unit (which uses non-linear energy operator (NEO) [158]) a conditional activation (On-

hold capability) method is utilized. The calculated threshold (SThr=4* σN) after median estimation

is used to control the main detection block. With this method, the processing of worthless data is

masked in the main detection block and the detection initiation is a function of input spike stream.

Thus the power dissipation of NEO and the spike processor can be significantly reduced through

asynchronous initiation of processing chain. So the processor operates at normal speed once the

process starts and returns to standby mode when processor does not detect any spike activity. This

capability helps to minimize power consumption without applying hand-shaking or power gating

techniques.

In the adaptive FE block, extrema sampling of adaptive discrete derivatives (ADDs) is introduced

to provide an efficient method not only in computational simplicity but also in accuracy to

transform the recorded action potentials to a feature space that better separates spikes coming from

11 This is also called processor with open input format. The processor is insensitive to the input signal variations. The spike
processor is robust to the general spike sorting challenges [91].
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Figure 5.2: Adaptive spike sorting block diagram. The created frames in Figure 5.1(Frame

1 and Frame 2) are embedded in the spike processor as (Frame1= σN) and (Frame 2= SP).

The introduced adaptive processor scheme obeys the built-in principals for on-chip tuning

of sorting parameters. n=1,…,6 represents the number of existing clusters in the recorded

data.
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different neurons. The selective spike decomposition is performed by generating a similarity

pattern based on the aligned spike waveforms (SP). The (SP) is updated over time to monitor the

similarity level between the extracted and peak-aligned spikes. The FE is tuned to the sub-bands

(decomposition range) with the most informative samples. The maximum separation between the

spikes is achieved by extrema sampling of selected sub-bands. The feature vectors (FVs) are sent

to the features monitoring unit and subsequently to the clustering unit.

Finally, the FVs are sent to the clustering unit for training. The training engine is the most power

consuming part of clustering due to its inherent complexity and the size of memory required for

implementation. The training unit power dissipation is minimized using an advanced power

management methodology: 1) using a unique register bank memory structure for built-in

computation power suppression (self-power management), 2) choosing interleaving/logic-reusing

topologies to obtain high level of integration in the training engine. It reduces the power-area

simultaneously and 3) using feature extraction to reduce the feature space dimensionality. The

feature space dimensionality (K) of ADDs is almost 8X lower than the state-of-the-art. The cluster

means identified in this training phase are saved to the memory of the assignment unit. During the

cluster-mapping phase, the input FVs are mapped based on their minimum distance to one of the

identified cluster means saved during the training phase.

The output of the assignment block can be configured to the detected spikes, cluster means, or the

spike IDs. As shown in Figure 5.2, two controlling units (performance check, training control and

SThr LUT) are added to the clustering block to implement clustering performance monitoring in

validation phase which is discussed in section 5.3.7. Having clustered the spikes, the performance

check unit monitors and evaluates the clustered data based on the defined performance metrics. It

decides whether the level if of the sorting threshold should be adjusted to an optimal level (Topt) 12

and also triggers retraining to compute the cluster means if needed. To realize the validation phase,

a look up table (LUT) based threshold adjustment scheme is designed within the online sorting

(O-Sort) clustering method. It uses the noise analysis of recorded data and evaluation of the

clustered spikes to obtain the self-performance lock capability recursively. In performance check

monitoring if the conditions are met, the identified cluster means are not substituted with new

patterns in the assignment unit unless the enable signal initiates the training phase due to either

12 Deriving optimal sorting threshold is discussed in Chapter3.
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clustering inaccuracy issues or variation in the action potentials. The sorting threshold (SThr) can

alternatively be overridden by user-specified values.

This concept enables the implementation of fully online spike sorting accounting for the

characteristics of the recorded signal and high clustering accuracy performance. The concept of

adaptive processing is also extendable to all processor constituent building blocks, which would

be embedded in the next generation of adaptive sorting DSP. In the next sections, design of all

spike processor units and their operation are discussed in detail.

5.3 Adaptive Spike Sorting Processor for Accuracy Self-tuning and Inherent

Power Suppression

The rest of this chapter provides the hardware implementation of an adaptive spike processor with

the new processing framework and highlighted properties. The spike processor fabricated in a 180-

nm CMOS process, it has a power consumption of 148 µW from 1.8 V supply voltage, and a 84.5%

overall clustering accuracy (CACC). By providing 150/240X data reduction, a transmitter can also

simply be integrated to the front-end and processing unit in implantation site.

5.3.1 Detection and Alignment

One unsupervised method to determine threshold value is the nonlinear energy operator (NEO)

[158]. This class of detector calculates the energy variation of the raw signal to interpret the spike

events in time. For the discrete signal, the NEO equation is defined as:

       1.12  nxnxnxn (5.1)

where x(n) is the input digitized signal and ψ(n) is the NEO value at sampling time n. From the

NEO equation, this operator highlights the large variations in power and frequency. The

characteristic of spike activity is instantaneous amplitude-energy variation, and the NEO operator

emphasises these localized variations. NEO significantly improves the signal to noise ratio (SNR)

level in a noisy environment.

However, NEO is sensitive to the poor detection of spikes having low frequency components. To

overcome this issue and increase robustness to the spike amplitude variations or to reduce NEO

out of band noise sensitivity, a modified version of NEO is used by adding the constant value ω to
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Eq. (5.1) which becomes          nxnxnxn .2
, where ω is experimentally found to be

between 1 and 3.

In the spike sorting process, the noise variance calculation is needed to set the clustering threshold

using absolute value method. To obtain high detection accuracy while keeping the power

consumption low, a complementary approach is used in which the clustering threshold can be used

as conditional activation function of the ωNEO. This method has two advantages: 1) conditional

enabling is directly applied to the ωNEO which is composed of two multipliers. Thus when the

input exceeds the clustering threshold (SThr), the true identity of the spikes is examined using

ωNEO which provides a double check on accuracy. And 2) power saving due to dual-thresholding

which results 30% power reduction based on Cadence synthesis simulation. The block diagram of

the system is depicted in Figure 5.3.

The conventional method used for threshold calculation at the output of ωNEO is energy

accumulation and dividing it to the window sample numbers. The power variations in different

simulations show that the output of the ωNEO is sensitive to noise disturbances. The output of

ωNEO can be influenced by noise variations. Normally the input signal to the ωNEO unit is

composed of spike events which exhibit localized energy of a specific duration and other samples

as a result of noise interference. The noise perturbations are projected in the calculated energy, and

a simple filter can be added before the threshold calculation to reduce the effect of noise

Figure 5.3: ωNEO conditional control. Conditional enable is initiated by (SThr).
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A simple moving-average filter can be applied to ψ(n) to reduce the effect of projected noise. The

filtered signal energy  n is then used for detection threshold calculation. The approach to set the

detection threshold is a scaled version of the filtered energy that can be expressed as:

 



SN

n

n
N

Thr
1

1
 (5.2)

Where α is a constant, empirically chosen to be 8 in this implementation. In order to reduce the

buffering of threshold calculation, the detection threshold is updated per window rather than per

sample where N is the number of samples per window. The calculated threshold is used for the

next segment of data; the accumulator will be reset and start again for the next data window.

