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Abstract

Variational calculations of rotation-vibration spectra are presented for a range of

four- and five-atom molecules of atmospheric and astrophysical importance. Using

state-of-the-art electronic structure methods, new nine-dimensional potential energy

and dipole moment surfaces are constructed for methyl chloride (CH3Cl), silane

(SiH4), and methane (CH4). The respective surfaces are rigorously evaluated against

high-resolution spectroscopic data from a variety of experimental sources. The ab

initio potential energy surfaces represent some of the most accurate to date, whilst

intensity simulations utilizing the dipole moment surfaces show good agreement with

experiment.

A novel application of rotation-vibration computations is introduced to investi-

gate the sensitivity of spectral lines to a possible space-time variation of the proton-

to-electron mass ratio µ. The approach relies on finding the mass dependence of

the computed energy levels and is only possible because of the remarkable accuracy

of variational calculations. Highly sensitive transitions are uncovered for ammonia

(NH3) and the hydronium cation (H3O+) which could lead to a tighter constraint on

a varying µ. An advantage of the variational approach is that Einstein A coefficients

can be determined to help guide future laboratory and astronomical observations.

This thesis demonstrates the current capabilities of variational calculations of

rotation-vibration spectra and highlights the challenges faced by the field.
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450, 3191 (2015).

Enhanced sensitivity to a possible variation of the proton-to-electron

mass ratio in ammonia

A. Owens, S. N. Yurchenko, W. Thiel, and, V. Špirko, Phys. Rev. A 93, 052506
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1 Introduction

Accurate ab initio electronic structure calculations combined with a variational

treatment of nuclear motion are playing an increasingly important role in high-

resolution molecular spectroscopy. Nowadays, the process of generating compre-

hensive line lists detailing millions of transitions for small polyatomic molecules is

relatively straightforward. The resulting datasets can be used for rigorous spectral

analysis with applications in both terrestrial and astrophysical studies.

To calculate the rotation-vibration spectrum of a molecule from first principles

it is necessary to solve the non-relativistic, time-independent Schrödinger equation,

HΨ = EΨ. (1.1)

For all but the simplest systems an exact solution is not possible. Instead, levels

of approximation must be introduced to obtain a satisfactory result. The most

significant of these is the Born-Oppenheimer (BO) approximation [1–3]. Here, the

total wavefunction Ψ of the molecular system is separated into a product of the

electronic and nuclear wavefunctions,

Ψ(ri,RA) = ψelec(ri; RA)ψnuc(RA). (1.2)

The nuclear wavefunction ψnuc depends on the nuclear coordinates RA, whilst the

electronic wavefunction ψelec depends explicitly on the electronic coordinates ri, and

parametrically on the nuclear coordinates RA. It is this separation that has allowed

the theoretical study of atoms and molecules to flourish.

Because the masses of the nuclei are much larger than those of the electrons, the

nuclei are considered fixed in space with respect to electron motion. For each fixed

nuclear geometry the corresponding electronic Schrödinger equation can be solved
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to give the electronic energy. Repeating this for numerous nuclear configurations

produces a potential energy surface (PES) along which the nuclei move. The BO

approximation works because of the very strong coupling between electrons and

nuclei; a change in nuclear geometry causes an instantaneous change of electron

motion.

For a molecule containing N atoms and n electrons, the molecular Hamiltonian

in atomic units (me = e = ~ = 4πε0 = 1) is expressed as

H = −1

2

n∑
i=1

∇2
i −

N∑
A=1

1

2MA

∇2
A −

n∑
i=1

N∑
A=1

ZA
|ri −RA|

+
n∑
i=1

n∑
j>i

1

|ri − rj|
+

N∑
A=1

N∑
B>A

ZAZB
|RA −RB|

, (1.3)

where lower case subscripts refer to electrons, upper case subscripts to nuclei, and

MA and ZA are the mass and charge of the nuclei, respectively. In a more compact

form and dropping the coordinate indices,

H = Te(r) + TN(R) + VeN(r,R) + Vee(r) + VNN(R), (1.4)

where there is a kinetic energy operator T for electrons e and nuclei N , and a

potential energy V from eN Coulombic attraction, and ee/NN Coulombic repulsion.

Selecting a fixed nuclear configuration, the electronic Hamiltonian is

Helec = Te(r) + VeN(r; R) + Vee(r) + VNN(R), (1.5)

where VNN(R) is a constant value for a chosen R, such that

Helec(r; R)ψelec(r; R) = Eelec(R)ψelec(r; R). (1.6)

Repeatedly solving Eq. (1.6) to get the electronic energy Eelec for a selection of

nuclear geometries gives the Born-Oppenheimer PES, VBO(R). It is independent of

the masses of the nuclei and is applicable to all isotopologues of a given molecule.
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Once VBO(R) is known we can solve for the nuclear motion,

(TN + VBO)ψnuc = Eψnuc, (1.7)

to get the total energy E of the system in the electronic state defined by the PES. In

this thesis we only consider rotations and vibrations in the ground electronic state.

Note that in the BO approximation the contribution from the nuclear kinetic

energy operator TN acting on ψelec(r; R) is neglected. The terms which arise from

allowing TN to act on ψelec(r; R) can improve the description of the PES. The most

straightforward to compute is the diagonal Born-Oppenheimer correction (DBOC)

or adiabatic correction (discussed in Sec. 2.4.4). Further residual errors arising from

the wavefunction separation of Eq. (1.2) are treated with so-called nonadiabatic

corrections. However, their calculation is a more complicated affair and formally

requires a summation over all electronic states of a molecule. It has been argued

that the use of atomic mass values in rovibrational calculations can to some extent

compensate for the errors of the BO approximation [4], and this approach is often

employed in high-accuracy studies.

The energies and eigenfunctions obtained from solving Eq. (1.7) are the necessary

quantities for simulating rovibrational spectra. In Fig 1.1, a general outline of the

stages involved is presented. Symmetry and selection rules will govern the allowed

transitions between different energy levels, however, to compute the corresponding

transition intensities requires knowledge of the molecular dipole moment surface

(DMS). The DMS describes the charge distribution of a molecule as a function of

nuclear geometry and, like the PES, can be routinely calculated using electronic

structure methods. Once known it is utilized with the rovibrational eigenfunctions

to determine intensities.

In this thesis, rotation-vibration calculations will be performed on a range of

four- and five-atom molecules of astrophysical importance. The molecular systems

considered are: methyl chloride (CH3Cl), silane (SiH4), methane (CH4), ammonia

(NH3) and hydronium (H3O+). New potential energy and dipole moment surfaces
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Figure 1.1: Overview of computing a rotation-vibration spectrum for a small poly-

atomic molecule from first principles.

for CH3Cl, SiH4 and CH4 will be generated using state-of-the-art ab initio theory.

Using variational calculations the respective surfaces will be rigorously evaluated at

the current threshold of what is computationally possible for high-accuracy studies of

five-atom systems. For NH3 and H3O+, existing surfaces will be used to investigate

the sensitivity of spectral lines to a possible variation of the proton-to-electron mass

ratio µ. The approach presented is a novel application of variational calculations of

rovibrational spectra.

A key motivation for the present work has been the discovery of over 3000 plan-

ets outside of our solar system. Termed exoplanets (short for extrasolar planets),

characterizing their atmospheric composition has created a huge demand for spectro-

scopic data, the majority of which has not been catalogued. Unlike spectra recorded
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in the laboratory at room temperature, exoplanets are likely to be much hotter ob-

jects with temperatures up to 2000 K. There is a dramatic increase in the number of

molecular transitions at higher temperatures; for example a recent methane hot line

list, 10to10 [5], applicable for temperatures up to 1500 K contained 9.8 billion transi-

tions. Obtaining this kind of coverage from laboratory measurements is impractical

and a far more viable solution is to employ theory, especially now the methods are

well established. The successful characterization of exoplanet atmospheres also re-

quires a range of molecular species to be considered. HITEMP [6] was the only

spectroscopic database dealing exclusively with hot spectra but contained only five

molecules (H2O, CO2, CO, OH, NO) and their isotopologues.

The ExoMol project [7, 8] was set up to address these issues and is actively

computing key spectroscopic data for the study of exoplanet and other hot atmo-

spheres. Using high-level ab initio methods as part of a robust theoretical model,

comprehensive rotation-vibration line lists and spectra are being constructed for im-

portant diatomic and polyatomic species. A degree of empirical tuning is usually

incorporated into the process by refining the PES to experimental data. This step

is necessary to reach the level of accuracy required by high-resolution spectroscopy.

Whilst some molecules such as CH3Cl have to be started from scratch, other systems

can use existing potential energy and dipole moment surfaces if available.

A portion of the work presented in this thesis is inspired by a growing field of

research concerned with spectroscopic tests of fundamental physics. Molecules pro-

vide an attractive testing ground for probing possible variations of the fundamental

constants of nature. In particular, rotation-vibration transitions are sensitive to the

proton-to-electron mass ratio. If any variation did exist it would cause observable

shifts in the transition frequencies of certain molecules. Not all transitions are suit-

able however. To determine the most favourable, the sensitivity of a transition can be

quantified, via the calculation of a sensitivity coefficient, once the mass dependence

of the involved energy levels is known. Variational calculations are comprehensive

and accurate and this presents the opportunity to investigate promising candidate
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systems such as NH3 and H3O+.

However, before any molecules are considered it is important to discuss the the-

oretical methods required to accurately solve the non-relativistic, time-independent

Schrödinger equation. As seen earlier, solution of Eq. (1.1) is done in two stages.

First we have to treat the electronic Schrödinger equation and this is the subject

of Chapter 2. Here the focus will be on highly accurate electronic structure meth-

ods suitable for small, closed-shell molecules. After establishing the Hartree-Fock

wavefunction and the definition of electron correlation, we will work towards ex-

plicitly correlated F12 coupled cluster theory which is a very powerful approach.

However, the electronic structure method is meaningless without the correct choice

of one-particle basis set. The concepts behind basis set construction will therefore

be introduced before focusing on the correlation-consistent class of basis sets and

their F12-optimized counterparts. Further improvements in accuracy come from

basis set extrapolation and the treatment of additional higher-level corrections to

the electronic energy. These topics will also be discussed.

In Chapter 3 we turn to solving the nuclear Schrödinger equation. For high-

accuracy work a complete treatment of the nuclear motion problem is offered by

variational approaches. In this thesis we use the computer program TROVE [9].

Therefore we will focus only on the methodology of TROVE and how it achieves its

generality. The limitations of electronic structure theory means empirical refinement

of the PES is a necessary step and we examine the implementation in TROVE. We

will then move on to the topic of line intensities and the procedure used to compute

the line strength of a transition for a given molecular DMS. Spectral lines have a

definite shape and it is important to be aware of the physical factors which cause

line broadening. We conclude by looking at these effects and how best to model

them using shape functions.

Having reviewed the theoretical basis for simulating rotation-vibration spectra

from first principles, the first system we will consider is methyl chloride in Chapter 4.

This molecule is of the form XY3Z — a structure which had not previously been
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implemented in TROVE. Chapter 4 should therefore illustrate the entire process

of generating a spectrum from scratch. This begins with the application of high-

level ab initio theory to compute an accurate PES and DMS. Once suitable analytic

representations have been defined to represent the ab initio data, the respective

surfaces can be rigorously tested. A reliable assessment is only possible with well

converged term values but the increasing size of matrices which must be considered

can often make this problematic computationally. A way of circumventing this issue

in TROVE is to employ a complete vibrational basis set extrapolation and this will

be described with respect to CH3Cl. We will then go on to compute vibrational

energies, the equilibrium geometry of CH3Cl, pure rotational energies, vibrational

transition moments, absolute line intensities, and a preliminary rotation-vibration

line list.

The next system we treat is silane in Chapter 5 and this will be more straight-

forward having dealt with CH3Cl, and because XY4 -type molecules have been pre-

viously implemented in TROVE. A key consideration in this chapter will be the ap-

proach to the electronic structure calculations, notably the PES. Generating a highly

accurate ab initio PES can be a computationally intensive task due to the considera-

tion of additional higher-level corrections to the electronic energy. For SiH4 we take

a slightly different approach to that of CH3Cl and we employ certain approximations

to be more time-effective. A new nine-dimensional DMS is constructed before both

surfaces are evaluated with variational calculations. The equilibrium bond length,

pure rotational energies, vibrational energies, vibrational transition moments, ab-

solute line intensities, and an overview of the rotation-vibration spectrum of silane

are all computed and compared with experiment.

With the knowledge acquired from constructing ab initio PESs for CH3Cl and

SiH4, we turn our attention to the atmospherically important methane molecule in

Chapter 6. A highly accurate ab initio PES for CH4 is presented and we calcu-

late vibrational energies, the equilibrium geometry, and pure rotational energies to

compare with experiment. This chapter represents a culmination of the techniques
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learnt over the previous two chapters.

In Chapter 7 we explore the mass sensitivity of rotation-vibration energy lev-

els of XY3 -type molecules. This is done to investigate a possible variation of the

proton-to-electron mass ratio and is possible because of the remarkable accuracy of

variational calculations. After a brief introduction to the field of spectroscopic tests

of fundamental physics, we look at other methods used to compute sensitivity coef-

ficients before introducing a new, variational approach. A comprehensive study of

ammonia and the hydronium cation will then be carried out with the aim of uncov-

ering particularly sensitive transitions which could help guide future observations.

Concluding remarks on the work presented in this thesis are given in Chapter 8.
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2 Solving the electronic

Schrödinger equation

2.1 Introduction

A considerable amount of chemistry is determined by the interactions between

electrons. As a result, tremendous progress has been made in the development of

clever approximations to solve the electronic Schrödinger equation. The field of

quantum chemistry is a very active area of research and shows no sign of slowing

down. A range of electronic structure methods are available to treat molecular

systems of varying size and structure. For small molecules, highly accurate wave-

function based approaches offer a systematic route towards the correct result and

we focus on this class of methods in this chapter.

Computing the rotation-vibration spectrum of a molecule requires knowledge of

the molecular PES and DMS. These are constructed on extensive grids of nuclear

geometries which can contain, for example, around 100, 000 points for a five-atom

molecule. Given the huge number of calculations which are required, selecting the

most suitable method and one-particle basis set to solve the electronic Schrödinger

equation is not always straightforward. It is important to strike a balance between

accuracy and computational expense.

The PES is the foundation of rovibrational energy level calculations and its qual-

ity not only dictates the accuracy of line positions but can be crucial for improve-

ments in computed band intensities [10]. The DMS reflects the charge distribution

of a molecule as a function of nuclear geometry. Because the electric dipole moment

µ is a vector quantity, three surfaces (corresponding to the Cartesian components

µX , µY and µZ) are required. The dipole moment is equal to the first derivative of
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the electronic energy with respect to external electric field strength ε. In component

form,

µA = −
(
dE

dεA

)
εA=0

, (2.1)

where the Cartesian coordinate axis A = X, Y, Z. It is straightforward to evaluate

Eq. (2.1) using finite differences as the derivatives can be approximated using the

expression,

dE

dεA
≈ E(εA)− E(−εA)

2εA
. (2.2)

The finite-field approach, where an electric field is applied along each coordinate axis,

is flexible as any electronic structure method can be employed. There is also the

capability of incorporating additional higher-level corrections (discussed in Sec. 2.4)

to the DMS to improve its accuracy. However, the finite differentiation technique is

expensive as seven calculations are required for each nuclear geometry (two for each

coordinate axis and a field-free calculation for the electronic energy). Alternatively,

Eq. (2.1) can be evaluated using analytical derivatives which are more accurate but

only available in certain quantum chemistry codes. A final option is to compute the

DMS as the expectation value of the dipole moment operator but this holds only

for truly variational wavefunctions. Regardless of the method chosen, theoretical

intensity simulations which rely on an ab initio DMS are nowadays competitive

with experiment [11].

The choice then of theoretical method and basis set to compute the PES and

DMS is extremely important as it will heavily influence the quality of the final line

list. In this chapter we will discuss the theoretical basis for solving the electronic

Schrödinger equation and the preferred ab initio theory and one-particle basis sets

for doing this. The aim is to provide an understanding of electronic structure meth-

ods so that they can be confidently used in practical high-accuracy calculations.

Only the fundamental concepts which I consider important are presented as there

are numerous books and review articles which detail the working equations.
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2.2 Electronic structure methods

2.2.1 Hartree-Fock theory

In Hartree-Fock theory each electron moves in an average field created by the

other electrons with no independent interactions. A system of N electrons is repre-

sented as a single Slater determinant

ΨSD(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.3)

which is antisymmetric with respect to the interchange of the coordinates of any two

electrons, hence satisfying the Pauli exclusion principle. Here, χi is a spin-orbital

with the spatial (r) and spin (ω) degrees of freedom expressed as the space-spin

coordinate xi = (ri, ωi).

The Hartree-Fock method, or self-consistent-field (SCF) procedure, is concerned

with finding the optimum set of spin-orbitals to give the Slater determinant with the

lowest energy. This is done by solving the Hartree-Fock equations. It is an iterative

procedure based on the variational principle such that

EHF =
〈ΨSD|Helec|ΨSD〉
〈ΨSD|ΨSD〉

≥ Eexact. (2.4)

The HF energy EHF provides an upper bound to the exact ground state energy

Eexact, with the corresponding HF wavefunction being the best single determinant

approximation to the electronic ground state of the system. It is this wavefunction

that forms the basis of many post-Hartree-Fock methods. Despite the fact HF is

able to recover around 99.9% of the exact ground state energy, it is simply not

accurate enough.

Quantum chemical methods are instead focused on recovering the correlation
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energy, defined as

Ecorr = Eexact − EHF. (2.5)

For many-electron systems this quantity is always negative. It can be understood as

the contribution from electron-electron interactions not accounted for by the mean-

field approach of Hartree-Fock. The correlation energy is often partitioned into two

contributions: static and dynamic correlation. In certain situations, for example

bond breaking, multiple Slater determinants are needed to get an reasonable zeroth-

order description of the wavefunction. A single HF reference is not sufficient and

the resulting difference in energy between these two representations is called static

correlation. Dynamic correlation is attributed to the motion of the electrons and

is short-range in origin. In most cases the distinction between the two is not well

defined and the partitioning can be somewhat arbitrary.

2.2.2 Configuration interaction

The most straightforward post-HF method is configuration interaction (CI).

Here, the CI wavefunction is represented as a linear combination of Slater deter-

minants,

ΨCI = c0ΨHF +
∑
i,a

caiΨ
a
i +

∑
i<j,a<b

cabij Ψab
ij + . . . , (2.6)

where Ψa
i is the Slater determinant (or configuration) obtained by exciting an elec-

tron in spin-orbital i to spin-orbital a in ΨHF. The indices i, j, . . . and a, b, . . . de-

note occupied and unoccupied spin-orbitals, respectively. The expansion coefficients

c0, c
a
i , c

ab
ij , . . . are optimized in a variational procedure.

If all possible configurations are constructed for an N -electron system, we have

full configuration interaction (FCI). This corresponds to solving the electronic Schrö-

dinger equation exactly for a given one-particle basis set (introduced in Sec. 2.3) and

represents the most accurate treatment one can hope for. However, in all but the

smallest systems FCI is not possible due to the steep computational scaling of the

method as the number of configurations in the expansion increases. Instead the CI
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expansion must be truncated at some level of excitation. For example, CI with only

single and double excitations, i.e. the terms shown in Eq. (2.6), is known as CISD.

Many multireference electronic structure methods employ the form of the CI

wavefunction (a linear combination of Slater determinants). These approaches se-

lect the most important configurations and are motivated by the inadequacy of the

HF determinant to reliably describe the system. Multireference configuration inter-

action (MRCI) is often used to compute global PESs as it provides accurate energies

towards dissociation. For closed-shell molecules near equilibrium however, the HF

determinant dominates the wavefunction and coupled-cluster methods are preferred.

2.2.3 Coupled-cluster theory

Coupled-cluster (CC) theory originated in nuclear physics in the 1950s but

largely went unnoticed. It was the application to atomic and molecular electronic

structure combined with the growth in computing power which enabled CC theory

to become a powerful method to treat electron correlation (see Bartlett and Musial

[12] and references therein for a historical overview). The success of CC theory is

rooted in its exponential ansatz,

ΨCC = exp(T )ΨHF

= (1 + T + T 2/2 + T 3/3! + . . .)ΨHF. (2.7)

Here, the cluster operator is given by

T = T1 + T2 + T3 + . . .+ TN , (2.8)

with all single excitation operators represented by the term T1, all double excitations

by T2, triples by T3, etc. That is,

T =
∑
µ

tµτµ, (2.9)
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with each excitation operator τµ having an associated cluster amplitude tµ. The

general index µ labels spin-orbitals for an N -electron system.

An exact solution to the Schrödinger equation in a given one-particle basis set is

obtained by including all possible excitations in the cluster operator. This is equiv-

alent to FCI in the same basis. For the majority of systems such an approach is not

feasible computationally so the level of excitation in the cluster operator is trun-

cated. This produces the well-known acronyms CCSD, CCSDT, CCSDTQ,. . . where

the addition of another letter corresponds to the inclusion of higher excitations.

Let us consider CCSD (coupled-cluster with all single and double excitations)

i.e. T = T1 + T2. The singly-excited determinants are described by the connected

term

T1ΨHF =
∑
i,a

taiΨ
a
i , (2.10)

whilst for doubly-excited determinants there is a contribution from a connected and

disconnected term

(T2 +
1

2
T 2

1 )ΨHF =
∑

i<j,a<b

tabij Ψab
ij +

1

2

∑
i,a

∑
j,b

tai t
b
jΨ

ab
ij . (2.11)

Two disconnected terms (T1T2 + 1
6
T 3

1 ) contribute to the triply-excited determinants,

and so on. We see that by using an exponential ansatz, all possible determinants

which enter the FCI wavefunction are generated for a given basis set. The descrip-

tion of these determinants (through the cluster amplitudes tµ) is what changes and

improves by adding higher levels of excitation to T . To determine the cluster am-

plitudes, a nonlinear set of equations is solved in an iterative procedure. If the HF

determinant is a good zeroth-order reference, the series rapidly converges to the

exact energy within the chosen basis.

If N is a measure of molecular size, CCSD calculations are of the order O(N 6),

whilst CCSDT scales as O(N 8). Such steep computational scaling led to the devel-

opment of approximate ways to treat the triples contribution. The most successful

of these is the popular CCSD(T) [coupled cluster with all singles and doubles and
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a perturbational estimate of connected triple excitations].

Although CCSD(T) is considered the gold standard of quantum chemistry, it

can only be used for small to medium sized systems (up to 20 atoms) as the compu-

tational cost is still prohibitive [O(N 7)]. This challenge is being overcome with the

development of local coupled-cluster methods. The success of local CC methods is

based on the short-range origin of dynamic electron correlation. Already CCSD(T)

calculations have been carried out on an entire protein containing 644 atoms [13]. I

expect these methods to become prevalent in the near future.

More limiting for high-accuracy work (even for small molecules) is the slow con-

vergence of the correlation energy with respect to basis set size. As the interelec-

tronic distance r12 → 0 a cusp occurs in the wavefunction. Accurately describing

the shape of this cusp using an expansion in products of Gaussian-type orbitals (the

most common one-electron functions) is problematic, hence the slow convergence.

This issue has been addressed with the development of explicitly correlated methods

which will be discussed in Sec. 2.2.4.

Note that CC methods are size-extensive [14]. This means that the exact energy

scales correctly (linearly) with the number of particles in the system. It is a formal

scaling property of the energy applicable to any geometry and ensures accurate

relative energies along a PES. It is closely related to, but more general than, the

concept of size-consistency [15]. A size-consistent method for system AB must

satisfy

EAB(r →∞) = EA + EB, (2.12)

where subsystems A and B are separated by distance r. Hartree-Fock, many-body

perturbation theory and coupled-cluster theory are all size-extensive methods but

they are only size-consistent if the reference wavefunction they are based on has

correct dissociation behaviour. Truncated CI approaches are neither size-extensive,

nor size-consistent.
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2.2.4 Explicitly correlated coupled-cluster methods

Explicitly correlated F12 methods are at the forefront of practical high-accuracy

calculations and offer a far more efficient way to compute reliable results. They

overcome the slow convergence of the correlation energy with basis set size by intro-

ducing an explicit dependence on the interelectronic distance r12 into the wavefunc-

tion. The idea dates back over 85 years to Hylleraas and the helium atom [16], but

only recently has the methodology developed enough for molecular systems to be

routinely treated (see Helgaker et al. [17] for a history). So far there have been ex-

plicitly correlated extensions to configuration interaction, perturbation theory, and

coupled-cluster methods.

Considering the CCSD-F12 wavefunction,

ΨCCSD−F12 = exp(T )ΨHF = exp(T1 + T2 + T2′)ΨHF, (2.13)

an additional operator T2′ is present. This term introduces the explicitly correlated

contribution whilst the operators T1 and T2 are the same as in standard CCSD

theory. The resulting wavefunction is augmented with an additional expansion using

F12 basis functions (geminals) that are able to describe the shape of the cusp region

because of their explicit dependence on r12. As a result, the basis set error of a

calculation can be reduced by an order of magnitude compared to standard CCSD.

The most efficient way of introducing r12 is through a Slater-type function [18],

f12 = −β−1 exp(−βr12), (2.14)

where β (sometimes γ in the literature) is a length-scale parameter with a value

around 1.0 a−1
0 where a0 is the Bohr radius. Different choices of f12 have been used

in the past such as the linear correlation factor f12 = r12 (known as the R12 class

of methods). However, Eq. (2.14) has been shown to be close to the optimal factor

for incorporating the interelectronic distance [19].
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Certain key developments allowed explicitly correlated methods to become com-

putationally feasible. The numerous many-electron integrals could be reduced into

sums of products of two-electron integrals by successively inserting an approximate

resolution of the identity (RI) [20]. In early methods the RI was approximated

using the orbital basis but this needed an extremely large one-particle basis set

in calculations. The proposal of an additional complementary auxiliary basis set

(CABS) to be used with the orbital basis improved the accuracy of the approximate

RI and gave simpler working equations [21]. This approach is now used in all mod-

ern implementations. Integral evaluation also became more efficient with the use of

density fitting [22, 23]. Accompanying these advances were the design of correlation

consistent F12-optimized basis sets which we will discuss in Sec. 2.3.

As of yet, no explicitly correlated treatment of the perturbative triples (T) con-

tribution has been implemented and it is computed using standard CC techniques.

There exist several approximate CCSD(T)-F12 models and an overview of the dif-

ferent variants has been given by Tew et al. [24]. In calculations I employed the

CCSD(T)-F12x (x = a, b) approach of Werner and coworkers [25–27]. These meth-

ods retain only the dominant F12 contributions. Compared to standard CCSD(T),

there is a slight increase in computational effort when using CCSD(T)-F12x which

arises from an initial explicitly correlated second-order Møller-Plesset (MP2-F12)

perturbation theory calculation (of the order O(N 5)). Marginal differences in en-

ergy occur if x = a or b but relative energies are of a similar accuracy.

It is worth noting that the basis set error in the CCSD-F12 correlation energy is

reduced to such an extent that the respective error in the HF energy becomes signif-

icant. To compensate, a perturbative CABS singles correction [25] was introduced

which reduces the HF basis set error by an order of magnitude so that the accuracy

of the HF energy is equivalent to the CCSD-F12 correlation energy.
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2.3 One-particle basis sets

If a FCI wavefunction was expanded in an infinite one-particle basis set we

would arrive at the exact, non-relativistic energy of the system. Of course this is

not possible. The basis set has to be truncated at some level which introduces an

error into the calculation. Effective one-particle basis sets try to make this error as

small as possible and if it can somehow be reduced to zero, we are working at the

complete basis set (CBS) limit. The theoretical study of atoms and molecules is

concerned with these two aspects: a wavefunction as close to FCI as possible, and

a one-particle basis set at the CBS limit.

The computational resources, theoretical method, molecular system and prop-

erty in question will influence the choice of basis set. There is no such thing as

an optimum basis set suitable for all scenarios. In practical molecular wavefunc-

tion calculations Gaussian basis sets are preferred because of their computational

efficiency; the many-centre integrals which arise can be factorised into products of

one-centre integrals (a result of the Gaussian Product Theorem) and these are far

easier to compute.

Considering only the spatial degrees of freedom of the spin-orbitals from Eq.

(2.3), the unknown orbitals χi(r) can be expanded using M known one-electron

functions φµ(r), such that

χi(r) =
M∑
µ

ciµφµ(r). (2.15)

The expansion coefficients ciµ are determined from the iterative SCF procedure with

the one-particle basis set defined by
∑
φµ(r).

Gaussian basis sets are constructed from primitive Cartesian functions of the

form,

φGTO
a (rA) = N(x−X)l(y − Y )m(z − Z)n exp(−ζa(r−RA)2), (2.16)

with centre (usually nuclear) RA = (XA, YA, ZA), normalization constant N , orbital
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exponent ζa which defines the radial extent of the function, and the total angular

momentum l+m+n which is used to classify the function. For l+m+n = 0, 1, 2, 3

we have s, p, d, f -type functions, respectively. Functions with a large exponent are

known as tight, whilst those with a low exponent are termed diffuse. Calculations

employ linear combinations or contractions of the primitive Gaussian-type orbitals

(GTOs),

φcGTO
µ (rA) =

K∑
a

Cµaφ
GTO
a (rA), (2.17)

where Cµa are contraction coefficients to be decided and K < M . Contraction gives

a more compact basis set and there are different approaches for how this is done.

The two main schemes are general and segmented contraction but we will not discuss

these further. The interested reader is referred to Ref. [28] (and references therein).

The number and subsequent contraction of the primitive GTOs defines the basis

set. There are a huge number of Gaussian basis sets each assembled using slightly

different principles (see Refs. [28, 29] for an overview). In this thesis I only employ

the correlation-consistent basis sets of Dunning and coworkers [30–35] and their

explicitly correlated F12 counterparts [36–38]. For this reason I limit the discussion

to these two classes of basis set only.

2.3.1 Correlation-consistent basis sets

The correlation-consistent polarized valence basis sets, denoted cc-pVXZ where

basis set size increases with the cardinal number X = D,T,Q, 5, 6, 7, are widely used

for high-accuracy work. Initially proposed by Dunning [30] for first and second row

atoms, the cc-pVXZ basis sets offer a systematic route towards the CBS limit for

correlated methods. Generally speaking, at each step up in the cardinal number

X, functions of different angular momentum are added in a structured manner to

recover more of the correlation energy.

Dunning was inspired by the success of the atomic natural orbital (ANO) ba-

sis sets [39] and subsequently analysed the energy contribution of different basis

functions for oxygen at the CISD level of theory. Including functions with higher
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angular momentum than those of the occupied atomic orbitals, known as polar-

ization functions, was necessary to describe correlation effects. The idea then was

to add successively larger shells of polarization functions, which in this case are

primitive Gaussians optimized at the correlated CISD level, to a core set of SCF

optimized functions. Here, a shell is a set of functions with the same contraction

coefficient, exponent, centre and total angular momentum. Increasing the cardi-

nal number X adds another shell to the basis set which contributes a very similar

amount of correlation energy.

As the ‘V’ in the name implies, the cc-pVXZ basis sets are concerned only

with the valence electron correlation energy. For all-electron calculations which

compute the correlation contribution from core electrons, it is necessary to use

specially designed core-valence cc-pCVXZ, or weighted core-valence cc-pwCVXZ

basis sets [33, 35]. Here, tight functions with large exponents are included to describe

the region closer to the nuclei. In second-row atoms it was later shown that including

an additional d-function with a larger exponent improved results, giving rise to the

cc-pV(X+d)Z basis sets [34]. Also widely employed are the augmented correlation-

consistent basis sets, aug-cc-pVXZ [31]. In this class, a set of diffuse functions are

added for each value of total angular momentum present in the basis. Because of

the small exponent, diffuse functions decay slowly with distance from the nucleus

and provide a better description of the long-range portion of the wavefunction. This

is important for computing a DMS because the dipole moment operator accentuates

the contribution from diffuse parts of the wavefunction.

The variety of correlation-consistent basis sets highlights the fact that particular

chemical situations or molecular properties have different basis set requirements.

They are all, however, built on the principle of reducing the basis set error in a

smooth and predictable way. This has led to the use of extrapolation techniques to

achieve results at the CBS limit and we will discuss this further in Sec. 2.3.3.
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2.3.2 F12-optimized and auxiliary basis sets

The development of explicitly correlated CC methods was followed by the intro-

duction of new F12-optimized correlation-consistent basis sets, denoted cc-pVXZ-

F12 where X = D,T,Q, 5 [36, 38]. Originally, the cc-pVXZ basis sets were designed

to describe both the short-range electron-electron cusp and longer-range correla-

tion effects of the electronic wavefunction. Inclusion of a nonlinear r12 factor into

the wavefunction which could accurately account for the cusp region changed the

requirements of the one-particle basis set.

The F12-optimized basis sets were constructed following a similar procedure to

the standard cc-pVXZ basis sets. Again, the idea is to identify and form shells

of polarization functions that lower the correlation energy in a systematic manner.

These can then be added to a core set of SCF optimized functions. Using both atomic

and molecular systems from the first and second row, basis sets were optimized

at the MP2-F12 level of theory. The main difference between the cc-pVXZ-F12

and standard cc-pVXZ basis sets is that at each step up in the cardinal number

X, at least two shells of the new angular momentum value are added. The F12-

optimized basis sets are slightly larger than their standard Dunning counterparts

but show markedly better performance with explicitly correlated methods. New

F12-optimized core-valence basis sets, cc-pCVXZ-F12 [37], are also available.

The majority of explicitly correlated methods require three additional auxiliary

basis sets (ABS); two for density fitting approximations of two-electron repulsion

integrals, and a complementary auxiliary basis set (CABS) for the RI approximation

of three-electron integrals (and in some cases four-electron integrals). The OptRI

ABS [40] have been designed for use with the cc-pVXZ-F12 basis sets and minimize

the RI errors. For density fitting of the exchange and Fock integrals the JKFIT ABS

of Weigend [41] are often used, whilst for the remaining two-electron integrals the

MP2FIT ABS of Hättig [42] are known to be reliable. New MP2FIT ABS [43] have

recently been optimized for use with the cc-pVXZ-F12 and cc-pCVXZ-F12 basis sets
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and it is expected that these will become the standard in future F12 calculations.

Guidelines for the construction of ABS in Ref. [43] suggest the number of auxiliary

basis functions should be no more than six times the number of functions in the

one-particle basis set.

2.3.3 Basis set extrapolation

Given the systematic behaviour of the correlation-consistent basis sets it was

inevitable that methods to extrapolate results to the CBS limit would emerge. By

running a series of calculations with increasing cardinal number X, the computed

energies can be fitted with an expression and a value at the CBS limit estimated.

Numerous formulas have been put forward but there is no general consensus as to

which one is the best (see Ref. [44] for a recent comparison).

To obtain an accurate energy at the CBS limit it is sufficient to use two or three

separate calculations. The extrapolation is more reliable if larger basis sets are

utilized. As different contributions to the total energy converge at different rates

with respect to basis set size, some strategies extrapolate the various contributions

separately. For example, in a CCSD(T) calculation one formula would be applied to

the HF energy, another to the CCSD energy, and another to the (T) contribution.

Since the introduction of robust F12 methods only one parameterized two-point,

Schwenke-style [45] formula applicable for MP2-F12 and CCSD(T)-F12b has been

suggested [46],

EC
CBS = (En+1 − En)FC

n+1 + En. (2.18)

The coefficient FC
n+1 is specific to the C = MP2-F12, CCSD-F12b or (T) energy

contribution E, whilst n and n + 1 refer to the smaller and larger basis set, re-

spectively. Optimized coefficients have been determined for the cc-pVXZ-F12 and

aug-cc-pVXZ classes of basis set. The reliability of extrapolating CCSD(T)-F12b

results has however been questioned [47], and with the development of the cc-pV5Z-

F12 basis set [38] extrapolation may no longer be necessary for small molecules.

Explicitly correlated methods are relatively new and will no doubt undergo further
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development and testing. New basis sets and extrapolation formulas are likely to be

proposed along the way.

2.4 Additional higher-level corrections

Achieving “spectroscopic accuracy” (better than ±1 cm−1) in rovibrational en-

ergy level calculations using a purely ab initio PES is extremely challenging due

to the limitations of electronic structure methods. To do so one must account for

higher-level (HL) electron correlation beyond the initial coupled cluster method

when generating the PES and use a one-particle basis set near the CBS limit. Core-

valence (CV) electron correlation, higher-order (HO) electron correlation, scalar

relativistic (SR) effects and the diagonal Born-Oppenheimer correction (DBOC)

are considered to be the leading HL contributions [17, 48]. Although expensive to

compute, their inclusion can significantly improve calculated rotation-vibration en-

ergy levels. There are also certain approximations which can be utilized to reduce

computational time as we will see in Chapter. 4, 5 and 6.

2.4.1 Core-valence electron correlation

The behaviour of valence electrons dominates our understanding of chemistry.

Core electrons are responsible for the absolute energy of a molecule but are largely

unperturbed by vibrations and as such, are not expected to significantly alter the

shape of the PES. It is usually sufficient to freeze core electrons when generating

the PES, known as the frozen-core (fc) approximation. By doing this calculations

are significantly cheaper which is an important consideration when computing the

electronic energy at tens of thousands of nuclear geometries.

For high accuracy studies, however, it is necessary to go beyond the fc approx-

imation by considering the contribution from correlating core electrons. This is

computed as the difference between an all-electron (ae) and frozen-core calculation

within a given level of theory, i.e. ∆ECV = E(ae) − E(fc). Including the CV cor-
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rection usually causes an energy bias in the PES and it is necessary to also consider

HO electron correlation, which contributes to the electronic energy with the opposite

sign.

2.4.2 Higher-order electron correlation

Energy corrections beyond the standard CCSD(T) treatment are usually termed

as HO electron correlation. Often these are estimated using the hierarchy of coupled-

cluster methods CCSDT, CCSDT(Q), CCSDTQ, and so on. The HO correction can

be written as

∆EHO = ∆ET + ∆E(Q) + . . . , (2.19)

where ∆ET = ECCSDT − ECCSD(T) and ∆E(Q) = ECCSDT(Q) − ECCSDT. One could

calculate ECCSDT(Q) − ECCSD(T) but by splitting up the contribution it is possible

to use successively smaller basis sets at each step up in excitation level due to

faster convergence [49]. This significantly reduces the computational expense of

determining ∆EHO.

Corrections for HO electron correlation are not restricted to the hierarchy of cou-

pled cluster theory. Any appropriate (multireference) method can be used to com-

pute, or at least recover some of, the energy difference between FCI and CCSD(T).

For example, a high-level ab initio PES for ammonia used the internally con-

tracted averaged coupled-pair functional (ic-ACPF) method [50, 51] such that,

∆EHO = (EACPF−ECCSD(T)) [52]. The ic-ACPF method is a modification of the in-

ternally contracted multi-reference configuration interaction (ic-MRCI) method and

has the advantage of being approximately size-extensive.

2.4.3 Relativistic effects

A rigorous relativistic treatment of a molecule using the Dirac-Coulomb-Breit

Hamiltonian is computationally demanding and unnecessary for light systems (con-

taining elements H–Ar). It is usually sufficient to treat the effects of relativity in an

approximate manner based on the Dirac equation. Relativistic effects in quantum
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chemistry are classed as either (i) scalar relativistic (SR) effects, or (ii) spin-orbit

(SO) coupling. This classification is essentially a divide between contributions which

do not split the energy levels (i.e SR), and those which do (i.e. SO).

SR effects, associated with the relativistic mass increase of electrons, can be

computed using the one-electron mass-velocity (MV) and Darwin (D1) operators

HMV = − 1

8c2

∑
i

p4
i , (2.20)

HD1 = − π

2c2

∑
i,A

ZAδ(|ri −RA|), (2.21)

from the Breit-Pauli Hamiltonian in first-order perturbation theory [53]. Here, the

momentum operator p = −i~∇ and c is the speed of light. Corrections at the

one-electron MVD1 level tend to provide a reliable description of SR effects in light

systems and the two-electron Darwin term (D2) need not be considered.

Alternatively, the second-order Douglas-Kroll-Hess (DKH) approach [54, 55] can

be used. The DKH approach employs a series of unitary transformations to ef-

fectively decouple or separate out the negative energy states (positrons) from the

Dirac equation. The remaining ‘electron-only’ Hamiltonian can then be approxi-

mated to arbitrary order. Second-order (denoted DKH2) is usually sufficient. These

two methods are widely available in quantum chemistry codes.

For light, closed-shell molecules, which are the focus of this thesis, the spin-

orbit interaction can be safely neglected in spectroscopic calculations [56]. I have

not considered smaller relativistic corrections arising from the Gaunt and Breit

interactions, or the Lamb shift. The effects of these on small, light molecules is

discussed in Ref. [56].

The field of relativistic quantum chemistry is a very active area of research.

We have only touched upon the key aspects relevant for this thesis. Other methods

such as the zero-order regular approximation (ZORA) scheme or direct perturbation

theory (DPT) approach have also been developed to compute SR effects. I refer the

reader to Refs. [17, 56] (and references therein) for an overview.
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2.4.4 Diagonal Born-Oppenheimer correction

As shown in Eq. (1.2), the Born-Oppenheimer approximation separates the nu-

clear and electronic degrees of freedom. There is however a second assumption made

and that is to neglect the contribution of the nuclear kinetic energy operator acting

on the electronic wavefunction [3]. To first-order this contribution has the form

∆EDBOC = 〈ψelec|
∑
A

− ~2

2MA

∇2
A|ψelec〉, (2.22)

and is known as the DBOC. It can be routinely calculated in quantum chemical pack-

ages and its inclusion in the PES leads to the so-called adiabatic approximation. The

PES becomes mass-dependent and applicable only for a single isotopologue. Note

that the DBOC is largest for molecules containing hydrogen, seen by considering

the denominator in Eq. (2.22).

2.5 Chapter summary

The preferred ab initio theory and one-particle basis sets to solve the electronic

Schrödinger equation for small, closed-shell molecules have been detailed in this

chapter. The focus was on high-accuracy methods, basis sets and techniques to

recover as much of the correlation energy as possible. Ideally we would employ FCI

with an infinitely large basis set to get the exact, non-relativistic electronic energy.

However, this is simply not possible and levels of approximation must be introduced.

For molecular systems where a single HF determinant dominates the wavefunction,

coupled cluster theory is well suited to tackle the problem. When combined with

explicit correlation we have very powerful methods at our disposal.

These methods are ineffective without a suitable choice of one-particle basis set.

Whilst a huge number have been designed in the past, arguably the most successful

are the correlation-consistent basis sets of Dunning and coworkers as they offer a
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systematic route towards the CBS limit. Basis set extrapolation can be exploited

and the basis set truncation error rendered negligible. The development of explicitly

correlated methods has slightly shifted the requirements of the one-particle basis

set and as a result, new F12-optimized correlation-consistent basis sets are now

available. This is also the case for the additional ABS necessary for an explicitly

correlated calculation.

Even with all these advances, to obtain the best possible ab initio PES one

must go beyond the initial coupled cluster approach by considering additional HL

energy corrections. The main contributions are CV electron correlation, HO electron

correlation, SR effects and the DBOC. This last term is mass dependent and its

inclusion causes the PES to become applicable for only one isotopologue. The

computational effort needed to generate the PES and DMS can quickly escalate

when considering these extra terms. There are ways of reducing the computational

burden and we will see examples of this for CH3Cl in Chapter 4, SiH4 in Chapter 5

and CH4 in Chapter 6. Before doing this however, we must study the nuclear motion

problem to see how the PES and DMS are used in rotation-vibration calculations.
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3 Solving the nuclear

Schrödinger equation

3.1 Introduction

The choice of coordinate system to describe molecular motion is crucial for ob-

taining a tractable solution to the nuclear Schrödinger equation. An intelligent

selection can greatly simplify the form of the rovibrational Hamiltonian and ac-

celerate convergence towards the correct result. In a laboratory-fixed frame using

Cartesian coordinates, a molecule with N atoms requires 3N coordinates to specify

the positions of its atoms. These 3N coordinates do not however distinguish between

the different types of molecular motion: translation of the whole molecule through

space, rotation of the molecule and vibration or internal motion of the nuclei.

Translational motion in free space gives rise to a continuous spectrum which

is not useful for spectroscopy. The three centre-of-mass motion coordinates can be

removed to leave 3N−3 coordinates describing a space-fixed axis system. From here

we are able to distinguish the rotational and vibrational motion by transforming to

a suitable molecule-fixed frame (also referred to as a body-fixed frame). The Euler

angles (θ, φ, χ) define the orientation of the molecule-fixed xyz axis system with

respect to the space-fixed axis system and ultimately describe the overall rotation of

the molecule. The remaining 3N−6 coordinates (3N−5 for linear molecules) define

vibrational motion of the nuclei. How these internal coordinates are chosen will to

some extent depend on molecular structure. Over the years numerous coordinate

choices and Hamiltonians for different types of molecule have been reported in the

literature, each usually accompanied with a computer program to solve the nuclear

motion problem. This lack of generality is an issue and much effort has therefore
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been directed towards developing self-contained, numerical approaches which do not

require pre-derivation of the rovibrational Hamiltonian.

After coordinate choice and Hamiltonian have been established the next consider-

ation is how to solve the rotation-vibration Schrödinger equation. For high-accuracy

studies the only real option is variationally. Variational methods offer a complete

treatment of the nuclear motion problem and can achieve unparalleled accuracy in

their results. There is however a considerable computational cost associated with

these approaches and treating molecules containing five atoms or more is extremely

challenging.

Perturbation theory was long preferred in high-resolution spectroscopy but is

known to become unreliable in certain situations; for example in floppy molecules

which undergo large-amplitude motion such as ammonia. Alternative purely vi-

brational methods are actively being developed such as vibrational configuration

interaction (VCI) or vibrational coupled cluster (VCC) theory. Inspired by progress

in electronic structure theory these approaches may become more widespread in the

future (see Refs. [57, 58] for an overview).

In this thesis I use the variational nuclear motion program TROVE [9] for all

spectroscopic calculations. TROVE is designed to compute the rotation-vibration

energy levels and corresponding transition intensities for a polyatomic molecule of

arbitrary structure in an isolated electronic state; a “black-box” for calculating

rovibrational spectra. This generality has allowed a range of molecular systems con-

taining up to five atoms to be treated [10, 59–68]. In this chapter we will focus

on the methodology and recent developments in TROVE (a detailed review was re-

cently given by Tennyson and Yurchenko [69]). We will then discuss the simulation

of rovibrational spectra before offering concluding remarks.
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3.2 TROVE

3.2.1 General methodology

In TROVE, solution of the rotation-vibration Schrödinger equation is achieved

by numerical diagonalization of the respective Hamiltonian constructed in terms

of a symmetry adapted basis set. The rovibrational Hamiltonian is represented in

product form as a truncated power series expansion around some reference molecular

configuration, usually chosen as the equilibrium geometry or some non-rigid flexible

configuration. The expansion itself is in terms of user defined internal coordinates.

In a general and compact form, the kinetic energy operator (KEO) for a molecule

with M vibrational degrees of freedom can be expressed in terms of the vibrational

coordinates ξ = {ξ1, ξ2, . . . , ξM} as

TN =
1

2

M+3∑
λ,µ=1

Π†λGλµ(ξ)Πµ + U(ξ). (3.1)

Here, the generalized momenta

Π = {p1, . . . , pM , Jx, Jy, Jz}, (3.2)

where pn = −i~∂/∂ξn for n = 1, . . . ,M is the momentum conjugate to the coor-

dinate ξn, and Jx, Jy, Jz are components of the total angular momentum operator

J . The kinetic energy matrix Gλµ(ξ) and the pseudopotential U(ξ) are constructed

in a recursive numerical procedure. These two quantities along with the Born-

Oppenheimer potential, VBO(ξ), are represented as series expansions with truncation

order defined by the user. In most practical applications it is sufficient to truncate

the kinetic and potential energy operators at 6th and 8th order, respectively.