Figure 5.4 shows the detection and alignment block diagram. The neural data to the detection

block is fed to both a preamble buffer and ωNEO. The preamble buffer is a shift register composed

of 24 delay cells. The purpose of using delay line is to synchronize the ωNEO output with the

starting point of a spike. It buffers the samples before the spike exceeds the threshold level. The

delayed data is constantly written to a circular buffer. When a spike is detected, the corresponding

writing index (wr-idex) is sent to the peak detection block. With this method, the sample counting

and the peak address are synchronized. The output of the peak detector (peak-ID) is used to define

the extraction window length. The peak-ID serves as offset to correspond to the 15th sample of

the 45 samples in the aligned window. Finally the rd-index which represents the first sample of

Figure 5.4: (a) Detection and alignment block diagram. (b) Operation timing diagram.
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window is set to the reading unit of circular buffer and aligned spike (alsp(n)) samples are

transferred to the next processing unit which is feature extraction. The reading clock rate is 4x

faster writing clock rate to ensure capturing spikes which are close in time.

5.3.2 Adaptive Feature Extraction

Feature extraction (FE) transforms the aligned spikes to a low-dimensional space which

emphasizes the spike waveform differences. The block diagram of the modified and adaptive

version of FE [150] is shown in Figure 5.5. The FE block consists of three main units namely a

moving average filtering (MAF), adaptive discrete derivatives (ADDs) and dimensionality

reduction (DR) unit. The MAF acts as a denoising filter to improve the FE robustness to random

Figure 5.5: Adaptive Feature extraction unit. The MAF suppresses the effect of random and
high frequency noise. The ADDs and frequency synthesizer blocks provide the adaptive
decomposition. The DR block reduces dimensionality by retaining the most informative
features of decomposed spike waveforms. Extrema (max/min) sampling is used in DR unit.
It should be noted that other DR methods also can be employed for distinguishing the most
appropriate features in the selected sub-bands (e.g. integral of a selected sub-band or spectral
analysis of a decomposed signal).
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noise (out-of-band noise) while retaining the crucial encoded information buried in spikes 13. The

output from Frame 1 (σN) is fed to MAF to increase the noise insensitivity and increase feature

extraction separability by adjusting the length of MAF. The MAF is the most popular choice for

hardware implantable devices due to its simplicity and efficiency. The MAF concept is based on

averaging a specific number of samples of incoming aligned spike alsp(n) to produce the smoothed

output signal s(n):

 





1
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jnalsp
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ns (5.3)

where M is the filter length. The next block of the adaptive FE, are the adaptive discrete derivatives

(ADDs) which calculate the slope at each sample point over a number of different time scales:

     nsnsampADDs (5.4)

13The MAF length is adjusted by the signal-to-noise (SNR).

     nsnsampADDs

Figure 5.6: Demonstration of feature extraction processor employing spectral analysis a)

parameterized ADDs (amp=1) and b) illustration of ADDs as an adaptive filtering.
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Where (amp=1)14 is the amplitude of the decomposition window, s is the spike waveform, n is the

sample point, δ is the scaling factor (time delay) and amp depicts the amplitude of ADDs. The

14amp can be used for weighted adaptive discrete derivatives (WADDs) decomposition implementation.

Figure 5.7: Frequency synthesizer and scaling factor tuning. (a) Peak aligned mean

waveforms in C_Difficult1. Local differences are demonstrated with LD1 and LD2. (b)

Generated sampling pattern from accumulated local differences. ZD1,2 identify the zero

differences. (c) Weight assignment to the variations in the generated sampling pattern and

extracting the scaling factors corresponding to the largest weights. The decomposition

intensity is depicted by different colours from high (red) to low (black) (d) Tuning delay

lines based on the selected scaling factors. FV is extracted based on the extrema of the delay

lines (delay line1-3) outputs.
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equation shows subtraction between the samples n and (n–δ). Multi-resolution decomposition of a

spike can be obtained if the scaling factor (δ) is swept over a wide range as demonstrated in Figure

5.6. Here the adaptive discrete derivatives (ADDs) is proposed to retain features of focused

decomposition from specific sub-bands for the succeeding clustering stage. In ADDs, the window

length (δ) is not fixed and will be tuned based on the recorded spike waveforms over time.

Adjusting the translation parameter (δ) is based on the frequency bands which correspond to the

most useful information for clustering. To obtain high accurate selectivity in setting the translation

parameter (δ), a sampling pattern generation method explained in [100]15 is used. Three useful

factors can be observed from the generated sampling pattern based on the localized shape

differences between the aligned spikes: 1) similarity (dissimilarity) measurement, 2) localized

differences and 3) active frequency sub-bands in the generated sampling pattern.

The asynchronous sampling pattern generation filters out the non-useful frequency bands before

applying the FE. Having generated the sampling pattern, slope variations analysis is accomplished

to characterize and assign weight to the range of variations from high (δ==1) to low (δ==7). Once

the weight allocation process is performed, three scaling factors with the highest weights are

chosen for tuning the ADDs. The process is shown in Figure 5.7. The illustrated figure explains a

simple approach of frequency synthesizer implementation for sub-band selection over a wide range

15This method is explained in Chapter2, section 2.3.5.

Figure 5.8: ADDs hardware implementation block diagram. Selecting the number of

decomposition lines will be investigated further in future work. In this analysis three

decomposition lines are used and six feature (K=6) are selected for clustering.
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of frequencies which is used in the feature extraction block. The hardware implementation of

ADDs is depicted in Figure 5.8. The main units are adjustable delay lines, subtractions and DR

unit which performs extrema selection. The proposed FE is quite flexible in terms of frequency

band selection and extraction of wide range of features. These processes result in robustness to

spike similarity and noise level in the FE unit.

5.3.3 Feature Vector Monitoring

The captured features are fed into the next stage for buffering as illustrated in Figure 5.9. When

the FE_done is set, the writing control block generates the address and enable signal for storing

the incoming FV from FE unit (FV_in) to the memory (writing unit). A monitoring unit is deployed

to constantly check the new incoming FVs. Based on the status flags (write_status and read-status)

of the buffering unit the feature vector monitoring unit decides whether to pick new FV for training

(assignment) or needs to scan the line for new FV (FV_in) in waiting mode. This approach allows

the clustering unit to be put in stand-by mode during the FV intervals. When the FV is detected,

the read_flag is set to one for activation of the reading control block. Once the reading of FV has

been completed, the monitoring unit will be activated to repeat the process.

Figure 5.9: Feature vector monitoring unit.
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5.3.4 Online Sorting (O-Sort)

Real-time identification of spike waveforms is required, to scrutinize the functionality of neural

circuits. The algorithm in [13] is well suited for real-time neuron mapping. The method is called

O-Sort which it provides the possibility of tracking neuron activity and closed-loop experiments.

Although O-Sort is a fully online and unsupervised method, the average clustering accuracy is

lower than the state-of-the-art clustering methods such as K-means [91]. A disadvantage of O-Sort

is that it may split clusters into sub-clusters leading to a reduction in clustering performance. The

created sub-clusters are not matched with any source and are considered as noise clusters.

Therefore the aim is to modify the hardware implementation of O-Sort to achieve acceptable

accuracy. Commonly known terms in O-Sort, namely, cluster splitting and artificial clustering, are

used to implement fine tuning of the sorting threshold in the feedback loop. To keep the power

consumption of O-Sort low, the core structure of the training unit, the transient memory, is

designed in way that the status of memory locations are updated after each iteration in the training

phase. Using this method, the unwanted memory locations are excluded from the next iteration

phase. In addition to this unique and adaptive approach, other optimisation techniques to reduce

power and chip area will also be examined. Another contributing factor in power and chip area

reduction is the dimensionality of feature vectors (K=6) used for training which has almost 8X

lower dimensionality compared with [76]. In summary, a modified version of O-Sort to reduce

power consumption and chip area is presented. Figure 5.10 shows the flow chart of the O-Sort

algorithm.