Without detailing the working equations, which can be found in Refs. [9, 70], the

quantities Gλµ(ξ) and U(ξ) depend on Cartesian and vibrational coordinate deriva-

tives. In the original version of TROVE, finite differences are employed to generate
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these derivatives but this approach can suffer from the accumulation of round-off and

cancellation errors, particularly for high-order expansions. This issue was recently

addressed with the implementation of a novel automatic differentiation method into

TROVE [70]. Automatic differentiation is a computer algebra technique [71, 72]

which enables the numerical calculation of derivatives of arbitrary order with an

accuracy comparable to analytic approaches. The outcome is that rovibrational

calculations show much faster convergence with respect to basis set size. Without

this development, along with the implementation of curvilinear internal coordinates

(discussed below), obtaining fully converged vibrational energies for the five-atom

molecules considered in this thesis would have been extremely challenging.

To compute the kinetic energy operator in Eq. (3.1) it is necessary to define a

molecule-fixed axis system. The optimum embedding is one which minimises rovi-

brational coupling and this can be achieved by satisfying the Eckart conditions [73].

The Eckart frame ensures maximum separation between rotational and vibrational

motion, thus accelerating basis set convergence when computing rotation-vibration

energy levels. For a molecule containing N nuclei, the translational Eckart condition

can be written as
N∑
A=1

mArA = 0, (3.3)

where mA is the mass, and rA the instantaneous position vector of each nucleus.

Finding a transformation matrixD to take the coordinates rA into the Eckart frame,

i.e. r′A = DrA, is more complex and we must satisfy the rotational Eckart condition,

N∑
A=1

mA(r′A × aA) = 0. (3.4)

Here aA is the equilibrium position vector of each nucleus in a conveniently chosen

reference frame such as the principal axes system (PAS) frame [9, 70, 74]. It is

not actually possible to obtain an analytic solution to the Eckart equations for

a general polyatomic molecule and numerical methods have to be used. Several

schemes exist to do this [75–80] and a new approach has also been implemented in
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TROVE [70]. Note that for non-rigid molecules it is also necessary to satisfy the

Sayvetz condition [81] which is a large amplitude analogue to Eq. (3.4).

In principle any choice of vibrational coordinates ξ = {ξ1, ξ2, . . . , ξM} can be

implemented in TROVE provided they are physically reasonable. In practical cal-

culations however, I have only ever employed two types of coordinates. The first are

linearized coordinates. These are selected linear combinations of Cartesian displace-

ments of the nuclei from their equilibrium positions in the molecule-fixed xyz axis

system. Further details on how these are constructed can be found in Refs. [9, 82].

The second are curvilinear internal coordinates, i.e. displacements of bond lengths,

bond angles, dihedral angles from their respective equilibrium values. These were

recently implemented in TROVE [70] and their use can greatly improve basis set

convergence of rovibrational calculations.

The vibrational basis set in TROVE is constructed using a multi-step contraction

scheme, the size of which is controlled by the polyad number

P =
M∑
k=1

aknk ≤ Pmax, (3.5)

and this does not exceed a predefined maximum value Pmax. The polyad coeffi-

cient ak = ωk/min(ω1 . . . ωM) where ωk denotes the harmonic frequency of the kth

mode. This truncation scheme comes from the observation that rotation-vibration

energy levels tend to appear in clusters, known as polyads. The quantum numbers

nk for k = 1, . . . ,M correspond to primitive basis functions φnk . These can be

simple analytic Morse-oscillator or harmonic-oscillator eigenfunctions, or they can

be obtained numerically by solving a one-dimensional Schrödinger equation for the

desired vibrational mode by means of the Numerov-Cooley method [83, 84].

The vibrational basis set is built up in stages and utilizes products of the func-

tions φnk . Initially, reduced symmetry sub-spaces are set up by coupling equivalent

modes and solving the reduced-mode Schrödinger equations; for example all stretch-

ing degrees of freedom are treated together. The resulting eigenfunctions are then

combined and used as basis functions to solve the full-dimensional problem. These
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final J = 0 eigenfunctions form the vibrational basis set. Multiplication with sym-

metrized rigid-rotor eigenfunctions |J,K,m, τrot〉 produces the final symmetrized

basis set for use in J > 0 calculations. Here, the quantum number K is the projec-

tion (in units of ~) of J on to the molecule-fixed z-axis, whilst τrot determines the

rotational parity as (−1)τrot .

During its construction the basis set is symmetry-adapted which allows the

Hamiltonian matrix to be factorized into smaller symmetry blocks. Each block

corresponds to an irreducible representation of the molecular symmetry group [82]

of the molecule being considered. This is particularly useful when handling the

large matrices associated with variational calculations as each sub-block can be di-

agonalized separately. The resulting energy levels are also automatically symmetry

labelled which is extremely helpful for computing spectra. Symmetry imposes ad-

ditional selection rules and the intensity of a transition will depend on its nuclear

spin statistical weight gns. The value of gns is determined by the irreducible repre-

sentations of the states involved. Note that TROVE automatically assigns quantum

numbers to the eigenvalues and corresponding eigenvectors by analysing the contri-

bution of the basis functions. To be of spectroscopic use it is always necessary to

map the vibrational quantum numbers nk to the normal mode quantum numbers

vk commonly used.

For all calculations TROVE requires as input a PES and DMS. As discussed in

Chapter 2 these surfaces are generated on extensive grids of nuclear geometries using

sophisticated electronic structure methods. Once a suitable analytic representation

has been determined for the PES and DMS, for example a polynomial expansion,

the respective functions must be implemented in TROVE. Each molecular structure,

e.g. XY4 -type molecules, will have its own module containing all the necessary

subroutines and coordinate transformations to construct the analytic form of the

PES and DMS. This is the only molecule-specific part of TROVE which otherwise

is general in its approach.
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3.2.2 Potential energy surface refinement

To approach a level of accuracy competitive with experiment in rovibrational

calculations the PES has to be empirically refined. By adjusting the parameters of

the analytic representation of the PES, the computed theoretical energies can be

fitted to high-resolution experimental data. The resulting “spectroscopic” PES is

far more reliable than a purely empirical PES as regions not sampled by experiment

can be reliably extrapolated.

In TROVE, empirical refinement is done using an efficient least-squares fitting

procedure [85]. Assuming the ab initio PES, V , is a reasonable representation the

effect of the refinement can be treated as a perturbation ∆V , i.e. V ′ = V +∆V where

V ′ is the refined PES. The correction ∆V is expanded in terms of the vibrational

coordinates ξ = {ξ1, ξ2, . . . , ξM} according to the formula,

∆V =
∑
ijk...

∆fijk...
{
ξi1ξ

j
2ξ
k
3 . . .

}A
, (3.6)

where the coefficients ∆fijk... are corrections to the original PES expansion parame-

ters fijk.... The expansion terms
{
ξi1ξ

j
2ξ
k
3 . . .

}A
are symmetrized combinations of the

vibrational coordinates ξ = {ξ1, ξ2, . . . , ξM} and transform according to the totally

symmetric representation A of the molecular symmetry group [82].

The new perturbed Hamiltonian, H ′ = T + V ′ = H + ∆V , is then diagonalized

using a basis set of eigenfunctions from the initial unperturbed Hamiltonian eigen-

value problem. Each iteration utilizes the previous “unperturbed” basis set in this

way until a PES of desirable quality is reached. To ensure the consistency of the

refined surface the expansion parameters fijk... are simultaneously fitted to both the

experimental data and the original ab initio dataset [86]. This stops any unrealistic

distortion of the PES in regions not sampled by experiment. It also means each

expansion parameter can be adjusted irrespective of the amount or coverage of the

experimental energies used for the refinement.

A practical PES refinement needs vibrational (J = 0) and rovibrational (J > 0)
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term values in the fitting dataset. It is recommended that only measurements carried

out with an accuracy of 0.02 cm−1 or better should be included [52]. Incorporating

as many J values as possible improves extrapolation to higher rotational excitations.

It is worth noting that rigorously refining all parameters of the PES is a computa-

tionally intensive task and may not always be necessary. High quality spectroscopic

PESs can be obtained by only treating certain expansion coefficients, for example

up to quartic expansion parameters only.

3.2.3 Line strengths and intensities

The ability to compute accurate transition intensities is a major strength of

TROVE and this gives the variational approach incredible predictive power. After

establishing a suitable analytic representation for the dipole moment µ, it is rela-

tively straightforward to generate transition intensities given a set of rovibrational

wavefunctions.

Experimental conditions such as temperature and pressure will influence the

intensity of an electric dipole transition but the most significant factor is the line

strength S(f ← i). This intrinsic molecular quantity is defined in a space-fixed

XY Z axis system as

S(f ← i) = gns

∑
mi,mf

∑
A=X,Y,Z

|〈Φ(f)
rv |µ̄A|Φ(i)

rv 〉|
2
, (3.7)

where gns is the nuclear spin statistical weight, Φ
(i)
rv and Φ

(f)
rv are the initial and final

state rovibrational wavefunctions respectively, and µ̄A is the electronically averaged

DMS along the space-fixed axis A = X, Y, Z. The summation over the quantum

numbers mi and mf , which correspond to the projection of the total angular mo-

mentum on to the Z axis in the initial and final state respectively, is to account for

degeneracy in the absence of an external electric field. Note that we have neglected

hyperfine structure (splitting of energy levels due to nuclear spin) and disregarded

electronic transitions as we are working in the electronic ground state only.
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Using the line strength we can determine the Einstein A coefficient,

Aif =
64π4

3h(4πε0)

ν3
if

(2Jf + 1)
S(f ← i), (3.8)

of a transition with wavenumber νif (in cm−1). Here, Jf is the rotational quantum

number of the final state and h is the Planck constant. The Einstein A coefficient

gives the probability of spontaneous emission from state i to f . Once known it is

possible to simulate intensities. For example, the absolute absorption intensity can

be found using the expression,

I(f ← i) =
Aif
8πc

gns(2Jf + 1)
exp (−Ei/kT )

Q(T ) ν2
if

[
1− exp

(
−hcνif

kT

)]
, (3.9)

where the initial state has energy Ei, k is the Boltzmann constant, T is the absolute

temperature, c is the speed of light and Q(T ) the partition function for a given

temperature.

Considering the computational aspects of the calculation, TROVE uses an opti-

mized two-step strategy [61] to determine the matrix elements 〈Φ(f)
rv |µ̄A|Φ(i)

rv 〉 needed

for S(f ← i). This reduces computational time by roughly an order of magnitude

compared to calculating the matrix elements in one-step. Further savings are in-

troduced through the use of pre-screening of the expansion coefficients associated

with the symmetrized basis set [87]. Only coefficients above a certain threshold

value, e.g. 10−16, will lead to 〈Φ(f)
rv |µ̄A|Φ(i)

rv 〉 being evaluated. On the practical side,

calculations can be run in batches by only considering transitions between J → J

and J → J + 1. This is the smallest grouping of J permitted by selection rules.

The use of a symmetrized basis set, whilst crucial for intensity calculations through

the nuclear spin statistical weights, also means transitions can be run independently

according to symmetry. These two measures make the construction of huge line lists

far more manageable both computationally and in terms of data handling.

As discussed in Sec. 3.2.1, separation between rotational and vibrational motion

is achieved through the Eckart conditions where a suitable molecule-fixed embedding
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is set up in which the rovibrational wavefunctions are defined. It is therefore neces-

sary to evaluate S(f ← i) in the molecule-fixed frame. This is done by transforming

the space-fixed dipole moment components µ̄A (A = X, Y, Z) to dipole moment

components µ̄α (α = x, y, z) in the molecule-fixed axis system. Detailed expressions

for this procedure can be found in Refs. [87, 88], whilst a slightly modified approach

using automatic differentiation has recently been implemented [70].

Another quantity of interest which can be computed using TROVE is the vibra-

tional transition moment between two states, defined as

µif =

√ ∑
α=x,y,z

|〈Φ(f)
vib|µ̄α|Φ

(i)
vib〉|

2
, (3.10)

where |Φ(i)
vib〉 and |Φ(f)

vib〉 are the initial and final state vibrational eigenfunctions re-

spectively, and µ̄α is the electronically averaged dipole moment function along the

molecule-fixed axis α = x, y, z. Transition moments offer a cheap and reliable way to

evaluate the quality of a DMS against experiment, provided experimental values are

available. The additional computational effort required is small and can be carried

out after the initial J = 0 energy level calculation.

3.3 Simulating rotation-vibration spectra

After running extensive rovibrational calculations in TROVE, energy levels and

Einstein A coefficients are extracted and then processed using an in-house code de-

veloped by the ExoMol group to generate synthetic rotation-vibration spectra. Dif-

ferent line profiles, spectral resolutions and temperatures can then be applied which

is particular useful for comparing against different experimental setups. Whilst

some experimental work and spectroscopic databases such as HITRAN [89] provide

absolute line intensities for measured transitions, it is more common to encounter

spectral lines which have a definite profile.

For an isolated spectral transition the line profile can be attributed to physical
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factors. Each line possesses an intrinsic natural line width which is a consequence of

the uncertainty principle. This dictates that any measurement of energy and time

must satisfy ∆E∆t ≥ ~/2, where ∆E is the uncertainty in energy, ∆t is the lifetime

of the state and ~ is the reduced Planck constant. Longer lived states will have a

narrower line width. This contribution can often be ignored however, as the effects

of collisional broadening and thermal (Doppler) broadening tend to dominate the

line shape.

Collisions between molecules in a gas reduce the lifetime of an excited state

resulting in line broadening since the line width Γ ∼ 1/∆t. For environments with

high pressure there are more collisions and this effect is amplified. The most suitable

shape function to model collisional broadening is a homogeneous Lorentzian profile,

fL(ν) =
γ/4π2

(ν − ν0)2 + (γ/4π)2
, (3.11)

where γ is the half-width at half-maximum (HWHM), ν is the frequency and ν0 the

line-centre frequency.

Another source of broadening is the thermal translational motion of molecules

and the well-known Doppler effect. Radiation emitted from a molecule in motion

will be Doppler shifted by an amount dependent on the component of velocity in

the line of sight. The cumulative effect of a large number of molecules moving

in different directions and at different speeds is the inhomogeneous broadening of

spectral lines. This is well represented by a Gaussian profile,

fG(ν) =
1√
π∆νD

exp

(
−
(
ν − ν0

∆νD

)2
)
, (3.12)

where the Doppler width

∆νD =
ν0

c

√
2kT

m
, (3.13)

and the HWHM γ = ∆νD
√

ln(2). Here, c is the speed of light, k is the Boltzmann

constant, T is the temperature and m is the molecular mass. In Fig. 3.1 is a plotted

Gaussian and Lorentzian line profile to illustrate the difference. Lorentzian profiles
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Figure 3.1: Comparison of a Gaussian and Lorentzian line profile with HWHM

= 0.5.

show extended wings and tail off at a slower rate, whilst a Gaussian falls off fairly

rapidly away from the line centre.

The Voigt profile, which is a convolution of a Lorentzian and Gaussian line pro-

file, is routinely employed in high-resolution spectroscopic studies. Although it is

able to model both thermal and collisional contributions, it cannot provide a wholly

accurate representation of the spectral line shape [90]. Recently, a task group was

set up to identify a more reliable reference line profile and the recommendation was

a seven parameter Hartmann-Tran profile [91]. This line shape has yet to be im-

plemented in the in-house code developed by the ExoMol group used to generate

synthetic spectra but will no doubt be adopted in the future.

3.4 Chapter summary

The methodology for obtaining an accurate solution to the nuclear motion prob-

lem for a general polyatomic molecule has been discussed. High-accuracy work de-

mands that a variational approach is employed and in calculations I have used the

computer program TROVE. The flexibility of TROVE is achieved by constructing

a rovibrational Hamiltonian in product form as a power series expansion in terms of
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user defined internal coordinates. An optimum molecule-fixed coordinate system is

defined by satisfying the Eckart conditions, which minimises the coupling between

rotational and vibrational motion. The rovibrational Hamiltonian can then be di-

agonalized in a symmetry-adapted basis set. This is vital for intensity calculations

and also eases the computational strain associated with generating comprehensive

line lists.

The ability to empirically refine the PES without substantial deviation from

the original ab initio surface should eliminate possible spurious results caused by

the refinement. An improved PES not only yields more accurate rotation-vibration

energy levels but also better wavefunctions, which in turn produces more reliable

intensities. Before intensities can be simulated the line strength must be computed

for every transition, from which Einstein A coefficients can be determined. This

requires a well-defined DMS. Once Einstein A coefficients and rotation-vibration

energy levels have been extracted, intensities can be generated with different line

profiles, temperatures and spectral resolutions. This is where the predictive power

of the variational approach is realised.

The material presented in this and the previous chapter can now be applied in

practical calculations on different four- and five-atom molecular systems. This will

undoubtedly provide a better understanding of the background theoretical concepts.

As we have seen, accurate solution of the molecular Schrödinger equation relies on

a range of approximations. It is important then to evaluate different aspects of the

calculation process such as the electronic structure methods, analytic representation

of the PES and DMS, size of the vibrational basis set, and so on, by comparing with

experiment and other theoretical work. The theoretical model is unlikely to be

accurate in all regions of the spectrum, however, provided there is some knowledge

of the limitations this should not be an issue. Future work can then compare and

judge their results accordingly.
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4 Methyl chloride (CH3Cl)

4.1 Introduction

Methyl chloride has been proposed as an observable biosignature gas in the search

for life outside the Solar System [92]. A model of different hypothetical Earth-like

planets orbiting a range of M stars predicted that a higher concentration of CH3Cl

would exist than on Earth, and with stronger spectral features. Seager et al. have

since gone on to classify CH3Cl as a Type III biomarker — a molecule produced

from a secondary metabolic process — and estimated the required concentration

needed for a realistic detection in a generalized oxidized atmosphere [93], and for an

exoplanet with a thin H2 rich atmosphere and a habitable surface temperature [94].

The infrared spectrum of CH3Cl has received increased interest as a result.

A highly accurate and comprehensive line list is lacking for methyl chloride,

with varying coverage in the spectroscopic databases [89, 95–97]. The HITRAN

database [89] has the most detailed coverage with over 212 000 lines for the two

main isotopologues, 12CH3
35Cl and 12CH3

37Cl (henceforth labelled as CH3
35Cl and

CH3
37Cl). This includes rovibrational transitions up to J = 82 and covers the 0–

3200 cm−1 region. However, there are deficiencies and we will see in Sec. 4.5.5 that

HITRAN is missing a band around 2880 cm−1. Some line positions and intensities are

also from theoretical predictions using a fairly old, empirically refined anharmonic

force field [98]. Given the numerous high-resolution studies since then, notably

in the 3.4µm region [99] (included in HITRAN2012), and in the 6.9 and 7.4µm

regions [100, 101], improvements can be expected in the coverage of CH3Cl. Another

valuable resource is the PNNL spectral library [95] which covers the 600–6500 cm−1

region at a resolution of around 0.06 cm−1 for temperatures of 5, 25 and 50 ◦C. Other

databases such as GEISA [96] include CH3Cl but the datasets are not as extensive,
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whilst the JPL [97] catalog has been incorporated into HITRAN.

Due to its prominent role in depletion of the ozone layer, levels of methyl chloride

are being closely monitored by satellite missions such as the Atmospheric Chemistry

Experiment [102–105] and the Microwave Limb Sounder [106]. The huge number of

recent spectroscopic studies [99–101, 103–128], particularly those on line shapes and

broadening coefficients which are needed for a realistic modelling of atmospheric

spectra, confirm its importance as a terrestrial molecule. The 3.4µm region is

particularly relevant for atmospheric remote sensing due to a relatively transparent

window and strong spectral features of the ν1 band of CH3Cl. A high-resolution

study of the ν1, ν4 and 3ν6 bands in this region produced a line list for the range

2920–3100 cm−1 [99]. The 6.9µm region has seen line positions, intensities, and self-

broadening coefficients determined for more than 900 rovibrational transitions of the

ν5 band [100], with this work later extended to incorporate the ν2 band [101]. Nikitin

et al. have also measured, modelled and assigned over 20 000 transitions for each

isotopologue in the region 0–2600 cm−1 [120–123]. An effective Hamiltonian model

adapted to the polyad structure of methyl chloride reproduced observed transitions

involving the ground state and 13 excited vibrational states with an overall standard

deviation of 0.0003 cm−1.

On the theoretical side there has been a consistent effort over the years to char-

acterize the spectrum of CH3Cl. Much attention has been given to a description

of harmonic [129–136] and anharmonic [98, 137–142] force fields, both empirically

and using ab initio methods. The latest work by Black and Law [136] employed

spectroscopic data from ten isotopomers of methyl chloride to produce an empirical

harmonic force field incorporating the most up to date treatment of anharmonic

corrections. These were largely based on a complete set of empirical anharmonicity

constants derived from a joint local mode and normal mode analysis of 66 vibra-

tional energy levels in the 700–16 500 cm−1 region [141], and follow-up work in a

similar vein by Law [143].

From a purely ab initio standpoint, Nikitin [144] has computed global nine-
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dimensional PESs for vibrational energy level calculations, considering both CH3
35Cl

and CH3
37Cl in the region 0–3500 cm−1. Using fourth-order Møller-Plesset pertur-

bation theory MP4 and a correlation-consistent quadruple-zeta basis set, as well

as coupled cluster theory CCSD(T) with a triple-zeta basis set, a combined to-

tal of 7241 points with energies up to hc · 40 000 cm−1 were employed to generate

and fit the PESs (h is the Planck constant and c is the speed of light). Vibra-

tional energies were calculated variationally using a finite basis representation and

an exact kinetic energy operator, reproducing the fundamental term values with

a root-mean-square error of 1.97 and 1.71 cm−1 for CH3
35Cl and CH3

37Cl, respec-

tively. Calculations of dipole moment derivatives and infrared intensities have been

reported [98, 128, 132, 134, 145–149]. However, I am unaware of any global DMS

which could be used for intensity simulations of the rotation-vibration spectrum of

CH3Cl.

In this chapter I apply the techniques discussed in Chapters 2 and 3 to investi-

gate the rotation-vibration spectrum of methyl chloride. State-of-the-art electronic

structure calculations are employed to construct nine-dimensional potential energy

and dipole moment surfaces applicable for the two main isotopologues of methyl

chloride, CH3
35Cl and CH3

37Cl. As discussed in Chapter 2, to produce a highly

accurate ab initio PES this requires inclusion of the leading HL corrections and

extrapolation of the one-particle basis set to the CBS limit. For the DMS these

contributions are not as significant. A symmetrized molecular bond (SMB) repre-

sentation for XY3Z -type molecules has been implemented in TROVE [9] to represent

the PES and DMS analytically. The quality of the respective surfaces can then be

assessed by variational calculations of the rovibrational spectrum.

The chapter is structured as follows: In Sec. 4.2 the ab initio calculations and

analytic representation of the PES are detailed. Similarly, in Sec. 4.3 the electronic

structure calculations and analytic representation of the DMS are described. Details

of the variational calculations are given in Sec. 4.4. In Sec. 4.5, the combined ef-

fect of the HL corrections and CBS extrapolation on the vibrational term values and
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equilibrium geometry is assessed. The DMS is evaluated using a range of experimen-

tal measurements with comparisons against the HITRAN and PNNL spectroscopic

databases. Results include vibrational transition moments, absolute line intensities

of the ν1, ν4, ν5 and 3ν6 bands, and an overview of the rotation-vibration spectrum

for states up to J = 85 in the 0–6500 cm−1 frequency range. We summarise and

discuss future work in Sec. 4.6.

4.2 Potential energy surface

4.2.1 Electronic structure calculations

We take a focal-point approach [150] to represent the total electronic energy,

Etot = ECBS + ∆ECV + ∆EHO + ∆ESR + ∆EDBOC, (4.1)

which allows for greater control over the PES. To compute ECBS, I employed the

explicitly correlated F12 coupled cluster method CCSD(T)-F12b [25] (for a detailed

review of this method see Refs. [24, 27]) in conjunction with the F12-optimized cor-

relation consistent polarized valence basis sets, cc-pVTZ-F12 and cc-pVQZ-F12 [36],

in the frozen core approximation. The diagonal fixed amplitude ansatz 3C(FIX) [18],

and a Slater geminal exponent value of β = 1.0 a−1
0 as recommended by Hill et al.

[46] were used. To evaluate the many electron integrals in F12 theory, additional

auxiliary basis sets (ABS) are required. For the resolution of the identity (RI)

basis, and the two density fitting (DF) basis sets, I utilized the corresponding

OptRI [40], cc-pV5Z/JKFIT [41], and aug-cc-pwV5Z/MP2FIT [42] ABS, respec-

tively. All calculations were carried out using MOLPRO2012 [151] unless stated

otherwise.

To extrapolate to the CBS limit I used the parameterized two-point formula

proposed by Hill et al. [46],

EC
CBS = (En+1 − En)FC

n+1 + En, (4.2)
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which was introduced earlier in Sec. 2.3.3 (see Eq. (2.18)). The coefficients FC
n+1 are

specific to the CCSD− F12b and (T) components of the total CCSD(T)-F12b energy

and I used values of FCCSD−F12b = 1.363388 and F (T) = 1.769474 as recommended

in Ref. [46]. No extrapolation was applied to the Hartree-Fock (HF) energy, rather

the HF+CABS (complementary auxiliary basis set) singles correction [25] calculated

in the larger basis set was used.

The energy correction from CV electron correlation ∆ECV was calculated at the

CCSD(T)-F12b level of theory with the F12-optimized correlation consistent core-

valence basis set cc-pCVQZ-F12 [37]. The same ansatz and ABS as in the frozen

core approximation computations were used, however, I set β = 1.5 a−1
0 . All-electron

calculations kept the (1s) orbital of Cl frozen with all other electrons correlated due

to the inability of the basis set to adequately describe this orbital.

Core-valence and higher-order electron correlation often contribute to the elec-

tronic energy with opposing signs and should thus be considered jointly. I used the

hierarchy of coupled cluster methods to estimate the HO correction as ∆EHO =

∆ET + ∆E(Q), including the full triples contribution ∆ET =
[
ECCSDT − ECCSD(T)

]
,

and the perturbative quadruples contribution ∆E(Q) =
[
ECCSDT(Q) − ECCSDT

]
. Cal-

culations were carried out in the frozen core approximation at the CCSD(T), CCSDT

and CCSDT(Q) levels of theory using the general coupled cluster approach [152, 153]

as implemented in the MRCC code [154] interfaced to CFOUR [155]. For the full

triples and the perturbative quadruples calculations, I employed the augmented cor-

relation consistent triple zeta basis set, aug-cc-pVTZ(+d for Cl) [30–32, 34], and the

double zeta basis set, aug-cc-pVDZ(+d for Cl), respectively. Note that for HO cou-

pled cluster corrections, it is possible to use successively smaller basis sets at each

step up in excitation level due to faster convergence [49].

In exploratory calculations of the PES, the contributions from the full quadruples[
ECCSDTQ − ECCSDT(Q)

]
and perturbative pentuples

[
ECCSDTQ(P) − ECCSDTQ

]
were

found to largely cancel each other out. Thus, to reduce the computational expense

only ∆ET and ∆E(Q) were deemed necessary for an adequate representation of HO
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electron correlation.

Scalar relativistic effects ∆ESR were included through the one-electron mass ve-

locity and Darwin terms (MVD1) from the Breit-Pauli Hamiltonian in first-order

perturbation theory [53]. Calculations were performed with all electrons correlated

(except for the (1s) of Cl) at the CCSD(T)/aug-cc-pCVTZ(+d for Cl) [33, 35] level

of theory using the MVD1 approach [156] implemented in CFOUR. The contri-

bution from the two-electron Darwin term is expected to be small enough to be

neglected [157].

The diagonal Born-Oppenheimer correction ∆EDBOC was computed again with

the (1s) orbital of Cl frozen and all other electrons correlated. Calculations employed

the CCSD method [158] as implemented in CFOUR with the aug-cc-pCVTZ(+d

for Cl) basis set. The DBOC is the contribution from the nuclear kinetic energy

operator acting on the ground state electronic wavefunction. It is mass dependent,

so separate contributions were generated for CH3
35Cl and CH3

37Cl.

The spin-orbit interaction was not considered as it can be safely neglected in

spectroscopic calculations on light closed-shell molecules [56]. A simple estimate

of the Lamb shift was also calculated from the MVD1 contribution [159], but its

effect on the vibrational energy levels was negligible. The differing levels of theory

and basis set size reflect the fact that different HL energy corrections converge at

different rates.

Grid points were generated using a random energy-weighted sampling algorithm

of Monte Carlo type (provided by Dr Andrey Yachmenev) in terms of nine internal

coordinates: the C–Cl bond length r0; three C–H bond lengths r1, r2 and r3; three

∠(HiCCl) interbond angles β1, β2 and β3; and two dihedral angles τ12 and τ13 be-

tween adjacent planes containing HiCCl and HjCCl (see Figure 4.1). This led to a

global grid of 44 820 geometries with energies up to hc · 50 000 cm−1, which included

geometries in the range 1.3 ≤ r0 ≤ 2.95 Å, 0.7 ≤ ri ≤ 2.45 Å, 65 ≤ βi ≤ 165◦ for

i = 1, 2, 3 and 55 ≤ τjk ≤ 185◦ with jk = 12, 13. To ensure an adequate description

of the equilibrium region, around 1000 carefully chosen low-energy points were also
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1Figure 4.1: Definition of internal coordinates used for CH3Cl.

incorporated into the data set. At each grid point the computed coupled cluster

energies were extrapolated to the CBS limit using Eq. (4.2).

The HL energy corrections are generally small in magnitude and vary in a smooth

manner [60], displaying a straightforward polynomial-type dependence as can be

seen in Figures 4.2 and 4.3. For each of the HL terms, a reduced grid was designed

to obtain a satisfactory description of the correction with minimum computational

effort. Reduced grids of 9377, 3526, 12 296 and 3679 points with energies up to

hc · 50 000 cm−1 were used for the CV, HO, SR and DBOC corrections, respectively.

4.2.2 Analytic representation

Methyl chloride is a prolate symmetric top molecule of the C3v(M) symme-

try group [82]. Of the six symmetry operations {E, (123), (132), (12)∗, (23)∗, (13)∗}

which make up C3v(M), the cyclic permutation (123) replaces nucleus 1 with nucleus

2, nucleus 2 with nucleus 3, and nucleus 3 with nucleus 1. The permutation-inversion

operation (12)∗ interchanges nuclei 1 and 2 and inverts all particles (including elec-

trons) in the molecular centre of mass. The identity operation E leaves the molecule

unchanged.

To represent the PES analytically, an on-the-fly symmetrization procedure has

been implemented. Generating a PES on-the-fly is advantageous when it comes

to variational calculations as its implementation requires only a short amount of
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code. Alternatively, one can derive the full analytic expression for the potential

and incorporate this into the nuclear motion computations, but this method can be

cumbersome.

We first introduce the coordinates

ξ1 = 1− exp (−a(r0 − req
0 )) , (4.3)

ξj = 1− exp (−b(ri − req
1 )) ; j = 2, 3, 4 , i = j − 1, (4.4)

where a = 1.65 Å
−1

for the C–Cl internal coordinate r0, and b = 1.75 Å
−1

for the

three C–H internal coordinates r1, r2 and r3. For the angular terms

ξk = (βi − βeq) ; k = 5, 6, 7 , i = k − 4, (4.5)

ξ8 =
1√
6

(2τ23 − τ13 − τ12) , (4.6)
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ξ9 =
1√
2

(τ13 − τ12) . (4.7)

Here τ23 = 2π−τ12−τ13, and req
0 , req

1 and βeq are the reference equilibrium structural

parameters of CH3Cl.

Taking an initial potential term of the form

V initial
ijk... = ξ i1ξ

j
2 ξ

k
3 ξ

l
4ξ

m
5 ξ

n
6 ξ

p
7 ξ

q
8 ξ

r
9 , (4.8)

with maximum expansion order i+ j+k+ l+m+n+ p+ q+ r = 6, each symmetry

operation of C3v(M) is independently applied to V initial
ijk... , i.e.

V X
ijk... = XV initial

ijk... = X
(
ξ i1ξ

j
2 ξ

k
3 ξ

l
4ξ

m
5 ξ

n
6 ξ

p
7 ξ

q
8 ξ

r
9

)
, (4.9)

where X = {E, (123), (132), (12)∗, (23)∗, (13)∗}, to create six new terms. The results
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are summed up to produce a final term,

V final
ijk... = V E

ijk... + V
(123)
ijk... + V

(132)
ijk... + V

(12)∗

ijk... + V
(23)∗

ijk... + V
(13)∗

ijk... , (4.10)

which is itself subjected to the six C3v(M) symmetry operations to check its invari-

ance. The total potential function is then given by the expression

Vtotal(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9) =
∑
ijk...

fijk...V
final
ijk..., (4.11)

where fijk... are the corresponding expansion coefficients, determined through a least-

squares fitting to the ab initio data. Weight factors of the form suggested by Par-

tridge and Schwenke [160],

wi =

tanh
[
−0.0006× (Ẽi − 15 000)

]
+ 1.002002002

2.002002002

× 1

NẼ
(w)
i

, (4.12)

were used in the fitting, with Ẽ
(w)
i = max(Ẽi, 10 000) where Ẽi is the potential energy

at the ith geometry above equilibrium and the normalization constant N = 0.0001

(all values in cm−1). In the fitting, energies below 15 000 cm−1 are favoured by the

weight factors. For geometries where r0 ≥ 2.35 Å and ri ≥ 2.00 Å for i = 1, 2, 3,

the weights were reduced by several orders of magnitude. At such large stretch

coordinates, the coupled cluster method is known to become unreliable, as indicated

by a T1 diagnostic value > 0.02 [161]. Although energies at these points may not be

wholly accurate, they are still useful and ensure that the PES maintains a reasonable

shape towards dissociation.

The same form of potential function, Eq. (4.11), and the same procedure, Eqs.

(4.8) to (4.10), was used to fit the higher-level correction surfaces. The stretching

coordinates however were replaced with linear expansion variables; ξ1 = (r0 − req
0 )

and ξj = (ri − req
1 ) where j = 2, 3, 4 and i = j − 1. The angular terms, Eqs. (4.5)

to (4.7), remained the same as before. Each HL correction was fitted independently

and the parameters req
0 , req

1 and βeq were optimized for each surface. The four HL
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corrections were applied at each of the 44 820 grid points, either from a directly

calculated value at that geometry, or by interpolation using the corresponding ana-

lytic representation. Two final data sets were produced, one for each isotopologue

of CH3Cl, the only difference being the contribution from the DBOC.

Two independent fits were carried out and in each instance I could usefully

vary 414 expansion parameters to give a weighted root-mean-square (rms) error of

0.82 cm−1 for energies up to 50 000 cm−1. The fit employed Watson’s robust fitting

scheme [162], the idea of which is to reduce the weight of outliers and lessen their

influence in determining the final set of parameters. The Watson scheme improves

the fit at energies below 10 000 cm−1 which is preferable for our purposes. When

comparing the expansion parameters for CH3
35Cl and CH3

37Cl, only very slight

differences were observed in the determined values. We refer to these two PESs as

CBS-35 HL and CBS-37 HL in subsequent calculations. The CBS-35 HL and CBS-37 HL

expansion parameter sets along with a FORTRAN routine to construct the PESs

are provided in the supplementary material of Ref. [163].

To assess the combined effect of the HL corrections and CBS extrapolation on

the vibrational energy levels and equilibrium geometry of CH3Cl, I fitted a reference

PES to the raw CCSD(T)-F12b/cc-pVQZ-F12 energies. Again I used Watson’s

robust fitting scheme and 414 parameters to give a weighted rms error of 0.82 cm−1

for energies up to 50 000 cm−1. We refer to this PES as VQZ-F12 in subsequent

calculations. Note that the CBS-(35/37) HL and VQZ-F12 PESs are composed of

slightly different parameters.

The choice of reference equilibrium structural parameters in the PES expansion

is to some extent arbitrary due to the inclusion of linear expansion terms in the

parameter set. For this reason, values of req
0 = 1.7775 Å, req

1 = 1.0837 Å, and

βeq = 108.445◦, used for the CBS-35 HL PES, were also employed for the CBS-37 HL

and VQZ-F12 PESs. Note that these are not the actual equilibrium parameters

which define the minimum of the PES, they are simply parameters of a function.

The true equilibrium values will be determined and discussed in Sec. 4.5.2.
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4.3 Dipole moment surface

4.3.1 Electronic structure calculations

As shown in Eq. (2.1), the first derivative of the electronic energy with respect

to external electric field strength defines the electric dipole moment of a molecule.

Working in a Cartesian laboratory-fixed XY Z coordinate system with origin at the

C nucleus, an external electric field with components ±0.005 a.u. was applied along

each axis and the respective dipole moment component µA for A = X, Y, Z deter-

mined using finite differences as given by Eq. (2.2). Calculations were carried out at

the CCSD(T) level of theory with the augmented correlation consistent quadruple

zeta basis set, aug-cc-pVQZ(+d for Cl) [30–32, 34], in the frozen core approxima-

tion. The DMS was evaluated on the same nine-dimensional grid as the PES (44,820

points with energies up to hc · 50 000 cm−1). MOLPRO2012 [151] was used for all

calculations.

4.3.2 Analytic representation

Before fitting an analytic expression to the ab initio data it is necessary to estab-

lish a suitable molecule-fixed xyz coordinate system. The symmetrized molecular

bond (SMB) representation has been successfully applied to molecules of C3v(M)

symmetry [61, 66] and this approach is employed for the present work.

We first define unit vectors along each of the four bonds of CH3Cl,

ei =
ri − rC

|ri − rC|
; i = 0, 1, 2, 3, (4.13)

where rC is the position vector of the C nucleus, r0 the Cl nucleus, and r1, r2 and

r3 the respective H atoms. The ab initio dipole moment vector µ is projected onto

the molecular bonds and can be described by molecule-fixed xyz dipole moment
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components,

µx =
1√
6

(2(µ · e1)− (µ · e2)− (µ · e3)) , (4.14)

µy =
1√
2

((µ · e2)− (µ · e3)) , (4.15)

µz = µ · e0. (4.16)

Symmetry-adapted combinations have been formed for µx and µy and these trans-

form according to E symmetry, while the µz component is of A1 symmetry. The

advantage of the SMB representation is that the unit vectors ei used to define µ

for any instantaneous positions of the nuclei are related to the internal coordinates

only.

To construct the three dipole surfaces corresponding to the components given

in Eqs. (4.14) to (4.16), a numerical, on-the-fly symmetrization procedure has been

implemented. This is similar to the approach employed for the PES detailed in

Sec. 4.2.2. However, because µ is a vector quantity we have to consider the trans-

formation properties of the dipole moment components themselves. For µz, which

points along the C–Cl bond, the process is trivial owing to its A1 symmetry and

invariance to the C3v(M) symmetry operations. Building an analytic expression fol-

lows the same steps as in the case of the PES. For the two E symmetry components,

µx and µy, the construction is more subtle and they must be treated together.

We consider an initial (reference) term in the dipole expansion belonging to µx,

µx
µy

 =

µinitial
x,ijk...

0

 , (4.17)

where

µinitial
x,ijk... =

(
ξ i1ξ

j
2 ξ

k
3 ξ

l
4ξ

m
5 ξ

n
6 ξ

p
7 ξ

q
8 ξ

r
9

)
. (4.18)

This term has maximum expansion order i+ j + k+ l+m+ n+ p+ q + r = 6, and

is expressed in terms of nine coordinates. Linear expansion variables are utilized for
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the stretches,

ξ1 =
(
r0 − rref

0

)
, (4.19)

ξj =
(
ri − rref

1

)
; j = 2, 3, 4 , i = j − 1, (4.20)

whilst the angular terms are the same as those defined in Eqs. (4.5) to (4.7). For the

reference structural parameters rref
0 = 1.7550 Å, rref

1 = 1.0415 Å and βref = 108.414◦

and these values were optimized during the fitting of the DMS.

The action of a C3v(M) symmetry operation X = {E, (123), (132), (12)∗, (23)∗,

(13)∗} on Eq. (4.18) will (i) permute the expansion indices ijk . . ., to i′j′k′ . . . to

produce a new expansion term and (ii) permute the unit vectors ei for i = 1, 2, 3.

Using the projection operator technique [82], this latter contribution is projected

onto the ex and ey molecule-fixed vectors and added to the respective dipole moment

components. The resulting components, µ′x and µ′y, reduce to

µ′x
µ′y

 =

C1µ
X
x,ijk...

C2µ
X
x,ijk...

 , (4.21)

where C1 and C2 are constants associated with the acting C3v(M) symmetry opera-

tion, and µX
x,ijk... is the new expansion term connected to Eq. (4.18) by the symmetry

operation X. Note that a contribution arises in µ′y (C2 6= 0) due to the projection

operator acting on the two-component quantity (µx, µy).

The steps are repeated for each symmetry operation of C3v(M) and the results

summed to produce a final dipole term (ignoring constants),

µfinal
x,ijk... = µEx,ijk... + µ

(123)
x,ijk... + µ

(132)
x,ijk... + µ

(12)∗

x,ijk... + µ
(23)∗

x,ijk... + µ
(13)∗

x,ijk..., (4.22)

which is best understood as a sum of symmetrized combinations of different permu-

tations of coordinates ξi. Likewise, a similar expression contributes to µy. Although

we have only considered an initial term belonging to µx, the same idea applies to ini-
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tial terms belonging to µy. Incorporating µz into the procedure is straightforward,

thus enabling the simultaneous construction of all three DMSs of CH3Cl. Each

surface is represented by the analytic expression

µtotal
α (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9) =

∑
ijk...

F
(α)
ijk...µ

final
α,ijk..., (4.23)

where some of the expansion coefficients F
(α)
ijk... are shared between the x and y

components.

The coefficients F
(α)
ijk... for α = x, y, z were determined in a least squares fit-

ting to the ab initio data. Similar to the PES, I utilized Watson’s robust fitting

scheme [162] and weight factors of the form given in Eq. (4.12). That is, energies

below 15 000 cm−1 were favoured in the fit. Again for very large stretch distances

the weights were decreased by several orders of magnitude.

The three dipole surfaces for µx, µy and µz employed sixth order expansions

and used 175, 163 and 235 parameters, respectively. A combined weighted root-

mean-square (rms) error of 9 × 10−5 D was obtained for the fitting. Incorporating

the analytic representation into variational nuclear motion calculations is relatively

straightforward and the implementation requires only a small amount of code. The

dipole expansion parameters along with a FORTRAN routine to construct the DMS

are provided in the supplementary material of Ref. [164].

4.4 Variational calculations

For the present study the functionality of TROVE was extended to handle

molecules of the form XY3Z. As discussed in Sec. 3.2.1, this involves implement-

ing all the necessary subroutines and coordinate transformations to construct the

analytic representations of the PES and DMS described in Sec. 4.2 and Sec. 4.3,

respectively. This was the only necessary extension of TROVE.

An automatic differentiation method [70] was used to construct the rovibrational

Hamiltonian numerically. The Hamiltonian itself was represented as a power series
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expansion around the equilibrium geometry in terms of nine vibrational coordinates.

The coordinates used are identical to those given in Eqs. (4.3) to (4.7), except for the

kinetic energy operator where linear expansion variables replace the Morse oscillator

functions for the stretching modes. In all calculations the kinetic and potential

energy operators were truncated at 6th and 8th order, respectively. This level of

truncation is adequate for our purposes (see Ref. [9] and [70] for a discussion of the

associated errors of such a scheme). Atomic mass values were employed throughout.

The polyad number (see Eq. 3.5) for CH3Cl is defined as

P = n1 + 2(n2 + n3 + n4) + n5 + n6 + n7 + n8 + n9 ≤ Pmax, (4.24)

and this does not exceed a predefined maximum value Pmax. Here, the quantum

numbers nk for k = 1, . . . , 9 correspond to primitive basis functions φnk for each

vibrational mode. The symmetrized rovibrational basis set was constructed in the

steps detailed in Sec. 3.2.1. We will see in Sec. 4.5 that different sized basis sets had

to be utilized in this work and this reflects the computational demands of variational

calculations of rovibrational spectra.

TROVE automatically assigns quantum numbers to the eigenvalues and corre-

sponding eigenvectors by analysing the contribution of the basis functions. We there-

fore map the vibrational quantum numbers nk to the normal mode quantum numbers

vk. For CH3Cl, vibrational states are labelled as v1ν1+v2ν2+v3ν3+v4ν4+v5ν5+v6ν6

where vi counts the level of excitation.

The normal modes of methyl chloride are of A1 or E symmetry. The three

non-degenerate modes have A1 symmetry; the symmetric CH3 stretching mode ν1

(2967.77/2967.75 cm−1), the symmetric CH3 deformation mode ν2 (1354.88/1354.69

cm−1) and the C–Cl stretching mode ν3 (732.84/727.03 cm−1). Whilst the three

degenerate modes have E symmetry; the CH3 stretching mode ν`44 (3039.26/3039.63

cm−1), the CH3 deformation mode ν`55 (1452.18/1452.16 cm−1) and the CH3 rocking

mode ν`66 (1018.07/1017.68 cm−1). The values in parentheses are the experimentally

determined fundamental frequencies for CH3
35Cl/CH3

37Cl [99, 123]. The additional
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1Figure 4.4: Size of the J = 0 Hamiltonian matrix with respect to the polyad trun-

cation number Pmax. Computations were only possible up to Pmax = 14.

vibrational angular momentum quantum numbers `4, `5 and `6 are there to resolve

the degeneracy of their respective modes.

4.4.1 Extrapolation to the complete vibrational basis set

limit

Fully converged energies in variational calculations are usually obtained with the

use of an extended basis set. I have only been able to compute J = 0 vibrational

energies up to a polyad truncation number of Pmax = 14 for CH3Cl. As shown in Fig-

ure 4.4, this requires the diagonalization of a Hamiltonian matrix of dimension close

to 128 000, which in turn equals the number of primitive basis functions generated.

The extension to Pmax = 16 using TROVE would be an arduous computational task.

One means of achieving converged vibrational energy levels without having to

diagonalize increasingly large matrices is the use of a complete vibrational basis

set (CVBS) extrapolation [59]. In analogy to the common basis set extrapolation

techniques of electronic structure theory [165, 166], the same principles can be ap-

plied to TROVE calculations with respect to Pmax. We adopt the exponential decay

expression

Ei(Pmax) = ECVBS
i + Ai exp(−λiPmax), (4.25)

where Ei is the energy of the ith level, ECVBS
i is the respective energy at the CVBS
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1Figure 4.5: Convergence of vibrational term values of CH3
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with respect to Pmax = PCVBS. For illustrative purposes we restrict the range of

∆E(Pmax − PCVBS) to 10 cm−1.

limit, Ai is a fitting parameter, and λi can be found from

λi = −1

2
ln

(
Ei(Pmax + 2)− Ei(Pmax)

Ei(Pmax)− Ei(Pmax − 2)

)
. (4.26)

Values of Pmax = {10, 12, 14} were employed for a CVBS extrapolation of all

vibrational term values up to 5000 cm−1, and for selected higher energies to compare

with experiment. This was done for the CBS-35 HL, CBS-37 HL, and VQZ-F12 PESs.

In Figure 4.5, the convergence of the vibrational energy levels up to 5000 cm−1 for

the CBS-35 HL PES can be seen with respect to the final ECVBS
i extrapolated values.

Below 4000 cm−1 the computed Pmax = 14 term values are already reasonably well

converged. Only five levels in this range possess a residual ∆E(Pmax−PCVBS) larger

than 0.1 cm−1, none of which is greater than 0.3 cm−1. As expected, levels involving

highly excited modes benefit the most from extrapolation as these converge at a

much slower rate.

The limiting factor of a CVBS extrapolation is the correct identification of the

energy levels at each step up in basis set size. TROVE automatically assigns quan-

tum numbers to the eigenvalues and corresponding eigenvectors by analysing the

contribution of the basis functions. Due to the increased density of states above

5000 cm−1 for higher values of Pmax, it quickly becomes difficult to consistently
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identify and match levels, except for highly excited individual modes.

4.5 Results

4.5.1 Vibrational J = 0 energies

The calculated J = 0 energy levels for CH3
35Cl using the CBS-35 HL and VQZ-

F12 PESs are listed in Table 4.1. We compare against all available experimental data

taken from Refs. [99, 123, 141, 143]. A small number of levels from Refs. [141] and

[143] have not been included as I was unable to confidently identify the corresponding

values in TROVE.

Table 4.1: Comparison of calculated and experimental J = 0 vibrational term values

(in cm−1) for CH3
35Cl. The zero-point energy was computed to be 8219.661 cm−1

at the CVBS limit.

Mode Sym. VQZ-F12 (A) CBS-35HL (B) Experiment Obs−calc (A) Obs−calc (B) Ref.

ν3 A1 734.37 733.22 732.8422 -1.53 -0.38 [123]

ν6 E 1018.16 1018.05 1018.0709 -0.09 0.02 [123]

ν2 A1 1355.11 1355.01 1354.8811 -0.23 -0.13 [123]

ν5 E 1451.57 1452.56 1452.1784 0.61 -0.38 [123]

2ν3 A1 1459.94 1457.54 1456.7626 -3.18 -0.78 [123]

ν3 + ν6 E 1747.10 1745.78 1745.3711 -1.73 -0.41 [123]

2ν6 A1 2029.67 2029.46 2029.3753 -0.29 -0.09 [123]

2ν6 E 2038.58 2038.37 2038.3262 -0.25 -0.04 [123]

ν2 + ν3 A1 2082.35 2080.98 2080.5357 -1.82 -0.45 [123]

3ν3 A1 2176.84 2173.09 2171.8875 -4.95 -1.20 [123]

ν3 + ν5 E 2183.51 2183.30 2182.5717 -0.94 -0.73 [123]

ν2 + ν6 E 2368.08 2367.90 2367.7222 -0.35 -0.18 [123]

ν5 + ν6 E 2461.19 2461.98 2461.6482 0.46 -0.33 [123]

2ν3 + ν6 E 2467.19 2464.65 2463.8182 -3.37 -0.83 [123]

ν5 + ν6 A1 2464.50 2465.28 2464.9025 0.40 -0.38 [123]

ν5 + ν6 A2 2466.85 2467.85 2467.6694 0.82 -0.18 [123]

2ν2 A1 2694.69 2694.61 2693.0 -1.69 -1.61 [141]

ν3 + 2ν6 A1 2753.23 2751.74 2751.18 -2.05 -0.56 [141]

ν2 + 2ν3 A1 2800.39 2797.64 2796.81 -3.58 -0.83 [141]

ν2 + ν5 E 2803.10 2803.96 2803.26 0.16 -0.70 [141]

4ν3 A1 2885.23 2880.47 2878 -7.23 -2.47 [141]
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(Continued)

Mode Sym. VQZ-F12 (A) CBS-35HL (B) Experiment Obs−calc (A) Obs−calc (B) Ref.

2ν5 A1 2877.75 2879.31 2879.25 1.50 -0.06 [141]

2ν5 E 2896.27 2898.22 2895.566 -0.71 -2.65 [99]

2ν3 + ν5 E 2906.64 2905.14 2907.903 1.26 2.77 [99]

ν1 A1 2965.78 2969.16 2967.7691 1.99 -1.39 [99]

ν4 E 3035.50 3038.19 3039.2635 3.76 1.07 [99]

3ν6 E 3045.08 3045.76 3042.8944 -2.18 -2.87 [99]

3ν6 A1 3060.95 3060.62 3060.0064 -0.95 -0.62 [99]

ν2 + 2ν6 A1 3373.81 3373.57 3373.5 -0.31 -0.07 [141]

2ν2 + ν3 A1 3415.53 3414.02 3413.0 -2.53 -1.02 [141]

ν3 + 2ν5 A1 3607.98 3608.77 3607.70 -0.28 -1.07 [141]

ν1 + ν3 A1 3700.18 3702.43 3700.67 0.49 -1.76 [141]

2ν2 + ν6 E 3702.92 3702.80 3702.69 -0.23 -0.11 [141]

ν3 + 3ν6 E 3760.53 3759.07 3756.6 -3.93 -2.47 [141]

ν3 + ν4 E 3773.98 3776.04 3773.52 -0.46 -2.52 [141]

2ν5 + ν6 E 3884.88 3886.75 3886.05 1.17 -0.70 [141]

ν1 + ν6 E 3977.68 3980.97 3979.66 1.98 -1.31 [141]

ν4 + ν6 E 4047.37 4049.83 4051.22 3.85 1.39 [141]

2ν2 + ν5 E 4137.96 4138.86 4138.29 0.33 -0.57 [141]

ν2 + 2ν5 A1 4229.37 4231.18 4230.34 0.97 -0.84 [141]

ν2 + 3ν6 E 4378.39 4379.54 4380.52 2.13 0.98 [141]

ν2 + ν4 E 4384.03 4385.90 4382.64 -1.39 -3.26 [141]

ν1 + ν5 E 4412.81 4416.81 4415.4 2.59 -1.41 [143]

ν1 + 2ν6 A1 4982.68 4985.90 4984.0 1.32 -1.90 [141]

ν1 + 2ν2 A1 5655.67 5658.93 5657.0 1.33 -1.93 [141]

2ν2 + ν4 E 5708.85a 5711.12a 5713 4.15 1.88 [143]

ν1 + ν4 E 5870.30 5875.98 5873.8 3.50 -2.18 [143]

2ν1 A1 5875.28 5881.04 5878 2.72 -3.04 [143]

ν4 + 2ν5 E 5918.20a 5923.37a 5923.4 5.20 0.03 [143]

2ν4 A1 6011.38 6018.47 6015.3 3.92 -3.17 [141]

2ν1 + ν5 E 7303.96 7311.08 7313.2 9.24 2.12 [141]

2ν4 + ν5 E 7437.80 7445.86 7443.2 5.40 -2.66 [141]

2ν4 + 2ν5 A1 8870.15 8877.25 8874.3 4.15 -2.95 [141]

3ν4 A1 9069.53 9079.28 9076.9 7.37 -2.38 [141]

a Pmax = 14 value.

The CBS-35 HL PES reproduces the six fundamental term values with a root-

mean-square (rms) error of 0.75 cm−1 and a mean-absolute-deviation (mad) of 0.56

cm−1. This is a considerable improvement over the results of the VQZ-F12 PES,
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which reproduces the fundamentals with a rms error of 1.86 cm−1 and a mad of

1.37 cm−1. Inspection of all computed CH3
35Cl energy levels shows that on the

whole, the CBS-35 HL PES is more reliable. This is gratifying as the effort required

to generate the CBS-35 HL PES is far greater than that of the VQZ-F12 PES. Unlike

other instances [60], the VQZ-F12 results do not benefit from an extensive cancel-

lation of errors. Note that the PES reported in Ref. [144], which did not treat any

additional HL energy corrections, produces results with errors similar to those of

the VQZ-F12 PES.

The accuracy achieved at lower energies with the CBS-35 HL PES is quite remark-

able, with residuals larger than 2 cm−1 starting to appear around 3000 cm−1. This is

a notoriously difficult region of CH3Cl with strong resonances, but the experimental

values we compare against are from a recent high-resolution study and should thus

be trustworthy [99]. However, we will discuss this point further in Sec. 4.6 when

discussing empirical refinement of the CBS-35 HL PES.

In the comparison against values reported in Duncan and Law [141], and subse-

quently used in Law [143], I exercise minor caution. The 2ν5(E) and 2ν3 + ν5(E)

levels presented in Duncan and Law [141] are lower by around 3 and 5 cm−1, respec-

tively, when compared with new values determined in Bray et al. [99]. However,

the agreement for the ν1, ν4 and 3ν6(E) levels is excellent. The residual for the 2ν2

level seems large given the residual for the ν2 term value, and I suspect that the

experimental value is incorrect. At higher energies the quality of the CBS-35 HL PES

does not appear to deteriorate significantly.

For CH3
37Cl, the J = 0 term values calculated from the CBS-37 HL PES are

compared with all available experimental data in Table 4.2. The CBS-37 HL PES

reproduces the six fundamental term values with a rms error of 1.00 cm−1 and a mad

of 0.70 cm−1. The reduction in accuracy when compared to the CBS-35 HL PES is

primarily due to the ν4 mode, whose residual has gone from 1.07 cm−1 for CH3
35Cl

to 1.92 cm−1 for CH3
37Cl. The accuracy of the 3ν6(E) level has also declined, but

for energies leading up to 3000 cm−1 the agreement with experiment is excellent.
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Despite being unable to compare against higher energies I expect the CBS-37 HL

PES to perform as well as its 35Cl counterpart.

Table 4.2: Comparison of calculated and experimental J = 0 vibrational term values

(in cm−1) for CH3
37Cl. The zero-point energy was computed to be 8216.197 cm−1

at the CVBS limit.

Mode Sym. CBS-37 HL Experimenta Obs−calc

ν3 A1 727.40 727.0295 -0.37

ν6 E 1017.66 1017.6824 0.02

ν2 A1 1354.82 1354.6908 -0.13

2ν3 A1 1446.12 1445.3509 -0.77

ν5 E 1452.53 1452.1552 -0.38

ν3 + ν6 E 1739.64 1739.2357 -0.41

2ν6 A1 2028.68 2028.5929 -0.09

2ν6 E 2037.59 2037.5552 -0.04

ν2 + ν3 A1 2074.90 2074.4526 -0.45

3ν3 A1 2156.31 2155.1179 -1.19

ν3 + ν5 E 2177.47 2176.7504 -0.72

ν2 + ν6 E 2367.32 2367.1394 -0.18

2ν3 + ν6 E 2452.76 2451.9048 -0.85

ν5 + ν6 E 2461.78 2461.4849 -0.29

ν5 + ν6 A1 2464.85 2464.4690 -0.38

ν5 + ν6 A2 2467.43 2467.2469 -0.18

ν2 + ν5 E 2803.73 2803.2 b -0.53

2ν5 A1 2879.81 2879.0 b -0.81

2ν3 + ν5 E 2893.71 2893.7394 c 0.03

2ν5 E 2898.19 2895.449 c -2.74

ν1 A1 2969.14 2967.7469 c -1.39

ν4 E 3037.71 3039.6311 c 1.92

3ν6 E 3044.97 3041.2568 c -3.72

3ν6 A1 3059.47 3058.6913 c -0.78

a Values from Ref. [123] unless stated otherwise. b Ref. [167]. c Ref. [99].

I have not computed term values for CH3
37Cl using the VQZ-F12 PES but I

expect errors similar to those reported for CH3
35Cl. It is evident that for methyl

chloride, the inclusion of additional HL corrections and a CBS extrapolation in the

PES lead to considerable improvements in computed J = 0 energies. The CBS-35 HL

and CBS-37 HL PESs are recommended for future use. Note that I have been able to
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Table 4.3: Equilibrium structural parameters of CH3Cl

r(C–Cl)/Å r(C–H)/Å β(HCCl)/deg

CBS-(35/37) HL 1.7777 1.0834 108.38

VQZ-F12 1.7805 1.0849 108.39

Ref. [169] a 1.7768 1.0842 108.72

Ref. [171] b 1.7772 1.0838 108.45

a Value determined from empirical data and CCSD(T) calculations.

b CCSD(T)(fc)/cc-pV(Q,5)Z + MP2(ae)/cc-pwCVQZ - MP2(fc)/cc-pwCVQZ.

identify and assign over 100 new energy levels for both CH3
35Cl and CH3

37Cl which

are given in Appendix A.

4.5.2 Equilibrium geometry and pure rotational energies

The equilibrium geometry of methyl chloride determined empirically by Jensen

et al. [168] is often utilized as a reference for other studies. However, the reliability

of the axial rotational constants used in their analysis has been questioned [169].

The C–H bond length reported in Jensen et al. [168] also appears too large to be

consistent with ab initio calculations, and also with the isolated C–H bond stretching

frequency [170]. A combined empirical and ab initio structure was later determined

based on 12CH3
35Cl, 12CH3

37Cl, 12CD3
35Cl and 12CD3

37Cl experimental data [169]

We compare against this as well as another high-level ab initio study [171].

The equilibrium structural parameters calculated from the CBS-(35/37) HL PES

and the VQZ-F12 PES are listed in Table 4.3. The CBS-(35/37) HL bond lengths are

shorter than the VQZ-F12 values, which is to be expected due to the inclusion of CV

electron correlation [172]. There is good agreement with the values from Refs. [169]

and [171]. The largest discrepancy concerns the bond angle determined in Ref. [169]

which is around 0.3 degrees larger than all ab initio computed values.

For further validation I studied the pure rotational spectrum as rotational ener-

gies are highly dependent on the molecular geometry through the moments of inertia.

In Table 4.4, the calculated J ≤ 5 rotational energies in the ground vibrational state
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for CH3
35Cl using the CBS-35 HL PES are presented. The computed values repro-

duce the experimental levels with a rms error of 0.0018 cm−1. The CBS-(35/37) HL

ab initio structural parameters reported in Table 4.3 can thus be regarded as reli-

able, and I expect the true equilibrium geometry of methyl chloride to be close to

these values.

Table 4.4: Comparison of calculated and experimental J ≤ 5 pure rotational term

values (in cm−1) for CH3
35Cl. The observed ground state energy levels are from

Ref. [122].

J K Sym. Experiment CBS-35 HL Obs−calc

0 0 A1 0.0000 0.0000 0.0000

1 0 A2 0.8868 0.8868 0.0000

1 1 E 5.6486 5.6489 -0.0003

2 0 A1 2.6604 2.6603 0.0001

2 1 E 7.4222 7.4223 -0.0001

2 2 E 21.7067 21.7075 -0.0008

3 0 A2 5.3208 5.3205 0.0003

3 1 E 10.0825 10.0826 -0.0001

3 2 E 24.3668 24.3676 -0.0008

3 3 A1 48.1707 48.1727 -0.0020

3 3 A2 48.1707 48.1727 -0.0020

4 0 A1 8.8678 8.8675 0.0003

4 1 E 13.6295 13.6294 0.0001

4 2 E 27.9137 27.9143 -0.0006

4 3 A1 51.7173 51.7191 -0.0018

4 3 A2 51.7173 51.7191 -0.0018

4 4 E 85.0354 85.0389 -0.0035

5 0 A2 13.3015 13.3010 0.0005

5 1 E 18.0632 18.0629 0.0003

5 2 E 32.3472 32.3476 -0.0004

5 3 A1 56.1505 56.1521 -0.0016

5 3 A2 56.1505 56.1521 -0.0016

5 4 E 89.4681 89.4714 -0.0033

5 5 E 132.2931 132.2985 -0.0054
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4.5.3 Vibrational transition moments

As an initial test of the DMS I computed vibrational transition moments, in-

troduced in Eq. (3.10). Transition moments have been determined experimentally

for the six fundamental modes of CH3
35Cl and these are listed in Table 4.5 along

with the computed values. Calculations employed a polyad truncation number of

Pmax = 12, which is sufficient for converging µif . Overall the agreement is encour-

aging and it indicates that the DMS should be reliable for intensity simulations of

the fundamental bands.

Table 4.5: Calculated vibrational transition moments (in Debye) and frequencies (in

cm−1) from the vibrational ground state for CH3
35Cl and CH3

37Cl.

Mode Sym. Experimenta Calculated µcalc
if µexp

if Ref.

CH3
35Cl

ν1 A1 2967.77 2969.16 0.05296 0.053b Elkins et al. [173]

ν2 A1 1354.88 1355.01 0.05260 0.05006(1)c Blanquet et al. [174]

ν3 A1 732.84 733.22 0.11468 0.1121(8) Dang-Nhu et al. [175]

ν4 E 3039.26 3038.19 0.03108 0.033d Elkins et al. [173]

ν5 E 1452.18 1452.56 0.05451 0.0527(7) Cappellani et al. [176]

ν6 E 1018.07 1018.05 0.03707 0.0388e Blanquet et al. [177]

CH3
37Cl

ν1 A1 2967.75 2969.14 0.05296 – –

ν2 A1 1354.69 1354.82 0.05275 – –

ν3 A1 727.03 727.40 0.11416 – –

ν4 E 3039.63 3037.71 0.02939 – –

ν5 E 1452.16 1452.53 0.05449 – –

ν6 E 1017.68 1017.66 0.03724 – –

a From Bray et al. [99] and Nikitin et al. [123]. b From Papoušek et al. [148] but derived from band

strength measurement of Sv = 84.3±3.3 cm−2 atm−1 at 296 K [173]. c Value of µexp
ν2 = 0.0473(7) D

determined in Cappellani et al. [176]. d From Papoušek et al. [148] but derived from band strength

measurement of Sv = 33.6 ± 1.4 cm−2 atm−1at 296 K [173]. e From Papoušek et al. [148] but

derived from band strength measurement of Sv = 15.1± 1.6 cm−2 atm−1at 296 K [177].

For CH3
37Cl, band strength measurements of the ν3 [178] and ν6 [179] bands have

been carried out but only minor differences were observed compared to CH3
35Cl [175,

177]. Likewise, as seen in Table 4.5 the computed transition moments for the fun-

damentals only marginally differ compared to CH3
35Cl. It seems the intensity vari-
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ation from isotopic substitution in methyl chloride is relatively small and in some

instances almost negligible. A list of computed transitions moments from the vi-

brational ground state for 79 levels up to 4200 cm−1 is given in Appendix A. Note

that for the equilibrium dipole moment of methyl chloride I calculate µ = 1.8909 D

which is close to the experimental value of µ = 1.8959(15) D [180].

4.5.4 Absolute line intensities of the ν1, ν4, ν5 and 3ν6 bands

Intensities of the six fundamental bands of CH3Cl have all been measured at

some stage [99–101, 173–179, 181–187]. Notably, absolute line intensities were de-

termined for the ν1, ν4 and 3ν6 bands around the 3.4µm region [99] (included in

HITRAN2012), and for the ν5 band in the 6.9µm region [100]. To assess the DMS

we compare against these works for both isotopologues up to J = 15. Calculating

higher rotational excitation is computationally demanding (rovibrational matrices

scale linearly with J) so we set Pmax = 10, which is sufficient for reliable inten-

sities. A study on the five-atom molecule SiH4, which will be discussed in detail

in Chapter 5, displayed similar convergence properties with respect to Pmax. Line

intensities of the ν3 band were computed with Pmax = 10 and possesed an estimated

convergence error of 1% or less for transitions up to J = 16. Note that because the

two ab initio PESs used in this study, CBS-35 HL and CBS-37 HL, can at best only

be considered accurate to about ±1 cm−1, for illustrative purposes I have shifted

computed line positions to better match experiment in the following comparisons.

Absolute absorption intensities have been simulated at room temperature (T =

296 K) using Eq. (3.9). The nuclear spin statistical weights of CH3Cl are gns =

{16, 16, 16} for states of symmetry {A1, A2, E}, respectively. These values have

been calculated using the method detailed in Jensen and Bunker [188]. For the

partition function I used values of Q(T ) = 57, 915.728 and 58, 833.711 for CH3
35Cl

and CH3
37Cl, respectively [89]. Note that to ensure a correct comparison with the

experimental studies of Bray et al. [99] and Barbouchi Ramchani et al. [100], the

intensities of overlapping A1 and A2 spectral lines (listed as being of A symmetry)
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1Figure 4.6: Absolute line intensities of the ν1 band for transitions up to J = 15

(left) and the corresponding residuals
(
%
[

obs−calc
obs

])
(right) when compared with

measurements from Bray et al. [99]. Transitions for both CH3
35Cl and CH3

37Cl are

shown and the intensities have not been scaled to natural abundance. For illustrative

purposes TROVE line positions have been shifted by −1.35 cm−1.

must be halved.

In Fig. 4.6, absolute line intensities for 126 transitions of the ν1 band and their

corresponding residuals
(
%
[

obs−calc
obs

])
compared to measurements from Bray et al.

[99] are plotted. The majority of computed intensities, although tending to be

marginally stronger, are within the experimental accuracy of 10% or better [189].

Calculated line positions had on average a residual error of ∆obs−calc = −1.35 cm−1

and this has been corrected for in Fig. 4.6. Similarly, computed intensities of the

ν4 band shown in Fig. 4.7 are largely within experimental uncertainty. Here, line

positions possessed a residual error of ∆obs−calc = −1.42 cm−1.

Line intensities of the 3ν6 band are shown in Fig. 4.8. Excited modes are harder

to converge and the size of the vibrational basis set at Pmax = 10 means the re-

spective rovibrational energy levels have a convergence error of 1.0 cm−1 for low J

values (compared to errors of ≈ 0.1, 0.5 and 0.03 cm−1 for the ν1, ν4 and ν5 bands,

respectively). The effect is that computed line intensities will have an uncertainty

of around 5%. Even so, the agreement for the 16 lines from Bray et al. [99] is good.

Note that line positions displayed a residual error of ∆obs−calc = −1.23 cm−1.

A high-resolution study of the ν5 band measured absolute line intensities with an
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1Figure 4.7: Absolute line intensities of the ν4 band for transitions up to J = 15

(left) and the corresponding residuals
(
%
[

obs−calc
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])
(right) when compared with

measurements from Bray et al. [99]. Transitions for both CH3
35Cl and CH3

37Cl are

shown and the intensities have not been scaled to natural abundance. For illustrative

purposes TROVE line positions have been shifted by −1.42 cm−1.
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1Figure 4.8: Absolute line intensities of the 3ν6 band for transitions up to J = 15

(left) and the corresponding residuals
(
%
[

obs−calc
obs

])
(right) when compared with

measurements from Bray et al. [99]. Transitions for both CH3
35Cl and CH3

37Cl are

shown and the intensities have not been scaled to natural abundance. For illustrative

purposes TROVE line positions have been shifted by −1.23 cm−1.
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Barbouchi Ramchani et al.
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1Figure 4.9: Absolute line intensities of the ν5 band for transitions up to J = 15 (left)

and the corresponding residuals
(
%
[

obs−calc
obs

])
(right) when compared with measure-

ments from Barbouchi Ramchani et al. [100]. Transitions for both CH3
35Cl and

CH3
37Cl are shown and the intensities have not been scaled to natural abundance.

For illustrative purposes TROVE line positions have been shifted by −0.40 cm−1.

experimental accuracy of 5% or less, and line positions with an average estimated

accuracy between 10−3 to 10−4 cm−1. As shown in Fig. 4.9 a significant number

of computed line intensities are within experimental uncertainty and agreement for

the 256 transitions up to J = 15 is excellent. Here calculated line positions had a

residual error of ∆obs−calc = −0.40 cm−1.

4.5.5 Overview of rotation-vibration line list

The HITRAN database contains over 212 000 lines for CH3Cl and considers tran-

sitions up to J = 82. To compute such highly excited rovibrational energy levels it

has been necessary to again reduce the size of the vibrational basis set. Calculations

were carried out with Pmax = 8 and an upper energy level cut-off of 8000 cm−1. Sub-

sequent transitions and intensities were computed for a 6300 cm−1 frequency window

with a lower state energy threshold of 4400 cm−1. Information has undoubtedly been

lost by introducing these thresholds but the values were carefully chosen to keep this

to a minimum. Such restrictions also allow the straightforward calculation of high J

values in a timely manner on compute nodes with 64 GB of RAM. Note that for pure

rotational transitions in HITRAN the hyperfine structure has been resolved [190].
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1Figure 4.10: Overview of methyl chloride rotation-vibration line list up to J = 85

compared with all transitions in the HITRAN database [89]. Computed intensities

have been scaled to natural abundance.

Therefore, in order to have a reliable comparison for this spectral region I scaled the

computed intensities by a factor of 1/2.

In Fig. 4.10, a computed line list up to J = 85 for both isotopologues of methyl

chloride is presented. Computed intensities have been scaled to natural abundance

(0.748937 for CH3
35Cl and 0.239491 for CH3

37Cl) and are compared against all avail-

able lines in the HITRAN database. Overall the agreement is pleasing, particularly

given the reduced size of the vibrational basis set and energy level thresholds. Up

to 3200 cm−1 the only noticeable missing band in HITRAN appears to be the 2ν5

band around 2880 cm−1 shown in Fig. 4.11. This is not expected to be important

for atmospheric sensing.

An improved spectroscopic line list in the range 1900–2600 cm−1 was recently

published [124] and considered transitions up to J = 47 with absolute line intensities
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1Figure 4.11: The 2ν5 band of methyl chloride. Computed intensities have been

scaled to natural abundance.

possessing an estimated uncertainty of 20% or less. In Fig. 4.12 a comparison of

this region, which is composed of several weak bands, is shown for CH3
35Cl. The

DMS appears reasonable for much weaker intensities and the overall band structure

in this region is well reproduced. There are some irregularities between TROVE

and Nikitin et al. [124]; I expect that these are caused by the low-level nature of the

TROVE calculations and also the assignment procedure in TROVE. In future work

we intend to carry out a more comprehensive analysis of this region. Note that the

computed TROVE line list has not been truncated at J = 47 for this comparison.

Whilst spectral features above 3200 cm−1 are not as prominent, there are no-

ticeable bands between 4300–4550 cm−1 and 5700–6200 cm−1 as shown in Fig. 4.13.

Here I have compared against the PNNL spectral library [95] (overview of entire

spectrum presented in Fig. 4.14). Cross sections have been generated at a reso-

lution of 0.06 cm−1 and fitted using a Gaussian profile with a half width at half

maximum of 0.112 cm−1. This line shape provides a straightforward and reason-

able comparison [191], however, I expect a Voigt profile dependent on instrumental

factors would be more suitable.

Looking at Fig. 4.13 it is clear that TROVE calculations are becoming worse

at higher energies and producing spurious intensities. This is to be expected given

the size of the vibrational basis set and thresholds imposed in the variational cal-
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1Figure 4.12: Absolute line intensities of CH3
35Cl in the range 1900–2600 cm−1 com-

pared with measurements from Nikitin et al. [124]. Computed TROVE transitions

are up to J = 85 whilst the results from Nikitin et al. [124] are up to J = 47. Note

that a logarithmic scale has been used for the y-axis.
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PNNL spectral library [95] in the 4300–4550 cm−1 (left) and 5700–6200 cm−1 (right)

regions. Computed intensities have been scaled to natural abundance.
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compared with the PNNL spectral library [95]. Computed intensities have been

scaled to natural abundance.

culations. For the complete spectrum in Fig. 4.14 the agreement with PNNL is

encouraging but does indicate the need for improved computations which will be

discussed further in Sec. 4.6.

4.6 Chapter summary and further work

The first system we have considered in this thesis was CH3Cl. In doing so we

have seen how the methods discussed in Chapters 2 and 3 are employed in practical

calculations. Methyl chloride is near the threshold of what is possible variationally

and studying this five-atom molecule should highlight the challenges involved with

simulating rovibrational spectra to a high degree of accuracy. Namely, the huge

matrices that must be diagonalized and the sheer number of transitions that have

to be considered.
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Using state-of-the-art ab initio theory, two new nine-dimensional PESs were

generated for the two main isotopologues of CH3Cl. An analysis of the combined

effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers

indicated that their inclusion can vastly improve computed term values. The same

applies to the determination of equilibrium structural parameters. I believe that the

accuracy achieved by these PESs is at the limit of what is currently possible using

solely ab initio methods, and that it would be extremely challenging to go beyond

this without empirical refinement of the respective PESs.

A new nine-dimensional DMS was computed and fitted with a symmetry-adapted

analytic representation. Variational calculations of the infrared spectrum showed

good agreement with a range of experimental results. Notably, computed absolute

line intensities were comparable with highly accurate experimental measurements

for certain fundamental bands. Considering the quality of the DMS and intensity

simulations, further improvements could come from using a larger (augmented) basis

set for the electronic structure calculations. However, this would be very compu-

tationally demanding and the change in predicted intensities may not necessarily

reflect the computational effort.

There is still further work to be carried out regarding methyl chloride. For the

requirements of high-resolution spectroscopy, the ab initio PESs presented here need

to be refined to experiment. The resulting “spectroscopic PESs” can then be used

to achieve unprecedented accuracy in the simulation of rovibrational spectra, and it

is at this stage that the predictive power of the variational approach is fully realised.

Empirical refinement of the PES should also produce more reliable intensities as a

result of better rovibrational energy levels and associated wavefunctions.

Refinement of the CBS-35 HL PES is currently in progress. Experimental data

from HITRAN [89] and Refs. [99, 122, 123, 141, 143] have been analysed to produce

a set of 53 vibrational and 687 rovibrational energies up to J = 5. Preliminary

fittings to the experimental values have yielded residual errors ∆obs−calc of the order

10−2 cm−1 for the fundamentals. This accuracy continues for the majority of rovi-
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brational energies and was obtained by adjusting only 33 expansion parameters of

the CBS-35 HL PES. In carrying out initial fittings, it has become apparent that the

2ν5(E), 2ν3 + ν5(E), ν4(E), 3ν6(A1) and 3ν6(E) J = 0 “energy levels” from Bray

et al. [99] cannot be reproduced with sub-wavenumber accuracy (the residual for the

2ν3 + ν5(E) level is as large as 4 cm−1). This is despite numerous attempts to vary

more expansion parameters of the CBS-35 HL PES in the fitting, or to increase the

weights of the respective energy levels in the fit.

For the ν4(E) and 3ν6(E) levels, Bray et al. [99] report band centre values at

3037.1416 and 3045.0164 cm−1, respectively. If these are substituted into the re-

finement, the CBS-35 HL PES is able to reproduce them with an accuracy of the

order 10−2 cm−1. The band centre values also agree with energy levels derived from

HITRAN, which are directly involved in transitions. No such data is available for

the 2ν5(E), 2ν3 + ν5(E) and 3ν6(A1) states and we must therefore treat these levels

with extreme caution.

The other main isotopologue, CH3
37Cl, will also need to be considered for any

practical line list. The question here is whether or not to separately refine the CBS-

37 HL PES, which is a computationally intensive task. An alternative strategy would

be to use the refined CBS-35 HL PES. Strictly speaking this is incorrect, particularly

because of the inclusion of the DBOC, however, calculations of CH3
37Cl term values

using the ab initio CBS-35 HL PES showed only minor differences to the CBS-37 HL

PES results. Further tests will have to be performed once the refinement for CH3
35Cl

is complete.

Ultimately, I am planning to construct a comprehensive, hot line list for the

ExoMol database [7, 8]. This will require improvements in the variational nuclear

motion calculations, particularly regarding the size of the vibrational basis set which

largely dictates the accuracy of rovibrational calculations. Work is underway to

produce a compact, yet accurate, basis set to work with. This will be important as

measurements of absolute line intensities of the order 10−26–10−27 cm/molecule have

been reported as high as the 11 590–11 760 cm−1 spectral region [127]. Presently we
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are unable to accurately model such high frequencies and this is a major challenge

for variational calculations on small polyatomic molecules.
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5 Silane (SiH4)

5.1 Introduction

The infrared (IR) absorption spectrum of silane (SiH4) was first documented over

eighty years ago [192, 193]. Since then numerous high-resolution spectroscopic stud-

ies of SiH4 and its isotopomers have followed, including astronomical observation of

rotation-vibration transitions around the carbon star IRC +10216 [194–196], and in

the atmospheres of Jupiter [197] and Saturn [198]. Although unlikely, SiH4 has al-

ready been considered in the context of biosignature gases on rocky exoplanets [94].

In industry, silane gas is used extensively in the semiconductor manufacturing pro-

cess and for the production of solar cells.

Despite its industrial and astrophysical importance, very few rigorous theoreti-

cal studies have been carried out. Martin et al. [199] computed an accurate quartic

force field for silane based on CCSD(T) calculations using the correlation consis-

tent quadruple zeta basis set, cc-pVQZ [30], plus an additional high-exponent d -

function [200] (denoted as cc-pVQZ+1 in Ref. [199]). Minor empirical refinement of

the four diagonal quadratic constants produced a force field of spectroscopic qual-

ity (±1 cm−1 when reproducing the fundamental frequencies) applicable for several

isotopomers of silane.

The resultant force field was subsequently used to calculate vibrational energy

levels of SiH4, SiH3D, SiHD3, and SiH2D2 by means of canonical Van-Vleck per-

turbation theory (CVPT) [201]. When compared to results of a variational four-

dimensional stretch model, full-dimensional CVPT calculations were necessary to

accurately describe certain stretch levels as they incorporated the effects of Fermi

resonance. The importance of treating Fermi interactions to compute vibrational

energies of silane was also highlighted previously using an algebraic approach [202].
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The use of stretch-only models has generally been successful in describing stretch-

ing overtones [203–206] and corresponding band intensities [204, 207–210] however.

This is because of the pronounced local mode behaviour of silane, the effects of which

have been documented experimentally in a series of papers by Zhu et al. [211–215].

It is only at higher energies (above 12 000 cm−1) that the rotational structure of the

|6000〉 and |7000〉 stretch eigenstates can no longer be analysed in a local mode de-

scription due to vibrational resonances [216]. For intensity calculations, even a small

treatment of bending motion can improve the description of intensities compared to

stretch-only models [217] (an overview of previously computed ab initio DMSs for

silane can be found in Ref. [11]).

At present there is no coverage of SiH4 in several of the popular spectroscopic

databases [89, 97, 218, 219]. The PNNL spectral library [95] is an exception and

covers the range of 600 to 6500 cm−1 at a resolution of around 0.06 cm−1 for temper-

atures of 5, 25, and 50 ◦C. The Spherical Top Data System [220] (STDS) is another

valuable resource for spectral information on silane. However, a significant portion

of the measured transitions and intensities are from unpublished work which makes

it hard to verify the methods used and subsequently the reliability of the data.

In this chapter we construct new nine-dimensional potential energy and dipole

moment surfaces for silane. This is again carried out using high-level ab initio the-

ory. In Chapter 4 we saw the importance of treating HL corrections and working at

the CBS limit. Here we still include the leading HL contributions and extrapolate to

the CBS limit, however, a slightly different approach is employed for SiH4 to reduce

the time associated with constructing a high-accuracy ab initio PES. After fitting

the PES and DMS with suitable analytic representations, the surfaces are rigorously

tested by means of variational calculations of the infrared spectrum. From a prac-

tical perspective, XY4 -type molecules have already been implemented in TROVE,

notably for the construction of the 10to10 methane line list [5, 68, 221]. Simulating

the spectrum of SiH4 should therefore be a smoother process than it was for CH3Cl.

The chapter is structured as follows: In Sec. 5.2 the ab initio calculations and

95



analytic representation of the PES are presented. Similarly, in Sec. 5.3 the electronic

structure calculations and analytic representation of the DMS are detailed. Pure

rotational energies, the equilibrium Si–H bond length, vibrational J = 0 energy

levels, absolute line intensities of the ν3 band, and an overview of the rovibrational

spectrum up to J = 20 are calculated and compared against available experimental

data in Sec. 5.4. We offer concluding remarks and discuss further work in Sec. 5.5.

5.2 Potential energy surface

5.2.1 Electronic structure calculations

Focal-point analysis [150] is used to represent the total electronic energy as

Etot = ECBS + ∆ESR + ∆ECV + ∆EHO. (5.1)

The energy at the CBS limit ECBS was computed using the explicitly correlated

F12 coupled cluster method CCSD(T)-F12b [25] with the F12-optimized correla-

tion consistent polarized valence basis sets, cc-pVTZ-F12 and cc-pVQZ-F12 [36].

Calculations were carried out in the frozen core approximation and used the di-

agonal fixed amplitude ansatz 3C(FIX) [18] with a Slater geminal exponent value

of β = 1.0 a−1
0 [46]. For the RI basis and the two DF basis sets, I employed the

corresponding OptRI [40], cc-pV5Z/JKFIT [41], and aug-cc-pwCV5Z/MP2FIT [42]

ABS, respectively. All calculations were carried out with MOLPRO2012 [151] unless

stated otherwise.

The two-point formula, Eq. (4.2), was used to extrapolate to the CBS limit.

For the coefficients FC
n+1 I employed values of FCCSD−F12b = 1.363388 and F (T) =

1.769474 as recommended in Hill et al. [46]. The HF energy was not extrapolated.

Instead the HF+CABS singles correction [25] calculated in the larger basis set was

used.

The SR correction ∆ESR was computed using the second-order Douglas-Kroll-
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Hess approach [54, 55] at the CCSD(T)/cc-pVQZ-DK [222] level of theory in the

frozen core approximation. The spin-orbit interaction was not considered as for light,

closed-shell molecules it can be safely ignored in spectroscopic calculations [56].

The CV electron correlation correction ∆ECV was calculated at the CCSD(T)-

F12b level of theory in conjunction with the F12-optimized correlation consistent

core-valence basis set cc-pCVTZ-F12 [37]. The same ansatz and ABS as in the

frozen core approximation computations were used, however I set β = 1.4 a−1
0 . The

(1s) orbital of Si was frozen for all-electron calculations.

To estimate the HO correction ∆EHO I used the hierarchy of coupled cluster

methods such that ∆EHO = ∆ET + ∆E(Q). Here the full triples contribution

is ∆ET =
[
ECCSDT − ECCSD(T)

]
, and the perturbative quadruples contribution is

∆E(Q) =
[
ECCSDT(Q) − ECCSDT

]
. Calculations were carried out in the frozen core

approximation at the CCSD(T), CCSDT, and CCSDT(Q) levels of theory using the

general coupled cluster approach [152, 153] as implemented in the MRCC code [154]

interfaced to CFOUR [155]. The full triples computation utilized the correlation

consistent triple zeta basis set, cc-pVTZ(+d for Si) [30–32, 34], whilst the perturba-

tive quadruples computation employed the double zeta basis set, cc-pVDZ(+d for

Si).

The contribution from the DBOC was computed with all electrons correlated (bar

the (1s) orbital of Si) using the CCSD method [158] as implemented in CFOUR with

the aug-cc-pCVDZ basis set. A preliminary analysis of the DBOC on the vibrational

energy levels showed no improvement overall when compared against experimental

values. Given that inclusion of the DBOC means the PES becomes applicable only

for 28SiH4 and no other isotopologues, the correction was not included.

In generating a high-level ab initio PES for silane I have opted for a more prag-

matic approach. Obtaining tightly converged energies with respect to basis set size

for the HL corrections is less important, particularly for the CV and HO contribu-

tions which are computationally more demanding. Since the CV and HO corrections

usually enter the electronic energy with opposing sign, I have calculated them to-
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1Figure 5.1: One-dimensional cuts of the CV, HO, and CV+HO corrections for dif-

ferent sizes of basis set. For CV the subscript TZ(QZ) refers to calculations with the

cc-pCVTZ-F12(cc-pCVQZ-F12) basis set. For HO the subscript (D/T)Z refers to

calculations with the cc-pVDZ and cc-pVTZ basis sets for the perturbative quadru-

ples and full triples, respectively. Likewise the (T/Q)Z subscript corresponds to the

cc-pVTZ and cc-pVQZ basis sets.

gether utilizing smaller basis sets. Although independently the separate corrections

are not fully converged, this error is compensated for when considering their sum.

This is illustrated through one-dimensional cuts of the PES in Fig. 5.1, most notice-

ably in the bending cut.

The global grid was built in terms of nine internal coordinates; four Si–H bond

lengths r1, r2, r3, r4, and five ∠(Hj–Si–Hk) interbond angles α12, α13, α14, α23, and

α24, where j and k label the respective hydrogen atoms. The Si–H stretch distances

ranged from 0.98 ≤ ri ≤ 2.95 Å for i = 1, 2, 3, 4 whilst bending angles varied from

40 ≤ αjk ≤ 140◦ where jk = 12, 13, 14, 23, 24. All terms in Eq. (5.1) were calculated

on a grid of 84 002 geometries with energies up to hc · 50 000 cm−1 (h is the Planck
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constant and c is the speed of light). At every grid point the coupled cluster energy

was extrapolated to the CBS limit, and each HL correction was calculated and added

to the total electronic energy.

The HL corrections have been computed at each grid point which is in fact

time-effective at the levels of theory chosen for the electronic structure calculations.

The alternative is to design reduced grids for each correction, fit a corresponding

analytic representation and apply the resulting form to the global grid of geometries

by interpolation as was done for CH3Cl (see also Ref. [60] for an example of this

strategy). Although this alternative is computationally less intensive, achieving a

satisfactory description of each HL correction requires careful consideration and may

not be trivial; any such problems are avoided in our present approach.

5.2.2 Analytic representation

The analytic representation chosen for the present study has previously been

used for methane [5, 68, 221]. For the stretch coordinates,

ξi = 1− exp
(
−a(ri − rref)

)
; i = 1, 2, 3, 4, (5.2)

where a = 1.47 Å
−1

and the reference equilibrium structural parameter rref =

1.4741 Å (value discussed in Sec. 5.4.1). The angular terms are given as symmetrized

combinations of interbond angles,

ξ5 =
1√
12

(2α12 − α13 − α14 − α23 − α24 + 2α34) , (5.3)

ξ6 =
1

2
(α13 − α14 − α23 + α24) , (5.4)

ξ7 =
1√
2

(α24 − α13) , (5.5)

ξ8 =
1√
2

(α23 − α14) , (5.6)

ξ9 =
1√
2

(α34 − α12) . (5.7)
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The potential function (maximum expansion order of i+j+k+l+m+n+p+q+r = 6),

V (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9) =
∑
ijk...

fijk...Vijk..., (5.8)

contains the terms

Vijk... = {ξ i1ξ
j
2 ξ

k
3 ξ

l
4ξ

m
5 ξ

n
6 ξ

p
7 ξ

q
8 ξ

r
9 }Td(M), (5.9)

which are symmetrized combinations of different permutations of the coordinates ξi,

and transform according to the A1 representation of the Td(M) molecular symmetry

group [82]. They are found by solving an over-determined system of linear equations

in terms of the nine coordinates given above. A total of 287 symmetrically unique

terms were derived up to sixth order of which only 104 were employed for the

final PES. The corresponding expansion parameters fijk... were determined from

a least-squares fitting to the ab initio data. The same Partridge and Schwenke

[160] weighting function, Eq. (4.12), was employed with Ẽ
(w)
i = max(Ẽi, 10 000)

and N = 0.0001 (all values in cm−1). The final fitted PES required 106 expansion

parameters (104 + rref + a) and employed Watson’s robust fitting scheme [162],

which reduces the weights of outliers and improves the fit at lower energies. A

weighted root-mean-square (rms) error of 1.77 cm−1 was obtained for energies up to

hc · 50 000 cm−1.

Note that geometries with ri ≥ 2.30 Å for i = 1, 2, 3, 4 possessed a T1 diagnostic

value > 0.02 [161], and so the corresponding weights were reduced by several orders

of magnitude. Although the coupled cluster method is not completely accurate

at these points, by including them the PES maintains a reasonable shape towards

dissociation. In subsequent calculations we refer to this PES as CBS-F12 HL. The

CBS-F12 HL expansion parameter set is provided in the supplementary material of

Ref. [223] along with a FORTRAN routine to construct the PES.
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5.3 Dipole moment surface

5.3.1 Electronic structure calculations

For each of the X, Y , and Z Cartesian coordinate axes with origin at the Si

nucleus, an external electric field with components ±0.005 a.u. was applied and the

dipole moment components µX , µY , and µZ computed by means of the central finite

difference scheme. Calculations were carried out at the CCSD(T)/aug-cc-pVTZ(+d

for Si) level of theory in the frozen core approximation using MOLPRO2012. The

same nine-dimensional grid as used for the PES with energies up to hc · 50 000 cm−1

was employed.

5.3.2 Analytic representation

To represent the DMS analytically it is necessary to transform to a suitable

molecule-fixed xyz coordinate system. For the present study we utilize the sym-

metrized molecular bond (SMB) representation for XY4 molecules [68]. We first

define unit vectors along the four Si–H bonds,

ei =
ri − r0

|ri − r0|
; i = 1, 2, 3, 4, (5.10)

where r0 is the position vector of the Si nucleus, and ri is that of the respective

Hi atom. Three symmetrically independent reference vectors which span the F2

representation are formed,

n1 =
1

2
(e1 − e2 + e3 − e4) , (5.11)

n2 =
1

2
(e1 − e2 − e3 + e4) , (5.12)

n3 =
1

2
(e1 + e2 − e3 − e4) . (5.13)
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Using these the ab initio dipole moment vector µ can be expressed as

µ = µxn1 + µyn2 + µzn3. (5.14)

Here µα (α = x, y, z) are the dipole moment functions (also of F2 symmetry) which

take the form

µα(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9) =
∑
ijk...

F
(α)
ijk...µ

F2
α,ijk.... (5.15)

The expansion terms

µF2
α,ijk... = {ξ i1ξ

j
2 ξ

k
3 ξ

l
4ξ

m
5 ξ

n
6 ξ

p
7 ξ

q
8 ξ

r
9 }F2α , (5.16)

are symmetrized combinations of different permutations of coordinates ξi, and span

the F2α representation of the Td(M) molecular symmetry group (see Ref. [68] for

more detail). A sixth order expansion was employed in terms of the coordinates,

ξi = (ri − rref) exp
(
−β(ri − rref)2

)
; i = 1, 2, 3, 4, (5.17)

for the stretches, with the same angular coordinates as before (Eqs. (5.3) to (5.7)).

The factor exp
(
−β(ri − rref)2

)
prevents the expansion from diverging at large values

of ri. The DMS fitting employed the parameters rref = 1.5355 Å and β = 1.0 Å
−2

.

The expansion coefficients F
(α)
ijk... for all three components α = x, y, z were deter-

mined simultaneously through a least squares fitting to the ab initio data. Again

weight factors of the form given in Eq. (4.12) were used which favor energies below

hc · 15 000 cm−1. The fitting required 283 parameters and reproduced the ab initio

data with a weighted rms error of 0.001 D for energies up to hc · 50 000 cm−1. The

expansion parameter set for the DMS is provided in the supplementary material of

Ref. [223] along with a FORTRAN routine to construct the corresponding analytic

representation.
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5.4 Results

5.4.1 Equilibrium bond length and pure rotational energies

Since rotational energies depend on the molecular geometry through the moments

of inertia, I first refine the Si–H reference equilibrium structural parameter rref

before proceeding to extensive rovibrational energy level calculations. Thereby, the

accuracy of the computed intra-band rotational wavenumbers can be significantly

improved [61, 224].

Two iterations of a nonlinear least-squares fit to the experimental J ≤ 6 rota-

tional energies from the STDS [220] produced a refined parameter of rref = 1.4741 Å.

However, due to the inclusion of a linear expansion term in the parameter set of the

potential, this value does not define the minimum of the PES. The true equilib-

rium bond length was determined to be req = 1.4737 Å. This is in good agreement

with the experimental estimate of r(Si–H)= 1.4741 Å [225], and an ab initio value

of r(Si–H)= 1.4742 Å calculated at the all electron CCSD(T)/cc-pCVQZ level of

theory [172]. Note that before the refinement the original ab initio bond length of

the CBS-F12 HL PES was req
ab initio = 1.4735 Å.

The computed pure rotational energies are listed in Table 5.1. The details of

the calculations will be discussed in Sec. 5.4.2. As can be seen, the agreement with

experiment is excellent and energy levels up to J ≤ 6 are reproduced with a rms

error of 0.00005 cm−1. I therefore expect the true Si–H equilibrium bond length to

be very close to the value req = 1.4737 Å.

5.4.2 Vibrational J = 0 energies

In variational calculations the rovibrational Hamiltonian was represented as a

power series expansion around the equilibrium geometry in terms of the coordinates

given in Eqs. (5.2) to (5.7). However, for the kinetic energy operator linear displace-

ment variables (ri− rref) were used for the stretching coordinates. The Hamiltonian
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Table 5.1: Comparison of calculated and experimental J ≤ 6 pure rotational term

values (in cm−1) for 28SiH4. The observed ground state energy levels are from

Ref. [220].

J K Sym. Experiment Calculated Obs−calc

0 0 A1 0.00000 0.00000 0.00000

1 1 F1 5.71801 5.71800 0.00001

2 2 E 17.15306 17.15302 0.00004

2 1 F2 17.15321 17.15317 0.00004

3 2 A2 34.30453 34.30448 0.00005

3 3 F1 34.30319 34.30313 0.00006

3 1 F2 34.30379 34.30373 0.00006

4 0 A1 57.16474 57.16467 0.00007

4 2 E 57.16653 57.16647 0.00006

4 1 F1 57.16578 57.16572 0.00006

4 3 F2 57.16877 57.16872 0.00005

5 2 E 85.74233 85.74231 0.00002

5 1 F1 85.73510 85.73504 0.00006

5 3 F1 85.74330 85.74328 0.00002

5 5 F2 85.73711 85.73707 0.00004

6 4 A1 120.02574 120.02581 -0.00007

6 2 A2 120.01143 120.01144 -0.00001

6 6 E 120.00784 120.00784 0.00000

6 3 F1 120.02350 120.02356 -0.00006

6 1 F2 120.00873 120.00874 -0.00001

6 5 F2 120.02097 120.02102 -0.00005

was constructed numerically using an automatic differentiation method [70], with the

kinetic and potential energy operators truncated at 6th and 8th order, respectively.