5.3.4.1 Unsupervised Clustering Using O-Sort

The training phase of the algorithm is initiated by assigning the first FV to its own cluster. The

extracted features of the next spike are used to calculate the distance to the already created cluster.

The distance between the FV(n) and created cluster c(n) is computed using the ℓ1-norm metric for

the number of samples (NS) representing the number of features in FV(n):





SN

n

ncnFV
1

min )()(C (5.5)

If the minimum distance at this stage (Cmin) is smaller than the sorting threshold (SThr), the FV is

assigned to existing cluster and the cluster mean is updated to be the weighted average of the first
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Figure 5.10: Flowchart for unsupervised clustering algorithm (O-Sort).
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two spikes, otherwise a new cluster is automatically created and the FV is assigned to it. The SThr

is defined as SThr=4*σN where σN is the noise standard deviation of the data computed

intermittently. The SThr is automatically and continuously calculated in median processor unit.

This process is performed recursively for all the incoming FVs from feature monitoring unit. Every

time a FV is assigned to an existing cluster, the cluster centroid is recomputed as the weighted

average of the FV and the existing transient cluster is given by:

 
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
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nFVncW
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Update
(5.6)

where W is the number of FVs in a specific cluster. The updating scheme allows the tracking of

changes in the incoming data and adaptively modify calibration of the system without user

intervention. As interpreted from Eq.(5.6), during the training phase the W term becomes more

significant compared to the second term. This means that after sufficient training time the

contribution of the incoming FV is insignificant in the weighted average. This point is used in the

hardware implementation to avoid over-processing for the clusters with (W>40). It is used as a

condition to bypass the mean update and consequently merging check for the clusters with enough

members.

During each iteration, after assignment and the mean update phase, a shift in the updated mean

waveform over the feature space is expected which might cause overlap between the cluster means.

After each mean update, the mutual distance between all possible pair of means is calculated. If

the distance between any pair is less than (Mmin< SThr), clusters are indistinguishable and are

merged. The merging phase reassigns the weighted mean update to one cluster and eliminates the

content of another cluster. The process of sorting is based on sequential comparisons between the

mean waveforms thus after a specific training phase, the main cluster mean eventually starts

converging.

O-Sort is simple in operation with good complexity-accuracy trade off and satisfies online sorting

constraints which adaptively track the incoming spike data and autonomously determines the

number of spike classes. This algorithm is adaptive and nonstationarity of data in time is applied

to the cluster position and number of clusters.
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5.3.4.2 Clustering Operation Methodology

A single-channel clustering timing diagram is shown in Figure 5.11. The clustering operation is

divided into four sub-phases: hold time, training phase, validation phase and finally assignment

phase. The clustering execution is starts with the hold time. In hold time which starts at (t0) the

median processor starts calculating the noise standard deviation (σN). As explained in the processor

general structure, (σN) is used to calculate the threshold value for detection and sorting threshold

look up table (LUT) units. The training begins at (t1) when the threshold has been identified. The

(SThr) is fed to the sorting LUT as the initial value for training phase. Over the training phase, the

FV monitoring unit sends the FVs to the training unit to identify the number of active neurons in

the recorded data. The validation phase (t2) is initiated after training to evaluate the mapped data

to the converged cluster means. In this phase the performance check unit is used to adaptively fine-

tune the (SThr) for increasing the clustering performance which is explained later. Once the

validation is performed (maximum of three iterations) the identified cluster means are transferred

to the assignment unit. At (t3) the recorded spikes are continuously mapped to their origins. The

process time depends on the contributing factors from validation to assignment such as training

and validation. The performance check unit (Figure 5.2) constantly evaluates the efficiency of the

clustering to monitor either the error deviation in cluster means calculation or the changes of the

action potentials over time. The retraining command is issued (t4) when any of these issues occur.

In addition to all adaptive settings, user-programmable tuning is also considered in case of worst-

case scenarios.

This process is simply expandable for high channel count processing. One approach for multi-

channel processing is to embed a processor in each recording channel. Thus, each processor

Figure 5.11: Multiphase clustering timing diagram.
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periodically generates certain amount of information corresponding to the captured neural signal.

This is an expensive method for processing since each channel requires a large amount of memory

to cover all the transient clusters in training phase. The area and power consumption of the

processor is dominated by the memories. To avoid these issues, the training unit in Figure 5.12 is

shared between all the channels and the converged cluster means are buffered in the individual

assignment unit for each recording line.

5.3.5 Training Unit Structure

The block diagram of the training memory structure and training unit main processing blocks (e.g

Status engine) are shown in Figure 5.13. The transient memory core is implemented in a matrix

format for simple highly flexible access to the memory locations. The structure is chosen based on

factors such as adaptive power saving, conditional training and logic reusing which are explained

in the next section. The training unit processing core includes implementations of the key blocks

which are used in different phases of operations over the training period. Since O-Sort is a serial

algorithm, each FV has to go through different paths for processing. In each path access to some

units is necessary for performing different combinations of operations. For example for mean

update operation, the sequences of states are (ℓ1-norm → mean update → merging check → merge 

update → waiting for next FV) which represents the worst-case processing chain. In the next

section the operation of each block and its communication to the training memory is explained in

detail.

Figure 5.12: Example of multi-channel processing of recorded data.
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5.3.5.1 Training Memory Structure

The general structure of the transient memory is shown in Figure 5.13. There are important

advantages in the proposed structure:

1- Number of memory rows: One of the most significant factors contributing to the power

consumption is the number of memory locations for buffering the transient clusters in training

phase. The depth of training (number of training locations) is designed to accommodate 64

transient clusters, so the chip power is dominated by the buffering of the cluster means. Using

ADDs extracts six distinguishable features from the signal decomposition which results in

substantial power and area reduction compared to spike template buffering.

2- Adaptive power saving: One of the embedded columns in training memory structure is status

flag (see Figure 5.13). The status flag of zero (Status=0) shows that the memory row is empty and

its contribution to the training process can be ignored. The flag is updated after cluster creation

and merging phases to show that the buffered values in the memory locations are accessible for

processing. It is updated recursively during training, and the memory locations with status of zero

are excluded from the processing in ℓ1-norm and merging phases. The status flag is adaptively

adjusted provides adaptive power saving over the training period. Another advantage of this flag

Figure 5.13: Training memory structure and main processing units. Each row of training

memory consists of six locations for accommodating extracted feature vectors (FV0-FV5),

1bit status flag; 6bits represents number of spikes per cluster (NOSPC) and 1bit for finalized

flag.
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is in ID generation. Since flag shows whether the memory location is used or unused, the reuse of

memory location to saves the number of memory locations required in the core of the training

block.

3- Conditional training: In the mean update phase, the contribution of incoming FVs becomes

less more insignificant after each iteration Eq.(5.6) The cluster mean value becomes less sensitive

to noise variations and it is observed that if the cluster weight (W) is more than 40, the cluster

centroids converge to their true values and the finalized flag (see Figure 5.13) is set to one. The

finalized location will allows conditional mean updating and merging.