The vibrational basis set was generated using a multi-step contraction scheme. For

SiH4 the polyad number

P = 2(n1 + n2 + n3 + n4) + n5 + n6 + n7 + n8 + n9 ≤ Pmax, (5.18)

and for J = 0 vibrational energy level calculations I set Pmax = 14. Note that atomic

mass values were employed in the subsequent TROVE calculations.

The normal modes of silane are classified by the symmetry species, A1, E, and F2.
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OfA1 symmetry is the non-degenerate symmetric stretching mode ν1 (2186.87 cm−1).

The doubly degenerate antisymmetric bending mode ν2 (970.93 cm−1) has E sym-

metry. Whilst of F2 symmetry are the triply degenerate modes; the antisymmet-

ric stretching mode ν3 (2189.19 cm−1), and the antisymmetric bending mode ν4

(913.47 cm−1). The values in parentheses are the experimentally determined values

from Ref. [220]. To be of spectroscopic use we map the vibrational quantum num-

bers nk of TROVE to the normal mode quantum numbers vk commonly used. For

SiH4 the vibrational states are labelled as v1ν1 + v2ν2 + v3ν3 + v4ν4 where vi counts

the level of excitation.

In Table 5.2 the computed vibrational energies using the CBS-F12 HL PES are

listed against all available experimental data up to 8500 cm−1. The four fundamen-

tal frequencies are all reproduced with sub-wavenumber accuracy, resulting in an

overall rms error of 0.63 cm−1 and a mean-absolute-deviation (mad) of 0.57 cm−1.

Altogether the 49 experimental levels are reproduced with a rms error of 1.33 cm−1

and mad of 1.07 cm−1. Note that energies are converged to 0.01 cm−1 or better

(the majority are converged to orders of magnitude lower), except for the two

levels at 8347.86 cm−1 which are converged to within 0.02 cm−1. This was con-

firmed by performing a complete vibrational basis set extrapolation with values of

Pmax = {10, 12, 14}.

Table 5.2: Comparison of calculated and experimental J = 0 vibrational term values

(in cm−1) for 28SiH4. The zero-point energy was computed to be 6847.084 cm−1.

Mode Sym. Experiment Calculated Obs−calc Ref.

ν4 F2 913.47 912.85 0.62 [220]

ν2 E 970.93 970.14 0.79 [220]

2ν4 A1 1811.80 1810.90 0.90 [220]

2ν4 F2 1824.19 1823.15 1.04 [220]

2ν4 E 1827.81 1827.00 0.81 [220]

ν2 + ν4 F2 1881.96 1880.87 1.09 [220]

ν2 + ν4 F1 1887.10 1885.36 1.74 [220]

2ν2 A1 1937.50 1935.84 1.66 [220]
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

2ν2 E 1942.77 1941.29 1.48 [220]

ν1 A1 2186.87 2187.63 -0.76 [220]

ν3 F2 2189.19 2189.32 -0.13 [220]

3ν4 F2 2713.07 2712.16 0.91 [220]

3ν4 A1 2731.17 2729.97 1.20 [220]

3ν4 F1 2735.42 2734.26 1.16 [220]

3ν4 F2 2739.35 2738.48 0.87 [220]

ν2 + 2ν4 E 2780.47 2779.32 1.15 [220]

ν2 + 2ν4 F1 2793.32 2791.84 1.48 [220]

ν2 + 2ν4 A1 2795.11 2793.94 1.17 [220]

ν2 + 2ν4 F2 2797.41 2795.53 1.88 [220]

ν2 + 2ν4 E 2800.20 2798.25 1.95 [220]

ν2 + 2ν4 A2 2803.95 2801.56 2.39 [220]

2ν2 + ν4 F2 2848.26 2846.60 1.66 [220]

2ν2 + ν4 F1 2856.43 2854.36 2.07 [220]

2ν2 + ν4 F2 2859.74 2857.18 2.56 [220]

3ν2 E 2904.99 2902.60 2.39 [220]

3ν2 A1 2915.40 2913.34 2.06 [220]

3ν2 A2 2915.48 2913.44 2.04 [220]

ν3 + ν4 F1 3094.81 3094.35 0.46 [201] a

ν1 + ν4 F2 3095.26 3095.10 0.16 [201] a

ν3 + ν4 E 3095.86 3095.52 0.34 [201] a

ν3 + ν4 F2 3098.02 3097.60 0.42 [201] a

ν3 + ν4 A1 3099.48 3098.73 0.75 [201] a

ν2 + ν3 F2 3152.59 3152.92 -0.33 [201] a

ν2 + ν3 F1 3153.08 3152.17 0.91 [201] a

ν1 + ν2 E 3153.60 3152.12 1.48 [201] a

2ν3 A1 4308.87 4308.96 -0.09 [216] b

ν1 + ν3 F2 4309.35 4309.89 -0.54 [214]

2ν1 A1 4374.56 4375.92 -1.36 [205] c

2ν3 E 4378.40 4380.23 -1.83 [220]

2ν3 F2 4380.28 4378.73 1.55 [205] c

ν1 + 2ν3 A1 6362.05 6362.88 -0.83 [216] d
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

3ν3 F2 6362.05 6362.97 -0.92 [216] d

3ν1 A1 6496.13 6498.19 -2.06 [205] c

2ν1 + ν3 F2 6497.45 6498.48 -1.03 [215]

ν1 + 2ν3 E 6500.30 6500.58 -0.28 [205] c

3ν3 F2 6500.60 6500.71 -0.11 [205] c

3ν3 F1 6502.88 6502.94 -0.06 [205] c

ν1 + 3ν3 A1 8347.86 8349.38 -1.52 [216] d

ν1 + 3ν3 F2 8347.86 8349.39 -1.53 [216] d

a Originally attributed to Ref. [220], but unable to confirm value independently. b Origi-

nally attributed to Ref. [214]. c Originally attributed to Ref. [226]. d Originally attributed

to Refs. [211–213].

Of the 35 term values up to 3153.60 cm−1, the energy of 32 levels is underes-

timated by the CBS-F12 HL PES. This can be explained by the residual errors of

the ν2 and ν4 fundamentals, which largely dictates the accuracy of the subsequent

combination bands and overtones. Above 3153.60 cm−1 computed energy levels are

consistently higher than experiment which is a result of overestimating the ν1 and

ν3 fundamentals. Despite this, the performance of the CBS-F12 HL PES is extremely

encouraging.

Experimental values for stretching overtones above 8500 cm−1 are available [212,

216, 227]. However, the corresponding values in TROVE are harder to identify

given the increased density of states at higher energies. Highly excited modes also

show slower convergence with respect to vibrational basis set size. Thus, to obtain

reasonably well converged energies would require calculations with Pmax = 16 or

greater, which is currently unachievable with the computational resources available

to us.

As an aside in Table 5.3 we show the effect of the empirical refinement of the

equilibrium geometry on the fundamental frequencies. Results computed using the
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ab initio bond length (overall rms error of 0.57 cm−1) are marginally better which

is to be expected. In the refined geometry PES the shape of the original ab initio

PES has been altered by shifting its minimum, resulting in a poorer representation

of vibrational energies. For spectral analysis an improved description of rotational

structure is more desirable however, as vibrational band position can be easily cor-

rected at a later stage [61].

Table 5.3: Comparison of the computed fundamental term values (in cm−1) with

the refined (ref) and ab initio (ai) equilibrium geometry.

Mode Sym. Experimenta ref eq. (A) ai eq. (B) Obs-calc (A) Obs-calc (B)

ν1 A1 2186.87 2187.63 2187.63 -0.76 -0.76

ν2 E 970.93 970.14 970.26 0.79 0.67

ν3 F2 2189.19 2189.32 2189.31 -0.13 -0.12

ν4 F2 913.47 912.85 912.97 0.62 0.50

a See Table 5.2 for experimental references.

5.4.3 Vibrational transition moments

In Table 5.4, computed vibrational transition moments, Eq. (3.10), from the

vibrational ground state are listed. Calculations used the CBS-F12 HL PES and a

polyad number of Pmax = 12 which ensured converged results.

Experimentally determined transitions moments have only been derived for the

ν3 (2189.19 cm−1) and ν4 (913.47 cm−1) modes. Fox and Person [228] using ear-

lier band intensity measurements [229, 230] found µν3 = 0.139 ± 4% D and µν4 =

0.232 ± 7% D. The reliability of the intensity data [229, 230] has however been

questioned [231]. In other work, Cadot [232] determined a transition moment of

µν3 = 0.1293± 3% D. Whilst a value of µν4 = 0.247 D was quoted in Ref. [195] but

attributed to unpublished results.

Although the experimental situation is not entirely clear, the computed TROVE

transition moments of µν3 = 0.2470 D and µν4 = 0.4149 D are notably larger than

their experimental counterparts. We will show in Sec. 5.4.4 and Sec. 5.4.5 that the
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Table 5.4: Calculated vibrational transition moments (in Debye) and frequencies (in

cm−1) from the vibrational ground state for 28SiH4. Only levels of F2 symmetry are

accessible from the ground state in IR absorption.

Mode Sym. Experimenta Calculated µif

ν4 F2 913.47 912.85 0.4149E+0

2ν4 F2 1824.19 1823.15 0.2500E-2

ν2 + ν4 F2 1881.96 1880.87 0.2350E-1

ν3 F2 2189.19 2189.32 0.2470E+0

3ν4 F2 2713.07 2712.16 0.4578E-2

3ν4 F2 2739.35 2738.48 0.8123E-3

ν2 + 2ν4 F2 2797.41 2795.53 0.1734E-2

2ν2 + ν4 F2 2848.26 2846.60 0.1835E-2

2ν2 + ν4 F2 2859.74 2857.18 0.9093E-4

ν1 + ν4 F2 3095.26 3095.10 0.1320E-1

ν3 + ν4 F2 3098.02 3097.60 0.1319E-1

ν2 + ν3 F2 3152.59 3152.92 0.1050E-1

4ν4 F2 - 3609.08 0.4741E-3

4ν4 F2 - 3638.92 0.1892E-4

ν2 + 3ν4 F2 - 3677.72 0.6075E-3

ν2 + 3ν4 F2 - 3704.01 0.5424E-3

ν2 + 3ν4 F2 - 3707.66 0.2098E-4

2ν2 + 2ν4 F2 - 3758.50 0.1628E-3

2ν2 + 2ν4 F2 - 3767.13 0.5799E-4

3ν2 + ν4 F2 - 3810.86 0.2432E-3

3ν2 + ν4 F2 - 3827.61 0.3848E-3

ν1 + ν3 F2 4309.35 4309.89 0.1336E-1

2ν3 F2 4380.28 4378.73 0.4262E-2

3ν3 F2 6362.05 6362.97 0.5762E-3

2ν1 + ν3 F2 6497.45 6498.48 0.5813E-3

3ν3 F2 6500.60 6500.71 0.1517E-3

ν1 + 3ν3 F2 8347.86 8349.39 0.1390E-2

a See Table 5.2 for experimental references.

DMS does marginally overestimate the strength of line intensities. The magnitude

of this overestimation is not consistent with the discrepancy in the experimental

and computed values for µν3 and µν4 however. Experimentally derived transition

moments for the other levels of silane could help clarify previous results and assist

future theoretical benchmarking.
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1Figure 5.2: Absolute line intensities of the ν3 band for transitions up to J = 16

(left) and the corresponding residuals
(
%
[

obs−calc
obs

])
(right) when compared with

measurements from van Helden et al. [237].

It is worth nothing that if we use the values from Fox and Person [228] and

compare the ratio µexp
ν3
/µexp

ν4
= 0.599 with µTROVE

ν3
/µTROVE

ν4
= 0.595, there is excel-

lent agreement which suggests the relative intensity for the two strongest bands is

reasonable.

5.4.4 Absolute line intensities of the ν3 band

Absolute absorption intensities were simulated at room temperature (T = 296 K)

using Eq. (3.9). For SiH4, the nuclear spin statistical weights are gns = {5, 5, 2, 3, 3}

for states of symmetry {A1, A2, E, F1, F2}, respectively. The partition function Q(T )

was estimated using, Q(T ) ≈ Qrot(T ) × Qvib(T ). For tetrahedral molecules the

rotational partition function is given as [233],

Qrot(T ) =
4

3
π1/2

(
Bhc

kT

)−3/2

exp

(
Bhc

4kT

)
, (5.19)

where for SiH4 I used a ground state rotational constant of B = 2.859, which is

consistent with Refs. [234–236]. At T = 296 K, Qrot = 1447.6001, the vibrational

partition function Qvib = 1.0551 [220], resulting in Q = 1527.3629.

A recent high-resolution study of the ν3 band measured the absolute line inten-

sities of numerous P-branch transitions up to J = 16 at 296 K [237]. Line intensities
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were recorded at a resolution of 0.0011 cm−1 and were given an estimated experi-

mental measurement accuracy of 10%. To validate the DMS and to a lesser extent

the PES, in Table 5.5 we compare frequencies and absolute line intensities of over

100 transitions from Ref. [237]. The results are also illustrated in Fig. 5.2.

Table 5.5: Comparison of calculated and observed frequencies (in cm−1) and ab-

solute line intensities (in cm/molecule) for transitions between the ν3 and ground

vibrational state. To quantify the error in the computed line intensity we use the

percentage measure, %[(obs− calc)/obs].

Γ′ J ′ K ′ Γ′′ J ′′ K ′′ νobs νcalc ∆obs−calc Iobs Icalc %
[
obs−calc

obs

]
F1 1 1 F2 2 1 2177.782 2177.908 -0.126 8.784E-20 1.005E-19 -14.42

E 1 1 E 2 1 2177.793 2177.921 -0.128 5.920E-20 6.701E-20 -13.19

A1 2 1 A2 3 1 2172.045 2172.170 -0.125 2.290E-19 2.586E-19 -12.92

F1 2 1 F2 3 1 2172.072 2172.197 -0.125 1.417E-19 1.535E-19 -8.38

F2 2 1 F1 3 2 2172.091 2172.216 -0.125 1.315E-19 1.550E-19 -17.88

F1 3 1 F2 4 2 2166.306 2166.431 -0.125 1.682E-19 1.889E-19 -12.35

E 3 1 E 4 1 2166.340 2166.466 -0.126 1.212E-19 1.301E-19 -7.37

F2 3 2 F1 4 1 2166.357 2166.483 -0.126 1.776E-19 1.935E-19 -8.98

A2 3 2 A1 4 0 2166.377 2166.504 -0.127 2.923E-19 3.250E-19 -11.17

F2 4 2 F1 5 2 2160.524 2160.654 -0.130 1.959E-19 2.118E-19 -8.09

E 4 2 E 5 1 2160.547 2160.678 -0.131 1.270E-19 1.361E-19 -7.16

F1 4 1 F2 5 3 2160.591 2160.718 -0.127 2.201E-19 2.191E-19 0.44

F2 4 1 F1 5 1 2160.629 2160.755 -0.126 2.250E-19 2.150E-19 4.43

A2 5 2 A1 6 2 2154.706 2154.832 -0.126 3.217E-19 3.766E-19 -17.08

F2 5 2 F1 6 2 2154.738 2154.865 -0.127 1.930E-19 2.135E-19 -10.62

F1 5 1 F2 6 3 2154.768 2154.895 -0.127 1.852E-19 1.939E-19 -4.70

F1 5 1 F2 6 1 2154.780 2154.907 -0.127 1.705E-20 2.058E-20 -20.73

A1 5 3 A2 6 1 2154.810 2154.935 -0.125 3.688E-19 3.826E-19 -3.73

F1 5 1 F2 6 3 2154.844 2154.975 -0.131 1.071E-20 1.491E-20 -39.28

F1 5 1 F2 6 1 2154.856 2154.987 -0.131 1.901E-19 2.039E-19 -7.29

E 5 1 E 6 3 2154.862 2154.992 -0.130 1.380E-19 1.485E-19 -7.60

F2 6 2 F1 7 3 2148.893 2149.021 -0.128 1.970E-19 2.025E-19 -2.77

E 6 2 E 7 3 2148.926 2149.052 -0.126 1.319E-19 1.400E-19 -6.17

F1 6 3 F2 7 2 2148.954 2149.080 -0.126 1.639E-19 1.702E-19 -3.89

F1 6 3 F2 7 1 2148.976 2149.102 -0.126 3.234E-20 4.017E-20 -24.23

A1 6 3 A2 7 1 2149.046 2149.184 -0.138 2.950E-19 3.153E-19 -6.89

F1 6 1 F2 7 2 2149.052 2149.186 -0.134 2.740E-20 2.832E-20 -3.34

F1 6 1 F2 7 1 2149.074 2149.207 -0.133 1.714E-19 1.781E-19 -3.88

F2 6 3 F1 7 1 2149.082 2149.214 -0.132 2.077E-19 2.140E-19 -3.02

F1 7 3 F2 8 2 2143.025 2143.165 -0.140 1.747E-19 1.899E-19 -8.70
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(Continued)

Γ′ J ′ K ′ Γ′′ J ′′ K ′′ νobs νcalc ∆obs−calc Iobs Icalc %
[
obs−calc

obs

]
E 7 3 E 8 1 2143.056 2143.197 -0.141 9.223E-20 1.032E-19 -11.94

F2 7 2 F1 8 2 2143.084 2143.223 -0.139 1.740E-19 1.798E-19 -3.30

E 7 3 E 8 3 2143.104 2143.246 -0.142 1.340E-20 2.002E-20 -49.38

F2 7 2 F1 8 1 2143.125 2143.264 -0.139 1.201E-20 1.525E-20 -26.99

E 7 1 E 8 1 2143.228 2143.372 -0.144 6.575E-21 1.017E-20 -54.68

A2 7 1 A1 8 0 2143.286 2143.424 -0.138 3.771E-19 3.373E-19 10.56

F1 8 3 F2 9 1 2137.100 2137.240 -0.140 1.135E-20 1.265E-20 -11.48

A1 8 3 A2 9 3 2137.136 2137.267 -0.131 2.554E-19 2.951E-19 -15.55

F1 8 2 F2 9 3 2137.173 2137.301 -0.128 1.546E-19 1.452E-19 6.09

F2 8 2 F1 9 4 2137.198 2137.324 -0.126 1.010E-19 1.313E-19 -29.97

F2 8 2 F1 9 4 2137.417 2137.570 -0.153 1.122E-20 1.493E-20 -33.10

F2 8 1 F1 9 2 2137.426 2137.569 -0.143 3.185E-21 3.613E-21 -13.46

E 9 3 E 10 3 2131.274 2131.402 -0.128 8.116E-20 8.571E-20 -5.61

F2 9 4 F1 10 3 2131.298 2131.424 -0.126 9.629E-20 1.082E-19 -12.38

A1 9 1 A2 10 1 2131.302 2131.439 -0.137 4.663E-20 6.417E-20 -37.62

F1 9 3 F2 10 2 2131.315 2131.445 -0.130 5.899E-21 7.399E-21 -25.42

F2 9 4 F1 10 1 2131.340 2131.467 -0.127 2.822E-20 3.382E-20 -19.86

F1 9 3 F2 10 1 2131.381 2131.512 -0.131 1.117E-20 1.499E-20 -34.22

E 9 3 E 10 5 2131.399 2131.527 -0.128 6.337E-21 9.306E-21 -46.85

F1 9 1 F2 10 4 2131.594 2131.678 -0.084 6.694E-21 3.753E-21 43.93

F2 9 3 F1 10 3 2131.600 2131.764 -0.164 1.449E-20 1.615E-20 -11.48

A2 9 4 A1 10 4 2131.629 2131.796 -0.167 1.534E-19 1.616E-19 -5.31

A1 9 3 A2 10 1 2131.672 2131.826 -0.154 1.876E-19 1.952E-19 -4.06

F2 10 4 F1 11 2 2125.142 2125.281 -0.139 1.315E-20 1.212E-20 7.82

E 10 1 E 11 3 2125.162 2125.302 -0.140 2.551E-20 2.212E-20 13.30

F2 10 4 F1 11 4 2125.194 2125.333 -0.139 1.512E-20 1.610E-20 -6.46

E 10 1 E 11 1 2125.249 2125.389 -0.140 8.867E-21 1.032E-20 -16.41

F2 10 4 F1 11 2 2125.312 2125.441 -0.129 1.016E-19 1.011E-19 0.58

E 10 2 E 11 3 2125.340 2125.467 -0.127 5.186E-20 5.236E-20 -0.97

F1 10 1 F2 11 2 2125.348 2125.481 -0.133 1.369E-20 1.531E-20 -11.88

F1 10 3 F2 11 3 2125.362 2125.488 -0.126 9.684E-20 1.020E-19 -5.32

A1 10 4 A2 11 1 2125.809 2125.973 -0.164 1.579E-19 1.712E-19 -8.44

E 10 4 E 11 1 2125.851 2126.025 -0.174 3.963E-20 4.194E-20 -5.82

F2 11 1 F1 12 4 2119.300 2119.431 -0.131 9.978E-21 1.400E-20 -40.30

A2 11 2 A1 12 4 2119.331 2119.461 -0.130 1.160E-19 1.440E-19 -24.15

F1 11 3 F2 12 5 2119.389 2119.515 -0.126 6.041E-20 6.883E-20 -13.94

A1 11 3 A2 12 3 2119.414 2119.540 -0.126 1.131E-19 1.477E-19 -30.63

F2 11 1 F1 12 2 2119.440 2119.571 -0.131 1.284E-20 1.634E-20 -27.32

F1 11 3 F2 12 1 2119.449 2119.576 -0.127 7.866E-21 1.017E-20 -29.29

F2 11 2 F1 12 2 2119.508 2119.635 -0.127 1.635E-20 2.204E-20 -34.82

F2 12 1 F1 13 1 2114.154 2114.321 -0.167 4.479E-20 5.868E-20 -31.03

112



(Continued)

Γ′ J ′ K ′ Γ′′ J ′′ K ′′ νobs νcalc ∆obs−calc Iobs Icalc %
[
obs−calc

obs

]
E 12 5 E 13 1 2114.169 2114.352 -0.183 2.707E-20 3.394E-20 -25.38

F1 12 1 F2 13 1 2114.179 2114.349 -0.170 4.882E-20 5.374E-20 -10.08

F2 12 1 F1 13 2 2114.187 2114.373 -0.186 3.173E-20 4.001E-20 -26.09

A1 12 1 A2 13 5 2114.252 2114.453 -0.201 4.283E-20 5.208E-20 -21.59

F2 12 3 F1 13 5 2114.259 2114.457 -0.198 2.253E-20 2.647E-20 -17.51

F1 12 4 F2 13 1 2114.263 2114.463 -0.200 2.538E-20 2.854E-20 -12.45

A2 12 4 A1 13 2 2114.309 2114.506 -0.197 3.990E-20 4.713E-20 -18.13

F2 12 3 F1 13 2 2114.354 2114.554 -0.200 2.886E-21 3.277E-21 -13.55

E 13 2 E 14 7 2108.308 2108.486 -0.178 2.272E-20 2.725E-20 -19.96

F1 13 1 F2 14 1 2108.321 2108.499 -0.178 3.210E-20 3.888E-20 -21.14

A2 13 5 A1 14 6 2108.343 2108.545 -0.202 5.088E-20 5.941E-20 -16.77

F1 13 2 F2 14 2 2108.349 2108.544 -0.195 2.889E-20 3.389E-20 -17.30

A1 13 2 A2 14 1 2108.354 2108.535 -0.181 5.234E-20 5.969E-20 -14.04

F2 13 2 F1 14 3 2108.392 2108.590 -0.198 2.090E-20 2.445E-20 -17.00

F1 13 2 F2 14 5 2108.482 2108.694 -0.212 1.629E-20 1.955E-20 -20.03

F2 13 3 F1 14 1 2108.501 2108.711 -0.210 1.259E-20 1.537E-20 -22.06

E 13 4 E 14 3 2108.510 2108.721 -0.211 9.767E-21 1.165E-20 -19.31

A1 14 3 A2 15 5 2101.289 2101.420 -0.131 5.038E-20 5.580E-20 -10.74

F1 14 4 F2 15 4 2101.294 2101.420 -0.126 9.089E-21 7.565E-21 16.77

F2 14 2 F1 15 2 2101.310 2101.440 -0.130 5.713E-21 6.863E-21 -20.13

F1 14 3 F2 15 4 2101.345 2101.472 -0.127 1.368E-20 1.974E-20 -44.37

F2 14 5 F1 15 4 2101.369 2101.496 -0.127 2.202E-20 2.588E-20 -17.52

A2 14 4 A1 15 4 2101.397 2101.523 -0.126 3.615E-20 5.131E-20 -41.95

E 14 2 E 15 1 2101.445 2101.569 -0.124 2.451E-21 3.595E-21 -46.67

A2 15 4 A1 16 0 2096.608 2096.799 -0.191 2.530E-20 3.021E-20 -19.42

E 15 2 E 16 1 2096.658 2096.850 -0.192 9.113E-21 1.064E-20 -16.71

F1 15 2 F2 16 3 2096.686 2096.897 -0.211 1.131E-20 1.532E-20 -35.38

E 15 6 E 16 7 2096.743 2096.963 -0.220 8.317E-21 9.454E-21 -13.67

F1 15 3 F2 16 1 2096.772 2096.994 -0.222 9.262E-21 1.085E-20 -17.14

F2 15 7 F1 16 2 2096.802 2097.017 -0.215 9.495E-21 1.206E-20 -26.98

Due to the computational demands of calculating higher rotational excitation

(rovibrational matrices scale linearly with J), calculations were performed with

Pmax = 10. Convergence tests were carried out up to J = 6 for Pmax = 12.

The corresponding transition frequencies showed a consistent correction of around

∆(Pmax = 12) = −0.00185 cm−1. This correction was applied to all computed fre-

quencies listed in Table 5.5. For the corresponding intensities, the 1← 2 (J ′ ← J ′′)
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transitions possessed a convergence correction of the order 10−24. The magnitude

of this correction showed a linear relationship with increasing J , from which I esti-

mated that for the 15 ← 16 transitions the correction would be of the order 10−22.

The respective intensities therefore have an error of at most 1%. I am confident that

the results in Table 5.5 are sufficiently converged to reliably evaluate the DMS and

PES.

Around one third of the calculated absolute line intensities are within the esti-

mated experimental measurement accuracy of 10%. However, as is best seen by the

residuals plotted in Fig. 5.2, nearly all of the computed line intensities are larger

than the corresponding experimental values. I suspect this is due to the electronic

structure calculations and the use of only a triple-zeta basis set, aug-cc-pVTZ(+d

for Si), to generate the DMS. A larger (augmented) correlation consistent basis set

and possibly the inclusion of additional higher-level corrections (such as those in-

corporated for the PES) would most likely reduce the strength of computed line

intensities. Despite this, Fig. 5.2 shows that the ν3 band is well reproduced. Com-

puted frequencies are on average larger by 0.1–0.2 cm−1 across all transitions. This

more or less systematic error can be attributed to the minor empirical refinement of

the equilibrium Si–H bond length.

5.4.5 Overview of rotation-vibration spectrum

As a final test of the PES and DMS, in Fig. 5.3 we have simulated the rotation-

vibration spectrum of 28SiH4 for transitions up to J = 20 at 296 K. A polyad num-

ber of Pmax = 10 was employed. Transition frequencies and corresponding inten-

sities were calculated for a 5000 cm−1 frequency window with a lower state energy

threshold of 5000 cm−1. A Gaussian profile with a half width at half maximum

of 0.135 cm−1 was used to simulate the spectrum. The experimental PNNL silane

spectrum [95], also shown in Fig. 5.3, is at a resolution of around 0.06 cm−1. It was

measured at a temperature of 25 ◦C with the dataset subsequently re-normalized

to 22.84 ◦C (296 K). Note that the PNNL spectrum is of electronics grade silane
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1Figure 5.3: Overview of simulated 28SiH4 rotation-vibration spectrum up to J = 20.

Note that the experimental PNNL spectrum [95] is composed of 28SiH4 (92.2%),

29SiH4 (4.7%), and 30SiH4 (3.1%) (see text).

gas which is composed of 28SiH4 (92.2%), 29SiH4 (4.7%), and 30SiH4 (3.1%). I have

therefore scaled the TROVE computed 28SiH4 cross-sections by 0.922 to provide a

reliable comparison.

The computed TROVE intensities are marginally stronger but overall there is

good agreement with the experimental PNNL results. Even with Pmax = 10, which

does not give fully converged transition frequencies, both band shape and position

appear reliable. Of course there are shortcomings in the simulations which we will

now discuss.

Some of the band structure is undoubtedly lost as we have not considered 29SiH4

or 30SiH4, and by only computing transitions up to J = 20 the spectrum is unlikely

to be complete at room temperature. There may also be minor errors arising from

the use of a Gaussian profile to model the line shape. More desirable would be to
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fit a Voigt profile which incorporates instrumental factors. The largest source of

error, as discussed before, is likely to be the electronic structure calculations. For

the purposes of modelling exoplanet atmospheres however, I expect that the level

of theory employed to compute the DMS is sufficient. The features of the SiH4

spectrum are clear and identifiable as seen in Fig. 5.3.

Note that in Fig. 5.3, the ν3 (2189.19 cm−1) band is stronger than the ν4 (913.47

cm−1) band. This is contrast to the vibrational transition moments where µν4 > µν3 .

If, however, we plot absolute line intensities up to J = 20 as shown in Fig. 5.4, the

ν4 band is indeed stronger than the ν3 band. The behaviour displayed in Fig. 5.3 is

caused by the use of a line profile to model the spectrum.

5.5 Chapter summary and further work

In the previous chapter I wanted to push the ab initio limit for CH3Cl and this

was reflected in the electronic structure calculations. For SiH4, a more pragmatic

approach has been taken. This was guided by the following considerations: (i)

incorporating the leading HL corrections and an extrapolation to the CBS limit can

significantly improve the quality of the PES, (ii) I expect the PES will be empirically

refined, therefore generating an ab initio PES which has the ‘correct’ shape should

be sufficient and computing tightly converged energies with respect to basis set size

for the HL corrections is not as important, and (iii) to treat more molecular species,
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the ExoMol database would benefit from a fast and reliable approach.

In this chapter I have generated new nine-dimensional potential energy and

dipole moment surfaces for silane. The quality of the PES is reflected by the achieve-

ment of sub-wavenumber accuracy for all four fundamental frequencies. Combina-

tion and overtone bands are also consistently reproduced which confirms that the

level of ab initio theory used to generate the PES is adequate. Minor empirical

refinement of the equilibrium geometry of SiH4 produced an Si–H bond length in

excellent agreement with previous experimental and theoretical results. The rota-

tional structure of vibrational bands was improved as a result of the refinement.

Absolute line intensities were marginally overestimated and I suspect this behaviour

can be resolved by using a larger (augmented) basis set for the electronic structure

calculations when computing the DMS. Overall however, band shape and structure

across the spectrum display good agreement with experiment and I thus recommend

the PES and DMS for future use.

To achieve sub-wavenumber accuracy for all rovibrational energy levels a rigorous

empirical refinement of the PES is necessary. Work is currently underway in this

direction before a comprehensive line list applicable for elevated temperatures is

generated. Refinement of the CBS-F12 HL PES has highlighted the difficulty in

obtaining reliable experimental data for SiH4. The STDS [220] contains rovibrational

energy levels with adequate quantum number labelling. However, the energy levels

are from an effective Hamiltonian model based on four sources of experimental work,

two published [238, 239] and two unpublished. This makes it difficult to assess the

reliability of the data and how much it can be trusted in the refinement. Despite

this, because the ab initio PES is reliable I can depend on it more and ensure that

the refined PES does not deviate too far away from the original ab initio surface.

This is one of the strengths of quantum chemical methods and generating a robust

ab initio PES.
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6 Methane (CH4)

6.1 Introduction

In the last two chapters I have constructed highly accurate ab initio PESs for

CH3Cl and SiH4. In doing so, a pragmatic approach towards the electronic struc-

ture calculations has been developed. We now turn our attention to methane. As

a key atmospheric molecule, the infrared spectrum of CH4 has been the subject

of numerous studies. Its complex polyad structure is beginning to be explored in

greater detail at higher energies [240–265], and there is strong motivation to continue

working towards the visible region to aid the study of exoplanets [266]. Variational

calculations from first principles were recently used in conjunction with an experi-

mental line list [267] to assign a significant number of vibrational band centres in the

icosad range (6300–7900 cm−1) [264]. This kind of analysis could prove extremely

useful for more congested regions and its success depends on having a reliable PES

to work with.

A number of accurate PESs for CH4 have been reported in the literature [5,

68, 268–279]. These include purely ab initio surfaces [268, 272–275, 278, 279], and

those which are based on ab initio calculations but have subsequently been refined

to experiment [5, 68, 269–271, 276, 277]. The most rigorous ab initio treatment to

date was by Schwenke [273] who accounted for several HL contributions. Corrections

to the FCI limit, CV electron correlation, SR effects, the Lamb shift, the DBOC,

non-adiabatic corrections, as well as extrapolation of the basis set to the CBS limit,

were all treated at some level. Whilst low-lying states of 12CH4 were reproduced

with sub-wavenumber accuracy, the description of the stretching fundamentals, ν1

and ν3, was relatively poor in comparison and the errors in vibrational energies

gradually increased after 3000 cm−1.
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A comprehensive methane line list, 10to10 [5], was produced as part of the

ExoMol project and this represented a significant step forward in the variational

treatment of five-atom molecules. The 10to10 line list has facilitated the detection

of CH4 in brown dwarfs [5], T dwarfs [280], and the hot Jupiter exoplanet HD

189733b [221]. Since its construction a number of high resolution spectroscopic

measurements on methane above the tetradecad region (above 6300 cm−1) have been

reported [259–264]. There have also been key developments [70] in the nuclear

motion code TROVE [9] which considerably improve basis set convergence; a major

bottleneck in the past. Given the demand for comprehensive methane data at higher

energies and the knowledge acquired from the 10to10 line list, it seems natural to

begin working on a more extensive and accurate treatment of CH4.

The chapter is structured as follows: In Sec. 6.2 the electronic structure calcula-

tions and analytic representation of the PES are presented. The variational nuclear

motion computations used to validate the PES are described in Sec 6.3. In Sec. 6.4,

vibrational J = 0 energy levels for 12CH4, the equilibrium C–H bond length, and

pure rotational energies up to J = 10 are calculated and compared with available

experimental results. We conclude and discuss future work in Sec. 6.5.

6.2 Potential energy surface

6.2.1 Electronic structure calculations

The approach employed for the electronic structure calculations is almost identi-

cal to that of SiH4. We want to generate a PES which possesses the ‘correct’ shape

and computing tightly converged energies with respect to basis set size for the HL

contributions is less important. The methods and basis sets have therefore been

chosen to strike a balance between accuracy and computational cost.

Utilizing focal-point analysis [150] the total electronic energy is written as

Etot = ECBS + ∆ECV + ∆EHO + ∆ESR + ∆EDBOC. (6.1)
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The energy at the CBS limit ECBS was computed using the explicitly correlated F12

coupled cluster method CCSD(T)-F12b [25] in conjunction with the F12-optimized

cc-pVTZ-F12 and cc-pVQZ-F12 [36] correlation consistent polarized valence basis

sets. The frozen core approximation was employed and calculations used the di-

agonal fixed amplitude ansatz 3C(FIX) [18] with a Slater geminal exponent value

of β = 1.0 a−1
0 [46]. For the ABS, the OptRI [40], cc-pV5Z/JKFIT [41] and aug-

cc-pwCV5Z/MP2FIT [42] were used for the RI basis and the two DF basis sets,

respectively. Calculations were carried out with MOLPRO2012 [151] unless stated

otherwise. To extrapolate to the CBS limit I used Eq. (4.2). No extrapolation was

applied to the HF energy, rather the HF+CABS singles correction [25] calculated

in the larger basis set was used.

The contribution from CV electron correlation ∆ECV was computed at the

CCSD(T)-F12b level of theory with the F12-optimized correlation consistent core-

valence basis set cc-pCVTZ-F12 [37]. Calculations employed the same ansatz and

ABS as used for ECBS, however, the Slater geminal exponent was changed to β =

1.4 a−1
0 .

HO correlation effects were accounted for using the hierarchy of coupled cluster

methods such that ∆EHO = ∆ET + ∆E(Q). Here, the full triples contribution

is ∆ET =
[
ECCSDT − ECCSD(T)

]
, and the perturbative quadruples contribution is

∆E(Q) =
[
ECCSDT(Q) − ECCSDT

]
. Calculations were performed in the frozen core

approximation at the CCSD(T), CCSDT, and CCSDT(Q) levels of theory using the

general coupled cluster approach [152, 153] as implemented in the MRCC code [154]

interfaced to CFOUR [155]. The correlation consistent triple zeta basis set, cc-

pVTZ [30], was utilized for the full triples contribution, whilst the perturbative

quadruples employed the double zeta basis set, cc-pVDZ.

The SR correction ∆ESR was calculated with the second-order Douglas-Kroll-

Hess approach [54, 55] at the CCSD(T)/cc-pVQZ-DK [222] level of theory in the

frozen core approximation. For light, closed-shell molecules the spin-orbit interac-

tion can be neglected in spectroscopic calculations [56].
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The DBOC ∆EDBOC was computed with all electrons correlated using the CCSD

method [158] implemented in CFOUR with the aug-cc-pCVDZ basis set. The DBOC

has a noticeable effect on vibrational term values of methane [273] but because it is

mass dependent its inclusion means the PES is only applicable for 12CH4.

All terms in Eq. (6.1) were calculated on a grid of 97 721 geometries with energies

up to hc · 50 000 cm−1 (h is the Planck constant and c is the speed of light). The

global grid was built in terms of nine internal coordinates; four C–H bond lengths

r1, r2, r3, r4, and five ∠(Hj–C–Hk) interbond angles α12, α13, α14, α23, and α24,

where j and k label the respective hydrogen atoms. The C–H stretch distances

ranged from 0.71 ≤ ri ≤ 2.60 Å for i = 1, 2, 3, 4 whilst bending angles varied from

40 ≤ αjk ≤ 140◦ where jk = 12, 13, 14, 23, 24.

Although it is computationally demanding to calculate the HL corrections at

every grid point, it is actually time-effective given the system size, levels of theory

and basis sets used. Timing data is shown in Table 6.1 and we see it takes just

over 15 minutes to compute all the contributions in Eq. (6.1) at the equilibrium

geometry. Naturally this time will increase as we stretch and bend the molecule due

to slower energy convergence, with calculations needing at most 2–3 times longer

for highly distorted geometries.

Table 6.1: Wall clock times (seconds) for the different contributions to the potential

energy surface. Calculations were performed on a single core of an Intel Xeon E5-

2690 v2 3.0 GHz processor. Timings shown have been averaged over 10 runs for one

point at the equilibrium geometry.

Contribution No. of calculations required per point Time

ECBS 2 296

∆ECV 2 107

∆EHO 3 234

∆ESR 2 189

∆EDBOC 1 87

Etot 10 913
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Alternatively, one can compute each HL correction on a reduced grid, fit a suit-

able analytic representation to the data and then interpolate to other points on the

global grid as was done for CH3Cl in Chapter 4. For more demanding systems this

approach can significantly reduce computational time, however, obtaining an ade-

quate description of each HL correction requires careful consideration and may not

be straightforward. These issues are avoided in the present approach.

6.2.2 Analytic representation

The XY4 symmetrized analytic representation employed here is the same as that

used in the previous chapter for the PES of SiH4. I therefore summarise only the

key aspects relevant for CH4 and refer the reader back to Sec. 5.2.2 for more details.

The stretch coordinates were described by Morse oscillator functions, Eq. (5.2),

with values of a = 1.845 Å
−1

and rref = 1.08594 Å (value discussed in Sec. 6.4.2).

Symmetrized combinations of interbond angles, Eqs. (5.3) to (5.7), represented the

angular terms. A sixth order expansion was used for the potential function, Eq. (5.8),

and this was determined in a least-squares fitting to the ab initio data. Weight

factors of the form given in Eq. (4.12) were used and this favoured energies below

15 000 cm−1. To further improve the description at lower energies and reduce the

weights of outliers I employed Watson’s robust fitting scheme [162]. The final PES

was fitted with a weighted root-mean-square (rms) error of 1.08 cm−1 for energies

up to hc · 50 000 cm−1 and required 112 expansion parameters (110 + rref + a). For

geometries where ri ≥ 1.80 Å for i = 1, 2, 3, 4, the respective weights were dropped by

several orders of magnitude. In subsequent calculations we refer to this PES as CBS-

F12 HL. The CBS-F12 HL expansion parameter set is provided in the supplementary

material of Ref. [281] along with a FORTRAN routine to construct the PES.

6.3 Variational calculations

The rovibrational Hamiltonian was represented as a power series expansion

around the equilibrium geometry in terms of the nine coordinates given in Eqs. (5.2)
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tion number Pmax. Calculations have not been possible above Pmax = 14.

to (5.7). However, for the kinetic energy operator linear displacement variables

(ri−rref) were used for the stretching coordinates. The Hamiltonian was constructed

numerically using an automatic differentiation method [70] with the kinetic and po-

tential energy operators truncated at 6th and 8th order, respectively. Atomic mass

values were used throughout.

The definition of the polyad number for CH4 is the same as SiH4, that is

P = 2(n1 + n2 + n3 + n4) + n5 + n6 + n7 + n8 + n9 ≤ Pmax, (6.2)

and this does not exceed a predefined maximum value Pmax. As shown in Fig. 6.1,

the size of the Hamiltonian matrix grows exponentially with respect to Pmax and

calculations above Pmax = 14 have not been possible with the resources available to

us. Here the quantum numbers nk for k = 1, . . . , 9 relate to primitive basis functions

φnk , which are obtained by solving a one-dimensional Schrödinger equation for each

kth vibrational mode using the Numerov-Cooley method [83, 84]. Multiplication

with symmetrized rigid-rotor eigenfunctions |J,Γrot, n〉 gives the final basis set for

use in J > 0 calculations. The label Γrot is the rotational symmetry and n is a

multiplicity index used to count states within a given J (see Boudon et al. [242]).

In TROVE, eigenvalues and the respective eigenfunctions are assigned with quan-
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tum numbers based on the contribution of the basis functions φnk . To be of spec-

troscopic use we map these to the normal mode quantum numbers vk commonly

used. For CH4, vibrational states are labelled as v1ν1 + v2ν
L2
2 + v3ν

L3
3 + v4ν

L4
4 where

vi counts the level of excitation. The additional quantum numbers Li are the ab-

solute values of the vibrational angular momentum quantum numbers `i, which are

needed to resolve the degeneracy of their respective modes (see Yurchenko and Ten-

nyson [5] for further details). The non-degenerate symmetric stretching mode ν1

(2916.48 cm−1) is of A1 symmetry. The doubly degenerate antisymmetric bending

mode ν2 (1533.33 cm−1) has E symmetry. Whilst of F2 symmetry are the triply

degenerate modes; the antisymmetric stretching mode ν3 (3019.49 cm−1), and the

antisymmetric bending mode ν4 (1310.76 cm−1). The values in parentheses are the

experimentally determined values [244].

6.4 Results

6.4.1 Vibrational J=0 energy levels

A reliable assessment of the CBS-F12 HL PES is only possible with converged

vibrational term values. Calculations with Pmax = 14 are sufficient for converging

low-lying states but this gradually deteriorates as we go up in energy. A way of

overcoming this problem, as was done for CH3Cl in Sec. 4.4.1, is to employ a complete

vibrational basis set (CVBS) extrapolation [59]. Again I used the exponential decay

expression given in Eq. (4.25) with values of Pmax = {10, 12, 14}.

Briefly commenting on the accuracy of the CVBS extrapolation itself, similar

to electronic structure theory the use of larger basis sets is always preferable for

the extrapolation. Highly excited modes benefit the most as convergence is much

slower, however, at higher energies the increased density of states makes it harder to

consistently identify and match energy levels for different values of Pmax. To ensure

a reliable extrapolation I have also found that the quantity λi defined in Eq. (4.26)

should satisfy λi ≥ 0.5.
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In the following comparisons I have collected, to the best of my knowledge,

all J = 0 energies that have been accurately determined from experiment (see

Manca Tanner and Quack [282] for a discussion of the experimental uncertainties

associated with methane spectra). Although very minor discrepancies occasionally

occur between different studies, the majority of vibrational term values up to the

tetradecad region (up to 6300 cm−1) are fairly well established. Progress is being

made in the icosad range (6300–7900 cm−1) and a large number of levels have re-

cently been assigned [263, 264] using the WKLMC line list [267]. At even higher

energies several vibrational band centres have been measured and assigned by means

of an assignment of their P(1) transitions up to about 11 300 cm−1 [259].

Computed vibrational energy levels for 12CH4 up to the tetradecad region are

listed in Table 6.2. The four fundamentals are reproduced with a rms error of

0.70 cm−1 and a mean-absolute-deviation (mad) of 0.64 cm−1. Around 70% of the

89 term values are calculated within spectroscopic accuracy (better than ±1 cm−1)

and this does not include the 4ν4 levels computed at Pmax = 14, which are not fully

converged.

Table 6.2: Comparison of calculated and experimental J = 0 vibrational term val-

ues (in cm−1) up to the tetradecad region for 12CH4. The zero-point energy was

computed to be 9708.846 cm−1 at the CVBS limit.

Mode Sym. Experiment Calculated Obs−calc Ref.