4-Memory location reusing: number of spikes per cluster (NOSPC) and status flag locations are

used for memory location reuse in cluster creation, mean update and merging update phases.

These additions in the proposed training memory structure make it a very efficient choice for

hardware implementation. The number of locations for buffering the features is defined via FE

unit. The algorithm is completely adaptive in terms of power consumption and self-initializing. To

satisfy the power requirement of implantable devices, register-bank memories are used to

implement the proposed efficient memory core structure. The block diagram of the register bank

memory is shown in Figure 5.14. The implemented design is composed of functional blocks such

as writing decoder, reading decoder and the I/Os which are represented by FV_in and cluster

Figure 5.14: Block diagram of the register bank memory. Writing and reading of FVs are shown

in this figure. Other memory locations include status, NOSPC and finalized flags.
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FV_out. Based on the number of transient clusters in training, the number of memory locations

are 64 in this design (FV0-FV63), which can be reduced to 45 using memory location reusing

technique in the cluster generation phase. In the writing control block a 6 bits address

(rowaddr_wr) decodes the row address of the memory array. columnddr_wr and Wr_en are also

used to control the sequential writing process in different columns. Each row is used to buffer a

FV. The writing process is performed in cluster creation, mean update and merging update phases.

The same decoder and pointers are used for reading the process in transient memory as shown in

Figure 5.14.

5.3.5.2 Status Engine

The status engine (Figure 5.15) screens the activity of training unit and monitors the duration of

training using control flags which are explained in this section. The controlling I/Os are divided

into three different categories: initiation of training, progress of the cluster convergence and flags

regarding the termination of the recording channel evaluation. The training phase begins with

training_ini. The retrain flag make the training engine flexible by providing training whenever is

needed. Although the whole training phase is fixed for a specific number of spikes, training_coeff

is used to manipulate the training time which can be overwritten manually or adaptively based on

the sorting performance analysis as illustrated in Figure 5.15. The second bunch of terminals is

related to the training progress. The considered flags, train_per1, train_per2 and train_per3 are the

result of different units which are cluster creation, mean update and merging update phases. In the

Figure 5.15: Status engine block diagram with inputs/outputs.
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final category, training_busy defines the training and evaluation phases’ progress. As long as this

flag is set to zero, the training phase is on hold and when it is set to one the assignment phase is

on hold. This flag is also used in the feature monitoring unit for switching the data transfer between

assignment and training. The rest of the flags are relate to the termination of training and

transferring of the converged cluster means to the assignment unit.

5.3.5.3 Cluster Generation (ID Generator)

Figure 5.16 shows cluster ID generation unit. The cluster creation unit performs ID generation for

new transient clusters in training phase. New cluster generation occurs when the distance of the

incoming FV is larger than the sorting threshold Cmin> SThr (Figure 5.10). When this condition is

satisfied, the ID generation unit starts looking for a free memory location to assign the FV. This

process begins with sequential evaluation of memory locations step by step. In each step, based on

the generated address in ID generation block (row-addr), the status flag and the NOSPC of each

memory row (e.eg row20) are called from transient memory for investigation. If the status flag of

the memory location is zero, it means that the found location can be used for buffering the awaiting

FV. Another condition is also considered to apply the logic reusing technique exploiting the status

flag and NOSPC. In this condition if the status flag is high but the weight of the existing cluster

Figure 5.16: Cluster ID generation flow.
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(NOSPC) is less than five (NOSPC<5), it means that the created cluster is due to noise or

overlapping spikes so the memory location is reused. This technique can reduce significantly the

number of locations in the training memory. When the proper location is found, the proportional

cluster ID is created (row-ID) for cluster generation.

5.3.5.4 ℓ1-norm Unit Structure

Figure 5.17 shows the block diagram of the ℓ1-norm engine. When a FV is sent to the training

engine for processing, in a first step it is compared to the created transient cluster means in previous

phases. Data_0 to Data_7 are the representative of transient clusters which are transferred to the

ℓ1-norm unit for difference calculation and accumulation. The status flag in ℓ1-norm distance

Figure 5.17: Block diagram of the ℓ1-norm engine. ℓ1-norm consists of eight parallel engines

and it is reused eight times to calculate the ℓ1-norm difference accumulation for all the 64 rows

(row0-row63) as shown in Figure 5.13.
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metric is used as a condition for reading the memory rows which contain the transient clusters.

The status flags of memory rows are updated during each training iteration. This merit allows the

exclusion of non-important memory rows (status=0) from training and consequently results in

inherent power management. The ℓ1-norm distance operator introduces two crucial advantages

over Euclidean distance. Firstly ℓ1-norm simplifies the distance calculation operation in units

where it is exploited compared to the squared distance and squared root calculations used in the

Euclidean distance requiring more power consumption and extra wordlength for buffering the

calculated values. Secondly, ℓ1-norm metric is more immune to noise which is discussed in [76].

In the ℓ1-norm engine the degree of interleaving is chosen to be 8-unit to reuse the logic blocks

for multiple runs in order to reduce power and area simultaneously. Minimum distance

Figure 5.18: Demonstration of a moving merging matrix which is interleaved between all

the transient memory rows (row0-row63).
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determination (Dmin) is performed sequentially on the buffered values in the search unit to either

activate the cluster generation (cluster_gen) or to enable update the mean value (mean_update).

5.3.5.5 Merging Unit Structure

Each incoming FV is assigned to the closest cluster based on the ℓ1-norm between the FV and

closest centroid in feature space and cluster mean is updated accordingly. The mean update phase

might result in cluster shift in feature space. Due to the cluster shift, there might be overlap between

the clusters. In this case, two clusters with distance of less than a threshold Mmin< SThr (Figure

5.10) in feature domain are indistinguishable and they are merged. To evaluate the merging

possibility, the distance between all cluster means are calculated and the candidates are sent for

merge update. The approach for finding the overlapping clusters is illustrated in Figure 5.18. An

interleaving of eight parallel merging-check units is employed to move between the matrix

memory rows. The merging engine is able to evaluate the overlapping between the clusters in eight

rows simultaneously. One of the important points in merging design flow is that only the upper-

half of the matrix memory is used for distance calculation and the lower-half of the matrix is

masked in this analysis. The whole merging phase is performed recursively for eight consecutive

runs to cover all the memory rows (see Figure 5.13). In mutual difference computation mode, all

clusters are reconfigured and if the status flags of the memory rows are one, the mutual difference

is taken and accumulated for further processing. A two-step sequential search method is developed

to find minimum distance at the end of merging phase. At each run the minimum values are found

in search_eng1-8 (see Figure 5.19), are stored in search memory as depicted in Figure 5.19. At the

end of merging phase, it is decided whether to start merging update (merge_ini) or termination of

training is issued for the current data (training_done). In case of merge update, the content of the

transient memory rows based on the chosen IDs (first_ID and second_ID) are called for merge

update phase. The centroid of the new merged cluster is then calculated as a weighted mean:
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where c1 and c2 are the centroids, and W1 and W2 are the respective spike populations of each

cluster. The updated centroid (CMergeUpdate) is stored in one memory location and the content of

other locations is erased to be reused for the cluster generation phase. In the first iterations of the
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Figure 5.19: Hardware implementation of the merging unit. The first section depicts the
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training phase merging occurs frequently due to the small clusters created in the cluster generation

phase but after a specific time the main clusters start to converge to steady state values.