ν14 F2 1310.76 1310.24 0.52 [244]

ν12 E 1533.33 1533.04 0.29 [244]

2ν04 A1 2587.04 2585.74 1.30 [244]

2ν24 F2 2614.26 2613.04 1.22 [244]

2ν24 E 2624.62 2624.08 0.54 [244]

ν12 + ν14 F2 2830.32 2829.71 0.61 [244]

ν12 + ν14 F1 2846.07 2845.44 0.63 [244]

ν1 A1 2916.48 2917.16 -0.68 [244]

ν13 F2 3019.49 3020.57 -1.08 [244]

2ν02 A1 3063.65 3063.04 0.61 [244]
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

2ν22 E 3065.14 3064.53 0.61 [244]

3ν14 F2 3870.49 3869.18 1.31 [244]

3ν14 A1 3909.20 3907.11 2.09 [244]

3ν34 F1 3920.50 3919.01 1.49 [257]

3ν34 F2 3930.92 3930.00 0.92 [244]

ν12 + 2ν04 E 4101.39 4100.52 0.87 [244]

ν12 + 2ν24 F1 4128.77 4127.77 1.00 [257]

ν12 + 2ν24 A1 4132.88 4132.21 0.67 [257]

ν12 + 2ν24 F2 4142.86 4142.03 0.83 [257]

ν12 + 2ν24 E 4151.20 4150.62 0.58 [257]

ν12 + 2ν24 A2 4161.84 4161.00 0.84 [257]

ν1 + ν14 F2 4223.46 4223.62 -0.16 [244]

ν13 + ν14 F2 4319.21 4319.37 -0.16 [244]

ν13 + ν14 E 4322.18 4323.38 -1.20 [244]

ν13 + ν14 F1 4322.58 4323.53 -0.95 [257]

ν13 + ν14 A1 4322.72 4323.01 -0.29 [257]

2ν02 + ν14 F2 4348.72 4348.07 0.65 [244]

2ν22 + ν14 F1 4363.62 4362.86 0.76 [257]

2ν22 + ν14 F2 4378.94 4378.30 0.64 [257]

ν1 + ν12 E 4435.13 4435.25 -0.12 [257]

ν12 + ν13 F1 4537.55 4538.13 -0.58 [244]

ν12 + ν13 F2 4543.76 4544.36 -0.60 [244]

3ν12 E 4592.03 4591.08 0.95 [244]

3ν32 A2 4595.28 4594.40 0.88 [257]

3ν32 A1 4595.52 4594.49 1.03 [257]

4ν04 A1 5121.77 5121.51 a 0.26 [265]

4ν24 F2 5143.36 5143.07 a 0.29 [257]

4ν24 E 5167.20 5167.15 a 0.05 [257]

4ν44 F2 5210.74 5209.06 a 1.68 [257]

4ν44 E 5228.74 5227.45 a 1.29 [257]

4ν44 F1 5230.59 5229.46 a 1.13 [265]

4ν44 A1 5240.46 5239.76 a 0.70 [265]
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

ν12 + 3ν14 F2 5370.48 5369.79 0.69 [265]

ν12 + 3ν14 F1 5389.74 5388.96 0.78 [265]

ν12 + 3ν14 E 5424.80 5423.39 1.41 [265]

ν12 + 3ν34 F2 5429.86 5428.85 1.01 [265]

ν12 + 3ν34 F1 5437.28 5436.38 0.90 [265]

ν12 + 3ν34 F2 5444.80 5444.07 0.73 [257]

ν12 + 3ν34 F1 5462.91 5461.86 1.05 [265]

ν1 + 2ν04 A1 5492.90 5492.32 0.58 [265]

ν13 + 2ν04 F2 5587.97 5587.97 0.00 [257]

ν13 + 2ν24 A1 5604.47 5604.51 -0.04 [257]

2ν02 + 2ν04 A1 5613.88 5612.61 1.27 [265] b

2ν22 + 2ν04 E 5614.58 5613.15 1.43 [265]

ν13 + 2ν24 F1 5615.37 5615.75 -0.38 [265]

ν13 + 2ν24 F2 5616.02 5615.46 0.56 [265]

ν13 + 2ν24 E 5618.23 5618.85 -0.62 [265]

ν13 + 2ν24 F1 5626.10 5626.96 -0.86 [265]

ν13 + 2ν24 F2 5627.35 5628.29 -0.94 [265]

2ν02 + 2ν24 F2 5641.88 5641.63 0.25 [265]

2ν22 + 2ν24 E 5654.47 5653.58 0.89 [265]

2ν22 + 2ν24 F1 5655.76 5655.28 0.48 [257]

2ν22 + 2ν24 A2 5664.08 5663.38 0.70 [265]

2ν02 + 2ν24 F2 5668.33 5668.25 0.08 [265]

2ν22 + 2ν24 A1 5681.26 5681.25 0.01 [265]

2ν02 + 2ν24 E 5691.10 5690.32 0.78 [265]

2ν1 A1 5790.25 5792.08 -1.83 [283]

ν12 + ν13 + ν14 F2 5823.10 5823.65 -0.55 [257]

ν12 + ν13 + ν14 F1 5825.43 5825.59 -0.16 [265]

ν12 + ν13 + ν14 E 5832.02 5832.60 -0.58 [257]

ν12 + ν13 + ν14 A1 5834.82 5835.64 -0.82 [257]

ν12 + ν13 + ν14 E 5842.57 5843.12 -0.55 [265]

ν12 + ν13 + ν14 A2 5843.19 5843.83 -0.64 [265]

ν12 + ν13 + ν14 F2 5844.03 5844.28 -0.25 [257]
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

ν12 + ν13 + ν14 F1 5847.39 5847.66 -0.27 [265]

ν1 + ν13 F2 5861.49 5861.90 -0.41 [257]

3ν12 + ν14 F2 5867.52 5868.09 -0.57 [265]

3ν32 + ν14 F1 5879.80 5878.97 0.83 [265]

3ν32 + ν14 F2 5894.34 5893.51 0.83 [265]

3ν12 + ν14 F1 5908.74 5908.52 0.22 [265]

ν1 + 2ν22 E 5952.44 5952.00 0.44 [257]

2ν03 A1 5968.15 5969.12 -0.97 [284]

2ν23 F2 6004.62 6006.54 -1.92 [257]

2ν23 E 6043.82 6046.12 -2.30 [257]

2ν02 + ν13 F2 6054.61 6054.74 -0.13 [257]

2ν22 + ν13 F1 6060.62 6060.67 -0.05 [257]

2ν22 + ν13 F2 6065.59 6065.48 0.11 [257]

4ν22 E 6118.95 6117.21 1.74 [265]

4ν42 E 6124.12 6122.77 1.35 [265]

a Pmax = 14 value. b Assigned as ν3 + 2ν4 in TROVE.

Six energy levels in the tetradecad region have not been included in Table 6.2

because their experimental uncertainty could be as large as 5 cm−1 (see Nikitin et al.

[257]). Instead they are listed in Table 6.3 alongside computed values from the CBS-

F12 HL PES, the empirically refined PES of Wang and Carrington [277] (denoted as

WC), and the empirically adjusted PES of Nikitin et al. [276] (denoted as NRT). The

three PESs show consistent agreement with each other, notably for the ν1 +2ν02 (A1)

and 4ν02 (A1) levels where the residual errors, ∆E(obs − calc), compared to Nikitin

et al. [257] are the largest. This would suggest that the effective Hamiltonian model

used in Nikitin et al. [257] and subsequently updated by Amyay et al. [265] may

need further refinement in the tetradecad region.

For the icosad region and above, shown in Table 6.4 and Table 6.5, spectroscopic
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Table 6.3: Six J=0 vibrational term values (in cm−1) in the tetradecad region which

have a large experimental uncertainty (see text). Comparisons are given with the

CBS-F12 HL PES (this work), the empirically refined PES of Wang and Carrington

[277] (denoted as WC), and the empirically adjusted PES of Nikitin et al. [276]

(denoted as NRT).

Mode Sym. Experiment [257] CBS-F12 HL WC NRT

ν1 + 2ν24 F2 5519.88 5520.95 5522.32 5522.66

ν1 + 2ν24 E 5536.23 5533.62 5534.54 5534.20

ν1 + ν12 + ν14 F2 5728.58 5726.71 5727.50 5727.72

ν1 + ν12 + ν14 F1 5745.90 5744.72 5745.78 5745.31

ν1 + 2ν02 A1 5945.81 5940.11 5939.90 5939.96

4ν02 A1 6122.13 6115.42 6116.74 6117.75

accuracy is again achieved for around 70% of the 134 term values considered. Here

I have separated the computed energies into two separate tables based on the ac-

curacy of the corresponding values from experiment, which are predominantly from

Refs. [252, 263, 264]. The values in Table 6.4 have an experimental accuracy of

0.0015 cm−1 (the ν12 + 2ν23 level from Hippler and Quack [240] has an uncertainty

of 0.0010 cm−1). In Table 6.5, energies have an accuracy of 0.1–0.4 cm−1, except

for the vibrational band centres from Ulenikov et al. [259] which have a reported

experimental uncertainty of around 0.001 cm−1 (a result of the direct method used).

However, the ν1 + ν13 + ν14 (F2) level from Ulenikov et al. [259] shows a discrepancy

of 1.41 cm−1 compared to the recent value published by Rey et al. [264].

Three term values from Ulenikov et al. [259] above 10 000 cm−1 could not be

confidently identified in TROVE. The increased density of states and approximate

TROVE labelling scheme can make it difficult to unambiguously discern certain

levels. Regardless, from Table 6.4 and Table 6.5 it is evident that the CBS-F12 HL

PES provides a reliable description at higher energies and there does not appear

to be any significant deterioration in accuracy (see Fig. 6.2 for an overview of the

residual errors for all term values). This will be important for investigating methane
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spectra up to the 14 000 cm−1 region, which is a key motivation for the present work.

Table 6.4: Comparison of calculated and experimental J=0 vibrational term values

(in cm−1) for 12CH4 in the icosad region (see text for a discussion of the experimental

uncertainties). The zero-point energy was computed to be 9708.846 cm−1 at the

CVBS limit.

Mode Sym. Experiment Calculated Obs−calc Ref.

5ν14 F2 6450.06 6449.72 0.34 [252]

5ν54 F2 6507.55 6505.66 1.89 [252]

5ν54 F2 6539.18 6538.17 1.01 [252]

ν12 + 4ν24 F2 6657.09 6657.88 a -0.79 [263]

ν12 + 4ν44 F2 6717.99 6715.72 2.27 [264]

ν12 + 4ν44 F2 6733.11 6731.87 1.24 [264]

ν1 + 3ν14 F2 6769.19 6769.51 -0.32 [264]

ν1 + 3ν34 F2 6833.19 6833.46 -0.27 [264]

ν13 + 3ν14 F2 6858.71 6858.84 -0.13 [264]

2ν02 + 3ν14 F2 6869.79 6869.70 0.09 [264]

ν13 + 3ν34 F2 6897.38 6896.88 0.50 [264]

ν13 + 3ν14 F2 6910.38 6910.46 -0.08 [264]

ν13 + 3ν14 F2 6924.97 6925.69 -0.72 [264]

2ν22 + 3ν34 F2 6940.05 6939.69 0.36 [263]

2ν22 + 3ν34 F2 6992.58 6992.15 0.43 [264]

ν1 + ν12 + 2ν24 F2 7035.18 7035.07 0.11 [264]

2ν1 + ν14 F2 7085.64 7086.77 -1.13 [264]

ν12 + ν13 + 2ν04 F2 7097.92 7098.61 -0.69 [264] b

ν12 + ν13 + 2ν24 F2 7116.39 7117.01 -0.62 [264]

ν12 + ν13 + 2ν24 F2 7131.14 7131.56 -0.42 [264]

ν1 + ν13 + ν14 F2 7158.13 7159.05 -0.92 [264] c

3ν32 + 2ν24 F2 7168.42 7168.23 0.19 [264]

ν1 + 2ν22 + ν14 F2 7225.43 7225.49 -0.06 [264]

2ν03 + ν14 F2 7250.54 7251.24 -0.70 [264]

ν1 + 2ν02 + ν14 F2 7269.44 7269.68 -0.24 [264]

2ν23 + ν14 F2 7299.44 7300.72 -1.28 [264]

2ν02 + ν13 + ν14 F2 7331.05 7331.69 -0.64 [264]
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

2ν22 + ν13 + ν14 F2 7346.01 7346.10 -0.10 [264]

2ν22 + ν13 + ν14 F2 7365.40 7365.35 0.05 [264]

ν1 + ν12 + ν13 F2 7374.25 7374.42 -0.17 [264]

4ν22 + ν14 F2 7384.11 7384.03 0.08 [264]

ν12 + 2ν23 F2 7510.34 7511.56 -1.22 [240]

3ν12 + ν13 F2 7575.86 7575.43 0.43 [264]

3ν32 + ν13 F2 7584.51 7583.50 1.01 [264]

a Pmax = 14 value. b Assigned as 2ν1 + ν4 in TROVE. c Value of 7156.72 cm−1 reported

by Ulenikov et al. [259].

Table 6.5: Comparison of calculated and experimental J=0 vibrational term values

(in cm−1) for 12CH4 in the icosad region and above (see text for a discussion of the ex-

perimental uncertainties). The zero-point energy was computed to be 9708.846 cm−1

at the CVBS limit.

Mode Sym. Experiment Calculated Obs−calc Ref.

5ν54 F2 6377.53 6381.09 a -3.56 [252]

5ν14 A1 6405.89 6410.06 a -4.17 [264]

5ν34 F1 6429.20 6428.63 0.57 [264]

5ν34 E 6507.37 6505.12 2.25 [264]

5ν54 F1 6529.74 6528.34 1.40 [264]

ν12 + 4ν04 E 6617.50 6615.81 1.69 [264]

ν12 + 4ν24 F1 6638.52 6636.01 2.51 [264]

ν12 + 4ν24 A1 6655.88 6655.99 -0.11 [264]

ν12 + 4ν24 E 6680.93 6680.84 0.09 [263]

ν12 + 4ν44 A2 6682.82 6681.55 1.27 [264]

ν12 + 4ν44 F1 6722.00 6719.33 2.67 [264]

ν12 + 4ν44 E 6729.60 6728.27 1.33 [263]

ν12 + 4ν44 A1 6737.79 6737.18 0.61 [264]
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

ν12 + 4ν24 A2 6746.23 6745.40 0.83 [264]

ν12 + 4ν44 F1 6755.38 6754.15 1.23 [264]

ν12 + 4ν44 E 6766.23 6765.13 1.10 [263]

ν1 + 3ν14 A1 6809.40 6808.77 0.63 [264]

ν1 + 3ν34 F1 6822.30 6821.92 0.38 [264]

ν13 + 3ν14 E 6862.74 6863.53 -0.79 [264]

ν13 + 3ν14 F1 6862.85 6863.20 -0.35 [263]

ν13 + 3ν14 A1 6863.10 6864.32 -1.22 [264]

2ν22 + 3ν14 F1 6889.68 6889.53 0.15 [264]

2ν22 + 3ν34 F2 6905.60 6905.65 -0.05 [264]

ν13 + 3ν34 E 6908.80 6908.84 -0.04 [264]

ν13 + 3ν34 F1 6915.18 6915.22 -0.04 [264]

ν13 + 3ν34 A2 6918.55 6918.95 -0.40 [264]

ν13 + 3ν34 F1 6921.58 6921.75 -0.17 [264]

ν13 + 3ν34 A1 6922.07 6923.24 -1.17 [264]

ν13 + 3ν34 E 6925.67 6927.00 -1.33 [264]

2ν22 + 3ν14 E 6938.40 6937.71 0.69 [264]

2ν02 + 3ν14 A1 6940.10 6939.47 0.63 [264]

2ν02 + 3ν34 F1 6945.16 6944.87 0.29 [263]

2ν22 + 3ν34 F1 6949.70 6949.57 0.13 [264]

2ν02 + 3ν34 F2 6962.42 6962.61 -0.19 [264]

ν1 + ν12 + 2ν04 E 6990.01 6990.06 -0.05 [264]

ν1 + ν12 + 2ν24 F1 7020.43 7020.19 0.24 [264]

ν1 + ν12 + 2ν24 A1 7024.03 7024.05 -0.02 [264]

ν1 + ν12 + 2ν24 E 7045.69 7045.89 -0.20 [264]

ν1 + ν02 + 2ν24 A2 7056.56 7056.50 0.06 [264]

ν12 + ν13 + 2ν04 F1 7085.73 7085.45 0.28 [264]

ν12 + ν13 + 2ν04 E 7107.28 7107.39 -0.11 [264]

ν12 + ν13 + 2ν24 A2 7114.54 7114.43 0.11 [264]

3ν12 + 2ν04 E 7118.40 7118.32 0.08 [264]

3ν32 + 2ν04 A1 7120.74 7120.58 0.16 [264]

ν12 + ν13 + 2ν24 F2 7121.90 7122.10 -0.20 [264]
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

ν12 + ν13 + 2ν24 F1 7130.90 7131.40 -0.50 [264]

ν12 + ν13 + 2ν24 A1 7132.50 7132.71 -0.21 [264]

3ν32 + 2ν04 A2 7133.69 7133.51 0.18 [264]

ν12 + ν13 + 2ν24 E 7134.00 7134.10 -0.10 [264]

ν12 + ν13 + 2ν24 F1 7139.23 7140.33 -1.10 [264]

ν12 + ν13 + 2ν24 F2 7141.50 7142.22 -0.72 [264]

ν12 + ν13 + 2ν24 F1 7151.02 7151.08 -0.06 [264]

3ν12 + 2ν24 F1 7153.84 7153.86 -0.02 [264]

ν1 + ν13 + ν14 A1 7157.16 7158.06 -0.90 [264]

ν1 + ν13 + ν14 E 7164.60 7165.63 -1.03 [264]

ν1 + ν13 + ν14 F1 7165.60 7167.95 -2.35 [264]

3ν32 + 2ν24 E 7168.00 7168.62 -0.62 [264] b

3ν12 + 2ν24 A1 7176.10 7176.09 0.01 [264]

3ν32 + 2ν24 F1 7180.00 7180.01 -0.01 [264]

3ν12 + 2ν24 F2 7191.05 7191.12 -0.07 [264]

3ν32 + 2ν24 E 7191.85 7191.45 0.40 [264]

3ν12 + 2ν24 E 7217.40 7217.22 0.18 [264]

3ν12 + 2ν24 A2 7221.10 7220.74 0.36 [264]

ν1 + 2ν22 + ν14 F1 7246.01 7245.65 0.36 [264]

2ν1 + ν12 E 7295.20 7296.34 -1.14 [264]

2ν23 + ν14 E 7295.50 7298.40 -2.90 [264]

2ν23 + ν14 F1 7295.80 7297.66 -1.86 [264]

2ν23 + ν14 A1 7299.45 7300.32 -0.87 [264]

2ν22 + ν13 + ν14 F1 7326.25 7326.94 -0.69 [264]

2ν23 + ν14 F2 7337.55 7339.75 -2.20 [264]

2ν23 + ν14 F1 7338.16 7340.03 -1.87 [264]

2ν02 + ν13 + ν14 A1 7341.60 7341.87 -0.27 [264]

2ν22 + ν13 + ν14 E 7342.10 7342.38 -0.28 [264]

2ν22 + ν13 + ν14 F1 7346.46 7346.66 -0.20 [264]

2ν22 + ν13 + ν14 A2 7348.85 7349.29 -0.44 [264]

2ν22 + ν13 + ν14 E 7352.20 7352.48 -0.28 [264]

2ν22 + ν13 + ν14 A1 7360.80 7361.31 -0.51 [264]
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(Continued)

Mode Sym. Experiment Calculated Obs−calc Ref.

2ν02 + ν13 + ν14 F1 7368.88 7368.97 -0.09 [264]

ν1 + ν12 + ν13 F1 7373.16 7373.97 -0.81 [264]

4ν22 + ν14 F1 7394.20 7393.64 0.56 [264]

4ν42 + ν14 F2 7408.20 7407.40 0.80 [264]

4ν42 + ν14 F1 7422.30 7421.35 0.95 [264]

4ν22 + ν14 F2 7436.30 7435.90 0.40 [264]

ν1 + 3ν12 E 7447.52 7447.83 -0.31 [264]

ν1 + 3ν32 A2 7468.21 7467.33 0.88 [264]

ν1 + 3ν32 A1 7468.50 7467.42 1.08 [264]

ν12 + 2ν03 E 7483.67 7483.79 -0.12 [264]

ν12 + 2ν23 F1 7512.26 7513.39 -1.13 [264]

ν12 + 2ν23 E 7552.23 7553.79 -1.56 [264]

ν12 + 2ν23 A1 7559.00 7560.60 -1.60 [264]

3ν12 + ν13 F1 7569.51 7569.25 0.26 [264]

3ν32 + ν13 F1 7580.90 7580.36 0.54 [264]

2ν1 + 2ν24 F2 8388.00 8384.52 3.48 [259]

ν1 + ν13 + 2ν24 F2 8421.00 8422.37 -1.37 [259]

ν1 + 2ν23 F2 8618.67 8613.92 4.75 [259]

2ν1 + ν3 F2 8808.95 8812.01 a,c -3.06 [259]

3ν13 F2 8907.30 8909.59 -2.29 [259]

3ν33 F2 9045.96 9048.87 -2.91 [259]

ν1 + 2ν03 + ν14 F2 9888.47 9892.46 a -3.99 [259]

ν1 + ν2 + 2ν3 F2 10115.67 d – [259]

3ν3 + ν4 F2 10265.59 d – [259]

2ν1 + ν2 + ν3 F2 10302.17 d – [259]

ν1 + 3ν3 F2 11276.31 11277.96 c -1.65 [259]

a Pmax = 14 value. b Assigned as ν1 + ν3 + ν4 in TROVE. c Unable to identify vibrational

angular momentum quantum numbers. d Unable to identify energy level in TROVE.
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1Figure 6.2: Residual errors ∆E(obs − calc) for all computed term values of 12CH4

(see Tables 6.2, 6.4 and 6.5).

Table 6.6: Equilibrium C–H bond length of methane

r(C–H) / Å Ref. Approach

1.08601 This work Purely ab initio PES

1.08598 This work Refined geometry PES

1.08601(4) [276] Empirically adjusted PES

1.08609 [277] Empirically refined PES

1.08595(30) [285] Combined experimental and ab initio analysis

1.086(2) [286] Quantum Monte Carlo calculations

1.0847 [244] Effective Hamiltonian model

1.08553(4) [265] Effective Hamiltonian model

6.4.2 Equilibrium geometry and pure rotational energies

The value of rref used in Eq. (5.2) does not define the minimum of the PES

because a linear expansion term has been included in the parameter set. The true

equilibrium C–H bond length determined from the CBS-F12 HL PES is listed in

Table 6.6. It is in excellent agreement with previous values which is gratifying as it

has been calculated in a purely ab initio fashion.

However, it is more informative to look at pure rotational energies as these are

highly dependent on the molecular geometry through the moments of inertia. In

Table 6.7, computed rotational energy levels up to J=10 are compared against ex-
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perimental values listed in Nikitin et al. [276] (originally attributed to the spherical

top data system [220], which contains measurements from Oldani et al. [287]). Cal-

culations were carried out with Pmax = 12 which is sufficient for converging ground

state rotational energies.

Table 6.7: Comparison of calculated and experimental J ≤ 10 pure rotational energy

levels (in cm−1) for 12CH4. The experimental ground state values are from Nikitin

et al. [276] but are originally attributed to the spherical top data system [220].

Computed values correspond to the ab initio geometry (A) and the empirically

refined geometry (B) (see text).

J K Sym. Experiment Calc. (A) Calc. (B) Obs−calc (A) Obs−calc (B)

0 0 A1 0.00000 0.00000 0.00000 0.00000 0.00000

1 1 F1 10.48165 10.48105 10.48164 0.00060 0.00001

2 1 F2 31.44239 31.44061 31.44235 0.00178 0.00004

2 2 E 31.44212 31.44034 31.44209 0.00178 0.00003

3 1 F2 62.87684 62.87329 62.87678 0.00355 0.00006

3 2 A2 62.87817 62.87462 62.87811 0.00355 0.00006

3 3 F1 62.87578 62.87222 62.87571 0.00356 0.00007

4 0 A1 104.77284 104.76692 104.77274 0.00592 0.00010

4 1 F1 104.77470 104.76879 104.77460 0.00591 0.00010

4 2 E 104.77603 104.77012 104.77594 0.00591 0.00009

4 3 F2 104.78001 104.77411 104.77993 0.00590 0.00008

5 1 F1 157.12434 157.11548 157.12420 0.00886 0.00014

5 2 E 157.13719 157.12837 157.13709 0.00882 0.00010

5 3 F1 157.13892 157.13010 157.13882 0.00882 0.00010

5 5 F2 157.12793 157.11908 157.12780 0.00885 0.00013

6 1 F2 219.91505 219.90268 219.91487 0.01237 0.00018

6 2 A2 219.91985 219.90750 219.91969 0.01235 0.00016

6 3 F1 219.94126 219.92897 219.94117 0.01229 0.00009

6 4 A1 219.94523 219.93295 219.94515 0.01228 0.00008

6 5 F2 219.93677 219.92446 219.93666 0.01231 0.00011

6 6 E 219.91346 219.90109 219.91328 0.01237 0.00018

7 1 F1 293.12299 293.10652 293.12277 0.01647 0.00022

7 1 F2 293.12655 293.11010 293.12634 0.01645 0.00021

7 2 A2 293.15420 293.13783 293.15408 0.01637 0.00012

7 3 F2 293.16457 293.14823 293.16448 0.01634 0.00009
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(Continued)

J K Sym. Experiment Calc. (A) Calc. (B) Obs−calc (A) Obs−calc (B)

7 5 F1 293.17868 293.16238 293.17864 0.01630 0.00004

7 6 E 293.17013 293.15381 293.17007 0.01632 0.00006

8 0 A1 376.73044 376.70932 376.73019 0.02112 0.00025

8 1 F1 376.73372 376.71261 376.73349 0.02111 0.00023

8 2 E 376.82129 376.80044 376.82133 0.02085 -0.00004

8 3 F1 376.80478 376.78388 376.80476 0.02090 0.00002

8 3 F2 376.82627 376.80544 376.82632 0.02083 -0.00005

8 5 F2 376.78587 376.76492 376.78581 0.02095 0.00006

8 6 E 376.73565 376.71454 376.73541 0.02111 0.00024

9 1 F1 470.71696 470.69064 470.71670 0.02632 0.00026

9 1 F2 470.72034 470.69403 470.72009 0.02631 0.00025

9 2 E 470.79897 470.77290 470.79898 0.02607 -0.00001

9 3 F1 470.80528 470.77923 470.80531 0.02605 -0.00003

9 4 A1 470.83096 470.80498 470.83106 0.02598 -0.00010

9 5 F2 470.86506 470.83918 470.86528 0.02588 -0.00022

9 6 A2 470.87292 470.84707 470.87315 0.02585 -0.00023

9 7 F1 470.85500 470.82910 470.85517 0.02590 -0.00017

10 1 F1 575.18430 575.15264 575.18447 0.03166 -0.00017

10 1 F2 575.05266 575.02059 575.05242 0.03207 0.00024

10 2 A2 575.05567 575.02361 575.05544 0.03206 0.00023

10 3 F2 575.17008 575.13837 575.17019 0.03171 -0.00011

10 5 F1 575.25978 575.22834 575.26020 0.03144 -0.00042

10 6 E 575.27192 575.24050 575.27236 0.03142 -0.00044

10 7 F2 575.28542 575.25405 575.28589 0.03137 -0.00047

10 8 A1 575.22292 575.19137 575.22321 0.03155 -0.00029

10 10 E 575.05127 575.01920 575.05101 0.03207 0.00026

The CBS-F12 HL PES consistently underestimates ground state rotational en-

ergy levels and the residual error increases systematically by about 0.00060 cm−1

at each step up in J . Overall, the 51 energies are reproduced with a rms error

of 0.02008 cm−1. This is around two orders of magnitude larger than the empiri-

cally adjusted PES of Nikitin et al. [276] which yields an identical value of r(C–

H)= 1.08601 Å for the C–H bond length but a rms error of 0.00029 cm−1.

To help explain this discrepancy it is relatively straightforward to improve the
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1Figure 6.3: Residual errors ∆E(obs − calc) for computed pure rotational energies

using the ab initio and empirically refined equilibrium geometry (see Table 6.7).

CBS-F12 HL results by refining the equilibrium geometry. This is done through a

nonlinear least-squares fitting to the experimental energy levels and can improve

the accuracy of computed intra-band rotational wavenumbers as we saw for SiH4 in

Chapter 5. After two iterations refining the parameter rref , the experimental energy

levels up to J = 10 are reproduced with a rms error of 0.00018 cm−1 (see Table 6.7

and Fig. 6.3) and this corresponds to a bond length of r(C–H)= 1.08598 Å (also

given in Table 6.6). This value is within the uncertainty of the bond length from

Nikitin et al. [276] and is remarkably close to the original ab initio result. However,

I have refrained from adopting the new equilibrium geometry for the CBS-F12 HL

PES as it leads to a poorer description of vibrational energies (see Table 5.3 in

Sec. 5.4.2), which were the main focus of this work.

6.5 Chapter summary and further work

In this chapter the knowledge acquired from treating CH3Cl and SiH4 has been

used to construct and test a new nine-dimensional PES for methane. The CBS-

F12 HL PES is one of the most accurate ab initio surfaces to date. This is confirmed

by the achievement of sub-wavenumber accuracy for a considerable number of vi-

brational energy levels including those at higher energies. The computed ab initio

equilibrium C–H bond length displayed excellent agreement with previous values,
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however, systematic errors arose in calculated pure rotational energies of 12CH4.

These errors were significantly reduced by adjusting the equilibrium geometry of

the CBS-F12 HL PES. The resultant bond length was remarkably close to the origi-

nal ab initio value and still consistent with prior studies.

Despite the advances in electronic structure theory the best ab initio PES is

rarely accurate enough for the requirements of high-resolution spectroscopy and

empirical refinement is a necessary step. Although computationally intensive, re-

finement can produce orders-of-magnitude improvements in the accuracy of com-

puted rovibrational energy levels. It is natural then to question the benefit of using

sophisticated methods with large basis sets to generate the original ab initio surface.

Whilst a better ab initio PES will lead to a superior refinement, at some stage the

gain in accuracy when simulating rovibrational spectra will not correlate with the

computational cost of improving the underlying ab initio surface. For this reason

I believe that more sophisticated electronic structure calculations to improve the

CBS-F12 HL PES are not worthwhile at the present time. The CBS-F12 HL PES is

currently being refined by other members of the ExoMol project before work on a

new methane line list begins.

I have computed a new DMS for methane at the CCSD(T)/aug-cc-pVQZ level

of theory but because this surface has not undergone rigorous testing yet, I did

not discuss its construction in this chapter. A preliminary plot of computed ab-

solute line intensities at room temperature (296 K) using the new DMS is shown

in Fig. 6.4. Calculations were carried out with a medium-sized rovibrational basis

set (Pmax = 10) and include transitions up to J = 10. In Fig. 6.4, intensities have

been simulated using a DMS calculated at the CCSD(T)-F12/cc-pVTZ-F12 level of

theory [68], which was utilized for the 10to10 methane linelist [5]. Whilst there are

subtle differences between the two plots, notably around 8000 cm−1 and above, it is

difficult to know which DMS would be more reliable at higher frequencies. A com-

parison with experiment of absolute line intensities using both DMSs is necessary

before deciding on which one to use for a new line list.
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Figure 6.4: Comparison of absolute line intensities computed using two different

DMSs for 12CH4 up to J = 10. The two DMSs utilized were calculated at the

CCSD(T)/aug-cc-pVQZ (top panel) and CCSD(T)-F12/cc-pVTZ-F12 [68] (bottom

panel) levels of theory.
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7 Mass sensitivity of

rotation-vibration energy levels

of XY3 -type molecules

7.1 Introduction

Molecules are an attractive testing ground for probing two particular dimension-

less fundamental constants. Electronic transitions are sensitive to the fine structure

constant α, whilst vibration, rotation and inversion transitions are sensitive to the

proton-to-electron mass ratio µ = mp/me. If any variation did exist it would man-

ifest as observable shifts in the transition frequencies of certain molecular species.

Such shifts can be detected by high-precision laboratory experiments over short time

scales (years), or from astronomical observation of spectral lines at high redshift.

The idea that the fundamental constants of nature may be understood within the

framework of a deeper cosmological theory dates back to Dirac [288]. As of yet there

is no theoretical justification for the values they assume, or even if they have always

had the same values that we measure today.

Research in the field has become more active after claims of a temporal variation

in the fine structure constant, where observations of atomic absorption spectra of

distant quasars suggested that α was smaller in the past [289]. A few years later,

measurements of H2 spectra indicated that the proton-to-electron mass ratio was

larger by 0.002% up to twelve billion years ago [290]. Numerous studies have fol-

lowed and these have all produced null results (see Ref. [291] for a detailed review).

Any cosmological variation in the fundamental constants would require new physics

beyond the Standard Model and as such, results are received with caution and must
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be confirmed, or refuted, with independent studies on different atomic and molecular

absorbers.

This leads naturally to the question of which molecular systems are most suit-

able. From an experimental perspective, measurements in the laboratory provide

greater control over systematic effects and any gas of molecules can be utilized.

However, this provides only a local constraint on a drifting constant and it could

be argued that even a null result would be limited to the age of the Solar System

(around 4.6 billion years) and that a variation of µ could have occurred at earlier

stages in the evolution of the Universe. More desirable are molecular systems which

are astronomically relevant because observation at different redshifts presents the

opportunity to look back to much earlier times in the Universe. Detection in a

wide variety of cosmological settings also lends itself to searches for possible spatial

variations of µ.

The most important criterion is that the molecule must possess transitions which

are noticeably shifted by a change in the respective constant, as not all of them

are. Since we are dealing with rotation-vibration spectroscopy, in this chapter we

focus on transitions sensitive to a variation in the proton-to-electron mass ratio.

It is possible to quantify the sensitivity of a transition through the calculation of

sensitivity coefficients. We will discuss the most common methods used to do this in

Sec. 7.2 before introducing a new variational approach. This approach will then be

employed to investigate ammonia and hydronium in Sec. 7.3 and 7.4, respectively.

In Sec. 7.5 the contents of this chapter are summarised.

7.2 Calculating sensitivity coefficients

The sensitivity coefficient Tu,l, defined as

Tu,l =
µ

Eu − El

(dEu
dµ
− dEl

dµ

)
, (7.1)
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where Eu and El refer to the energy of the upper and lower state, respectively,

allows one to quantify the effect that a possible variation of µ would have for a

given transition. The larger the magnitude of Tu,l, the more favourable a transition

is to test for a drifting µ. The resulting sensitivities can then be used to determine

the induced frequency shift of a probed transition, given by the expression

∆ν

ν0

= Tu,l
∆µ

µ0

, (7.2)

where ∆ν = νobs − ν0 is the change in the frequency, and ∆µ = µobs − µ0 is the

change in µ, both with respect to their present day values ν0 and µ0.

Various methods have been utilized to compute sensitivity coefficients for a range

of molecular systems. We will briefly discuss the most common before introducing

a new variational approach.

7.2.1 Semi-classical WKB approximation

To determine sensitivity coefficients for inversion or tunnelling frequencies, the

semi-classical Wentzel-Kramers-Brillouin (WKB) approximation has been applied to

astronomically important molecules such as NH3 [292], H3O+ [293], and H2O2 [294].

A general relationship of the form,

Tinv ≈
1 + S

2

SE0

2(∆U − E0)
, (7.3)

where S is the action over the classically forbidden region, E0 the ground state

vibrational energy and ∆U the barrier height, was derived to predict sensitivities.

The dependence on µ enters through the action S.

This approach is limited in accuracy however, providing only a semi-quantitative

estimate for sensitivity coefficients. More reliable methods, for example a one-

dimensional inversion Hamiltonian model [292, 293], are often used alongside the

semi-classical WKB approximation to confirm results. The method is also limited

to inversion or tunnelling modes only, and for coupled motion more rigorous ap-
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proaches are necessary.

7.2.2 Effective Hamiltonian models

An effective Hamiltonian is one that describes only a portion of the eigenvalue

spectrum of the true Hamiltonian. They are used throughout spectroscopy and

provide a way of condensing detailed experimental spectra into a manageable number

of parameters. The form they assume will depend on the system and region of the

spectrum being studied, but they are always much easier to handle and interpret

compared to the true Hamiltonian.

The most common approach to computing sensitivity coefficients for a molecule

makes use of an effective Hamiltonian model, and determining how the parameters

of this model depend on µ [293, 295–300]. By establishing scaling relations for

the parameters, one essentially knows how each energy level depends on µ. This

information can be used in Eq. (7.1) to calculate sensitivity coefficients for transitions

of interest.

This method was successfully applied to methanol [295, 296], and led to numerous

astronomical measurements to determine a constraint on the proton-to-electron mass

ratio [296, 297, 301–304]. So far the most robust constraint was determined from

methanol absorption spectra observed in the lensing galaxy PKS1830−211 [304].

The three measured transitions possessed sensitivity coefficients ranging from T =

−1.0 to −7.4, and produced a constraint of µ̇/µ < 2× 10−17 yr−1 assuming a linear

rate of change. This translates to no change in µ over the past ≈ 7.5 billion years.

Note that this bound is in agreement with the best laboratory constraint to date,

which measured optical transitions in 171Yb+ ions to derive µ̇/µ = (0.2 ± 1.1) ×

10−16 yr−1 [305], again assuming a linear rate of change.

A disadvantage of the effective Hamiltonian approach is that it is restricted to

only part of the spectrum. It is usually not possible to confidently extrapolate to

other regions. The accuracy of the resultant sensitivity coefficients is also limited by

the methods used to establish the scaling of the parameters of the model with µ. The
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procedure used to find the µ-dependence can differ depending on the parameter, with

some determined from experimental information and others by purely theoretical

means.

7.2.3 Non-rigid inverter theory

The non-rigid inverter (NRI) theory for XY3 pyramidal molecules was pioneered

by Špirko [306, 307]. It is an example of an effective Hamiltonian model which uses

perturbation theory to solve the Schrödinger equation to obtain rotation-vibration

energy levels. The approach employs a flexible ‘non-rigid’ reference configura-

tion which follows a large-amplitude motion (e.g. for NH3 this is the inversion

‘umbrella-flipping’ motion). Vibrations of the molecule are then treated as small-

amplitude displacements from the reference configuration. This concept was first

introduced for triatomic molecules in the influential work of Hougen, Bunker, and

Johns (HBJ) [308]. The choice of molecular coordinates is such that it enables max-

imum separation of the different types of molecular motion, facilitating solution of

the Schrödinger equation.

Sensitivity coefficients for vibration-rotation-inversion transitions of 14NH3 were

computed using the NRI theory [309]. Notably, a set of several “forbidden” ∆k=±3

transitions between the rotation-inversion energy levels in the ν2 vibrational state

were proposed as a promising tool to probe a possible space-time variation of µ.

One particular transition between the |−, J = 3, K = 3, v2 = 1〉 and |+, J =

3, K = 0, v2 = 1〉 roinversional states, where − and + refer to antisymmetric and

symmetric respectively, possessed an extremely large sensitivity of T = −853.1.

This was lower than a previous ‘Born-Oppenheimer’ estimate of T = −938 [310]

and reflects the improvement in methodology. However, theoretical calculations

of the sensitivities using perturbation theory may not be entirely robust since the

numerator and denominator in Eq. (7.1) contain differences of large numbers.
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7.2.4 Variational approach

Here we propose a robust and accurate variational approach which offers a new

way to compute sensitivity coefficients. The key assumption is that all baryonic

matter may be treated equally [311], and so µ is assumed to be proportional to

the molecular mass. This assumption has previously been employed in the effective

Hamiltonian and NRI methods discussed in Sec. 7.2.2 and Sec. 7.2.3, respectively.

It is sufficient then to perform a series of calculations employing suitably scaled

values for the masses of the atoms. We choose the scaling coefficient fm = {0.9996,

0.9998, 1.0000, 1.0002, 1.0004} such that the scaled mass, m′ = fm ×m. The mass

dependency of any energy level can be found by using finite differences for (a)

the fm = {0.9998, 1.0002}, and (b) the fm = {0.9996, 1.0004} calculated energies.

Both (a) and (b) should yield identical results, with the latter values used to verify

the former. Numerical values for the derivatives dE/dµ are easily determined and

then used in Eq. (7.1), along with accurate values for the transition frequencies, to

calculate sensitivity coefficients. Calculations with fm = 1.0000 provide theoretical

frequency data and Einstein A coefficients.

The variational approach is powerful in that it allows a comprehensive treatment

of a molecule to be undertaken. All possible transitions and their mass dependence

can be calculated. This permits a simple exploration of the sensitivities for any

molecule, provided the necessary steps have been taken to perform accurate vari-

ational calculations in the first place. Along with sensitivity coefficients, reliable

theoretical transition frequencies can be generated if no experimental data is avail-

able, and for all selected transitions Einstein A coefficients can be calculated to

guide future observations.

7.3 Ammonia (NH3)

The so-called ammonia method [292], which was adapted from van Veldhoven

et al. [312], relies on inversion transitions in the vibrational ground state of 14NH3.
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Constraints on a temporal variation of µ have been determined using this method

from measurements of the object B0218+357 at redshift z ∼ 0.685 [292, 313, 314],

and of the system PKS1830−211 at z ∼ 0.886 [315]. A major source of system-

atic error when using the ammonia method is the comparison with rotational lines

from other molecular species, particularly molecules that are non-nitrogen-bearing

(see Murphy et al. [313], Henkel et al. [315], and Kanekar [314] for a more com-

plete discussion). The most stringent limit using ammonia [314] has since been

improved upon with methanol absorption transitions measured in the gravitational

lens PKS1830−211 [304].

As mentioned in Sec. 7.2.3, several “forbidden” ∆k = ±3 transitions of 14NH3

in the ν2 vibrational state were investigated using the NRI theory and found to

possess extremely large sensitivity coefficients [309]. The semi-classical Wentzel-

Kramers-Brillouin (WKB) approximation has also been employed to obtain a general

relationship to estimate the sensitivity of pure inversion frequencies in the ground

vibrational state for 14NH3 [292], 15NH3 [316], 14ND3 [292], and 15ND3 [312], whilst

rotation-inversion transitions have been considered for the partly deuterated species

14NH2D and 14ND2H by Kozlov et al. [317].

Because of the abundance of NH3 throughout the Universe and the ease with

which its spectrum can be observed, identifying more transitions with large sensi-

tivities in the microwave, submillimetre or far infrared regions could lead to a much

tighter constraint on µ. Several 14NH3 rotation-inversion transitions have already

been observed extraterrestrially [318–320], whilst others with notable sensitivities

possess Einstein A coefficients comparable to those of the observed transitions. It

is legitimate then to expect their eventual extragalactic detection, and when com-

bined with their enhanced sensitivity, there is scope for a major improvement of the

current ammonia analyses.

Rotation-inversion transitions associated with the ν2 vibrational state can dis-

play induced frequency shifts more than one order of magnitude larger than the

pure inversion transitions in the vibrational ground state, which are currently used
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only part of the rovibrational manifold is shown.

in the probing of µ both temporally [292, 313–315, 321] and spatially [322–325]. As

shown in Fig. 7.1, numerous accidental near-degeneracies occur between the 2ν2 and

ν4 rovibrational energy levels of ammonia. The strong Coriolis interaction between

these two states [326] can give rise to highly anomalous sensitivities. Furthermore,

a large number of transitions between these levels have been measured experimen-

tally [327, 328].

Another promising anomaly exhibited by the spectra of ammonia is caused by

the so-called “giant” `-type doubling, which leads to a “reversal” of the inversion

doublets in the K = 1 levels in the +` component of the ν4 states of 14NH3 and

15NH3. The inversion doublets are reversed because for K = 1, only one of the

A1 or A2 sublevels is shifted by the Coriolis interactions, and only the A2 states

have non-zero spin statistical weights (see Fig. 7.2 and Špirko et al. [306]). So far

these transitions have not been detected extraterrestrially. This is to be expected

since the physical temperatures prevailing in the interstellar medium are too low to

provide significant population of the aforementioned states. However, they could

be effectively populated by exoergic chemical formation processes, resulting in the

detection of highly excited states [329, 330]. Interestingly, the “highest energy”

(J,K) = (18, 18) line of 14NH3 observed towards the galactic centre star forming
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region Sgr B2, corresponds to the state lying 3130 K above the ground vibrational

state [331].

Here, a comprehensive study of the mass sensitivity of the vibration-rotation-

inversion transitions of 14NH3, 15NH3, 14ND3, and 15ND3 is performed. A rigorous

evaluation of the sensitivity coefficients will hopefully offer new scope for the ammo-

nia method and could potentially eliminate the systematic errors which arise from

using alternative reference molecules. We also note that the transitions of the 15N

isotopes are optically thin and free of nuclear quadrupole structures, thus providing

a simpler radiative and line-shape analysis.

7.3.1 Variational calculations

The nuclear motion program TROVE [9] has provided highly accurate theoret-

ical frequency, intensity, and thermodynamic data for both 14NH3 and 15NH3 [61,

85, 332–335]. I utilized the computational setup and potential energy and dipole

moment surfaces described in Yurchenko et al. [333] and Yurchenko [335], which can

naturally be extended to treat 14ND3 and 15ND3. I provide a short summary of the
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key aspects below.

The “spectroscopic” PES is based on extensive CCSD(T) calculations with ex-

trapolation to the CBS limit [336], and was refined to experimental data up to

J ≤ 8 [85]. The ab initio DMS was computed at the CCSD(T)/aug-cc-pVQZ level

of theory. Symmetry adapted expansions which respect D3h(M) symmetry were

used to represent the PES and DMS. Both surfaces have previously been used in

the calculation of comprehensive line lists for 14NH3 [333] and 15NH3 [335]. Nu-

clear motion calculations were carried out with Pmax = 28, and with the kinetic and

potential energy operators truncated at 6th and 8th order, respectively.

As a cross-check to the variational approach, sensitivity coefficients have also

been computed by Professor Vladimir Špirko using the non-rigid inverter theory [306,

307]. Note that the standard Herzberg convention [337] is used to label the vibra-

tional states of ammonia with the normal mode quantum numbers v1, v2, v3, v4, l3

and l4. The ν2 state corresponds to the singly excited inversion mode v2 = 1, whilst

ν4 is the singly excited antisymmetric bending mode v4 = |l4| = 1 (see Down et al.

[338] for more details).

7.3.2 Results

14NH3 and 15NH3

The variationally calculated sensitivities for 14NH3 and 15NH3 are listed in Ta-

bles 7.1 to 7.6. The results are consistent with perturbative values obtained using

the non-rigid inverter theory approach [309], and ‘Born-Oppenheimer’ estimates

from Jansen et al. [310] (subsequently referred to as JBU). For transitions involv-

ing the ν2 vibrational states shown in Tables 7.1, 7.2, 7.3, 7.4, the agreement

is near quantitative with the exception of the “forbidden” combination difference

|−, J=3, K=3, v2=1〉 − |+, J=3, K=0, v2 =1〉 of 14NH3. We expect this is due to the

breakdown of the perturbational approach.

On closer inspection of Tables 7.3 and 7.4, the different sensitivities for the

|−, J=3, K=3, v2=1〉 − |+, J=3, K=0, v2 =1〉 resonances when going from 14NH3 to
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Table 7.1: The rotation-inversion frequencies (ν), Einstein coefficients (A), and

sensitivities (T ) of 14NH3 and their 15NH3 counterparts in the ν2 vibrational state.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/MHz A/s−1 T

14NH3

E ′′ + 2 1 1 E ′ − 1 1 1 140142a 0.1474×10−4 17.24 (16.92b)

A′′2 − 0 0 1 A′2 + 1 0 1 466244c 0.1824×10−2 -6.587 (-6.409)
15NH3

E ′′ + 2 1 1 E ′ − 1 1 1 175053 0.2939×10−4 13.33 (13.28)

A′′2 − 0 0 1 A′2 + 1 0 1 430038 0.1425×10−2 -6.894 (-6.908)

14NH3: Values in parentheses from Špirko [309], obtained using the NRI theory. aAstronomical

observation from Mauersberger, Henkel, and Wilson [318] and Schilke et al. [319]; bJBU sensitivity

coefficient has a value of 18.8 (see Jansen et al. [310]); cAstronomical observation from Schilke

et al. [320]. 15NH3: Frequencies from Urban et al. [339]; values in parentheses obtained using the

NRI theory with the frequencies from Urban et al. [339].

15NH3 is of particular interest. A possible variation of µ requires the measurement

of at least two transitions with differing sensitivities. Both isotopologues possess a

large value of T and importantly they are of opposite sign, thus enabling a conclusive

detection with regard to these particular transitions. An all-ammonia observation

of a drifting µ would circumvent some of the intrinsic difficulties that appear when

using other reference molecules [313–315], which may not necessarily reside at the

same location in space.

The inversion frequencies in the ground vibrational state, shown in Table 7.5,

have comparable sensitivities for both 14NH3 and 15NH3, and this also holds true

for the rotation-inversion transitions shown in Table 7.6, demonstrating the validity

of 15NH3 as a probe of µ. The sensitivity coefficients of the ν4 transitions shown in

Table 7.7, although promising, do not acquire the impressive magnitudes of their ν2

counterparts.

In Fig. 7.3, we have simulated the intensities at room temperature for 38 pre-

viously observed transitions between the 2ν2 and ν4 vibrational states of 14NH3

from Ref. [327, 328] and plotted their corresponding sensitivity coefficients. The

largest difference in sensitivity is ∆T = 59.6, which is over nine times more sensitive

than the ∆T of the methanol lines used to establish the most robust constraint to
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Table 7.2: The wavenumbers (ν), wavelengths (λ), Einstein coefficients (A), and

sensitivities (T ) for transitions between the ground and ν2 vibrational state of 14NH3

and their 15NH3 counterparts.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/cm−1 λ/µm A/s−1 T

14NH3

A′2 + 6 6 1 A′′2 − 6 6 0 927.3230 10.7837 0.1316×10+2 -0.367 (-0.356)

E ′ + 2 2 1 E ′′ − 2 2 0 931.3333 10.7373 0.1030×10+2 -0.371 (-0.366)

E ′′ + 2 1 1 E ′ − 1 1 0 971.8821 10.2893 0.5238×10+1 -0.399 (-0.394)

E ′′ + 1 1 1 E ′ − 2 1 0 891.8820 11.2122 0.6795×10+1 -0.344 (-0.339)

A′2 + 1 0 1 A′′2 − 2 0 0 892.1567 11.2088 0.9054×10+1 -0.344 (-0.339)

A′′2 + 3 3 1 A′2 − 3 3 0 930.7571 10.7439 0.1158×10+2 -0.370 (-0.366)
15NH3

A′2 + 6 6 1 A′′2 − 6 6 0 923.4541 10.8289 0.1290×10+2 -0.365 (-0.365)

E ′ + 2 2 1 E ′′ − 2 2 0 927.4034 10.7828 0.1010×10+2 -0.373 (-0.373)

E ′′ + 2 1 1 E ′ − 1 1 0 967.8597 10.3321 0.5133×10+1 -0.400 (-0.400)

E ′′ + 1 1 1 E ′ − 2 1 0 888.0413 11.2607 0.6664×10+1 -0.345 (-0.345)

A′2 + 1 0 1 A′′2 − 2 0 0 888.3174 11.2572 0.8878×10+1 -0.346 (-0.346)

A′′2 + 3 3 1 A′2 − 3 3 0 926.8378 10.7894 0.1135×10+2 -0.372 (-0.372)

14NH3: Wavenumbers from Urban et al. [340]; Astronomical observations reported in Betz et al.