5.3.5.6 Finalized Cluster Means Transfer Unit

It should be mentioned that the amount of training time is different based on number of active

neurons, spike shapes and their firing rates in the captured data. In the status engine, a specific

number of spikes is considered for the duration of training (e.g.250 spikes). Over the training

process, the IDs of the finalized clusters are saved in ID memory (Figure 5.20). It should be noted

that the spike processor is capable of simultaneous assignment to six clusters. If within the

specified processing time limit, the number of the finalized converged spikes reaches six, training

is stopped and the identified cluster means are stored in the assignment unit. A second option is

designed for sequential search to find the settled cluster means which meet the convergence criteria

as discussed in section 5.3.4.1 (W>40). This phase is initiated when the number of the finalized

cluster means are less than six. In this phase the conditions flags are evaluated for transferring the

cluster means which are used in the cluster mapping phase according to the minimum distance of

the incoming FVs.

Figure 5.20: Converged cluster means check.
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5.3.6 Assignment Unit

Figure 5.21 shows the assignment block diagram. Having identified the cluster means in the

training phase, clusters 1-6 change are transferred to the assignment unit for updating the mean

values. The assignment unit is capable of mapping up to six neurons in the stream of neural data.

Having updated the cluster1-6 mean values at the end of the training phase, the spikes are

constantly processed and assigned to one of the clusters according to the minimum ℓ1-norm

distance measurement. The difference values (DIFF1-6) are computed simultaneously from the

comparison of the incoming FV to each cluster mean (Cluster1-6) and the values are sent to the

search engine (see Figure 5.21) to recognize the spike ID. The outputs of the assignment unit are

clustered_FV and assign-notvalid flag which both are also used in the performance check block.

The clustered_FV consists of six locations covering feature values and one location which

Figure 5.21: Assignment block diagram. Accumulator is depicted by ACC.
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demonstrates the spike ID. The Assign-notvalid flag is set due to faulty noise FV assignment or it

due to the unwanted issues in O-Sort operation such as artificial clustering.

5.3.7 Performace Check Unit

As explained in [13], there are two main approaches for calculating the sorting threshold, either

threshold approximation which is computationally cheap or using statistical approach to find

optimal threshold through the noise covariance matrix calculation. Running simulations for hardly

distinguishable neurons or neural data with a high background noise level show that the clustering

accuracy is severely affected when using the sorting threshold approximation approach. This

normally causes two well-defined phenomena in clustering which are cluster splitting and artificial

clustering. As shown in Figure 5.22, cluster splitting is the division of single cluster into multiple

clusters while artificial clustering is merging of two single clusters (or more) into one cluster. With

threshold values larger than (Tmax) the probability of missing a cluster or artificial clustering is

Figure 5.22: 2-D representation of feature space for two clusters. The effect of increasing

(decreasing) the threshold is shown. Different threshold levels (Topt, TMax and TMin) and sorting

range are shown. With increasing the threshold (T>TMax), the probability of missing a cluster

and artificial clustering is high. In addition, with declining the threshold (T<TMin), the main

cluster would artificially be split into two or more sub-clusters.
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high. There is also a lower limit (Tmin) below which the over-clustering effect is expected. In this

section, a novel and simple approach is presented for evaluation of the clusters status. Based on

the clusters status analysis, an optimal threshold (Topt) is adaptively set which enhances and locks

the clustering unit on its mean average accuracy. The proposed method is called performance lock

scheme. The hardware implementation of the proposed methods is shown in Figure 5.23. The SThr

tuning chain is composed of clustering status analysis and SThr fine-tune blocks. The inputs to the

status analysis block are the finalised cluster means (C1-C6), assign-notvalid and assigned FV

(clustered-FV). In the SThr self-tuning design, assign-notvalid monitors the rate of assignment

error and clustered-FV (six features representing the FV) and cluster ID from the mapping unit.

Statistical operations are performed on the input values for fine-tuning the SThr such as calculating

the correlation between the finalized cluster means and monitoring the assignment error rate (AER)

over validation phase (see Figure 5.11). Indicators of the issues in clustering are interpreted from

the statistically evaluated data as below:

1)- In case of artificial splitting of a single unit into multiple clusters, the correlation factor (Cof)

between the identified cluster means is high (more than 0.9) and their corresponding firing rate is

less than other active neurons. The SThr is increased (+) in this case to avoid cluster splitting.

2)-In case of artificial clustering, a spurious cluster is created and the rate of assign-notvalid flag

is high. In addition to the AER, such cluster represents multi-unit activity and it has normal/high

Figure 5.23: Sorting threshold (SThr) self-tuning methodology.
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firing rate due to spike allocation from multiple neural activities. The SThr is adjusted to a lower

level (-) for optimal clustering.

3- It also should be noted that the spike shapes may vary over time. The performance check unit

also tracks this issue and reinitialises the training for detection of any changes in the recording

data.

The adaptive threshold adjustment scheme is implemented on FPGA. The threshold fine-tuning

steps are performed during the validation phase and the best threshold in terms of performance is

chosen amongst three iteration phases. The progress of trimming the threshold is computed via the

mentioned metrics over different runs. It should be noted that in each iteration, 10% variation is

added/subtracted for SThr calibration. The threshold self-tuning method results in 5-8% median

clustering performance improvement.

5.4 ASIC Implementation

5.4.1 FPGA-Based ASIC Verification

To evaluate the ASIC performance, a data streaming scheme using universal asynchronous

receiver/transmitter (UART) was developed which continuously sends data to the FPGA and

receives the processed data from FPGA (Figure 5.24). The control of data streaming is performed

in MATLAB. Due to buffering limitations, the entire quantity of data cannot be transferred to the

FPGA to driving the spike sorting DSP. The neural data is divided into different segments based

on the input buffer of UART in MATLAB. The received data in UART is deserialized and based

Figure 5.24: Data-streaming interface. RX is the symbol of receiver and TX is the symbol

of transmitter.
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on the controlling signals between UART/RX the incoming data is buffered in data buffering unit.

The spike sorting DSP starts receiving the neural samples from the data buffering unit for

processing. The test-bench is quite flexible and can be reconfigured to implement different test-

benches. Based on the chosen test set up, processed data is sent back to the FPGA for

synchronization. The output rate of the processed data in the defined test systems are different and

they need to be synchronized for using in UART at a fixed transmit rate. The TX unit decides the

timing intervals for transmitting data from FPGA to PC via the UART controlling signals. In the

UART data is serialized and transferred to MATLAB. This process is repeated until all the data

has been processed. The processed data from the spike sorter is evaluated in MATLAB to measure

the detection and clustering accuracy. Figure 5.25 shows the developed processor and setup used

for chip testing. The FPGA board interfaces to the ASIC board using universal asynchronous

RX/TX system (UART). A MATLAB-based platform was used to drive the FPGA and read the

corresponding outputs from the chip.

Fig. 5.25: Fabricated ASIC and MATLAB-based ASIC verification setup. FPGA is used to drive
ASIC.



169

5.4.2 Chip Measurement Results

The adaptive spike sorting processor was fabricated in a 180-nm CMOS technology. The die is

shown in Figure 5.26. It occupies an area of 10 mm2. The processor uses four different clock rates

(30kHz, 120kHz, 240kHz, 960kHz) to obtain the best processing efficiency which results in

148µW of power from a 1.8V supply voltage. The power density of the chip is 54.8 µW/mm2 (the

training area is excluded from the power density calculation) which is 14.6 times lower than the

power density known to damage brain cells [159]. A standard dataset16 with a known ground truth

(spike times and cluster IDs) is used to validate the functionality of the fabricated processor. To

evaluate the spike detection performance two well-known metrics are use: 1) the probability of

detection, which is computed as the number of truly detected spikes (TDS) divided by the total

16 The datasets are explained in Chapter 2.
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number of spikes (TNS): PD = TDS/TNS. And 2) the probability of false alarm which is computed

number of false detections (FD) divided by true positives (TDS): PFA = FD/TDS.

To improve accuracy and power efficiency some modifications are made. The outputs of the

detection unit was compared with the results obtained from Matlab simulations using the signals

with known ground truths. The detection performance was characterized by the probability of

detection of (92%) and the probability of false alarms of (1%). The ωNEO (see section 5.3.1)

obtains the best detection accuracy when ω is chosen to be 2 or 3. This accuracy improvement is

due to the modifications applied into the conventional NEO. In addition, the overall power

consumption of ωNEO is reduced in simulations by 3X (30%) compared to standard NEO

implementation. Figure 5.27 shows a sample recorded neural signal input on the logic analyzer

and the corresponding collected aligned spikes in MATLAB.

The goal of FE is to choose a few distinguishable features for obtaining the best differentiation

between the clusters. Normally features with multimodal distributions are chosen for efficient

clustering using advance statistical methods such as asynchronous sampling [100] and

Kolmogorov-Smirnov (KS) [160]. Having performed the FE, features with the largest deviation

are sent for clustering. In ADDs, the hardware implementable version of KS is moved in front of

the FE block for frequency band separability analysis in order to obtain high clustering accuracy.

The proposed approach performs sub-band frequency selection and maximizes the separation

probability between the spike features using proper scaling factor selection. Figure 5.28 shows the

specific cases in which different scaling factors are used for decomposition. Using the identified

scaling factors in ADDs introduces more discrimination for clustering. The extremas (max/min) of

the decomposed spike waveforms can be used to represent the frequency band separability. The

analysis of ADDs validates that the better performance is obtained through frequency sub-band

selection approach. As depicted in Figure 5.28, the extracted max/min peak values in the identified

frequency bands in two different datasets provide enough separability for clustering unit.

The identified scaling factors for each dataset can be compared with the manual decomposition

approach (see Chapter 3, Table 3.1). For the Easy2 dataset, a comparison with Table 3.1 shows

that the selected scaling factors are similar with the definition of combination 3 which achieves
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86% CAcc. For Difficult1, the chosen scaling factors are equal to the best combination

(combination 3) in Table 3.1 which obtains 87.8% CAcc.

The clustering accuracy of the adaptive spike sorting chip was tested and evaluated across all

datasets and noise levels. In the FE unit six features (K=6) are used for clustering where K shows

the feature space dimensionality. As described previously, there is an initial phase for clustering

self-tuning. The clusters are re-evaluated in the retraining phase if the implemented criteria are not

satisfied. The evaluation of the spike sorting chip is performed over the steady-state phase, such

that the final cluster means are converged. Figure 5.29 shows from (a) to (d) the 2-D projection of

the clusters in different datasets form Easy1 to Difficult2. The boundaries of the clusters are

marked with dotted lines. The overall clustering accuracy of 84.5% is obtained over all different

Figure 5.27: (a) A segment of neural signal depicted on logic analyzer and (b) the recorded

spike waveforms in MATLAB using the interfacing system.
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datasets and noise levels. The adaptive processor accuracy compares well with the most powerful

clustering methods such as Waveclus [89]. The average accuracy of the developed processor can

be compared to median clustering accuracy of the state-of-the-arts classifiers such k-means or

SPC. Figure 5.30 shows a plot of the estimated performance of the three clustering and

classification methods.

The total system performance consists of contributions from the detection, FE and clustering units.

As explained earlier, the architecture of training memory is designed for self-power management

(status flag in Figure 5.13) purposes. The register bank memory implementation with the

introduced architecture provides up to 2X power reduction compared to the memory

implementation without considering the exploited status flags. This value is the average power

reduction ratio, since the degree of power saved varies in different iterations. In addition to power

reduction, the area is also reduced significantly due to the use of six features (K=6) for buffering

the transient clusters.

Figure 5.28: An illustration of extrema features using different sets of scaling factors. The

scaling factors are selected based on ADDs methodology for (a) C_Easy2_0.05 (b)

C_Difficult1_0.05. The identified scaling factors for each dataset can be compared with the

manual decomposition approach discussed in Chapter3.
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Figure 5.29: 2-D projection of clusters for (a) C_Easy1_0.05, (b) C_Easy2_0.05, (c)

C_Difficult1_0.05 and (d) C_Difficult2_0.05. (Spikes have been colored according to the

ground truth).

Figure 5.30: Performance comparison of implemented processor and the state-of-the-art spike

processors. The mean accuracy of K-means and SPC is calculated based on the template

matching FE.
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Table 5.1:
Adaptive spike processor summary.

Technology 180-nm

Core VDD 1.8V

Power 148µW

Operation frequency 30KHz

Processor type Adaptive

Median PD, FA 92%, 1%

Median CACC 84.5%

Compression factor 150X, 240X *

Core size 10mm2

* Compression factor in different modes.

Figure 5.31: The operation phases of adaptive processor in Cadence simulator.
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The main characteristics of the chip are summarized is in Table 5.1. Figure 5.31 shows the entire

spike processing operation. The operations of different units are labelled in the figure. This unique

balance between good accuracy and low complexity makes the adaptive spike processor a

particularly good candidate for implantable devices.

5.4.3 Dynamic Test Methodology

In this section, a dynamic test protocol is adopted to fully evaluate the effectiveness of the new

adaptive spike processor under variable input signal conditions. The input based on random data

selection is proposed as an optimal approach for imitating the dynamic nature of neural data

encountered in practice. For random data generation, all the datasets discussed in section 2.4.2

form a matrix of data as shown in Figure 5.32. In the neural simulator four tuning parameters are

considered. They include a dataset selector (from Easy1, Easy2, Difficult1 and Difficult2), a noise

tuning parameter (NTP) for adjusting the noise standard deviation (e.g. 0.05, 0.1, 0.015 and 0.2),

a generation time (tgen) and the number of active neurons selector (ActNeuSel). Based on tuning

parameters, data is chosen randomly from each unit (e.g. unit (1,1) in Figure 5.32) and
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concatenated in time for a specific duration. The variable conditions in data represent variations

over time such as non-stationarities in background noise, and appearance (disappearance) of active

neurons in a recording channel. They are used for examine the robustness of the adaptive spike

processor to input data variations.

The model used for data variation performance analysis is shown in Figure 5.33. In one path

(model A), a synchronous processor without adaptive frames is used to test the classification

accuracy performance. The constituent building blocks in a synchronous spike processor are NEO

based detection, multi-resolution decomposition based on fixed scaling factors (δǀ1,3,7) and O-Sort

clustering. In a second path (model B), the spike processor with adaptive frames is used. The

adaptive spike processor comprises conditional spike detection with dual thresholding (SThr-

NEO), adaptive multi-resolution decomposition and O-Sort clustering with capability for setting

the optimal threshold. In both processing paths, the O-Sort clustering unit is equipped with channel

change sensing.