[341] and Evans et al. [342]; values in parentheses from Špirko [309], obtained using the NRI

theory. 15NH3: Wavenumbers provided by Fusina et al. [343]; values in parentheses obtained

using the NRI theory with the frequencies from Fusina et al. [343].

date [304], and over seventeen times larger than the ∆T of the transitions utilized

in the ammonia method [292]. As well as being consistently large, the mixture of

positive and negative sensitivities is highly beneficial for detecting a change in µ

as transitions are shifted in opposing directions. From Fig. 7.3, one could imagine

scanning this frequency window at two separate instances in time to produce a dis-

placed spectrum if any variation of µ had occurred. In addition to the frequencies

of Ref. [327, 328], there are 153 transitions with similar Einstein A coefficients and

sensitivities from T = −32.40 to 17.27 in the frequency range 100 to 900 GHz. I

provide comprehensive tables of all investigated transitions in Appendix B.

The accuracy of the calculated sensitivity coefficients will depend on the ex-

perimental frequencies and the computed TROVE numerical derivatives. For the

2ν2 ↔ ν4 transitions it has been possible to investigate this further. A recent analy-

sis of 56 sources of high-resolution 14NH3 spectra utilizing the MARVEL procedure

determined 4961 rovibrational energy levels of experimental quality, all labelled us-
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Table 7.3: The vibration-rotation-inversion transitions of 14NH3 associated with the

|−, J,K=3, v2=1〉 − |+, J,K=0, v2 =1〉 resonances.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/MHz A/s−1 T Ref.

A′2 − 3 3 1 A′′2 + 3 3 0 29000313.7 0.1176×10+2 -0.484 (-0.484) [344]

A′2 + 3 0 1 A′′2 + 3 3 0 28997430.0 0.2025×100 -0.405 (-0.405) [344]

− 3 3 1 + 3 0 1 2883.7 -790.6 (-1001a) [344]

A′2 − 3 3 1 A′′2 − 2 0 1 772594.9 0.6018×10−4 -0.868 (-0.868) [345]

A′2 + 3 0 1 A′′2 − 2 0 1 769710.2 0.3471×10−2 2.090 (2.089) [345]

− 3 3 1 + 3 0 1 2884.7 -790.3 (-1001) [345]

A′2 − 3 3 1 A′′2 + 3 3 1 1073050.7 0.1634×10−1 -3.350 (-3.353) [345]

A′2 + 3 0 1 A′′2 + 3 3 1 1070166.6 0.2765×10−3 -1.228 (-1.229) [345]

− 3 3 1 + 3 0 1 2884.1 -790.5 (-1001) [345]

A′2 − 5 3 1 A′′2 + 5 3 0 28971340.5 0.4692×10+1 -0.484 (-0.484) [340]

A′2 + 5 0 1 A′′2 + 5 3 0 29050552.5 0.2147×10−2 -0.408 (-0.408) [340]

− 5 3 1 + 5 0 1 79212.0 27.38 (27.35) [340]

A′2 − 5 3 1 A′′2 + 5 3 1 979649.1 0.5141×10−2 -3.425 (-3.427) [340]

A′2 + 5 0 1 A′′2 + 5 3 1 1058861.1 0.3714×10−5 -1.120 (-1.120) [340]

− 5 3 1 + 5 0 1 79212.0 27.38 (27.35) [340]

A′2 − 5 3 1 A′′2 − 4 0 1 1956241.1 0.4129×10−4 -0.988 (-0.988) [340]

A′2 + 5 0 1 A′′2 − 4 0 1 2035453.1 0.7023×10−1 0.116 (0.116) [340]

− 5 3 1 + 5 0 1 79212.0 27.38 (29.35) [340]

A′2 − 7 3 1 A′′2 + 7 3 0 28934099.5 0.2399×10+1 -0.480 (-0.480) [340]

A′2 + 7 0 1 A′′2 + 7 3 0 29118808.5 0.1095×10−3 -0.416 (-0.416) [340]

− 7 3 1 + 7 0 1 184709.0 9.561(9.582) [340]

A′2 − 9 3 1 A′′2 + 9 3 0 28892089.9 0.1444×10+1 -0.475 (-0.475) [340]

A′2 + 9 0 1 A′′2 + 9 3 0 29194454.6 0.1029×10−3 -0.425 (-0.425) [340]

− 9 3 1 + 9 0 1 302364.7 4.350 (4.363) [340]

Values in parentheses obtained using the NRI theory with the calculated TROVE frequencies.
aJBU sensitivity coefficient reaches a value of -938 (see Jansen et al. [310]).
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Table 7.4: The vibration-rotation-inversion transitions 15NH3 associated with the

|−, J,K=3, v2=1〉 − |+, J,K=0, v2 =1〉 resonances.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/MHz A/s−1 T Ref.

A′2 − 3 3 1 A′′2 + 3 3 0 28843885.0 0.1171×10+2 -0.486 (-0.486) [343]

A′2 + 3 0 1 A′′2 + 3 3 0 28872669.9 0.2187×10−2 -0.403 (-0.403) [343]

− 3 3 1 + 3 0 1 28784.9 82.96 (81.69) [343]

A′2 − 3 3 1 A′′2 − 2 0 1 774222.8 0.7160×10−6 -0.999 (-0.999) [339]

A′2 + 3 0 1 A′′2 − 2 0 1 802986.7 0.4035×10−2 2.011 (2.010) [339]

− 3 3 1 + 3 0 1 28763.9 83.02 (81.69) [339]

A′2 − 3 3 1 A′′2 + 3 3 1 1035207.4 0.1491×10−1 -3.473 (-3.476) [339]

A′2 s 3 0 1 A′′2 + 3 3 1 1063971.3 0.3245×10−5 -1.228 (-1.135) [339]

− 3 3 1 + 3 0 1 28763.9 83.02 (81.69) [339]

A′2 − 5 3 1 A′′2 + 5 3 0 28817906.5 0.4598×10+1 -0.483 (-0.483) [343]

A′2 + 5 0 1 A′′2 + 5 3 0 28927141.3 0.7768×10−3 -0.409 (-0.409) [343]

− 5 3 1 + 5 0 1 109234.8 19.02 (19.02) [343]

A′2 − 5 3 1 A′′2 + 5 3 1 943226.9 0.4588×10−2 -3.453 (-3.455) [339]

A′2 + 5 0 1 A′′2 + 5 3 1 1052459.7 0.1548×10−5 -1.120 (-1.121) [339]

− 5 3 1 + 5 0 1 109232.8 19.04 (19.02) [339]

A′2 − 5 3 1 A′′2 − 4 0 1 1955711.7 0.1882×10−4 -0.988 (-0.988) [339]

A′2 + 5 0 1 A′′2 − 4 0 1 2064944.5 0.7369×10−1 0.071 (0.071) [339]

− 5 3 1 + 5 0 1 109232.8 19.05 (19.02) [339]

A′2 − 7 3 1 A′′2 + 7 3 0 28784706.6 0.2399×10+1 -0.479 (-0.479) [343]

A′2 + 7 0 1 A′′2 + 7 3 0 28997286.1 0.1095×10−3 -0.418 (-0.418) [343]

− 7 3 1 + 7 0 1 212579.5 7.898 (7.073) [343]

A′2 − 9 3 1 A′′2 + 9 3 0 28747714.9 0.1444×10+1 -0.479 (-0.475) [343]

A′2 + 9 0 1 A′′2 + 9 3 0 29075088.5 0.1029×10−3 -0.418 (-0.427) [343]

− 9 3 1 + 9 0 1 327373.6 3.782 (3.782) [343]

Values in parentheses obtained using the NRI theory with the calculated TROVE frequencies.
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Table 7.5: Inversion frequencies (ν), Einstein coefficients (A), and sensitivities (T )

of 14NH3 and their 15NH3 counterparts in the ground vibrational state.

J K ν/MHz A/s−1 T J K ν/MHz A/s−1 T

14NH3

1 1 23694.3 0.1657×10−6 -4.310 (-4.365) 4 3 22688.3 0.1311×10−6 -4.289 (-4.514)
2 1 23098.8 0.5123×10−7 -4.297 (-4.413) 4 4 24139.4 0.2797×10−6 -4.317 (-4.471)
2 2 23722.5 0.2216×10−6 -4.311 (-4.385) 5 1 19838.3 0.6540×10−8 -4.220 (-4.700)
3 2 22834.2 0.9902×10−7 -4.288 (-4.464) 5 2 20371.5 0.2828×10−7 -4.231 (-4.546)
3 3 23870.1 0.2538×10−6 -4.312 (-4.419) 5 3 21285.3 0.7239×10−7 -4.257 (-4.634)
4 1 21134.3 0.1182×10−7 -4.249 (-4.568) 5 4 22653.0 0.1546×10−6 -4.282 (-4.592)
4 2 21703.4 0.5114×10−7 -4.262 (-4.545) 5 5 24533.0 0.3053×10−6 -4.327 (-4.509)

15NH3

1 1 22624.9 0.1464×10−6 -4.352 (-4.333) 4 3 21637.9 0.1149×10−6 -4.330 (-4.309)
2 1 22044.2 0.4521×10−7 -4.341 (-4.321) 4 4 23046.0 0.2469×10−6 -4.360 (-4.341)
2 2 22649.8 0.1958×10−6 -4.349 (-4.330) 5 1 18871.5 0.5729×10−8 -4.264 (-4.239)
3 2 21783.9 0.8730×10−7 -4.333 (-4.312) 5 2 19387.4 0.2480×10−7 -4.278 (-4.254)
3 3 22789.4 0.2241×10−6 -4.356 (-4.337) 5 3 20272.1 0.6358×10−7 -4.299 (-4.276)
4 1 20131.4 0.1039×10−7 -4.293 (-4.270) 5 4 21597.9 0.1360×10−6 -4.330 (-4.309)
4 2 20682.8 0.4498×10−7 -4.306 (-4.284) 5 5 23422.0 0.2695×10−6 -4.366 (-4.347)

14NH3: Frequencies from Lovas et al. [346]; values in parentheses from Špirko [309], obtained

using the NRI theory. 15NH3: Frequencies from Urban et al. [339]; values in parentheses obtained

using the NRI theory with the frequencies from Urban et al. [339].

Table 7.6: The rotation-inversion frequencies (ν), Einstein coefficients (A), and

sensitivities (T ) of 14NH3 and their 15NH3 counterparts in the ground vibrational

state.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/MHz A/s−1 T

14NH3

A′2 + 1 0 0 A′′2 − 0 0 0 572498 0.1561×10−2 -0.860 (-0.862)

A′′2 − 2 0 0 A′2 + 1 0 0 1214859 0.1791×10−1 -1.060 (-1.063)

E ′ − 2 1 0 E ′′ + 1 1 0 1215245 0.1344×10−1 -1.061 (-1.064)
15NH3

A′2 + 1 0 0 A′′2 − 0 0 0 572112 0.1557×10−2 -0.865 (-0.866)

A′′2 − 2 0 0 A′2 + 1 0 0 1210889 0.1774×10−1 -1.058 (-1.058)

E ′ − 2 1 0 E ′′ + 1 1 0 1211277 0.1331×10−1 -1.059 (-1.059)

14NH3: Frequencies from Persson et al. [347]; values given in parentheses from Špirko [309],

obtained using the NRI theory. 15NH3: Frequencies from Urban et al. [339]; values in parentheses

obtained using the NRI with the frequencies from Urban et al. [339].
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Table 7.7: Inversion frequencies (ν), Einstein coefficients (A), and sensitivities (T )

of 14NH3 and 15NH3 in the ν4 vibrational state.

J K ` ν/MHz A/s−1 T J K ` ν/MHz A/s−1 T

14NH3

1 1 -1 32400 0.4243×10−6 -4.268 4 3 1 57132 0.1968×10−5 1.561
1 1 1 57843 0.2411×10−5 -2.234 4 2 -1 47526 0.5467×10−6 -1.550
2 2 -1 32111 0.5514×10−6 -4.250 4 2 1 46515 0.4020×10−6 -0.247
2 2 1 40189 0.1056×10−5 -2.381 4 1 -1 57681 0.2548×10−6 -0.220
2 1 -1 36797 0.2085×10−6 -3.133 4 1 1 145888a 0.3787×10−5 -0.962
2 1 1 20655 0.3743×10−7 2.720 5 5 -1 32037 0.6848×10−6 -4.264
3 3 -1 31893 0.6081×10−6 -4.259 5 5 1 68699 0.6198×10−5 4.672
3 3 1 46679 0.1863×10−5 -0.667 5 4 -1 39071 0.8020×10−6 -2.832
3 2 -1 37500 0.4424×10−6 -2.961 5 4 1 73534 0.4807×10−5 4.480
3 2 1 44963 0.6906×10−6 -1.023 5 3 -1 48346 0.8610×10−6 -1.506
3 1 -1 44755 0.1908×10−6 -1.687 5 3 1 64906 0.1799×10−5 3.044
3 1 1 177783a 0.1087×10−4 -0.482 5 2 -1 58699 0.6967×10−6 -0.181
4 4 -1 31884 0.6482×10−6 -4.258 5 2 1 44876 0.2025×10−6 0.239
4 4 1 55765 0.3325×10−5 1.668 5 1 1 78141a 0.4324×10−6 0.990
4 3 -1 38460 0.6451×10−6 -2.855 5 1 -1 380542a 0.4015×10−4 -0.178

15NH3

1 1 -1 31108 0.3758×10−6 -4.291 4 3 1 51989 0.1501×10−5 0.684
1 1 1 55582 0.2142×10−5 -2.410 4 2 -1 44599 0.4524×10−6 -1.765
2 2 -1 30825 0.4880×10−6 -4.271 4 2 1 43225 0.3278×10−6 -0.728
2 2 1 37900 0.8883×10−6 -2.722 4 1 -1 53406 0.2029×10−6 -0.558
2 1 -1 34950 0.1788×10−6 -3.273 4 1 1 146961a 0.3870×10−5 -0.983
2 1 1 21904 0.4450×10−7 2.351 5 5 -1 30732 0.6050×10−6 -4.280
3 3 -1 30606 0.5377×10−6 -4.281 5 5 1 61128a 0.4341×10−5 2.771
3 3 1 43275 0.1492×10−5 -1.358 5 4 -1 37071 0.6856×10−6 -2.937
3 2 -1 35551 0.3772×10−6 -3.082 5 4 1 65945a 0.3431×10−5 3.150
3 2 1 41928 0.5649×10−6 -1.494 5 3 -1 45373 0.7129×10−6 -1.689
3 1 -1 41947 0.1574×10−6 -1.941 5 3 1 59236a 0.1351×10−5 2.151
3 1 1 171460a 0.9842×10−5 -0.731 5 2 -1 54322 0.5536×10−6 -0.440
4 4 -1 30591 0.5729×10−6 -4.281 5 2 1 42037a 0.1659×10−6 -0.242
4 4 1 50530 0.2502×10−5 0.452 5 1 -1 71752a 0.3362×10−6 0.639
4 3 -1 36472 0.5506×10−6 -2.978 5 1 1 369287a 0.3728×10−4 -0.379

Frequencies from Cohen and Poynter [348] and Cohen [349]; aTROVE calculated value.
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ing a consistent set of quantum numbers [350]. The MARVEL analysis offers a

rigorous evaluation of high-resolution 14NH3 spectra. The 2ν2 energy levels have

an average error of 0.0027 cm−1 for the 251 levels up to J = 15, whilst a similar

uncertainty of 0.0026 cm−1 is given for the 495 ν4 energies. As such, the error on the

predicted sensitivities is significantly reduced by replacing the computed TROVE

energy levels with the corresponding MARVEL values in Eq. (7.1).

This is not to say that the TROVE frequencies are unreliable. As part of the

MARVEL procedure the derived experimental energy levels are checked against

theoretical predictions using the same PES and computational setup [333] as utilized

for the present study. If sensitivity coefficients are calculated for the 38 transitions

shown in Fig. 7.3 without replacing the energies, the TROVE sensitivities differ

on average by 2.5% to the MARVEL substituted sensitivities, the largest difference

being 5.5%. Likewise for the additional 153 transitions with similar Einstein A

coefficients provided in Appendix B, the TROVE sensitivities deviate on average by

2.1%. Such small differences reflect the quality of the underlying PES.

However, the variational approach cannot account exactly for all near-degenera-

cies in the 2ν2 and ν4 rovibrational manifold. A striking example of this is for

the extremely weak 5+
3 (ν4) ← 5+

2 (2ν2) transition. Here, states are labelled as J±K

where J is the rotational quantum number, K is the projection onto the molecule-

fixed z axis, and ± denotes the parity of the state. A computed frequency of

νcalc = 3540.5 MHz has a sensitivity of Tcalc = −1843.25, already the largest known

sensitivity coefficient for ammonia. Replacing with MARVEL energy levels gives

νexp = 389.9 MHz and Texp = −16, 737.52. The dramatic increase in magnitude

occurs because of the inverse dependence on transition frequency (see Eq. (7.1))

and illustrates the huge enhancement that can happen between close-lying energy

levels. Given the difference in predicted sensitivities one could question whether

the computed numerical derivatives are still reliable. The change in frequency is

just over 3000 MHz (≈ 0.1 cm−1) so one would expect that they are reasonable.

The difficulty is that quantifying the uncertainty of the numerical derivatives is
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not as straightforward because there are no analogous highly accurate experimental

quantities.

To investigate the error of the computed derivatives, new sensitivity coefficients

were calculated using a purely ab initio PES [336]. One can hope to establish a

relationship between the difference in ν = Eu−El, with the difference in the quantity

dEu/dµ − dEl/dµ, by comparing values computed using this and the empirically

refined PESs. Whilst no clear general correspondence between the uncertainty on

these two quantities emerges, for near-coinciding energy levels separated by 1 cm−1

or less, the percentage difference in dEu/dµ − dEl/dµ is always smaller than the

percentage difference in ν. This ranges from 3–4 times smaller to several orders

of magnitude smaller and suggests that for extremely close-lying energy levels, the

underlying numerical derivatives are relatively stable. Thus, the huge amplification

in sensitivity is a result of replacing the theoretical frequencies with experimental

values.

For the transitions shown in Fig. 7.3 and those with similar Einstein A coeffi-

cients, there is consistent agreement between the TROVE and MARVEL substituted

sensitivities and errors in the computed derivatives will be negligible. When the two

predictions differ significantly, which occurs for a number of weaker transitions with

very large sensitivities ranging from T = −712.84 to 509.21 (see Appendix B), I am

confident that the MARVEL substituted sensitivity coefficients are reliable. In all

instances the residual between experiment and computed transition frequency never

exceeds 1 cm−1 (regarded as spectroscopic accuracy).

14ND3 and 15ND3

Because of the substantial difference in size of the inversion splittings, the mass

sensitivities of the 14ND3 and 15ND3 transitions exhibit centrifugal distortion and

Coriolis interaction dependence significantly different from that of 14NH3 and 15NH3

(see Fig. 7.4 and Tables 7.8, 7.9, 7.10, 7.11, 7.12). However, as only a small fraction

of the total presence of ammonia in the interstellar medium is heavy ammonia, a
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Figure 7.4: The sensitivities (T ) of the inversion transitions of the (J,K = ±3)

rotational states of 14ND3 and 15ND3 in the ground (left panel) and ν2 (right panel)

vibrational states.

detection of “higher energy” transitions is rather unlikely. The deuterated ammonia

isotopomers, along with 14NH3 and 15NH3, are still suitable targets for terrestrial

studies, such as those reported by van Veldhoven et al. [312], Bethlem et al. [316],

and Quintero-Pérez et al. [351].

7.3.3 Outlook

It is expected that any variation in the fundamental constants will be confirmed,

or refuted, over a series of independent measurements on a variety of molecular

absorbers. As a relevant astrophysical molecule, and with certain inversion frequen-

cies already detected extraterrestrially [357–359], 15NH3 has potential to aid this

search along with the already established probes of 14NH3. Notably the 14NH3 as-

tronomically observed 2+
1 ← 1−1 and 0−0 ← 1+

0 transitions in the ν2 state [318, 320]

possessed values of T = 17.24 and T = −6.59, respectively. For the deuterated

species 14ND3 and 15ND3, it is expected that their use will be restricted to precision

measurements in the laboratory, despite possessing larger sensitivity coefficients for

the pure inversion frequencies in the ground vibrational state.

The 2ν2 ↔ ν4 transitions of 14NH3 showed consistently large sensitivities but are

perhaps more likely to be detected in terrestrial studies given that the rovibrational
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Table 7.8: Inversion frequencies (ν), Einstein coefficients (A), and sensitivities (T )

of 14ND3 and 15ND3 in the ground vibrational state.

J K ν/MHz A/s−1 T J K ν/MHz A/s−1 T

14ND3

1 1 1589.006 0.5764×10−10 -5.541 (-5.528) 4 3 1558.600 0.4897×10−10 -5.533 (-5.520)
2 1 1568.357 0.1849×10−10 -5.556 (-5.542) 4 -3 1558.178 0.4893×10−10 -5.534 (-5.521)
2 2 1591.695 0.7721×10−10 -5.543 (-5.530) 4 4 1612.997 0.9623×10−10 -5.536 (-5.525)
3 1 1537.915 0.8725×10−11 -5.526 (-5.511) 5 1 1450.435a 0.2937×10−11 -5.511 (-5.493)
3 2 1560.774 0.3644×10−10 -5.537 (-5.523) 5 2 1471.785 0.1226×10−10 -5.504 (-5.487)
3 3 1599.645 0.8810×10−10 -5.571 (-5.559) 5 3 1507.525 0.2960×10−10 -5.553 (-5.537)
3 -3 1599.704 0.8811×10−10 -5.571 (-5.559) 5 -3 1509.218 0.2969×10−10 -5.499 (-5.484)
4 1 1498.270 0.4848×10−11 -5.503 (-5.487) 5 4 1561.146 0.5827×10−10 -5.524 (-5.511)
4 2 1520.537 0.2025×10−10 -5.493 (-5.478) 5 5 1631.784 0.1036×10−9 -5.561 (-5.551)

15ND3

1 1 1430.340 0.4227×10−10 -5.600 (-5.577) 4 3 1401.312 0.3578×10−10 -5.600 (-5.577)
2 1 1410.980 0.1354×10−10 -5.613 (-5.589) 4 -3 1400.878 0.3575×10−10 -5.602 (-5.578)
2 2 1432.641 0.5661×10−10 -5.604 (-5.581) 4 2 1366.027 0.1476×10−10 -5.586 (-5.561)
3 1 1382.510 0.5374×10−11 -5.585 (-5.560) 5 1 1300.841a 0.2130×10−11 -5.562 (-5.534)
3 2 1403.684 0.2665×10−10 -5.566 (-5.542) 5 2 1320.460a 0.8907×10−11 -5.575 (-5.547)
3 3 1439.719 0.5458×10−10 -5.601 (-5.579) 5 3 1353.451 0.2153×10−10 -5.585 (-5.559)
3 -3 1439.783 0.6459×10−10 -5.601 (-5.579) 5 -3 1355.161 0.2162×10−10 -5.551 (-5.526)
4 1 1345.533a 0.3530×10−11 -5.564 (-5.538) 5 4 1403.179 0.4254×10−10 -5.606 (-5.583)
4 2 1366.027 0.1476×10−10 -5.586 (-5.561) 5 5 1468.666 0.7595×10−10 -5.639 (-5.619)

Unless stated otherwise, 14ND3 and 15ND3 frequencies from Fusina and Murzin [352] and Fusina

et al. [353], respectively; values in parentheses obtained using the NRI theory with the calculated

TROVE frequencies; the K = −3 values refer to transitions between levels with spin statistical

weight = 10 (A′1, A′′1 species), the K = 3 values refer to transitions between levels with spin

statistical weight = 1 (A′2, A′′2) species); aUrban et al. [354].
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Table 7.9: The rotation-inversion frequencies (ν), Einstein coefficients (A), and

sensitivities (T ) of 14ND3 and 15ND3 in the ground vibrational state.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/MHz A/s−1 T

14ND3

A′′1 − 1 0 0 A′1 + 0 0 0 309909a 0.2530×10−3 -1.022

A′′2 − 2 0 0 A′2 + 1 0 0 618075a 0.2409×10−2 -1.009

E ′ − 2 1 0 E ′′ + 1 1 0 618124a 0.1807×10−2 -1.009

A′2 + 1 0 0 A′′2 − 0 0 0 306737a 0.2450×10−3 -0.973

A′1 + 2 0 0 A′′1 − 1 0 0 614933a 0.2371×10−2 -0.985

E ′′ + 2 1 0 E ′ − 1 1 0 614968a 0.1778×10−2 -0.985

A′′1 − 3 0 0 A′1 + 2 0 0 925947 0.8681×10−2 -1.005

E ′ − 3 1 0 E ′′ + 2 1 0 926018 0.7717×10−2 -1.005

E ′′ − 3 2 0 E ′ + 2 2 0 926228 0.4824×10−2 -1.005

A′2 + 3 0 0 A′′2 − 2 0 0 922857 0.8591×10−2 -0.989

E ′′ + 3 1 0 E ′ − 2 1 0 922911 0.7637×10−2 -0.989

E ′ + 3 2 0 E ′′ − 2 2 0 923076 0.4773×10−2 -0.999
15ND3

A′′1 − 1 0 0 A′1 + 0 0 0 308606a 0.2499×10−3 -1.020

A′′2 − 2 0 0 A′2 + 1 0 0 615628a 0.2381×10−2 -1.008

E ′ − 2 1 0 E ′′ + 1 1 0 615677a 0.1785×10−2 -1.009

A′2 + 1 0 0 A′′2 − 0 0 0 305750a 0.2427×10−3 -0.975

A′1 + 2 0 0 A′′1 − 1 0 0 612801a 0.2346×10−2 -0.987

E ′′ + 2 1 0 E ′ − 1 1 0 612836a 0.1760×10−2 -0.987

A′′1 − 3 0 0 A′1 + 2 0 0 922356 0.8582×10−2 -1.004

E ′ − 3 1 0 E ′′ + 2 1 0 922426 0.7628×10−2 -1.004

E ′′ − 3 2 0 E ′ + 2 2 0 922636 0.4768×10−2 -1.004

A′2 + 3 0 0 A′′2 − 2 0 0 919577 0.8501×10−2 -0.990

E ′′ + 3 1 0 E ′ − 2 1 0 919632 0.7556×10−2 -0.990

E ′ + 3 2 0 E ′′ − 2 2 0 919800 0.4723×10−2 -0.990

Unless stated otherwise, frequencies from [354]; aHelminger and Gordy [355] and Helminger et al.
[356].
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Table 7.10: The rotation-inversion frequencies (ν), Einstein coefficients (A), and

sensitivities (T ) of 14ND3 in the ν2 vibrational state.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/MHz A/s−1 T

14ND3

A′′1 − 1 0 1 A′1 + 0 0 1 412847 0.4983×10−3 -2.030

A′′2 − 2 0 1 A′2 + 1 0 1 718585 0.3131×10−2 -1.585

E ′ − 2 1 1 E ′′ + 1 1 1 719092 0.2352×10−2 -1.588

A′2 + 1 0 1 A′′2 − 0 0 1 200763 0.5423×10−4 1.119

A′1 + 2 0 1 A′′1 − 1 0 1 508364 0.1082×10−2 -0.170

E ′′ + 2 1 1 E ′ − 1 1 1 507940 0.8088×10−3 -0.166

A′′1 − 3 0 1 A′1 + 2 0 1 1023449 0.9673×10−2 -1.404

E ′ − 3 1 1 E ′′ + 2 1 1 1023971 0.8608×10−2 -1.405

E ′′ − 3 2 1 E ′ + 2 2 1 1025546 0.5399×10−2 -1.411

A′2 + 3 0 1 A′′2 − 2 0 1 816294 0.4830×10−2 -0.491

E ′′ + 3 1 1 E ′ − 2 1 1 815898 0.4286×10−2 -0.488

E ′ + 3 2 1 E ′′ − 2 2 1 814696 0.2663×10−2 -0.480

A′′2 − 4 0 1 A′2 + 3 0 1 1327334 0.2188×10−1 -1.304

E ′ − 4 1 1 E ′′ + 3 1 1 1327865 0.2053×10−1 -1.305

E ′′ − 4 2 1 E ′ + 3 2 1 1329473 0.1647×10−1 -1.309

A′2 − 4 3 1 A′′2 + 3 3 1 1332194 0.9646×10−2 -1.317

A′1 − 4 -3 1 A′′1 + 3 -3 1 1332194 0.9646×10−2 -1.317

A′1 + 4 0 1 A′′1 − 3 0 1 1124392 0.1315×10−1 -0.637

E ′′ + 4 1 1 E ′ − 3 1 1 1124025 0.1231×10−1 -0.636

E ′ + 4 2 1 E ′′ − 3 2 1 1122914 0.9805×10−2 -0.630

A′′2 + 4 3 1 A′2 − 3 3 1 1121023 0.5679×10−2 -0.621

A′′1 + 4 -3 1 A′1 − 3 -3 1 1121023 0.5679×10−2 -0.621

A′′1 − 5 0 1 A′1 + 4 0 1 1630141 0.4149×10−1 -1.239

E ′ − 5 1 1 E ′′ + 4 1 1 1630681 0.3986×10−1 -1.240

E ′′ − 5 2 1 E ′ + 4 2 1 1632314 0.3494×10−1 -1.243

A′2 − 5 3 1 A′′2 + 4 3 1 1635074 0.2671×10−1 -1.249

A′1 − 5 -3 1 A′′1 + 4 -3 1 1635075 0.2671×10−1 -1.249

E ′′ − 5 4 1 E ′ + 4 4 1 1639027 0.1509×10−1 -1.258

A′2 + 5 0 1 A′′2 − 4 0 1 1432485 0.2790×10−1 -0.722

E ′′ + 5 1 1 E ′ − 4 1 1 1432151 0.2676×10−1 -0.721

E ′ + 5 2 1 E ′′ − 4 2 1 1431137 0.2333×10−1 -0.717

A′′2 + 5 3 1 A′2 − 4 3 1 1429410 0.1768×10−1 -0.710

A′′1 + 5 -3 1 A′1 − 4 -3 1 1429409 0.1768×10−1 -0.710

E ′ + 5 4 1 E ′′ − 4 4 1 1426908 0.9864×10−2 -0.700

Frequencies from Urban et al. [354].
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Table 7.11: The rotation-inversion frequencies (ν), Einstein coefficients (A), and

sensitivities (T ) of 15ND3 in the ν2 vibrational state.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/MHz A/s−1 T

15ND3

A′′1 − 1 0 1 A′1 + 0 0 1 402779 0.4636×10−3 -1.979

A′′2 − 2 0 1 A′2 + 1 0 1 707552 0.2995×10−2 -1.551

E ′ − 2 1 1 E ′′ + 1 1 1 708033 0.2250×10−2 -1.554

A′2 + 1 0 1 A′′2 − 0 0 1 208813 0.6139×10−4 0.891

A′1 + 2 0 1 A′′1 − 1 0 1 515358 0.1131×10−2 -0.241

E ′′ + 2 1 1 E ′ − 1 1 1 514961 0.8458×10−3 -0.237

Frequencies from Urban et al. [354].

states involved lie above 1600 cm−1. Astronomical detection is not impossible how-

ever. The energy levels of the (J,K) = (18, 18) inversion transition in the ground

vibrational state of 14NH3 reside at 2176.93 and 2178.47 cm−1, respectively, and

this line was observed towards the galactic centre star forming region Sgr B2 [331].

A number of 2ν2 ↔ ν4 transitions which possess sizeable Einstein A coefficients

and involve energy levels lower than the (J,K) = (18, 18) energies are listed in

Table 7.13. Such highly excited states could effectively be populated by exoergic

chemical formation processes [330].

There are now novel techniques to produce ultracold polyatomic molecules [360],

which have rich spectra well suited for testing fundamental physics. Already ex-

periments which decelerate, cool and trap ammonia molecules are being developed

to probe a temporal variation of µ [312, 316, 351, 361, 362]. In Table 7.14, several

highly sensitive 2ν2 ↔ ν4 transitions of 14NH3 are listed, which despite being around

two orders of magnitude weaker than the lowest intensity lines displayed in Fig. 7.3,

could possibly be detected in such high-precision studies.

If the transitions in Table 7.14 are too weak to be detected directly, the use of

combination differences involving infrared transitions from the ground vibrational

state to the 2ν2 and ν4 vibrational states should be considered. This technique

would apply to any two levels provided transitions from a common ground state
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Table 7.12: The wavenumbers (ν), wavelengths (λ), Einstein coefficients (A), and

sensitivities (T ) for transitions between the ground and ν2 vibrational state of 14ND3

and 15ND3.

Γ′ p′ J ′ K ′ v′2 Γ′′ p′′ J ′′ K ′′ v′′2 ν/cm−1 λ/µm A/s−1 T

14ND3

A′′1 − 1 0 1 A′1 + 0 0 0 759.3704 13.1688 0.1955×10+1 -0.475

A′′2 − 2 0 1 A′2 + 1 0 0 769.5283 12.9950 0.2444×10+1 -0.482

E ′ − 2 1 1 E ′′ + 1 1 0 769.5306 12.9949 0.1834×10+1 -0.482

A′2 + 1 0 1 A′′2 − 0 0 0 755.7906 13.2312 0.1948×10+1 -0.454

A′1 + 2 0 1 A′′1 − 1 0 0 765.9901 13.0550 0.2434×10+1 -0.461

E ′′ + 2 1 1 E ′ − 1 1 0 765.9767 13.0552 0.1827×10+1 -0.461

E ′ − 1 1 1 E ′′ + 1 1 0 749.0866 13.3496 0.2810×10+1 -0.468

E ′ − 2 1 1 E ′′ + 2 1 0 748.9645 13.3518 0.9344×100 -0.468

E ′′ − 2 2 1 E ′ + 2 2 0 748.9671 13.3517 0.3744×10+1 -0.468

E ′′ + 1 1 1 E ′ − 1 1 0 745.4912 13.4140 0.2798×10+1 -0.446

E ′′ + 2 1 1 E ′ − 2 1 0 745.4112 13.4154 0.9305×100 -0.446

E ′ + 2 2 1 E ′′ − 2 2 0 745.3664 13.4162 0.3729×10+1 -0.446

A′′2 − 0 0 1 A′2 + 1 0 0 738.8622 13.5343 0.5381×10+1 -0.461

A′′1 − 1 0 1 A′1 + 2 0 0 728.5209 13.7264 0.3427×10+1 -0.453

E ′ − 1 1 1 E ′′ + 2 1 0 728.5205 13.7264 0.2572×10+1 -0.453

A′1 + 0 0 1 A′′1 − 1 0 0 735.2618 13.6006 0.5358×10+1 -0.439

A′2 + 1 0 1 A′′2 − 2 0 0 724.9421 13.7942 0.3412×10+1 -0.431

E ′′ + 1 1 1 E ′ − 2 1 0 724.9258 13.7945 0.2560×10+1 -0.431
15ND3

A′′1 − 1 0 1 A′1 + 0 0 0 752.9702 13.2807 0.1888×10+1 -0.475

A′′2 − 2 0 1 A′2 + 1 0 0 763.1000 13.1044 0.2359×10+1 -0.482

E ′ − 2 1 1 E ′′ + 1 1 0 763.0998 13.1044 0.1770×10+1 -0.482

A′2 + 1 0 1 A′′2 − 0 0 0 749.6973 13.3387 0.1881×10+1 -0.455

A′1 + 2 0 1 A′′1 − 1 0 0 759.8667 13.1602 0.2351×10+1 -0.463

E ′′ + 2 1 1 E ′ − 1 1 0 759.8517 13.1605 0.1764×10+1 -0.462

E ′ − 1 1 1 E ′′ + 1 1 0 742.7222 13.4640 0.2713×10+1 -0.468

E ′ − 2 1 1 E ′′ + 2 1 0 742.6101 13.4660 0.9023×100 -0.468

E ′′ − 2 2 1 E ′ + 2 2 0 742.6053 13.4661 0.3616×10+1 -0.468

E ′′ + 1 1 1 E ′ − 1 1 0 739.4346 13.5238 0.2702×10+1 -0.448

E ′′ + 2 1 1 E ′ − 2 1 0 739.3626 13.5252 0.8988×100 -0.448

E ′ + 2 2 1 E ′′ − 2 2 0 739.3131 13.5261 0.3602×10+1 -0.447

A′′2 − 0 0 1 A′2 + 1 0 0 732.5333 13.6513 0.5197×10+1 -0.461

A′′1 − 1 0 1 A′1 + 2 0 0 722.2354 13.8459 0.3311×10+1 -0.452

E ′ − 1 1 1 E ′′ + 2 1 0 722.2324 13.8460 0.2484×10+1 -0.453

A′1 + 0 0 1 A′′1 − 1 0 0 729.2409 13.7129 0.5176×10+1 -0.440

A′2 + 1 0 1 A′′2 − 2 0 0 718.9634 13.9089 0.3296×10+1 -0.432

E ′′ + 1 1 1 E ′ − 2 1 0 718.9456 13.9093 0.2474×10+1 -0.432

Wavenumbers from Urban et al. [354].
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Table 7.13: Astronomically relevant transitions between the 2ν2 and ν4 vibrational

states of NH3.

ν ′ ← ν ′′ J±K
′ ← J±K

′′ νexp/MHz A/s−1 T

ν4 ← 2ν2 0+
0 ← 1+

1 379 596.5 4.703×10−6 -18.70

ν4 ← 2ν2 1+
1 ← 1+

0 824 624.2 6.427×10−5 -9.13

2ν2 ← ν4 2+
1 ← 1+

0 231 528.2 1.180×10−6 27.91

ν4 ← 2ν2 2+
2 ← 2+

1 687 852.5 6.318×10−5 -10.70

2ν2 ← ν4 3+
3 ← 2+

2 489 672.2 4.360×10−6 12.72

ν4 ← 2ν2 3+
3 ← 3+

2 557 275.3 7.623×10−5 -12.87

2ν2 ← ν4 3+
2 ← 2+

1 672 644.4 3.223×10−5 8.89

ν4 ← 2ν2 3+
2 ← 3+

1 679 163.4 6.964×10−5 -10.79

ν4 ← 2ν2 3+
1 ← 3+

0 774 889.5 4.660×10−5 -9.59

2ν2 ← ν4 3+
1 ← 2+

0 842 667.6 1.210×10−4 6.91

ν4 ← 2ν2 4+
4 ← 4+

3 441 874.1 7.796×10−5 -15.68

ν4 ← 2ν2 4+
3 ← 4+

2 548 781.8 9.102×10−5 -12.94

ν4 ← 2ν2 4+
2 ← 4+

1 657 787.0 6.078×10−5 -11.07

ν4 ← 2ν2 5+
5 ← 5+

4 342 797.1 7.054×10−5 -19.22

ν4 ← 2ν2 5+
4 ← 5+

3 434 941.1 9.782×10−5 -15.59

ν4 ← 2ν2 5+
3 ← 5+

2 527 333.3 8.219×10−5 -13.31

ν4 ← 2ν2 5+
2 ← 5+

1 618 776.8 4.583×10−5 -11.66

ν4 ← 2ν2 5+
1 ← 5+

0 672 376.5 2.542×10−5 -10.86

ν4 ← 2ν2 6+
6 ← 6+

5 261 535.4 5.745×10−5 -23.29

ν4 ← 2ν2 6+
5 ← 6+

4 340 322.9 9.137×10−5 -18.52

ν4 ← 2ν2 6+
4 ← 6+

3 413 748.1 9.006×10−5 -15.98

ν4 ← 2ν2 6+
3 ← 6+

2 488 661.3 6.308×10−5 -14.12

ν4 ← 2ν2 6+
2 ← 6+

1 559 214.0 3.027×10−5 -12.73

ν4 ← 2ν2 7+
7 ← 7+

6 198 997.4 4.284×10−5 -27.24

ν4 ← 2ν2 7+
6 ← 7+

5 266 541.0 7.700×10−5 -21.20

ν4 ← 2ν2 7+
5 ← 7+

4 321 935.0 8.437×10−5 -18.62

ν4 ← 2ν2 7+
4 ← 7+

3 375 174.5 6.887×10−5 -16.99

ν4 ← 2ν2 7+
3 ← 7+

2 430 468.6 4.113×10−5 -15.29

ν4 ← 2ν2 8+
8 ← 8+

7 154 415.5 3.036×10−5 -30.19

For symmetry of transitions see comprehensive tables in Appendix B. Experimental frequencies

from Ref. [327, 328] or obtained using energy levels from the MARVEL analysis [350].
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Table 7.14: Highly sensitive weak transitions between the 2ν2 and ν4 vibrational

states of 14NH3.

ν ′ ← ν ′′ J±K
′ ← J±K

′′ νexp/MHz A/s−1 T

2ν2 ← ν4 2+
2 ← 1+

1 61 712.7 1.042×10−8 107.95

ν4 ← 2ν2 7−3 ← 7+
1 110 957.2 9.461×10−8 -54.08

ν4 ← 2ν2 10+
2 ← 10+

1 123 427.8 4.745×10−7 -44.11

ν4 ← 2ν2 6−3 ← 6+
1 169 341.3 2.539×10−8 -37.57

All transitions are of symmetry E′ ← E′′. Experimental frequencies have been obtained using

energy levels from the MARVEL analysis [350].

level can be identified, or for a situation such as that depicted in Fig. 7.5. Infrared

transitions to the respective levels of the 2+
2 (2ν2) ← 1+

1 (ν4) transition (sensitivity

of T = 107.95) have been measured experimentally [328], whilst the corresponding

ground state pure inversion frequency is well known [346]. Combination differences

could be utilized to determine a possible shift in these energy levels provided the

sensitivities of the three involved transitions are also known. The large number

of potential combination differences prohibits us from carrying out a rigorous eval-

uation of all possible transitions. However, if particular combination differences

could be readily measured in the future, it would be straightforward to compute the

required sensitivity coefficients.

7.4 Hydronium (H3O
+)

The hydronium cation (H3O+) is one of the key molecular ions for inferring

properties of the interstellar medium, particularly for constraining the cosmic-ray

ionization rate of atomic and molecular hydrogen (see Indriolo et al. [363] and refer-

ences therein). Knowledge of such parameters is of astrophysical importance, and as

a result, H3O+ is one of the most searched for galactic and extragalactic interstellar

molecules [330, 364–375]. Since H3O+ formation requires the presence of H2O, and

the chemical relation between H3O+ and H2O is well-understood, H3O+ can serve

as an excellent proxy for H2O, which is often hard to observe directly [376].
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1Figure 7.5: Use of combination differences involving infrared transitions from the

ground vibrational state to the 2ν2 and ν4 vibrational states of ammonia. Energy

levels are labelled as J±K .

Similar to the ammonia molecule, H3O+ has several far infrared and submil-

limetre transitions that are particularly sensitive to the proton-to-electron mass

ratio µ [293, 377]. The most robust constraint on a variable µ was determined using

methanol absorption lines with sensitivities differing by ∆T = 6.4 [304]. In principle

then, hydronium is capable of being used exclusively to constrain a possible vari-

ation in the proton-to-electron mass ratio, thus avoiding certain systematic errors

which arise when using transitions from different molecular species [292, 313–315].

A small number of pure inversion and rotation-inversion transitions in the ground

vibrational state of H3O+ were originally investigated by Kozlov and Levshakov

[377]. However, the calculated sensitivity coefficients were overestimated and new

values have been computed for H3O+, along with the isotopologues H2DO+, HD2O+,

and D3O+ [293]. Given the astronomical relevance of H3O+, and a good represen-

tative set of accurate experimental data [378–383], it seems worthwhile to carry out

a comprehensive study of hydronium, H3
16O+ (also referred to as H3O+), and its

two symmetric top isotopologues, H3
18O+ and D3

16O+. Like NH3 [309, 310, 384],

there is a possibility to find transitions with strongly anomalous sensitivities caused

by the ∆k = ±3 interactions (see Papoušek et al. [385]), which have not yet been

considered.
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7.4.1 Variational calculations

To compute rotation-vibration transitions and corresponding intensities, TROVE

requires as input a PES and DMS. For the present work I utilized a new ab initio

PES and DMS. A detailed description of these will be reported elsewhere (Polyansky

& Ovsyannikov (in preparation)). Here we provide only a brief description of the

respective surfaces.

The PES was computed at the all-electron multireference configuration inter-

action (MRCI) level of theory using the core-valence-weighted basis sets, aug-cc-

pwCVQZ and aug-cc-pwCV5Z. A two-point formula was applied to extrapolate the

electronic energy to the CBS limit. Additional complete-active-space and relativistic

corrections were also incorporated into the PES. For the DMS, the MRCI/aug-cc-

pwCV5Z level of theory was used, which is known to produce reliable line intensi-

ties [386]. The same symmetry adapted expansion as used for the ammonia PES

and DMS (see Refs. [61, 85]) was employed to represent the ab initio data. Although

reliable PESs exist for hydronium [387–390], using these would require implementing

the corresponding analytic form to be compatible with TROVE.

Variational calculations used a polyad number of Pmax = 28, with truncation of

the kinetic and potential energy operators at 6th and 8th order, respectively. Note

that atomic mass values were used to determine the mass sensitivity of the energy

levels, however for theoretical frequency data and Einstein A coefficients I used

nuclear mass values. This was done because the PES was optimized using nuclear

mass values.

Again to demonstrate that the variational calculations are robust, sensitivity

coefficients have been computed by Professor Vladimir Špirko using the NRI the-

ory approach [307]. The NRI potential energy function for hydronium [391] was

upgraded by fitting to a much broader set of experimental data.
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Figure 7.6: Rotational dependence of the sensitivities (T ) of the inversion transitions

in the ground vibrational states of H3
16O+ and H3

18O+.

7.4.2 Results

The results are illustrated in Figures 7.6 to 7.9, with detailed tables given in

Appendix C. In Fig. 7.6 the rotational dependence of the sensitivities for the in-

version transitions in the ground vibrational state of H3
16O+ and H3

18O+ is shown.

The non-smooth behaviour of the (J,K= 3) transitions is caused by the ∆k = ±3

interactions (for details see Belov et al. [345]). For D3
16O+ the sensitivities display

a very similar, albeit smoother trend.

More encouraging are the low J rotation-inversion transitions displayed in Fig.

7.7, of which a large number have been observed experimentally in both labora-

tory [381, 383], and astronomical [366, 367, 369, 370, 375] environments. The

appearance of both positive and negative sensitivities is beneficial to constrain a

possible variation in the proton-to-electron mass ratio. The effective Hamiltonian

model used by Kozlov et al. [293] (KPR in Fig. 7.7), which does not account for all

centrifugal corrections, shows consistent agreement with both the non-rigid inverter

theory (NRI), and variational (TROVE) results. Thus the strongly anomalous sen-

sitivity coefficients of the 1−1,1 ←2+
2,1 and 1−1,0 ←2+

2,0 transitions of H2DO+, and the

1−0,1 ←1+
1,1 transition of HD2O+, proposed by Kozlov et al. [293] have real promise.

The close agreement also confirms that the ab initio theory used in the present study

is adequate. As discussed by Kozlov et al. [293], the results of Kozlov and Levshakov
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Figure 7.7: State dependence of the calculated sensitivities (T ) of the rotation-

inversion transitions in the ground vibrational states of H3
16O+ and D3

16O+. KL:

calculated in Kozlov and Levshakov [377]; KPR: calculated in Kozlov et al. [293];

NRI: calculated using the non-rigid inverter theory (this study); TROVE: calculated

variationally (this study). States are labelled as J ±K on the x-axis.