The clustering performance of both processors (adaptive and non-adaptive) is shown in Figure

5.34. The adaptive processor with the embedded adaptive frames (Frame 1 and Frame 2) and

clustering unit with the capability of setting the optimal threshold outperforms the synchronous

spike processor. The average classification accuracy of the adaptive processor is 10.9% higher

compared to the non-adaptive model (84.5% versus 73.6%).

Random data
selection
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Synchronous processing path
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Adaptive processing path
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Figure 5.33: Dedicated set-up for comparing the performance between the non-adaptive and

adaptive processors.
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5.4.4 Comparison with Prior Work

Table 5.2 shows a performance summary of published previous spike sorting ASICs. This work

introduces the first fully adaptive, online and unsupervised sorting processor with all the necessary

building blocks to obtain the optimum performance with ultra-low power consumption. The

fabricated processor is the first design with integration of synchronous/asynchronous/self-tuning

capabilities. Although the system operation is synchronous, novel additions and circuit techniques

are used to emulate the synchronous and asynchronous concepts in an adaptive form. Since the

processors are implemented in different technologies, a power density (Power/Area) figure of

merit (FOM) can be used for fair efficiency comparison. Power density can also be modified to

express the processor efficiency to take account of the effective contributing factors in a processor
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design such as power, area, processor chain performance (PCP) and compression factor (CF). The

processor efficiency factor EF is:

AreaCFPCP

Power
EF

..
 (5.10)

In addition to EF, the effect of technology scaling can be discussed for the digital power

consumption. The power consumption downscaling factor (DF) is given by:

Table 5.2:
Comparison to the state-of-the–art processors.

Reference [161] [162] [74] [163] [164] [73](a) [73] (b) [76] [165] This Work

Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Alignment х х ✓ х х ✓ ✓ ✓ ✓ ✓

Feature

Extraction
х ✓ ✓ х ✓ ✓ ✓ х х ✓

Clustering х х х х х х х ✓ ✓ ✓

Compression

factor
12.5X 80X 11X 15X -* - - 240X - 150X/240X

Power

(µW/channel)
75 100 2.03 104 14.6 0.46 1.04 4.68 battery 148

Area

(mm2/channel)
0.11 1.58 0.06 - 0.01 0.03 0.02 0.07 - 2.7

Power density

(µW/mm2)
680 63.3 30 - 1460 15.33 52 66.8 - 54.8

Process (nm) 500 350 90 FPGA 90 65 65 65 DSP 180

Core Voltage

(V)
3 3.3 0.55 - 1.08 0.25 0.25 0.27 - 1.8

CACC х х х х х х х 75% 93%  84.5% 

Self-tuning

design
х х х х х х х х х ✓

EF - - - - - - - 3.71 - 0.43

* The output of FE contains 53bits for transmission.

(a) Fabricated asynchronous processor in [73].

(b) Fabricated synchronous processor in [73].
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 
 

tech

tech

Lclockddavgt

Hclockddavgt

fVCN

fVCN
DF

...

...

2

2

 (5.11)

where Nt is the number of transistors in design, Cavg is average capacitance load, Vdd is the power

supply and fclock is the operating clock frequency. Htech and Ltech are the representatives of higher

and lower technologies respectively. As an example, the DF comparison between the technology

used in the fabricated processor is Htech (180nm, 1.8V) and that in [76] Ltech (65nm, 0.27V), for the

same fclock and Nt is equal to Cavg (Htech)/Cavg(Ltech)= 133. The Nt parameter is significantly affected

by the feature space dimensionality (K) which results in number of logic cells for designing the

clustering unit.

Compared to the state-of-the-art spike processor in [76], the adaptive design has 8.6X better EF.

The estimated power consumption using DF is 4.2X lower than the reported power in [76]. The

power density of the adaptive processor is 3.6X higher than in [73] due to the inclusion of

clustering unit. Nevertheless, the clustered data provides a higher compression factor which is

advantageous in terms of EF and transmission power. The processor in [76] has a clustering

accuracy which is almost 10% lower than the overall performance of the adaptive spike processor

in this chapter. Future implementation of the adaptive spike processor in a deep submicron

technology would offer improved performance in terms of area and power consumption.

5.4.5 Interleaved Architecture

The optimal number of parallel processing engines in ℓ1-norm and merging units is obtained by

interleaving processing methodology. Interleaving allows the reuse of a designed processing

engine for optimizing the dynamic and leakage power which is due to the area of the silicon used

in processor design. A detailed investigation of chip area and power consumption product reveals

an optimal interleaving ratio (R). R is a trade-off between the leakage power, which is proportional

to chip area, and dynamic power due to registers using in different operation phases. R is defined

as total processing channels (e.g 64 in ℓ1-norm unit) divided by number of parallel processing

engines (e.g. 4 or 8 parallel engines to perform ℓ1-norm phase). For R=1 the largest area and

slowest operation frequency are obtained and the total power consumption is dominated by leakage
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power. When R is increased, a faster operation clock is required which means more switching

activity (dynamic power) but the leakage power is reduced. Therefore, at a specific R, the power-

area product becomes minimum. It should be mentioned that the interleaving optimization

methodology is strongly related to the fabrication process and circuit architectures. In this design,

the interest is to optimize the area ad power simultaneously due to the hardware implantable

circuit’s constraints. Figure 5.35 shows the area-power product versus interleaving ratio (R). The

R value is calculated by the extracted power and area information from the Cadence synthesize

reports. It can be seen that the optimal ratio for power-area saving is 8 in ℓ1-norm and merging

units. For more power saving in the training phase, R can be set at 4. The adaptive sorting processor

is fabricated in 180-nm CMOS technology which exhibits less leakage current compared to more

advanced technologies. It means that the dynamic power consumption plays the main role in

defining the total processing power in the training phase because the higher frequency interleaving

clock increases power consumption.

5.4.6 Power Management Techniques

This section elaborates on techniques which could further minimize power consumption of the

spike sorting processor. Power gating [166] is a technique which may reduce the power dissipation

Figure 5.35: The normalized area and power trade-off versus interleaving ratio (R).



181

due to CMOS gate leakage in inactive processing units. For example, the power gating technique

can be applied to the training unit in clustering once the active neurons in recording channel have

been identified. Dynamic voltage scaling (DVS) [167] is another power efficient low-power design

technique. In DVS, a higher supply voltage is considered when a processor is running at a high

speed and a lower supply voltage is applied when it is not in its peak performance such as

noncritical path. In the DVS technique, a dedicated power supply generator is essential which

generates an adaptive supply voltage according to the operational frequency. For example, in the

designed spike processor, a sequential DVS method may be used to activate the processing chain

when a spike has been detected.

5.4.7 Towards the Next Generation of Adaptive Processing

5.4.7.1 Feature Extraction Development phases

The block diagram of the next ADDs model is depicted in Figure 5.36.

FV scaling: a crucial block in completing a highly reliable FE is the FV scaling unit. The main aim

of this unit is to map the FVs from feature space to a distinguishable space. One possibility for

implementation of FV scaling is using of the decomposition window amplitude (amp).

Dimensionality reduction methods: various number of geometric characteristics such as positive

(or negative) signal energy, half-height position, right (or left) spike gradients, peak position, zero

crossing points and positive(negative) lobes can be considered for alternative dimensionality

reduction units. For example the conceptual illustration of power spectral density calculation for

the decomposed ranges from high (δ=1) to low (δ=7) in the DR unit is shown in Figure 5.37.

5.4.7.2 Clustering Algorithm

The O-Sort clustering method can also be improved by applying the embedding frames in the

clustering concept. The modification can be performed by employing other additional data

clustering techniques, such as a tunable nearest neighbour setting, in the clustering unit to avoid
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the cluster splitting and artificial clustering issues in O-Sort which may increase CAcc to over 85%

without the use of FE.

5.5 Conclusion

In this chapter, an adaptive processing methodology is introduced to enhance the accuracy-power

characteristics of SPSs by employing self-calibration of design features. As proof of the efficacy

of the proposed processing framework, an adaptive spike processor is designed, fabricated in

180nm CMOS technology and evaluated using standard neural datasets. The adaptive adjustment

strategy allows the alleviation of issues in spike sorting design such as low-power, low-area and

high-accuracy by exploiting optimal processing techniques in each constituent block of the sorting

chain. Conditional activation is considered for the detection unit to reduce the power consumption

by 30%. Regarding detection performance, the probability of the presence of a spike is examined
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WADDs is the acronym of weighted adaptive discrete derivatives.
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through two different metrics which are sorting threshold calculated based on noise standard

deviation (σN), and modified power analysis (ωNEO) which results in significant detection

improvement. This work is the first demonstration of a spike sorting processor with FE. In the FE

block, a modified version of [148], ADDs, is used for selective spike waveforms decomposition.

The ADDs is used to extract the features (positive and negative peaks) from the desired frequency

bands. ADDs significantly improves the clustering accuracy by retaining the features with the

highest level of non-Gaussianity while improving the in-band and out-band noise robustness using

derivatives noise shaping property and moving average (MA) respectively. The number of

locations for saving the spike features is reduced by almost 8X compared to processing the aligned

spike waveforms.

In the clustering unit, a multi-aspect optimization methodology (power, area, accuracy) is proposed

due to strict hardware implantable criteria. The register bank memory structure provides up to 2X

dynamic power minimization in the training phase compared to the conventional implementation

by using adaptive activation of the training memory locations. An interleaving technique is utilized

to share computing resources in ℓ1-norm and merging units. Another technique employed is the

reuse of logic in the cluster creation phase. This reduces the number of locations for buffering the

transient cluster means. The clustering efficiency is improved using noise-tolerant ℓ1-norm
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Figure 5.37: Demonstration of power spectral density calculation for the decomposed ranges

from high (δ=1) to low (δ=7) in DR unit.
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distance calculation and a modified version of O-Sort for sorting threshold calibration in the

validation phase.

The prototype of the complete adaptive spike sorting processor is fabricated in 180nm CMOS

technology with 84.5% overall accuracy and 148µW power consumption from 1.8V supply

voltage. Better power performance characteristics are demonstrated compared to the state-of-the-

art online and offline clustering methods. The focus of future work will be towards the

development of more sophisticated FE methods, improving the clustering performance by

development of highly accurate processing methods based on adaptive frameworks and realizing

multi-channel processing.
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CHAPTER 6

Conclusion

6.1 Original Contributions

This thesis has investigated a novel feature extraction method for hardware implementable

purposes. Detailed in Chapter3 it uses discrete derivatives which is a simplified model of DWT as

a reliable approach with low complexity for implanted hardware. The preservation of discrete

derivative extremas successfully generates well-separated clusters. A standard dataset has been

used to provide an efficient and unbiased comparison between the state-of-art spike sorting

algorithms. This dataset contains spike waveforms similar to real recorded data with different

levels of difficulty and noise. The results show that the feature extraction outperforms traditional

and online feature extraction methods in terms of template similarity and noise immunity. To

satisfy the main aim of increasing clustering performance while substantially reducing the

complexity, the system is designed to be independent of multiplication from feature extraction to

clustering ℓ1-norm based O-Sort classifier. For a fair comparison against existing published

systems, accuracy-complexity of all methods is discussed and compared using O-Sort.

To optimize the overall amount of power consumption in NFI, an optimization methodology has

been introduced in Chapter 4 based on data conversion technique selection (e.g. CBSC) and NFI

key parameters sensitivity examining on spike sorting accuracy. As shown in Figure 6.1, a

hierarchical optimization scheme is considered to optimize the total power used in the neural

acquisition path. In Chapter4 the thermal input referred noise of an ADC is considered as a

contributing factor in LNA power consumption (NMF=α). Two types of data converters for

biomedical applications have been used to evaluate the effect of noise-power of each data converter

on NFI design (Layer 1). It is also explained that the behavior of the CBSC operation is similar to

a clocked-inverter that charges/discharges the load capacitance and provides more power

efficiency compared to the SAR ADC.

To estimate the theoretical NFI power bound, the effect of NFI key parameters (low-pass filtering,

high-pass filtering, converter resolution and sampling frequency) have been examined on the spike

sorting process (Layer 2). Defining the optimal NFI parameters were performed by utilizing a



186

variety of synthetic neural signals having different numbers of spike templates (e.g. different

numbers of neurons), and different signal-to-noise ratios via an implemented spike processor on

FPGA.

The NFI power bound (Layer3) has been estimated and compared with state-of-the-art. This

chapter concluded that the NFI power consumption can be reduced by almost 30%.

The first generation of an adaptive spike sorting processor has been introduced and developed in

Chapter 5 which significantly advances the state-of-the-art performance. The adaptive spike

sorting enhances the accuracy-power characteristics by employing self-calibration of processing

features by the concept of re-definition of the spike processing through reverse-adjustment (RA).

The adaptive adjustment strategy improves performance in spike sorting such as low-power, low-

area and high-accuracy by exploiting optimal processing techniques in each constituent block of

the sorting chain. The processing method was designed especially for high density neural recording

arrays (e.g., 512 recording channels) while satisfying the implantable devices restrictions. The

Figure 6.1: Proposed flow chart for NFI power optimization methodology.
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proposed method was implemented and verified in MATLAB/SIMULINK via complexity–

performance metrics. Since the design of energy-efficient spike-sorting application specific

integrated circuits (ASICs) is necessary to allow real-time multi-channel processing, the

functionality verification of the proposed method was first examined on a programmable hardware

development platform (i.e., FPGA).

The prototype of the complete adaptive spike sorting processor has been fabricated in 180 nm

CMOS technology with 84.5% overall accuracy and 148µW power consumption from 1.8V supply

voltage. The power-performance characteristics comparison to the state-of-the-art online and

offline clustering methods has been demonstrated in Chapter 5.

6.2 Future Work

6.2.1 Multi-channel Processing

Future work will be on the development of multi-channel neural processing systems to satisfy strict

limitations such as area and power consumption. The satisfactory performance of the complete

processor will be followed by completing the implementation of an adaptive spike processor for

multi-channel processing. The main aim is to design a scalable processor in order to accomplish

processing of different number of channels (e.g 16, 32, 48, or 64 channels) for alternative BMI

applications.

6.2.2 Brain Activity Analysis

The work presented in this thesis can be applied to the design of an implantable system as a

powerful research tool for neuroscience applications. The aim is to investigate novel processing

methods to increase the number of processing channels (e.g. >1K) for the same amount of power

budget in the current state-of-the-art. This can be achieved by introducing a new processing

paradigm for projection of recorded signals.
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