[377] (KL in Fig. 7.7) overestimate the H3
16O+ sensitivities and should not be used

in future studies.

The ∆k = ±3 interactions give rise to several “forbidden” rovibrational com-

bination differences of the ν3 band (see Fig. 7.8). The most sensitive of these are

presented in Fig. 7.9. Notably the 7−3 ←7+
0 and 9−3 ←9+

0 combination differences,

for which a number of the corresponding transitions have been observed experimen-

tally [378], have theoretically derived values of T = −15.416 and 10.518, respectively.

The difference, ∆T = 25.934, is comparable to the most stringent limit on µ obtained

using methanol, which utilized transitions with ∆T = 31.8 [302]. However, it should

be noted that this constraint was deemed unreliable, and subsequently replaced by

a more robust value which employed methanol transitions with ∆T = 6.4 [304].

Despite available experimental data [380], the D3
16O+ counterparts of these com-

bination differences do not appear to be of any real use, with sensitivities around

T = −1.006 (see Appendix C for more detail).
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Figure 7.8: The |J=9, K=0, v2 =0+〉−|J=9, K=3, v2 =0−〉 combination differences

of the ν3 band of H3O+.
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7.5 Chapter summary

The challenge of computing sensitivity coefficients is largely one of establishing

the µ-dependence of energy levels. The assumption that all baryonic matter can be

treated equally, i.e. any variation in the neutron-to-electron mass ratio would be

the same as in the proton-to-electron mass ratio, leads to the statement that µ is

directly proportional to atomic mass. The problem translates then to finding the

mass dependence of rovibrational energies.

After discussing the most common methods for computing sensitivity coefficients,

a new, variational approach was presented. It was based on running a series of

calculations using scaled values for the masses of the atoms and then extracting

the mass dependence of the energy levels using finite differences. Frequency data

and Einstein A coefficients could be computed, along with the mass dependence,

for all investigated transitions. This is a major advantage which could help future

laboratory and astronomical studies to measure transitions which possess sizeable

sensitivities. With this approach it is possible to consider any transition without loss

of accuracy, and in principle any molecule can be investigated. However, to do so the

necessary steps to perform variational calculations must be in place. This requires

reliable potential energy and dipole moment surfaces, and a working implementation

of the molecule in a nuclear motion code.

Given the past success of the ammonia method to constrain a possible varia-

tion in the proton-to-electron mass ratio, a comprehensive study of the vibration-

rotation-inversion transitions of all stable, symmetric top isotopomers of ammonia

was performed. The calculated sensitivity coefficients provide perspectives for the

further development of the ammonia method. Given the astrophysical importance of

NH3, the sensitivities presented here confirm that ammonia can be used exclusively

to constrain a spatial or temporal variation of µ. The reliance on other reference

molecular species, which is the main source of systematic error in the ammonia

method, can be avoided.
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We then looked at the astronomically important hydronium cation H3
16O+ and

its isotopologues, H3
18O+ and D3

16O+. Most promising were the “forbidden” com-

bination differences of the ν3 band, since several of the corresponding transitions

had already been experimentally measured. In particular, the 7−3 ←7+
0 and 9−3 ←9+

0

combination differences are separated by ∆T = 25.934. This is around four times

larger than the ∆T of the methanol transitions recently used to determine the most

reliable constraint on a possible variation of µ.
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8 Summary and outlook

This thesis has been concerned with variational calculations of rotation-vibration

spectra for small polyatomic molecules of astrophysical interest. The systems con-

sidered were CH3Cl, SiH4, CH4, NH3 and H3O+. Sophisticated electronic structure

methods were used to construct new ab initio potential energy and dipole moment

surfaces for CH3Cl, SiH4 and CH4. Apart from the DMS of CH4, all surfaces were

rigorously evaluated against a range of high-resolution spectroscopic data. Whilst

the accuracy of the DMSs was sufficient for atmospheric purposes, the PESs will

need to be empirically refined and this is currently in progress before hot line lists

are produced. For CH3Cl and SiH4 I plan to cover the 0–9000 cm−1 range and in-

clude transitions up to J = 85 and J = 50, respectively. A new methane line list

will have to go to much higher wavenumber regions, ideally to 14 000 cm−1, but the

exact details have not yet been decided.

Computing a complete and accurate line list for five-atom molecules is compu-

tationally challenging. Only methane, with the 10to10 line list [5], has been treated

using TROVE and this required around 3 million CPU (central processing unit)

hours on the Darwin and COSMOS high-performance computing clusters. A line

list for nitric acid (HNO3) applicable up to 500 K [392, 393] was produced for the

ExoMol database but this was calculated using a hybrid variational-perturbation

method [394]. The approach partitions the Hamiltonian matrix into separate sub-

blocks based on the contribution of the matrix elements to the energy levels. The

sub-blocks are treated either variationally or using perturbation theory depending

on their importance. Naturally some degree of accuracy is lost but the method is

promising for larger molecular systems.

A major bottleneck in rovibrational calculations is the diagonalization of huge

matrices. The size of the matrix will depend on the number of basis functions so it
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is desirable to use a compact basis set. A new approach which is currently being

tested, and will most likely be adopted for the CH3Cl, SiH4 and CH4 line lists, is

to use a transition moment pruned (TM-pruned) basis set. Vibrational transition

moments are relatively inexpensive to compute and can be done with a large polyad

number Pmax in TROVE. Each vibrational energy level, and therefore each J = 0

basis function, is assigned a transition moment which is simply the largest value

computed for that state. The J = 0 basis set is then pruned with respect to the

transition moments and energy levels with small values are removed and neglected

in subsequent spectral simulations. How aggressive the pruning procedure is will

depend on thresholds set by the user and it is possible to only prune after a certain

energy e.g. after 8000 cm−1. The TM-pruned basis set is then multiplied in the

usual manner with symmetrized rigid-rotor functions for J > 0 calculations.

An advantage of this approach is that the accuracy of the vibrational energies

calculated with a large Pmax is retained. Removing functions from the basis set will

affect all rovibrational energy levels to some degree. However, the errors introduced

by pruning the basis set, and also the convergence error associated with Pmax, can be

compensated for by refining the PES with the TM-pruned basis set. The resulting

‘effective’ PES is only reliable for that exact computational setup. This is usually

the case in theoretical line list production.

Another bottleneck arises when calculating intensities because of the sheer num-

ber of transitions which must be considered; a comprehensive five-atom molecule

line list applicable for elevated temperatures will easily contain billions of lines. To

speed up this process a new standalone code to work with TROVE for computing

intensities, GAIN-MPI [395], was recently developed to exploit the massively par-

allel architecture of GPUs (graphics processing units). GAIN-MPI has been used

in the production of hot line lists for PH3 [396], H2CO [191], and H2O2 [397], and

significantly accelerated the calculation of intensities. Combined with the implemen-

tation of curvilinear internal coordinates and an automatic differentiation method

to construct the rovibrational Hamiltonian in TROVE [70], accurately simulating
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rovibrational spectra from first principles is far more manageable than when the

10to10 methane line list was produced.

Discussing now the work concerning a possible variation of the proton-to-electron

mass ratio µ, existing potential energy and dipole moment surfaces were used to un-

cover highly sensitive and potentially observable transitions in NH3 and H3O+. The

variational approach was robust and new spectral lines could be investigated without

loss of accuracy; something not usually possible with effective Hamiltonian models.

Given that the ExoMol database is actively expanding and including notable astro-

physical molecules, there is an opportunity to probe new systems and transitions.

As demonstrated in this thesis, a lot of effort goes into constructing reliable PESs

and DMSs to work with. Furthermore, optimizing the nuclear motion calculations

is not always straightforward and it can take some time to do so.

Several nuclear motion codes are used within the ExoMol project (discussed

further in Ref. [69]) such as Duo [398] for diatomics, DVR3D [399] for triatomics,

and TROVE [9] for polyatomics. With each program are tailored input files for a

variety of different molecules. Sensitivity coefficients are fairly trivial to compute

and require a series of calculations with different values for the mass of the molecule.

Whilst there are no strict criteria for which molecular systems are best for probing µ,

molecules which can be observed in different astrophysical environments at different

red shifts are highly favourable. This is why the observation of H2 spectra has been

so successful and it can be said that if µ had changed, it is by less than 0.0005% in

the past (10–12.4)× 109 years [291].

The future of variational calculations of rotation-vibration spectra will be con-

cerned with larger molecules. The ExoMol project is actively working on hydrocar-

bons such as ethylene (C2H4) and ethane (C2H6) but these are challenging systems.

The so-called curse of dimensionality, the exponential scaling of matrix size with

the number of atoms, will only partially be addressed as computing power increases.

Instead, efficient techniques will have to be developed in areas such as vibrational

basis set pruning and exploiting matrix sparsity to make the problem tractable.
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Finally, an issue we have not discussed is the huge amount of data associated

with a line list and how best to store it. The ExoMol data structure (see Tennyson

et al. [8]) was designed to be as concise as possible. Even so, storing a line list takes

up a sizeable amount of computer memory and for larger systems the demands will

only grow. In a line list a significant number of computed transitions have relatively

weak intensities. These are important as they contribute to opacity in astronomical

spectra but are unlikely to be observed directly due to the resolution of spectroscopic

observations. There should therefore be a more compact way of representing weak

lines. One suggestion is to separate the wavenumber range of the line list into bins,

e.g. 10−3 cm−1, and for each bin sum the intensities of the weak lines. Stronger

lines above a certain intensity threshold remain so that band structure is preserved

but the size of the line list is reduced. Techniques such as these will undoubtedly

emerge in the future.
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[147] D. P. Chong and D. Papoušek, “Electric dipole moment derivatives for PH3,
PD3, CH3F, CD3F, CH3Cl, and CD3Cl computed by the density functional
method,” J. Mol. Spectrosc. 155, 167 (1992).
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Appendix A

Table A.1: Assigned J = 0 vibrational term values (in cm−1) for CH3
35Cl and

CH3
37Cl computed using the CBS-35 HL and CBS-37 HL PESs, respectively. The

basis contribution corresponds to the TROVE assignment.

Mode Sym. CBS-35 HL CBS-37 HL Basis contribution

ν3 A1 733.22 727.40 0.94

ν2 A1 1355.01 1354.82 0.94

2ν3 A1 1457.54 1446.12 0.92

2ν6 A1 2029.46 2028.68 0.78

ν2 + ν3 A1 2080.98 2074.90 0.88

3ν3 A1 2173.09 2156.31 0.90

ν5 + ν6 A1 2465.28 2464.85 0.61

2ν2 A1 2694.61 2694.22 0.90

ν3 + 2ν6 A1 2751.74 2745.26 0.76

ν2 + 2ν3 A1 2797.64 2785.81 0.82

2ν5 A1 2879.31 2879.81 0.71

4ν3 A1 2880.47 2858.14 0.87

ν1 A1 2969.16 2969.14 0.88

3ν6 A1 3060.62 3059.47 0.71

ν3 + ν5 + ν6 A1 3190.27 3184.10 0.60

ν2 + 2ν6 A1 3373.57 3372.58 0.75

2ν2 + ν3 A1 3414.02 3407.71 0.81

2ν3 + 2ν6 A1 3464.69 3452.79 0.72

ν5 + 2ν6 A1 3474.85 3473.97 0.45

3ν3 + ν2 A1 3505.14 3487.67 0.76

5ν3 A1 3578.55 3551.95 0.85

ν3 + 2ν5 A1 3608.77 3602.92 0.72

ν1 + ν3 A1 3702.43 3696.58 0.87

ν3 + 3ν6 A1 3776.82 3770.04 0.69
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(Continued)

Mode Sym. CBS-35 HL CBS-37 HL Basis contribution

ν2 + ν5 + ν6 A1 3811.29 3810.65 0.60

2ν3 + ν5 + ν6 A1 3906.26 3894.37 0.60

3ν2 A1 4020.97 4020.38 0.86

ν4 + ν6 A1 4042.96 4041.92 0.69

4ν6 A1 4057.05 4055.79 0.52

ν2 + ν3 + 2ν6 A1 4090.60 4084.12 0.69

2ν2 + 2ν3 A1 4123.75 4111.58 0.72

3ν3 + 2ν6 A1 4168.72 4151.54 0.70

ν2 + 2ν5 A1 4231.18 4230.90 0.71

ν2 + 4ν3 A1 4203.62 4180.58 0.70

6ν3 A1 4268.42 4237.53 0.83

ν1 + ν2 A1 4323.57 4323.40 0.85

2ν3 + 2ν5 A1 4328.70 4317.26 0.71

3ν5 A1 4337.34 4337.23 0.65

ν2 + 3ν6 A1 4399.27 4397.92 0.69

ν1 + 2ν3 A1 4426.97 4415.51 0.86

2ν3 + 3ν6 A1 4483.87 4471.19 0.66

3ν3 + ν5 + ν6 A1 4613.10 4596.21 0.58

2ν2 + 2ν6 A1 4703.21 4701.96 0.72

3ν2 + ν3 A1 4734.15 4727.65 0.74

ν3 + ν4 + ν6 A1 4778.45 4770.27 0.59

2ν2 + 3ν3 A1 4823.93 4805.94 0.65

4ν3 + 2ν6 A1 4863.59 4841.51 0.68

ν2 + ν3 + 2ν5 A1 4952.27 4946.10 0.68

ν2 + 5ν3 A1 4891.07 4862.73 0.68

ν1 + 2ν6 A1 4985.90 4985.09 0.72

ν1 + ν2 + ν3 A1 5048.98 5042.84 0.74

3ν3 + 2ν5 A1 5039.82 5023.11 0.66

ν3 + 3ν5 A1 5062.68 5056.81 0.65

ν4 + 2ν6 A1 5063.83 5062.54 0.71

7ν3 A1 4951.21 4916.63 0.87

ν2 + ν3 + 3ν6 A1 5111.23 5104.65 0.63
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(Continued)

Mode Sym. CBS-35 HL CBS-37 HL Basis contribution

2ν2 + ν5 + ν6 A1 5141.45 5140.60 0.58

ν1 + 3ν3 A1 5142.84 5126.02 0.84

3ν3 + 3ν6 A1 5180.97 – 0.63

4ν2 A1 5335.27 5334.45 0.81

ν5 + 4ν6 A1 5522.77 5521.13 0.55

2ν2 + 2ν5 A1 5562.75 5562.28 0.68

ν1 + 2ν2 A1 5658.93 5658.52 0.79

ν2 + 3ν5 A1 5680.91 5680.58 0.63

ν2 + 2ν3 + 2ν5 A1 5663.56 5651.65 0.62

5ν3 + 2ν6 A1 5550.28 5524.23 0.70

2ν2 + 3ν6 A1 5723.89 5722.30 0.67

4ν3 + 2ν5 A1 5741.82 5720.29 0.55

2ν3 + 3ν5 A1 5779.06 5767.63 0.64

8ν3 A1 5620.62 5577.93 0.65

2ν1 A1 5881.04 5880.96 0.52

2ν4 A1 6018.47 6018.29 0.89

2ν4 + 2ν5 A1 8877.25 – 0.51

3ν4 A1 9079.28 9078.84 0.89

ν5 + ν6 A2 2467.85 2467.43 0.94

3ν6 A2 3060.85 3059.70 0.71

ν3 + ν5 + ν6 A2 3193.18 3187.02 0.91

ν5 + 2ν6 A2 3473.51 3472.71 0.43

ν3 + 3ν6 A2 3777.02 3770.25 0.69

ν2 + ν5 + ν6 A2 3813.05 3812.43 0.90

2ν3 + ν5 + ν6 A2 3909.61 3900.07 0.88

ν4 + ν6 A2 4054.83 4054.42 0.86

3ν5 A2 4335.96 4335.87 0.65

ν2 + 3ν6 A2 4399.70 4398.34 0.69

ν5 + 3ν6 A2 4482.64 4482.71 0.71

2ν3 + 3ν6 A2 4484.87 4471.18 0.66

ν2 + ν3 + ν5 + ν6 A2 4531.96 4525.58 0.84

3ν3 + ν5 + ν6 A2 4616.33 4599.68 0.82
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(Continued)

Mode Sym. CBS-35 HL CBS-37 HL Basis contribution

ν3 + ν4 + ν6 A2 4785.23 4779.05 0.84

ν3 + 3ν5 A2 5061.41 5055.56 0.65

ν4 + 2ν6 A2 5063.30 5062.05 0.72

ν2 + ν3 + 3ν6 A2 5111.56 5104.98 0.63

2ν2 + ν5 + ν6 A2 5142.49 5141.65 0.85

ν3 + ν5 + 3ν6 A2 5195.90 5189.08 0.62

3ν3 + 3ν6 A2 5181.25 5163.98 0.63

3ν5 + ν6 A2 5310.98 5310.60 0.66

ν5 + 4ν6 A2 5522.72 5521.09 0.55

ν2 + 3ν5 A2 5679.44 5679.12 0.64

2ν2 + 3ν6 A2 5724.41 5722.82 0.67

2ν3 + 3ν5 A2 5777.88 5766.49 0.65

ν6 E 1018.05 1017.66 0.87

ν5 E 1452.56 1452.53 0.87

ν3 + ν6 E 1745.78 1739.64 0.85

2ν6 E 2038.37 2037.59 0.79

ν3 + ν5 E 2183.30 2177.47 0.86

ν2 + ν6 E 2367.90 2367.32 0.85

ν5 + ν6 E 2461.98 2461.78 0.62

2ν3 + ν6 E 2464.65 2452.76 0.81

ν3 + 2ν6 E 2760.42 2753.96 0.77

ν2 + ν5 E 2803.96 2803.73 0.85

2ν5 E 2898.22 2898.19 0.77

2ν3 + ν5 E 2905.14 2893.71 0.84

ν4 E 3038.19 3037.71 0.79

3ν6 E 3045.76 3044.97 0.59

ν2 + ν3 + ν6 E 3089.19 3082.87 0.79

3ν3 + ν6 E 3174.22 3157.29 0.80

ν3 + ν5 + ν6 E 3187.63 3181.44 0.63

ν2 + 2ν6 E 3382.80 3381.83 0.76

ν5 + 2ν6 E 3469.23 3468.74 0.53

2ν3 + 2ν6 E 3473.52 3461.26 0.73
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(Continued)

Mode Sym. CBS-35 HL CBS-37 HL Basis contribution

ν5 + 2ν6 E 3483.31 3482.48 0.70

ν2 + ν3 + ν5 E 3527.41 3521.30 0.80

3ν3 + ν5 E 3618.18 3601.43 0.82

ν3 + 2ν5 E 3626.37 3620.53 0.76

2ν2 + ν6 E 3702.80 3702.01 0.81

ν3 + 3ν6 E 3759.07 3752.30 0.65

ν3 + ν4 E 3776.04 3769.61 0.88

ν2 + 2ν3 + ν6 E 3801.73 3790.16 0.70

ν2 + ν5 + ν6 E 3809.12 3808.47 0.61

2ν5 + ν6 E 3886.75 3886.25 0.50

4ν3 + ν6 E 3875.39 3853.47 0.77

2ν3 + ν5 + ν6 E 3903.97 3892.33 0.62

2ν5 + ν6 E 3908.52 3908.05 0.67

ν1 + ν6 E 3980.97 3980.56 0.80

ν4 + ν6 E 4049.83 4048.99 0.75

4ν6 E 4084.96 4083.43 0.65

ν2 + ν3 + 2ν6 E 4099.37 4092.86 0.70

2ν2 + ν5 E 4138.86 4138.44 0.82

3ν3 + 2ν6 E 4177.02 4159.97 0.62

ν3 + ν5 + 2ν6 E 4202.77 4182.76 0.69

ν2 + 2ν5 E 4245.82 4245.54 0.73

ν2 + 2ν3 + ν5 E 4241.38 4229.53 0.73

3ν5 E 4304.73 4304.69 0.60

4ν3 + ν5 E 4322.68 4300.74 0.81

2ν3 + 2ν5 E 4345.57 4334.16 0.75

ν2 + 3ν6 E 4379.54 4378.44 0.56

ν2 + ν4 E 4385.90 4385.04 0.73

ν1 + ν5 E 4416.81 4417.11 0.77

2ν2 + ν3 + ν6 E 4419.02 4412.44 0.71

2ν3 + 3ν6 E 4466.51 4454.31 0.60

2ν3 + ν4 E 4495.34 – 0.87

5ν3 + ν6 E 4567.86 4541.48 0.75
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(Continued)

Mode Sym. CBS-35 HL CBS-37 HL Basis contribution

3ν3 + ν5 + ν6 E 4611.83 4594.42 0.61

ν3 + 2ν5 + ν6 E 4631.00 4624.81 0.67

ν1 + ν3 + ν6 E 4708.88 4702.70 0.79

2ν2 + 2ν6 E 4712.74 4711.54 0.73

ν3 + ν4 + ν6 E 4783.16 4775.60 0.50

ν3 + 4ν6 E 4795.02 4760.90 0.62

ν2 + ν5 + 2ν6 E 4822.63 – 0.66

2ν2 + ν3 + ν5 E 4855.84 4849.49 0.74

4ν3 + 2ν6 E 4871.98 4850.06 0.67

2ν3 + ν5 + 2ν6 E 4913.30 4897.96 0.66

ν2 + 3ν3 + ν5 E 4946.16 4928.65 0.70

ν1 + 2ν6 E 4995.08 4994.28 0.73

3ν2 + ν6 E 5024.73 5023.72 0.77

ν3 + 3ν5 E 5031.24 5025.35 0.60

5ν3 + ν5 E 5018.26 4991.77 0.80

3ν3 + 2ν5 E 5056.00 5039.28 0.74

ν2 + ν3 + ν4 E 5108.14 5100.13 0.56

2ν2 + ν5 + ν6 E 5139.97 – 0.61

ν1 + ν3 + ν5 E 5147.53 – 0.76

3ν3 + 3ν6 E 5164.13 5146.65 0.53

ν3 + ν4 + ν5 E 5209.03 5202.22 0.58

3ν3 + ν4 E 5223.55 5202.73 0.84

ν2 + 2ν5 + ν6 E 5249.39 5248.70 0.64

2ν3 + 2ν5 + ν6 E 5344.52 5333.17 0.66

6ν3 + ν6 E 5252.98 5223.68 0.79

3ν2 + ν5 E 5460.15 5459.52 0.77

2ν2 + 2ν5 E 5575.55 5575.08 0.72

ν2 + 3ν5 E 5654.71 5654.32 0.51

ν2 + 2ν3 + 2ν5 E 5677.58 5665.69 0.67

5ν3 + 2ν6 E 5558.47 5532.56 0.71

ν2 + 4ν3 + ν5 E 5640.36 5617.37 0.66

2ν2 + ν4 E 5711.12 5711.19 0.81

214



(Continued)

Mode Sym. CBS-35 HL CBS-37 HL Basis contribution

2ν3 + 3ν5 E 5748.70 5737.82 0.59

3ν2 + ν3 + ν6 E 5736.60 5730.95 0.57

4ν3 + 2ν5 E 5757.54 5735.23 0.74

6ν3 + ν5 E 5706.20 5675.51 0.81

ν1 + ν4 E 5875.98 5875.78 0.52

ν4 + 2ν5 E 5923.37 5923.05 0.53

2ν1 + ν5 E 7311.08 7311.15 0.40

2ν4 + ν5 E 7445.86 7445.13 0.73

Table A.2: Calculated vibrational transition moments (in Debye) and frequencies

(in cm−1) from the vibrational ground state for CH3
35Cl and CH3

37Cl computed

using the CBS-35 HL and CBS-37 HL PESs, respectively.

Mode Sym. CBS-35 HL µ
35Cl
if CBS-37 HL µ

37Cl
if

ν3 A1 733.22 1.147E-1 727.40 1.142E-1

ν6 E 1018.05 3.707E-2 1017.66 3.724E-2

ν2 A1 1355.01 5.260E-2 1354.82 5.275E-2

ν5 E 1452.56 5.451E-2 1452.53 5.449E-2

2ν3 A1 1457.54 6.950E-3 1446.12 7.391E-3

ν3 + ν6 E 1745.78 8.262E-4 1739.64 8.698E-4

2ν6 A1 2029.46 3.742E-5 2028.68 6.348E-5

2ν6 E 2038.37 6.358E-4 2037.59 6.441E-4

ν2 + ν3 A1 2080.98 3.619E-3 2074.90 3.589E-3

3ν3 A1 2173.09 4.546E-4 2156.31 5.100E-4

ν3 + ν5 E 2183.30 4.593E-4 2177.47 4.560E-4

ν2 + ν6 E 2367.90 6.991E-3 2367.32 6.972E-3

ν5 + ν6 E 2461.98 6.235E-3 2461.78 6.248E-3

2ν3 + ν6 E 2464.65 1.057E-3 2452.76 1.015E-3

ν5 + ν6 A1 2465.28 4.914E-3 2464.85 4.900E-3

ν5 + ν6 A2 2467.85 1.389E-15 2467.43 4.451E-16

2ν2 A1 2694.61 2.072E-4 2694.22 2.089E-4
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(Continued)

Mode Sym. CBS-35 HL µ
35Cl
if CBS-37 HL µ

37Cl
if

ν3 + 2ν6 A1 2751.74 1.951E-3 2745.26 1.921E-3

ν3 + 2ν6 E 2760.42 8.572E-5 2753.96 6.799E-5

ν2 + 2ν3 A1 2797.64 1.884E-3 2785.81 1.707E-3

ν2 + ν5 E 2803.96 4.126E-3 2803.73 4.124E-3

2ν5 A1 2879.31 2.217E-2 2879.81 2.451E-2

4ν3 A1 2880.47 1.051E-2 2858.14 1.184E-3

2ν5 E 2898.22 4.083E-3 2898.19 4.038E-3

2ν3 + ν5 E 2905.14 3.594E-4 2893.71 7.064E-4

ν1 A1 2969.16 5.296E-2 2969.14 5.296E-2

ν4 E 3038.19 3.108E-2 3037.71 2.939E-2

3ν6 E 3045.76 2.268E-2 3044.97 2.474E-2

3ν6 A1 3060.62 2.135E-3 3059.47 2.145E-3

3ν6 A2 3060.85 4.098E-14 3059.70 1.170E-14

ν2 + ν3 + ν6 E 3089.19 3.870E-3 3082.87 4.478E-3

3ν3 + ν6 E 3174.22 4.311E-4 3157.29 5.182E-4

ν3 + ν5 + ν6 E 3187.63 7.392E-5 3181.44 5.534E-5

ν3 + ν5 + ν6 A1 3190.27 1.068E-3 3184.10 1.085E-3

ν3 + ν5 + ν6 A2 3193.18 1.385E-15 3187.02 3.890E-16

ν2 + 2ν6 A1 3373.57 1.541E-3 3372.58 1.543E-3

ν2 + 2ν6 E 3382.80 1.105E-4 3381.83 1.114E-4

2ν2 + ν3 A1 3414.02 9.106E-4 3407.71 8.702E-4

2ν3 + 2ν6 A1 3464.69 3.761E-4 3452.79 3.893E-4

ν5 + 2ν6 E 3469.23 1.206E-3 3468.74 1.208E-3

ν5 + 2ν6 A2 3473.51 2.622E-14 3472.71 7.741E-15

2ν3 + 2ν6 E 3473.52 2.068E-4 3461.26 2.090E-4

ν5 + 2ν6 A1 3474.85 6.695E-5 3473.97 4.758E-5

ν5 + 2ν6 E 3483.31 3.448E-4 3482.48 3.432E-4

3ν3 + ν2 A1 3505.14 1.882E-4 3487.67 1.831E-4

ν2 + ν3 + ν5 E 3527.41 2.939E-4 3521.30 2.827E-4

5ν3 A1 3578.55 1.235E-4 3551.95 9.459E-5

ν3 + 2ν5 A1 3608.77 1.808E-3 3602.92 1.801E-3

3ν3 + ν5 E 3618.18 8.408E-5 3601.43 6.805E-5
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(Continued)

Mode Sym. CBS-35 HL µ
35Cl
if CBS-37 HL µ

37Cl
if

ν3 + 2ν5 E 3626.37 6.914E-4 3620.53 6.900E-4

ν1 + ν3 A1 3702.43 4.766E-3 3696.58 4.747E-3

2ν2 + ν6 E 3702.80 8.163E-4 3702.01 8.054E-4

ν3 + 3ν6 E 3759.07 8.688E-4 3752.30 8.055E-4

ν3 + ν4 E 3776.04 4.044E-3 3769.61 3.952E-3

ν3 + 3ν6 A1 3776.82 1.852E-4 3770.04 1.867E-4

ν3 + 3ν6 A2 3777.02 6.439E-15 3770.25 2.043E-15

ν2 + 2ν3 + ν6 E 3801.73 9.104E-4 3790.16 1.225E-3

ν2 + ν5 + ν6 E 3809.12 1.291E-3 3808.47 1.254E-3

ν2 + ν5 + ν6 A1 3811.29 1.390E-3 3810.65 1.387E-3

ν2 + ν5 + ν6 A2 3813.05 3.202E-15 3812.43 6.199E-16

4ν3 + ν6 E 3875.39 2.485E-4 3853.47 1.995E-4

2ν5 + ν6 E 3886.75 2.124E-3 3886.25 2.120E-3

2ν3 + ν5 + ν6 E 3903.97 1.816E-4 3892.33 3.139E-4

2ν3 + ν5 + ν6 A1 3906.26 1.180E-4 3894.37 2.075E-4

2ν5 + ν6 E 3908.52 3.077E-4 3908.05 3.026E-4

2ν3 + ν5 + ν6 A2 3909.61 1.448E-15 3900.07 2.389E-15

ν1 + ν6 E 3980.97 3.459E-3 3980.56 3.462E-3

3ν2 A1 4020.97 2.283E-3 4020.38 2.283E-3

ν4 + ν6 A1 4042.96 3.428E-3 4041.92 3.272E-3

ν4 + ν6 E 4049.83 1.602E-3 4048.99 1.546E-3

ν4 + ν6 A2 4054.83 2.007E-15 4054.42 7.230E-16

4ν6 A1 4057.05 4.041E-3 4055.79 4.085E-3

4ν6 E 4084.96 1.742E-4 4083.43 1.761E-4

ν2 + ν3 + 2ν6 A1 4090.60 1.524E-3 4084.12 1.730E-3

ν2 + ν3 + 2ν6 E 4099.37 5.806E-4 4092.86 6.327E-4

2ν2 + 2ν3 A1 4123.75 2.385E-4 4111.58 2.295E-4

2ν2 + ν5 E 4138.86 2.564E-3 4138.44 2.560E-3

3ν3 + 2ν6 A1 4168.72 2.461E-4 4151.54 2.712E-4

3ν3 + 2ν6 E 4177.02 9.934E-5 4159.97 1.011E-4
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Appendix B

Comprehensive tables of all investigated transitions between the 2ν2 and ν4 vi-

brational states of 14NH3 are provided. In total, sensitivity coefficients have been

calculated for over 350 microwave, submillimetre and far infrared transitions up to

J = 15. All rotation-vibration energy levels have a vibrational state (v), symmetry

(Γ), parity (p), rotational quantum number (J), and projection onto the molecule-

fixed z axis (K) label. For all transitions there is a TROVE computed frequency νcalc

and corresponding sensitivity coefficient Tcalc, and a MARVEL substituted experi-

mental frequency νexp and corresponding sensitivity coefficient Texp where possible.

Upper and lower states are labelled with a ′ and ′′, respectively. Aside from Table 1

which contains the observed frequencies from Ref. [327, 328], transitions have been

grouped together according to Einstein A coefficient in Tables 2, 3 and 4. Note that

in relation to the standard Herzberg convention [337] which uses the normal mode

quantum numbers v1, v2, v3, v4, l3 and l4, the 2ν2 state corresponds to the doubly

excited inversion mode v2 = 2, whilst ν4 is the singly excited antisymmetric bending

mode v4 = |l4| = 1 (see Down et al. [338] for more details).
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Table B.1: Observed vibration-rotation-inversion frequencies (ν), Einstein A coeffi-

cients (A) and sensitivity coefficients (T ) of 14NH3 for transitions between the 2ν2

and ν4 vibrational states. Experimental frequencies are from Ref. [328] unless stated

otherwise.

v′ Γ′ p′ J ′ K ′ v′′ Γ′′ p′′ J ′′ K ′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

ν4 E ′′ + 9 9 2ν2 E ′ + 9 8 132 031.60 124 829.13 a,b 2.167E-5 −29.98 -31.71

ν4 E ′ + 8 8 2ν2 E ′′ + 8 7 160 886.62 154 415.54 a 3.036E-5 −28.97 -30.19

ν4 E ′ + 9 8 2ν2 E ′′ + 9 7 185 115.85 177 312.18 4.845E-5 −22.66 -23.66

ν4 A′′2 + 7 7 2ν2 A′2 + 7 6 204 389.50 198 997.44 4.284E-5 −26.52 -27.24

ν4 A′′2 + 9 7 2ν2 A′2 + 9 6 214 465.53 206 314.26 5.749E-5 −20.53 -21.34

2ν2 A′′2 + 10 9 ν4 A′2 + 10 10 205 993.39 210 104.63 9.220E-5 14.34 14.06

ν4 A′′2 + 8 7 2ν2 A′2 + 8 6 220 233.54 213 191.30 6.121E-5 −22.26 -22.99

2ν2 E ′ + 10 4 ν4 E ′′ + 10 5 215 008.15 219 719.96 2.321E-5 14.39 14.09

ν4 E ′ + 9 6 2ν2 E ′′ + 9 5 232 288.19 223 905.49 5.161E-5 −19.94 -20.68

2ν2 E ′′ + 2 1 ν4 E ′ + 1 0 233 283.50 231 528.17 1.180E-6 27.70 27.91

ν4 E ′′ + 9 5 2ν2 E ′ + 9 4 244 124.00 235 545.72 3.788E-5 −20.19 -20.92

2ν2 E ′ + 11 10 ν4 E ′′ + 11 11 234 782.46 240 987.16 1.228E-4 13.70 13.34

ν4 A′2 + 9 4 2ν2 A′′2 + 9 3 252 734.04 243 884.52 2.227E-5 −21.14 -21.91

ν4 E ′′ + 9 3 2ν2 E ′ + 9 2 257 497.74 248 518.72 9.251E-6 −22.53 -23.35

2ν2 E ′ + 10 8 ν4 E ′′ + 10 9 247 568.61 251 505.03 1.272E-4 12.71 12.51

ν4 E ′ + 8 6 2ν2 E ′′ + 8 5 260 843.42 253 418.53 7.117E-5 −19.97 -20.55

2ν2 E ′′ + 10 5 ν4 E ′ + 10 6 250 530.56 255 218.89 5.420E-5 13.24 13.00

ν4 E ′ + 6 6 2ν2 E ′′ + 6 5 265 487.21 261 535.38 5.745E-5 −22.94 -23.29

ν4 E ′ + 7 6 2ν2 E ′′ + 7 5 272 436.40 266 540.95 7.700E-5 −20.74 -21.20

2ν2 E ′′ + 12 11 ν4 E ′ + 12 12 258 846.80 267 188.68 1.536E-4 12.87 12.47

2ν2 E ′′ + 10 7 ν4 E ′ + 10 8 266 662.39 270 799.22 1.222E-4 12.40 12.21

2ν2 A′2 + 10 6 ν4 A′′2 + 10 7 267 702.67 272 146.04 9.216E-5 12.61 12.41

ν4 E ′′ + 8 5 2ν2 E ′ + 8 4 294 171.35 286 489.22 6.298E-5 −18.94 -19.45

2ν2 A′′2 + 11 9 ν4 A′2 + 11 10 285 705.21 291 851.94 1.775E-4 12.20 11.95

2ν2 E ′′ + 14 13 ν4 E ′ + 14 14 291 137.45 303 522.59 2.101E-4 11.11 10.66

ν4 A′2 + 8 4 2ν2 A′′2 + 8 3 325 490.67 317 688.65 4.406E-5 −18.41 -18.86

ν4 E ′′ + 7 5 2ν2 E ′ + 7 4 328 122.85 321 934.98 8.437E-5 −18.27 -18.62

2ν2 E ′ + 11 8 ν4 E ′′ + 11 9 317 129.46 323 758.48 1.849E-4 11.91 11.67

2ν2 E ′ + 12 10 ν4 E ′′ + 12 11 318 361.60 326 815.17 2.298E-4 11.57 11.27

ν4 E ′′ + 6 5 2ν2 E ′ + 6 4 344 695.37 340 322.94 9.137E-5 −18.29 -18.52

2ν2 E ′′ + 11 7 ν4 E ′ + 11 8 333 147.37 340 449.73 1.570E-4 12.05 11.79

2ν2 A′2 + 11 6 ν4 A′′2 + 11 7 332 808.60 340 787.72 1.099E-4 12.50 12.21

ν4 E ′′ + 5 5 2ν2 E ′ + 5 4 345 142.06 342 797.10 7.054E-5 −19.09 -19.22

ν4 E ′′ + 8 3 2ν2 E ′ + 8 2 353 734.11 346 476.00 2.037E-5 −16.96 -17.32

2ν2 A′′2 + 12 9 ν4 A′2 + 12 10 362 254.22 371 521.86 2.544E-4 11.28 11.00

ν4 A′2 + 7 4 2ν2 A′′2 + 7 3 381 473.91 375 174.47 6.887E-5 −16.71 -16.99

2ν2 A′2 + 14 12 ν4 A′′2 + 14 13 363 477.37 376 477.33 3.281E-4 10.34 9.98

ν4 E ′ + 0 0 2ν2 E ′′ + 1 1 376 860.11 379 596.53 4.703E-6 −18.84 -18.70

a Ref. [327]. b MARVEL analysis [350] reports a frequency of 123 705.91 MHz resulting in
T = −32.00.
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Table B.2: Vibration-rotation-inversion frequencies (ν), Einstein A coefficients (A)

and sensitivity coefficients (T ) of 14NH3 for transitions between the 2ν2 and ν4

vibrational states. Experimental frequencies have been obtained using energy levels

from the MARVEL analysis [350].

v′ Γ′ p′ J ′ K′ v′′ Γ′′ p′′ J ′′ K′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

ν4 E′ + 12 12 2ν2 E′′ + 12 11 98 604.7 1.232E-5 −28.19

ν4 E′′ + 15 15 2ν2 E′ + 15 14 105 113.2 1.498E-5 −24.50

2ν2 E′ − 11 5 ν4 E′′ − 12 6 114 532.7 116 719.3 1.236E-6 1.32 1.29

ν4 E′ − 10 3 2ν2 E′′ − 9 4 122 078.5 113 519.2 1.211E-6 -10.89 -11.71

2ν2 A′′2 − 10 0 ν4 A′2 + 11 2 135 815.0 143 327.4 1.120E-6 11.78 11.17

ν4 E′ + 13 12 2ν2 E′′ + 13 11 142 611.3 3.425E-5 −19.76

ν4 E′′ + 10 3 2ν2 E′ + 10 2 151 734.0 142 903.4 2.438E-6 −30.51 -32.40

ν4 A′′2 − 10 2 2ν2 A′2 − 9 3 158 134.5 148 964.7 3.712E-6 -8.29 -8.80

ν4 E′′ + 10 9 2ν2 E′ + 10 8 162 964.2 4.001E-5 −22.28

2ν2 A′′2 + 10 3 ν4 A′2 + 10 4 165 035.7 169 236.3 6.421E-6 16.36 15.95

ν4 E′′ + 11 9 2ν2 E′ + 11 8 166 276.9 4.090E-5 −19.42

2ν2 E′ + 9 8 ν4 E′′ + 9 9 174 047.5 6.374E-5 14.47

ν4 E′ − 10 1 2ν2 E′′ − 9 2 174 877.9 165 720.4 6.185E-6 -7.11 -7.51

ν4 E′′ − 10 0 2ν2 E′ − 9 1 186 039.2 176 739.5 9.006E-6 -5.91 -6.22

ν4 E′ + 10 6 2ν2 E′′ + 10 5 190 719.0 2.944E-5 −20.13

2ν2 E′′ + 9 5 ν4 E′ + 9 6 203 574.1 4.550E-5 12.45

ν4 A′′2 − 12 4 2ν2 A′2 − 11 3 217 415.5 213 858.1 5.839E-6 -5.96 -6.06

2ν2 A′′2 + 11 3 ν4 A′2 + 11 4 222 988.6 232 096.7 6.801E-6 17.97 17.27

ν4 E′ + 9 2 2ν2 E′′ + 9 1 262 162.5 252 726.0 2.652E-6 −24.30 -25.20

2ν2 E′′ − 10 2 ν4 E′ − 11 3 263 484.6 272 824.7 1.490E-6 4.33 4.18

2ν2 E′ + 11 2 ν4 E′′ + 11 3 272 133.6 284 989.4 2.189E-6 14.28 13.64

2ν2 E′ + 11 4 ν4 E′′ + 11 5 278 363.3 287 246.1 2.573E-5 14.93 14.47

2ν2 E′ + 12 2 ν4 E′′ + 12 3 294 309.3 308 379.8 8.639E-6 14.56 13.90

2ν2 E′ + 15 14 ν4 E′′ + 15 15 299 984.3 2.345E-4 10.22

2ν2 E′ + 12 2 ν4 E′′ + 12 3 302 808.4 312 803.4 1.413E-6 13.25 12.83

ν4 A′2 − 15 13 2ν2 A′′2 − 14 12 309 565.7 304 019.2 1.384E-5 3.67 3.73

2ν2 E′′ + 11 5 ν4 E′ + 11 6 314 599.2 323 076.1 6.149E-5 13.37 13.02

2ν2 E′ − 10 1 ν4 E′′ − 11 2 326 336.1 326 806.8 4.222E-5 -0.61 -0.61

2ν2 A′′2 − 11 6 ν4 A′2 − 12 7 332 994.5 334 687.7 3.212E-5 -1.55 -1.54

ν4 E′ − 12 3 2ν2 E′′ − 11 2 333 920.8 1.505E-5 -5.53

2ν2 A′′2 + 12 3 ν4 A′2 + 12 4 342 021.2 355 894.6 6.644E-6 15.02 14.43

ν4 A′′2 − 9 2 2ν2 A′2 + 9 0 351 803.5 339 058.1 3.077E-6 −18.80 -19.51

ν4 A′′2 − 11 2 2ν2 A′2 + 11 0 367 917.3 350 853.0 6.345E-6 −14.65 -15.36

2ν2 E′′ + 15 13 ν4 E′ + 15 14 375 768.9 390 891.3 3.693E-4 9.77 9.39

2ν2 E′ + 12 4 ν4 E′′ + 12 5 376 818.1 390 488.2 2.550E-5 13.38 12.92

ν4 E′ + 8 2 2ν2 E′′ + 8 1 380 133.8 372 905.3 7.163E-6 −16.73 -17.06

ν4 A′′2 − 15 2 2ν2 A′2 + 15 0 389 106.6 376 629.1 5.421E-6 −6.98 -7.21

2ν2 E′ + 12 8 ν4 E′′ + 12 9 394 583.8 404 951.6 2.354E-4 11.28 10.99

2ν2 E′ + 13 10 ν4 E′′ + 13 11 399 548.4 411 594.9 3.240E-4 10.67 10.36

2ν2 E′′ + 12 5 ν4 E′ + 12 6 405 328.4 418 467.6 6.459E-5 12.35 11.97

2ν2 E′′ + 12 7 ν4 E′ + 12 8 413 941.4 425 387.4 1.852E-4 11.43 11.12

2ν2 E′′ + 12 1 ν4 E′ + 12 2 415 167.6 1.147E-6 9.59

2ν2 E′′ − 15 8 ν4 E′ + 15 4 416 085.0 432 973.2 6.532E-6 4.17 4.00

2ν2 A′2 + 12 6 ν4 A′′2 + 12 7 417 976.6 430 386.5 1.219E-4 11.76 11.42

ν4 A′2 + 6 4 2ν2 A′′2 + 6 3 418 270.4 413 748.1 9.006E-5 −15.80 -15.98

ν4 E′′ − 12 2 2ν2 E′ − 11 1 424 005.5 411 879.2 1.470E-5 -5.76 -5.93

ν4 A′′2 − 13 2 2ν2 A′2 + 13 0 431 191.5 410 204.9 2.552E-5 −5.95 -6.25

2ν2 E′′ − 10 2 ν4 E′ − 11 3 432 930.3 432 248.1 1.132E-4 -1.72 -1.72
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(Continued)

v′ Γ′ p′ J ′ K′ v′′ Γ′′ p′′ J ′′ K′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

2ν2 E′′ + 14 11 ν4 E′ + 14 12 433 760.7 448 408.6 4.013E-4 9.79 9.47

ν4 E′′ + 7 3 2ν2 E′ + 7 2 436 515.8 430 468.6 4.113E-5 −15.08 -15.29

ν4 A′2 + 5 4 2ν2 A′′2 + 5 3 437 616.0 434 941.1 9.782E-5 −15.50 -15.59

ν4 A′2 + 4 4 2ν2 A′′2 + 4 3 442 676.5 441 874.1 7.796E-5 −15.66 -15.68

2ν2 A′′2 + 13 9 ν4 A′2 + 13 10 448 069.8 461 549.9 3.198E-4 10.55 10.25

2ν2 A′2 + 15 12 ν4 A′′2 + 15 13 452 668.6 469 935.8 4.668E-4 9.62 9.27

2ν2 E′ − 14 13 ν4 E′′ + 14 11 453 538.0 1.459E-4 5.23

2ν2 A′′2 + 13 3 ν4 A′2 + 13 4 471 333.7 489 078.7 2.981E-6 10.89 10.49

ν4 E′ + 7 2 2ν2 E′′ + 7 1 484 698.5 478 994.6 1.719E-5 −14.13 -14.29

2ν2 E′ + 13 8 ν4 E′′ + 13 9 488 083.1 503 099.1 2.741E-4 10.45 10.14

2ν2 A′′2 + 3 3 ν4 A′2 + 2 2 491 165.0 489 672.2 4.360E-6 12.69 12.72

ν4 A′2 − 13 7 2ν2 A′′2 − 12 6 491 180.0 485 978.4 6.061E-5 -2.69 -2.72

ν4 E′′ + 6 3 2ν2 E′ + 6 2 493 089.6 488 661.3 6.308E-5 −13.99 -14.12

2ν2 A′′2 − 15 12 ν4 A′2 + 15 10 494 630.6 512 454.4 1.437E-5 3.19 3.08

2ν2 E′ + 14 2 ν4 E′′ − 14 2 508 969.6 524 718.7 8.777E-6 9.69 9.40

2ν2 E′ + 13 4 ν4 E′′ + 13 5 512 279.4 530 229.9 2.025E-5 10.59 10.23

ν4 A′′2 + 7 1 2ν2 A′2 + 7 0 512 816.0 507 179.0 9.573E-6 −13.86 -14.01

2ν2 E′′ + 13 7 ν4 E′ + 13 8 516 209.6 2.015E-4 10.36

2ν2 E′′ + 13 5 ν4 E′ + 13 6 527 994.5 545 753.3 5.975E-5 10.38 10.05

2ν2 A′2 + 13 6 ν4 A′′2 + 13 7 529 772.2 546 912.7 1.235E-4 10.32 10.00

ν4 E′′ + 5 3 2ν2 E′ + 5 2 530 045.1 527 333.3 8.219E-5 −13.25 -13.31

2ν2 E′ − 14 13 ν4 E′′ + 14 11 532 701.2 548 704.9 2.808E-4 4.61 4.48

ν4 A′′2 − 14 10 2ν2 A′2 − 13 9 532 974.0 529 031.5 6.325E-5 -0.59 -0.59

2ν2 E′′ + 15 11 ν4 E′ + 15 12 534 682.8 554 512.8 5.162E-4 9.28 8.95

2ν2 A′′2 + 14 9 ν4 A′2 + 14 10 545 853.1 564 260.5 3.434E-4 9.50 9.19

ν4 E′′ + 4 3 2ν2 E′ + 4 2 549 801.4 548 781.8 9.102E-5 −12.92 -12.94

2ν2 E′′ + 13 1 ν4 E′ + 13 2 551 357.3 568 811.3 4.039E-6 8.08 7.83

2ν2 E′′ + 11 1 ν4 E′ − 11 3 552 562.5 557 067.9 1.128E-6 2.65 2.63

ν4 E′′ + 3 3 2ν2 E′ + 3 2 556 807.5 557 275.3 7.623E-5 −12.88 -12.87

ν4 E′ + 10 2 2ν2 E′′ − 9 4 560 587.9 557 554.9 1.270E-6 −3.67 -3.69

ν4 E′ + 6 2 2ν2 E′′ + 6 1 563 310.0 559 214.0 3.027E-5 −12.64 -12.73

2ν2 A′2 − 12 9 ν4 A′′2 + 12 5 566 089.1 577 705.1 2.592E-6 1.75 1.72

ν4 A′2 − 15 13 2ν2 A′′2 + 14 9 566 272.0 557 190.6 3.342E-6 −6.55 -6.66

2ν2 A′2 − 10 3 ν4 A′′2 − 11 4 568 097.7 567 172.6 2.545E-4 -1.87 -1.88

ν4 E′ + 12 2 2ν2 E′′ − 11 2 574 213.5 9.890E-5 −2.48

2ν2 E′ − 11 7 ν4 E′′ − 12 8 589 721.7 591 039.0 1.809E-4 -2.16 -2.16

2ν2 E′ + 14 8 ν4 E′′ + 14 9 602 274.1 622 391.0 2.893E-4 9.28 8.98

ν4 E′ + 14 6 2ν2 E′′ − 14 10 604 954.2 588 757.6 4.244E-6 −4.21 -4.33

2ν2 E′ + 15 10 ν4 E′′ + 15 11 619 826.9 641 982.3 5.033E-4 8.66 8.36

ν4 E′ + 5 2 2ν2 E′′ + 5 1 621 217.9 618 776.8 4.583E-5 −11.62 -11.66

ν4 E′ − 11 9 2ν2 E′′ − 10 10 624 116.9 615 826.8 3.863E-6 -1.35 -1.37

ν4 A′′2 + 11 1 2ν2 A′2 − 10 3 632 208.3 4.048E-5 −3.70

2ν2 A′′2 + 13 9 ν4 A′2 − 12 5 639 466.3 653 650.6 1.787E-6 6.71 6.57

2ν2 E′′ − 8 2 ν4 E′ + 9 0 639 730.1 646 252.4 1.557E-6 1.88 1.86

2ν2 E′′ + 14 7 ν4 E′ + 14 8 643 933.2 665 196.4 1.991E-4 8.90 8.62

2ν2 A′′2 − 13 12 ν4 A′2 − 14 13 647 671.6 651 484.6 1.246E-4 -4.68 -4.66

ν4 E′′ − 15 4 2ν2 E′ + 15 4 653 373.7 2.997E-6 −8.94

2ν2 E′′ + 12 1 ν4 E′ − 12 3 655 460.2 669 113.6 2.964E-6 6.72 6.58

ν4 E′ + 4 2 2ν2 E′′ + 4 1 658 707.0 657 787.0 6.078E-5 −11.06 -11.07

2ν2 A′2 + 14 6 ν4 A′′2 + 14 7 670 120.1 691 897.2 1.111E-4 8.52 8.25

2ν2 E′ + 3 2 ν4 E′′ + 2 1 673 351.8 672 644.4 3.223E-5 8.89 8.89

ν4 A′′2 + 5 1 2ν2 A′2 + 5 0 674 404.1 672 376.5 2.542E-5 −10.83 -10.86

2ν2 A′2 − 8 3 ν4 A′′2 − 9 2 674 766.9 679 711.7 1.384E-4 0.94 0.93

2ν2 E′ + 14 4 ν4 E′′ + 14 5 676 784.5 698 111.4 1.154E-5 7.88 7.64
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(Continued)

v′ Γ′ p′ J ′ K′ v′′ Γ′′ p′′ J ′′ K′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

ν4 E′ + 3 2 2ν2 E′′ + 3 1 678 679.2 679 163.4 6.964E-5 −10.80 -10.79

2ν2 E′′ + 14 5 ν4 E′ + 14 6 680 837.7 702 457.3 4.641E-5 8.17 7.92

2ν2 E′ − 10 1 ν4 E′′ + 11 3 681 314.3 686 273.1 4.382E-6 2.05 2.03

ν4 E′′ − 13 6 2ν2 E′ − 12 5 685 946.1 680 012.7 1.377E-4 -2.85 -2.88

ν4 E′ + 2 2 2ν2 E′′ + 2 1 686 189.0 687 852.5 6.318E-5 −10.73 -10.70

2ν2 E′′ − 14 8 ν4 E′ + 14 4 688 887.1 661 641.0 5.510E-5 0.58 0.60

ν4 A′2 − 12 1 2ν2 A′′2 + 12 3 694 772.0 9.461E-6 −8.76

2ν2 E′′ − 9 2 ν4 E′ + 10 2 698 999.1 702 125.4 1.683E-5 1.47 1.47

ν4 E′′ − 15 2 2ν2 E′ + 15 4 701 865.1 686 876.9 4.513E-5 −8.78 -8.97

2ν2 E′′ − 12 10 ν4 E′ − 13 11 706 269.1 708 727.7 2.235E-4 -3.36 -3.35

2ν2 E′ + 15 2 ν4 E′′ − 15 2 707 705.1 720 609.5 1.218E-5 6.38 6.27

2ν2 A′′2 + 15 9 ν4 A′2 + 15 10 711 914.2 735 227.6 4.144E-4 7.20 6.97

2ν2 A′′2 − 8 0 ν4 A′2 − 9 1 712 843.5 721 065.6 5.050E-4 0.11 0.11

2ν2 E′ − 8 1 ν4 E′′ − 9 0 714 033.7 722 303.2 4.761E-4 0.17 0.17

2ν2 E′′ − 8 2 ν4 E′ − 9 1 716 965.7 724 899.9 3.951E-4 0.34 0.33

2ν2 E′ + 15 8 ν4 E′′ + 15 9 724 328.6 748 607.8 2.274E-4 7.41 7.17

ν4 A′′2 − 11 8 2ν2 A′2 − 10 9 735 774.6 727 288.4 2.146E-5 -1.89 -1.91

2ν2 E′′ − 10 4 ν4 E′ − 11 5 735 948.5 734 922.7 5.368E-4 -1.95 -1.95

ν4 E′′ − 15 12 2ν2 E′ − 14 11 741 087.0 734 546.6 1.865E-4 -0.25 -0.25

2ν2 E′′ − 8 4 ν4 E′ − 9 3 742 169.2 749 245.6 2.163E-4 0.47 0.47

2ν2 E′′ + 14 1 ν4 E′ + 14 2 745 838.7 759 442.8 1.168E-5 5.74 5.64

2ν2 E′ − 8 5 ν4 E′′ − 9 4 757 599.5 764 122.9 1.374E-4 0.41 0.40

ν4 E′′ + 13 3 2ν2 E′ − 12 1 770 619.5 761 683.1 2.912E-6 −4.32 -4.37

ν4 A′′2 + 3 1 2ν2 A′2 + 3 0 774 058.1 774 889.5 4.660E-5 −9.60 -9.59

2ν2 A′′2 − 8 6 ν4 A′2 − 9 5 785 351.3 791 493.8 8.082E-5 0.18 0.18

2ν2 E′′ + 15 7 ν4 E′ + 15 8 795 136.5 820 833.3 1.733E-4 7.30 7.07

ν4 E′ + 12 2 2ν2 E′′ − 11 2 800 805.6 1.586E-4 −3.13

2ν2 A′′2 − 14 12 ν4 A′2 + 14 10 802 556.4 817 431.8 5.121E-5 0.42 0.42

2ν2 A′2 − 8 3 ν4 A′′2 + 9 1 817 078.3 821 302.6 1.975E-4 0.42 0.42

2ν2 E′′ + 13 1 ν4 E′ − 13 3 819 449.7 837 081.4 5.860E-6 5.82 5.70

ν4 E′ − 11 7 2ν2 E′′ − 10 8 820 370.1 811 608.6 6.793E-5 -2.21 -2.23

ν4 A′′2 + 1 1 2ν2 A′2 + 1 0 822 000.9 824 624.2 6.427E-5 −9.16 -9.13

2ν2 E′ − 13 13 ν4 E′′ + 13 11 824 474.2 838 064.7 8.400E-6 −1.17 -1.16

2ν2 E′ − 8 7 ν4 E′′ − 9 6 829 606.7 835 209.1 4.188E-5 -0.16 -0.16

2ν2 A′2 + 15 6 ν4 A′′2 + 15 7 835 632.5 861 357.9 8.630E-5 6.74 6.54

2ν2 A′2 − 11 9 ν4 A′′2 + 11 5 836 453.9 845 821.7 1.129E-6 0.40 0.40

2ν2 E′ − 15 7 ν4 E′′ + 15 3 838 738.4 857 668.9 1.272E-5 2.64 2.59

ν4 E′ − 14 9 2ν2 E′′ − 13 8 839 029.2 831 788.8 2.630E-4 -1.75 -1.76

ν4 A′′2 + 10 1 2ν2 A′2 − 9 3 841 574.4 833 197.0 1.540E-6 −3.43 -3.46

2ν2 E′′ + 3 1 ν4 E′ + 2 0 843 046.4 842 667.6 1.210E-4 6.91 6.91

ν4 E′ − 13 5 2ν2 E′′ − 12 4 845 468.7 838 820.7 2.002E-4 -2.95 -2.98

2ν2 A′2 + 15 0 ν4 A′′2 + 15 1 855 355.8 4.298E-6 0.33

2ν2 E′′ + 15 5 ν4 E′ + 15 6 857 007.7 880 193.2 2.848E-5 6.21 6.05

2ν2 E′ + 15 4 ν4 E′′ + 15 5 858 045.0 881 947.1 3.491E-6 5.59 5.44

ν4 E′ + 15 0 2ν2 E′′ + 15 1 865 195.0 1.230E-5 −7.66

ν4 E′ + 15 6 2ν2 E′′ − 15 10 876 629.1 857 387.9 2.319E-5 −3.65 -3.73

ν4 E′′ − 11 6 2ν2 E′ − 10 7 884 234.9 875 140.7 1.594E-4 -2.38 -2.41

2ν2 E′′ − 11 8 ν4 E′ − 12 9 887 979.3 888 965.3 5.942E-4 -2.40 -2.40

2ν2 E′′ − 8 8 ν4 E′ − 9 7 895 998.7 902 654.5 1.557E-5 -0.59 -0.58

ν4 E′′ + 15 1 2ν2 E′ + 15 2 898 460.0 6.512E-5 −7.43

ν4 E′′ − 14 2 2ν2 E′ + 14 4 898 879.7 880 934.1 1.336E-4 −7.61 -7.77
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Table B.3: Vibration-rotation-inversion frequencies (ν), Einstein A coefficients (A)

and sensitivity coefficients (T ) of 14NH3 for transitions between the 2ν2 and ν4

vibrational states. Experimental frequencies have been obtained using energy levels

from the MARVEL analysis [350].

v′ Γ′ p′ J ′ K′ v′′ Γ′′ p′′ J ′′ K′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

ν4 E′ − 14 3 2ν2 E′′ − 14 8 6223.7 5.840E-11 -217.22

2ν2 E′′ − 12 8 ν4 E′ − 13 9 17 103.2 20 755.7 3.391E-9 -17.35 -14.30

ν4 E′′ − 10 6 2ν2 E′ − 9 7 19 036.8 11 683.4 9.298E-10 -51.85 -84.48

2ν2 E′′ + 15 11 ν4 E′ − 14 7 27 634.9 46 788.8 2.313E-11 191.99 113.40

ν4 E′ + 11 2 2ν2 E′′ − 10 2 32 848.3 28 291.4 4.250E-9 −57.62 -66.90

ν4 E′ − 8 3 2ν2 E′′ + 8 1 33 250.0 25 603.0 5.274E-9 −160.99 -209.07

2ν2 E′ + 8 2 ν4 E′′ + 8 3 39 392.7 49 374.3 6.298E-11 156.58 124.93

ν4 E′′ + 12 3 2ν2 E′ − 11 1 45 301.6 38 428.3 7.179E-10 −52.51 -61.91

2ν2 E′′ − 9 8 ν4 E′ − 10 7 45 829.3 53 966.1 6.295E-9 13.90 11.80

ν4 E′ + 12 6 2ν2 E′′ − 12 10 48 053.7 37 036.2 5.298E-9 −24.87 -32.27

ν4 E′′ + 12 3 2ν2 E′ − 11 1 53 797.8 42 851.8 2.761E-10 −49.29 -61.89

2ν2 E′ + 9 2 ν4 E′′ + 9 3 56 597.8 68 679.3 3.476E-10 101.43 83.59

ν4 A′2 + 13 4 2ν2 A′′2 − 12 0 60 738.0 51 342.8 2.565E-10 −44.17 -52.26

2ν2 E′′ + 9 1 ν4 E′ − 9 1 63 289.2 5.474E-9 79.00

2ν2 E′ + 2 2 ν4 E′′ + 1 1 63 924.7 61 712.7 1.042E-8 104.21 107.95

2ν2 E′ + 10 2 ν4 E′′ + 10 3 64 989.0 77 575.0 6.839E-10 71.99 60.31

ν4 A′2 − 10 5 2ν2 A′′2 − 9 6 65 933.4 58 158.6 7.357E-8 -18.50 -20.97

ν4 E′′ + 14 5 2ν2 E′ − 13 1 66 655.9 2.448E-11 −44.25

ν4 E′ − 12 5 2ν2 E′′ − 11 4 68 478.6 65 641.3 2.187E-7 -10.90 -11.37

2ν2 E′ + 13 2 ν4 E′′ − 13 2 71 605.4 4.559E-9 70.67

ν4 E′′ − 12 2 2ν2 E′ + 12 2 75 895.5 60 647.6 4.231E-9 −53.72 -67.22

2ν2 E′ − 13 13 ν4 E′′ − 12 6 75 925.4 89 116.6 1.724E-11 -3.08 -2.62

2ν2 A′2 + 11 0 ν4 A′′2 + 11 1 76 408.1 7.566E-9 69.42

2ν2 E′ + 12 8 ν4 E′′ + 11 3 82 910.6 89 509.4 1.362E-11 56.90 52.70

2ν2 E′′ + 11 1 ν4 E′ + 11 2 86 783.9 96 528.3 1.320E-8 47.28 42.51

2ν2 E′ + 15 14 ν4 E′′ − 14 12 96 401.3 2.589E-11 13.55

ν4 E′′ − 10 4 2ν2 E′ − 9 5 99 908.8 91 668.2 4.346E-7 -13.36 -14.56

ν4 E′ + 15 12 2ν2 E′′ − 15 14 104 471.7 86 839.9 1.426E-7 −5.36 -6.45

ν4 E′′ + 15 7 2ν2 E′ − 14 5 104 981.3 87 564.5 1.117E-10 −30.73 -36.84

2ν2 E′′ − 13 4 ν4 E′ + 14 6 108 998.5 124 181.3 1.328E-10 26.25 23.04

ν4 E′ − 7 3 2ν2 E′′ + 7 1 117 602.6 110 957.2 9.461E-8 −51.03 -54.08

ν4 E′ + 13 2 2ν2 E′′ − 13 8 119 041.6 109 711.6 4.915E-11 −9.75 -10.58

ν4 A′2 + 8 4 2ν2 A′′2 − 7 6 122 869.9 120 732.7 1.752E-11 −6.46 -6.57

ν4 E′ − 15 1 2ν2 E′′ − 15 8 125 130.4 111 510.3 1.255E-7 -17.01 -19.09

ν4 E′ + 10 2 2ν2 E′′ + 10 1 133 512.6 123 427.8 4.745E-7 −40.78 -44.11

2ν2 A′2 − 9 9 ν4 A′′2 − 10 8 135 065.5 141 945.6 4.751E-8 1.22 1.16

2ν2 E′′ − 13 8 ν4 E′ − 13 3 149 050.8 158 558.5 1.436E-8 9.91 9.32

2ν2 E′′ − 8 4 ν4 E′ + 9 2 160 418.9 162 319.1 5.872E-9 7.00 6.91

2ν2 E′′ + 10 1 ν4 E′ − 10 1 161 435.2 168 626.8 3.602E-8 19.48 18.65

2ν2 E′ + 11 2 ν4 E′′ + 11 3 165 899.2 174 547.8 8.989E-7 22.32 21.21

ν4 E′ − 6 3 2ν2 E′′ + 6 1 174 647.1 169 341.3 2.539E-8 −36.43 -37.57

ν4 E′′ − 10 4 2ν2 E′ + 11 8 178 151.7 6.768E-10 −17.61

2ν2 E′′ + 12 1 ν4 E′ + 12 2 188 575.5 4.254E-9 26.85

ν4 E′′ − 11 2 2ν2 E′ + 11 2 189 082.1 184 918.5 3.358E-8 −11.16 -11.41

2ν2 E′′ + 8 7 ν4 E′ − 7 5 198 702.4 203 766.3 8.527E-11 16.21 15.80

ν4 E′ − 5 3 2ν2 E′′ + 5 1 209 318.1 205 609.0 8.205E-9 −31.22 -31.78

ν4 A′′2 + 9 1 2ν2 A′2 + 9 0 209 489.0 197 467.1 7.478E-8 −30.17 -32.01

ν4 E′ + 10 0 2ν2 E′′ − 9 2 219 921.8 211 671.7 4.588E-7 −10.52 -10.93
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(Continued)

v′ Γ′ p′ J ′ K′ v′′ Γ′′ p′′ J ′′ K′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

2ν2 E′′ − 7 4 ν4 E′ + 8 0 221 192.9 226 050.6 1.446E-9 4.95 4.84

ν4 E′ − 3 3 2ν2 E′′ + 3 1 221 639.6 221 261.9 2.673E-10 −30.81 -30.86

ν4 E′ − 4 3 2ν2 E′′ + 5 5 222 383.0 221 629.8 2.688E-11 −30.49 -30.60

ν4 E′ − 4 3 2ν2 E′′ + 4 1 223 276.4 221 209.4 2.001E-9 −29.92 -30.20

2ν2 E′′ − 11 10 ν4 E′ + 11 6 228 058.1 236 952.0 4.881E-7 2.22 2.14

ν4 A′′2 − 3 2 2ν2 A′2 + 3 0 231 898.5 231 697.2 4.217E-10 −30.10 -30.12

2ν2 E′′ + 10 7 ν4 E′ − 11 11 232 641.9 231 001.8 1.039E-10 0.57 0.58

ν4 A′′2 − 5 2 2ν2 A′2 + 5 0 240 790.3 236 429.8 4.767E-10 −28.56 -29.09

2ν2 A′′2 + 10 9 ν4 A′2 − 9 7 246 042.7 245 788.3 1.394E-9 1.18 1.18

ν4 A′′2 − 7 2 2ν2 A′2 + 7 0 256 343.5 246 617.0 9.753E-9 −26.06 -27.09

ν4 E′ − 10 1 2ν2 E′′ − 9 4 265 637.1 265 500.3 2.065E-8 0.91 0.91

2ν2 E′ + 15 2 ν4 E′′ + 15 3 271 177.3 295 527.8 1.948E-7 19.97 18.33

ν4 E′′ − 11 2 2ν2 E′ + 12 8 272 070.6 269 956.9 1.176E-11 −11.49 -11.58

ν4 A′′2 − 5 4 2ν2 A′2 + 6 6 273 695.5 271 413.1 1.013E-10 −23.91 -24.11

ν4 A′2 − 14 1 2ν2 A′′2 + 14 3 284 161.3 262 580.4 6.415E-7 −21.29 -23.04

ν4 E′′ + 9 7 2ν2 E′ + 8 2 289 050.9 278 543.2 1.050E-11 −21.95 -22.78

ν4 E′′ − 15 4 2ν2 E′ + 15 4 293 553.8 273 373.9 3.777E-7 −15.55 -16.69

2ν2 E′′ + 7 5 ν4 E′ − 6 1 299 067.0 306 213.1 1.727E-10 16.65 16.26

2ν2 A′2 + 7 6 ν4 A′′2 − 6 4 299 741.5 304 232.2 2.560E-10 14.71 14.50

ν4 A′′2 + 15 13 2ν2 A′2 − 15 15 310 977.7 292 218.4 8.819E-7 0.42 0.44

2ν2 E′ − 14 13 ν4 E′′ − 13 6 370 468.5 386 366.5 1.634E-7 6.52 6.25

2ν2 E′′ + 11 1 ν4 E′ − 11 3 383 116.8 397 644.4 7.878E-7 8.74 8.43

2ν2 E′ − 9 1 ν4 E′′ + 10 1 391 133.2 399 006.5 5.035E-8 4.54 4.46

ν4 E′′ − 14 4 2ν2 E′ + 14 4 391 573.9 369 051.4 9.071E-9 −13.83 -14.68

ν4 E′ − 8 3 2ν2 E′′ + 9 7 393 819.4 386 248.0 7.438E-10 −11.20 -11.42

ν4 A′′2 − 10 4 2ν2 A′2 − 10 9 395 977.9 399 753.4 1.409E-11 7.58 7.51

ν4 E′′ − 12 4 2ν2 E′ + 12 4 400 546.7 382 835.1 2.160E-10 −13.26 -13.88

2ν2 E′′ − 12 2 ν4 E′ − 13 5 404 821.7 411 541.5 3.784E-11 3.60 3.55

2ν2 E′′ + 2 1 ν4 E′ − 1 1 411 785.9 410 294.2 2.933E-10 15.50 15.56

ν4 E′′ − 13 4 2ν2 E′ + 13 4 412 766.2 391 603.0 1.298E-9 −13.63 -14.37

2ν2 E′ + 3 2 ν4 E′′ − 2 0 418 312.4 418 044.7 3.347E-10 15.03 15.04

2ν2 E′ + 5 4 ν4 E′′ − 4 2 426 211.9 427 780.8 2.998E-10 13.77 13.72

2ν2 A′2 + 13 0 ν4 A′′2 + 13 1 427 273.2 444 607.4 8.633E-7 5.14 4.94

ν4 E′ − 13 3 2ν2 E′′ − 13 8 432 732.4 422 088.3 1.336E-9 -3.24 -3.32

ν4 E′′ − 7 6 2ν2 E′ + 8 8 436 285.0 429 917.9 1.476E-9 −12.77 -12.96

2ν2 A′′2 − 14 12 ν4 A′2 + 13 4 436 303.0 447 998.1 1.222E-10 1.36 1.32

ν4 E′′ + 8 1 2ν2 E′ − 7 5 449 011.2 444 718.8 4.822E-9 −3.44 -3.48

2ν2 E′′ − 10 8 ν4 E′ − 10 1 471 678.5 3.126E-10 -3.36

ν4 E′′ + 11 1 2ν2 E′ − 10 1 472 739.7 462 948.4 1.469E-7 −6.20 -6.33

2ν2 E′ + 13 2 ν4 E′′ + 13 3 473 783.0 488 310.8 6.262E-11 9.78 9.49

2ν2 E′ + 11 2 ν4 E′′ + 12 9 477 572.4 489 990.1 1.758E-11 7.19 7.01

ν4 E′′ − 13 0 2ν2 E′ − 13 7 479 838.8 467 282.5 6.591E-9 -2.32 -2.38

2ν2 E′′ − 8 4 ν4 E′ − 9 1 485 870.6 5.687E-9 -0.51

ν4 E′′ + 14 5 2ν2 E′ + 15 10 486 677.1 467 668.0 8.877E-10 −12.98 -13.51

2ν2 E′′ − 11 8 ν4 E′ − 11 3 490 061.7 490 267.1 2.737E-9 -3.19 -3.19

2ν2 E′′ − 10 10 ν4 E′ + 10 6 492 622.0 499 709.3 7.714E-8 −0.36 -0.35

ν4 A′′2 − 11 10 2ν2 A′2 + 10 6 494 681.5 496 832.3 8.060E-9 −1.76 -1.76

2ν2 E′′ + 12 7 ν4 E′ + 11 0 495 889.7 509 581.8 7.614E-11 8.86 8.62

2ν2 E′ + 13 8 ν4 E′′ − 12 2 498 381.0 515 446.1 3.328E-11 9.41 9.10

ν4 E′′ + 14 9 2ν2 E′ + 13 4 502 008.5 481 006.5 1.541E-11 −13.17 -13.74

ν4 E′′ − 3 0 2ν2 E′ + 4 4 509 875.0 509 939.3 2.820E-11 −14.19 -14.19

2ν2 E′ − 14 1 ν4 E′′ − 15 6 513 775.3 529 792.8 2.948E-10 4.18 4.05

2ν2 E′′ + 12 7 ν4 E′ − 11 1 518 473.1 7.981E-11 8.20

2ν2 A′2 + 9 6 ν4 A′′2 − 8 2 520 115.9 530 125.8 6.108E-9 6.67 6.54
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(Continued)

v′ Γ′ p′ J ′ K′ v′′ Γ′′ p′′ J ′′ K′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

ν4 A′′2 − 11 10 2ν2 A′2 + 12 12 527 967.5 522 798.6 5.244E-9 −6.89 -6.96

ν4 A′′2 + 14 5 2ν2 A′2 − 13 3 529 679.3 519 268.7 2.848E-8 −6.78 -6.92

ν4 E′ − 9 1 2ν2 E′′ − 8 4 544 495.1 536 665.8 5.798E-11 -2.32 -2.36

ν4 A′2 − 8 7 2ν2 A′′2 + 9 9 547 699.8 541 374.3 4.911E-9 −8.93 -9.03

2ν2 E′ − 10 7 ν4 E′′ − 10 0 551 917.9 562 160.3 2.505E-11 -0.39 -0.39

ν4 E′′ + 8 5 2ν2 E′ − 7 7 553 180.0 550 518.3 1.517E-9 −1.67 -1.68

2ν2 E′′ − 11 2 ν4 E′ + 12 4 554 034.4 4.035E-8 3.69

2ν2 E′ + 11 10 ν4 E′′ − 10 8 556 948.4 552 032.8 6.561E-11 −0.65 -0.66

2ν2 A′′2 − 14 6 ν4 A′2 + 15 8 558 315.5 575 254.6 1.019E-8 4.32 4.20

2ν2 A′′2 + 12 9 ν4 A′2 − 13 13 563 019.2 565 112.9 7.362E-9 1.73 1.73

2ν2 E′ − 15 13 ν4 E′′ − 14 6 566 197.0 583 213.0 1.775E-8 0.14 0.13

ν4 A′2 + 12 8 2ν2 A′′2 + 11 3 574 312.4 561 928.1 8.085E-11 −8.53 -8.72

ν4 E′′ − 10 0 2ν2 E′ + 10 2 588 510.6 581 667.0 9.235E-8 −6.84 -6.92

Table B.4: Vibration-rotation-inversion frequencies (ν), Einstein A coefficients (A)

and sensitivity coefficients (T ) of 14NH3 for transitions between the 2ν2 and ν4

vibrational states. Experimental frequencies have been obtained using energy levels

from the MARVEL analysis [350].

v′ Γ′ p′ J ′ K′ v′′ Γ′′ p′′ J ′′ K′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

2ν2 A′2 − 14 9 ν4 A′′2 + 14 5 2869.0 13 943.5 2.496E-12 770.89 158.62

ν4 E′′ + 5 3 2ν2 E′ + 5 2 3540.5 389.9 1.894E-15 −1843.25 -16,737.52

2ν2 A′′2 − 13 12 ν4 A′2 + 12 4 3654.5 12 450.3 2.167E-18 125.08 36.71

2ν2 E′ + 6 2 ν4 E′′ + 6 3 7362.9 12 687.9 6.231E-14 877.49 509.21

2ν2 A′′2 + 13 9 ν4 A′2 − 14 13 8783.9 13 385.9 7.203E-13 260.35 170.84

ν4 E′′ + 4 3 2ν2 E′ + 4 2 10 441.8 9235.5 9.301E-15 −630.49 -712.84

ν4 E′′ + 12 7 2ν2 E′ − 11 7 13 244.8 3258.0 5.271E-18 −131.57 -534.87

ν4 E′′ + 3 3 2ν2 E′ + 3 2 13 727.5 14 116.6 2.066E-15 −484.00 -470.66

ν4 A′2 − 11 5 2ν2 A′′2 + 12 9 18 889.9 9313.7 3.659E-12 −233.82 -474.24

ν4 E′ + 13 8 2ν2 E′′ + 14 11 21 809.9 10 121.4 5.243E-21 −222.12 -478.64

2ν2 E′ + 7 2 ν4 E′′ + 7 3 22 031.7 29 771.2 4.761E-12 288.71 213.65

ν4 E′ + 13 10 2ν2 E′′ − 12 10 22 511.4 11 390.1 1.900E-17 −45.36 -89.65

2ν2 E′′ − 11 8 ν4 E′ + 11 2 24 283.2 29 727.5 6.991E-17 44.14 36.05

ν4 A′′2 − 7 2 2ν2 A′2 + 8 6 33 193.0 25 452.1 3.082E-13 −140.17 -182.79

ν4 E′′ − 12 8 2ν2 E′ − 12 11 37 009.4 34 972.4 5.319E-20 45.86 48.53

ν4 E′ + 5 2 2ν2 E′′ + 6 5 37 758.9 35 875.2 4.280E-17 −158.57 -166.89

ν4 E′ + 10 8 2ν2 E′′ + 9 1 42 879.3 29 604.5 3.786E-15 −142.81 -206.85

ν4 E′′ + 14 1 2ν2 E′ − 14 7 44 774.0 26 546.7 6.005E-13 −65.86 -111.08

2ν2 A′′2 − 15 6 ν4 A′2 − 15 1 47 199.3 59 449.2 9.114E-12 17.21 13.67

2ν2 E′′ + 10 7 ν4 E′ + 9 2 47 382.2 47 660.4 1.134E-16 74.98 74.55

2ν2 E′′ + 8 7 ν4 E′ + 7 4 49 067.0 53 771.1 3.235E-19 96.03 87.62

2ν2 E′ − 14 11 ν4 E′′ − 13 0 50 673.9 64 280.5 1.837E-17 -4.85 -3.82

ν4 E′′ + 10 7 2ν2 E′ + 11 10 53 258.1 49 792.6 7.021E-19 −73.12 -78.21

2ν2 E′′ + 8 1 ν4 E′ − 9 7 55 815.4 66 964.1 2.485E-14 106.98 89.17

2ν2 E′ + 5 4 ν4 E′′ − 4 0 60 051.4 63 043.9 5.157E-14 102.78 97.90

ν4 E′′ + 9 3 2ν2 E′ − 8 5 64 134.6 58 861.4 5.937E-16 −21.57 -23.50

2ν2 A′′2 + 10 3 ν4 A′2 + 11 8 65 303.8 72 587.6 2.485E-13 43.28 38.94

ν4 E′′ − 9 8 2ν2 E′ + 8 2 66 883.7 57 708.2 7.717E-17 −47.24 -54.75
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(Continued)

v′ Γ′ p′ J ′ K′ v′′ Γ′′ p′′ J ′′ K′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

ν4 E′ + 15 6 2ν2 E′′ − 14 2 67 144.5 53 783.2 3.293E-12 −47.41 -59.18

ν4 E′ − 10 1 2ν2 E′′ + 11 7 68 862.3 59 127.9 2.090E-15 −53.67 -62.51

ν4 E′′ − 7 0 2ν2 E′ − 6 5 69 644.8 64 096.1 4.241E-15 -3.43 -3.73

2ν2 E′ + 9 8 ν4 E′′ − 8 6 72 271.0 78 005.7 3.767E-12 26.51 24.56

ν4 E′′ + 10 1 2ν2 E′ − 11 11 73 958.8 64 546.6 5.011E-17 −7.00 -8.02

2ν2 E′ + 12 4 ν4 E′′ + 13 9 77 781.2 94 457.9 1.745E-14 70.00 57.64

ν4 E′′ − 15 10 2ν2 E′ + 15 10 79 259.1 57 282.5 9.514E-16 −76.85 -106.33

2ν2 E′ + 15 8 ν4 E′′ − 14 0 82 460.9 103 540.2 4.726E-15 49.65 39.54

ν4 E′ − 15 7 2ν2 E′′ + 15 7 82 880.6 56 099.2 2.551E-16 −76.46 -112.96

ν4 E′′ + 13 9 2ν2 E′ + 12 2 86 193.3 72 994.5 3.558E-14 −52.03 -61.44

2ν2 A′′2 + 15 9 ν4 A′2 − 14 1 89 976.7 111 115.7 1.566E-18 60.20 48.75

ν4 E′′ + 10 9 2ν2 E′ + 9 4 93 115.5 81 629.4 3.945E-20 −49.44 -56.40

2ν2 E′ + 10 8 ν4 E′′ + 9 5 96 563.2 97 613.4 7.541E-20 35.95 35.56

ν4 E′′ − 8 2 2ν2 E′ − 7 5 104 453.7 103 325.9 2.312E-13 -7.79 -7.87

ν4 E′ − 14 7 2ν2 E′′ + 14 7 110 323.6 87 142.1 9.221E-16 −56.88 -72.01

ν4 E′ + 10 0 2ν2 E′′ + 11 7 113 903.1 105 079.2 3.443E-13 −41.85 -45.36

ν4 A′2 − 14 1 2ν2 A′′2 − 15 12 127 303.9 111 657.5 3.416E-16 -14.68 -16.74

ν4 E′′ − 12 0 2ν2 E′ − 12 7 128 808.8 116 841.5 2.621E-12 -5.35 -5.90

ν4 E′′ − 14 10 2ν2 E′ − 14 13 129 717.2 113 927.7 2.815E-15 -24.72 -28.14

ν4 E′ − 13 7 2ν2 E′′ + 13 7 137 931.5 2.502E-15 −42.72

2ν2 E′′ + 10 5 ν4 E′ − 11 9 143 648.6 150 832.9 6.730E-18 23.80 22.66

2ν2 E′′ − 10 4 ν4 E′ + 11 4 147 482.9 156 281.9 2.428E-12 13.13 12.39

ν4 A′2 − 2 1 2ν2 A′′2 + 3 3 147 719.7 149 449.7 1.315E-12 −47.21 -46.66
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Appendix C

Comprehensive tables of all investigated transitions of H3
16O+, H3

18O+ and D3
16O+

are provided. For all transitions, a TROVE computed frequency νcalc and corre-

sponding sensitivity coefficient Tcalc is given, and if available an experimental fre-

quency νexp and corresponding sensitivity coefficient Texp. Upper and lower states

are labelled with a ′ and ′′, respectively. Apart from the pure inversion transitions,

all rotation-vibration energy levels have a symmetry (Γ), parity (p), rotational quan-

tum number (J), and projection onto the molecule-fixed z axis (K) label. Einstein

A coefficients are also provided.
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Table C.1: Inversion frequencies (ν), Einstein coefficients (A), and sensitivities (T )

of H3
16O+ in the ground vibrational state.

J K νcalc/GHz A/s−1 Tcalc J K νcalc/GHz A/s−1 Tcalc

1 1 1655.8577 0.859E-1 -1.940 9 4 1299.1987 0.156E-1 -1.851
2 1 1632.1427 0.275E-1 -1.935 9 5 1361.3791 0.277E-1 -1.867
2 2 1657.2795 0.115E+0 -1.940 9 6 1440.7479 0.465E-1 -1.887
3 1 1597.1617 0.130E-1 -1.927 9 7 1539.6082 0.758E-1 -1.909
3 2 1621.8135 0.540E-1 -1.932 9 8 1660.8177 0.122E+0 -1.933
3 3 1663.6273 0.130E+0 -1.941 9 9 1807.9346 0.194E+0 -1.960
4 1 1551.6036 0.718E-2 -1.917 10 1 1116.0095 0.517E-3 -1.794
4 2 1575.6236 0.299E-1 -1.922 10 2 1133.9754 0.218E-2 -1.800
4 3 1616.3635 0.722E-1 -1.931 10 3 1164.3403 0.528E-2 -1.810
4 4 1674.9135 0.141E+0 -1.942 10 4 1207.1102 0.104E-1 -1.823
5 1 1496.3542 0.433E-2 -1.904 10 5 1265.3697 0.185E-1 -1.840
5 2 1519.6085 0.181E-1 -1.909 10 6 1339.7326 0.311E-1 -1.861
5 3 1559.1102 0.436E-1 -1.918 10 7 1432.3974 0.508E-1 -1.884
5 4 1615.7120 0.854E-1 -1.930 10 8 1546.0712 0.818E-1 -1.909
5 5 1691.1924 0.151E+0 -1.944 10 9 1684.1080 0.131E+0 -1.936
6 1 1432.4704 0.274E-2 -1.888 10 10 1850.6608 0.208E+0 -1.964
6 2 1454.8402 0.114E-1 -1.894 11 1 1028.6003 0.341E-3 -1.762
6 3 1492.7651 0.276E-1 -1.902 11 2 1045.3255 0.144E-2 -1.768
6 4 1547.2271 0.541E-1 -1.914 11 3 1067.9266 0.344E-2 -1.754
6 5 1619.8437 0.958E-1 -1.929 11 4 1112.7743 0.689E-2 -1.791
6 6 1712.5291 0.160E+0 -1.947 11 5 1166.9778 0.123E-1 -1.809
7 1 1361.1517 0.178E-2 -1.869 11 6 1236.1629 0.207E-1 -1.831
7 2 1382.5344 0.745E-2 -1.875 11 7 1322.4210 0.339E-1 -1.855
7 3 1419.9413 0.177E-1 -1.873 11 8 1428.3078 0.547E-1 -1.881
7 4 1470.7199 0.353E-1 -1.896 11 9 1556.9798 0.876E-1 -1.909
7 5 1540.1308 0.625E-1 -1.912 11 10 1712.3208 0.140E+0 -1.939
7 6 1628.7283 0.105E+0 -1.930 11 11 1899.1299 0.224E+0 -1.969
7 7 1739.0173 0.170E+0 -1.951 12 1 940.6819 0.222E-3 -1.725
8 1 1283.7070 0.118E-2 -1.848 12 2 956.1391 0.943E-3 -1.733
8 2 1304.0163 0.492E-2 -1.853 12 3 982.2569 0.231E-2 -1.744
8 3 1338.4028 0.119E-1 -1.863 12 4 1017.6294 0.454E-2 -1.755
8 4 1387.5621 0.234E-1 -1.875 12 5 1067.6920 0.810E-2 -1.774
8 5 1453.4769 0.414E-1 -1.891 12 6 1131.5933 0.137E-1 -1.797
8 6 1537.6131 0.696E-1 -1.910 12 7 1211.3128 0.225E-1 -1.822
8 7 1642.3757 0.113E+0 -1.931 12 8 1309.2553 0.364E-1 -1.850
8 8 1770.7731 0.181E+0 -1.955 12 9 1428.3843 0.585E-1 -1.879
9 1 1201.5193 0.780E-3 -1.822 12 10 1572.3335 0.937E-1 -1.910
9 2 1220.6846 0.327E-2 -1.829 12 11 1745.5500 0.151E+0 -1.942
9 3 1247.2272 0.736E-2 -1.769 12 12 1953.5372 0.243E+0 -1.974
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Table C.2: Inversion frequencies (ν), Einstein coefficients (A), and sensitivities (T )

of H3
18O+ in the ground vibrational state.

J K νcalc/GHz A/s−1 Tcalc J K νcalc/GHz A/s−1 Tcalc

1 1 1608.7744 0.788E-1 -1.956 9 4 1249.7781 0.139E-1 -1.863
2 1 1584.8777 0.252E-2 -1.951 9 5 1311.5302 0.248E-1 -1.881
2 2 1610.0266 0.105E+0 -1.956 9 6 1390.4774 0.419E-1 -1.901
3 1 1549.6465 0.119E-1 -1.943 9 7 1488.9820 0.687E-1 -1.924
3 2 1574.2941 0.495E-1 -1.948 9 8 1609.9871 0.111E+0 -1.949
3 3 1616.1228 0.120E+0 -1.957 9 9 1757.1626 0.178E+0 -1.976
4 1 1503.7957 0.655E-2 -1.933 10 1 1067.7086 0.455E-3 -1.804
4 2 1527.7903 0.273E-1 -1.938 10 2 1085.4457 0.191E-2 -1.811
4 3 1568.5089 0.661E-1 -1.946 10 3 1115.4586 0.466E-2 -1.821
4 4 1627.0739 0.130E+0 -1.958 10 4 1157.7924 0.919E-2 -1.834
5 1 1448.2441 0.393E-2 -1.919 10 5 1215.5004 0.164E-1 -1.852
5 2 1471.4472 0.164E-1 -1.925 10 6 1289.2850 0.278E-1 -1.874
5 3 1510.9033 0.397E-1 -1.933 10 7 1381.3957 0.457E-1 -1.897
5 4 1567.4392 0.781E-1 -1.946 10 8 1494.6172 0.740E-1 -1.924
5 5 1642.9342 0.139E+0 -1.961 10 9 1632.4068 0.119E+0 -1.952
6 1 1384.0878 0.248E-2 -1.903 10 10 1799.0512 0.191E+0 -1.981
6 2 1406.3764 0.104E-1 -1.908 11 1 980.8269 0.297E-3 -1.770
6 3 1444.1869 0.250E-1 -1.917 11 2 997.2851 0.125E-2 -1.778
6 4 1498.5317 0.493E-1 -1.930 11 3 1020.2468 0.302E-2 -1.769
6 5 1571.0658 0.875E-1 -1.945 11 4 1063.8066 0.605E-2 -1.801
6 6 1663.7686 0.147E+0 -1.964 11 5 1117.3373 0.108E-1 -1.820
7 1 1312.5691 0.160E-2 -1.883 11 6 1185.7894 0.184E-1 -1.842
7 2 1333.8368 0.670E-2 -1.889 11 7 1271.2962 0.303E-1 -1.867
7 3 1372.3392 0.152E-1 -1.849 11 8 1376.4827 0.491E-1 -1.895
7 4 1421.6592 0.319E-1 -1.911 11 9 1504.5995 0.793E-1 -1.924
7 5 1490.8797 0.568E-1 -1.927 11 10 1659.6530 0.128E+0 -1.954
7 6 1579.3572 0.957E-1 -1.946 11 11 1846.6000 0.206E+0 -1.986
7 7 1689.6703 0.156E+0 -1.967 12 1 893.7115 0.191E-3 -1.732
8 1 1235.0417 0.105E-2 -1.860 12 2 908.8659 0.813E-3 -1.740
8 2 1255.1996 0.440E-2 -1.866 12 3 934.5041 0.200E-2 -1.752
8 3 1289.3581 0.107E-1 -1.876 12 4 969.2948 0.394E-2 -1.763
8 4 1338.2431 0.210E-1 -1.889 12 5 1018.5693 0.707E-2 -1.783
8 5 1403.8511 0.374E-1 -1.906 12 6 1081.5894 0.120E-1 -1.807
8 6 1487.7198 0.631E-1 -1.925 12 7 1160.3673 0.199E-1 -1.833
8 7 1592.3211 0.103E+0 -1.947 12 8 1257.3680 0.323E-1 -1.862
8 8 1720.7555 0.167E+0 -1.971 12 9 1375.6386 0.524E-1 -1.893
9 1 1152.9337 0.692E-3 -1.834 12 10 1518.9249 0.847E-1 -1.925
9 2 1171.9093 0.290E-2 -1.841 12 11 1691.8180 0.137E+0 -1.958
9 3 1200.2604 0.685E-2 -1.819 12 12 1900.0058 0.223E+0 -1.991
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Table C.3: The rotation-inversion frequencies (ν), Einstein coefficients (A), and

sensitivities (T ) of H3
16O+ in the ground vibrational statea.

Γ′ p′ J ′ K ′ Γ′′ p′′ J ′′ K ′′ νcalc/MHz νexp/MHz A/s−1 Tcalc Texp

E ′ 0− 1 1 E ′′ 0+ 2 1 308483.172 307192.410b 0.556E-3 -5.992 -6.017

E ′ 0+ 3 2 E ′′ 0− 2 2 362865.643 364797.427b,c 0.432E-3 3.227 3.210

E ′′ 0+ 3 1 E ′ 0− 2 1 386507.906 388458.641 0.838E-3 2.891 2.876

A′2 0+ 3 0 A′′2 0− 2 0 394315.581 396272.412d 0.100E-2 2.788 2.775

A′′2 0− 0 0 A′2 0+ 1 0 985361.418 984711.888 0.362E-1 -2.575 -2.577

A′′2 0+ 4 3 A′2 0− 3 3 1028722.980 1031293.719 0.803E-2 0.492 0.491

E ′ 0+ 4 2 E ′′ 0− 3 2 1067224.066 1069826.484 0.155E-1 0.392 0.391

E ′′ 0+ 4 1 E ′ 0− 3 1 1089903.366 1092523.071 0.207E-1 0.336 0.335

A′′2 0+ 5 3 A′2 0− 4 3 1741874.136 1745127.371 0.589E-1 -0.154 -0.153

E ′ 0+ 5 2 E ′′ 0− 4 2 1778525.083 1781805.268 0.829E-1 -0.198 -0.197

E ′′ 0+ 5 1 E ′ 0− 4 1 1800111.519 1803407.189 0.986E-1 -0.223 -0.222

A′2 0+ 5 0 A′′2 0− 4 0 1807154.483 1810454.545 0.104E+0 -0.231 -0.230

E ′′ 0+ 7 5 E ′ 0− 6 5 3073339.801 3077891.800 0.255E+0 -0.521 -0.520

A′′2 0− 2 0 A′2 0+ 1 0 2970878.114 2972100e 0.399E+0 -1.515 -1.515

E ′ 0− 2 1 E ′′ 0+ 1 1 2979517.263 2980725e 0.301E+0 -1.518 -1.517

E ′′ 0− 3 2 E ′ 0+ 2 2 3641958.615 3643830f 0.437E+0 -1.422 -1.421

E ′ 0− 3 1 E ′′ 0+ 2 1 3615812.275 3617711f 0.687E+0 -1.416 -1.415

A′2 0− 4 3 A′′2 0+ 3 3 4308712.151 4311203f 0.591E+0 -1.356 -1.355

E ′′ 0− 4 2 E ′ 0+ 3 2 4264661.127 4267265f 0.990E+0 -1.347 -1.346

E ′ 0− 4 1 E ′′ 0+ 3 1 4238668.671 4241306f 0.122E+1 -1.341 -1.341

A′′2 0− 4 0 A′2 0+ 3 0 4230078.747 4232743f 0.130E+1 -1.340 -1.339

E ′′ 0− 5 4 E ′ 0+ 4 4 4979729.095 4982921f 0.768E+0 -1.309 -1.308

a If not stated otherwise, the experimental frequencies have been taken from Yu and Pearson

[383]. b Also observed astronomically in van der Tak et al. [370] c Also observed astronomically in

Wootten et al. [366] d Also observed astronomically in Phillips et al. [367] e Astronomical

observation from Goicoechea and Cernicharo [369]. f Astronomical observation from

González-Alfonso et al. [375].
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Table C.4: The rotation-inversion frequencies (ν), Einstein coefficients (A), and

sensitivities (T ) of H3
18O+ in the ground vibrational state.

Γ′ p′ J ′ K ′ Γ′′ p′′ J ′′ K ′′ νcalc/MHz A/s−1 Tcalc

A′′2 0− 0 0 A′2 0+ 1 0 939604 0.314E-1 -2.633

E ′ 0− 2 1 E ′′ 0+ 1 1 2929768 0.287E+0 -1.520

A′′2 0− 2 0 A′2 0+ 1 0 2921121 0.379E+0 -1.518

E ′ 0− 1 1 E ′′ 0+ 2 1 263884 0.349E-3 -6.765

E ′′ 0− 3 2 E ′ 0+ 2 2 3590704 0.419E+0 -1.423

E ′ 0− 3 1 E ′′ 0+ 2 1 3564536 0.659E+0 -1.416

E ′ 0+ 3 2 E ′′ 0− 2 2 406384 0.607E-3 2.728

E ′′ 0+ 3 1 E ′ 0− 2 1 430012 0.116E-2 2.452

A′2 0+ 3 0 A′′2 0− 2 0 437812 0.137E-2 2.367

A′2 0− 4 3 A′′2 0+ 3 3 4255872 0.570E+0 -1.356

E ′′ 0− 4 2 E ′ 0+ 3 2 4211784 0.955E+0 -1.347

E ′ 0− 4 1 E ′′ 0+ 3 1 4185782 0.118E+1 -1.341

A′′2 0− 4 0 A′2 0+ 3 0 4177192 0.125E+1 -1.339

A′′2 0+ 4 3 A′2 0− 3 3 1071240 0.908E-2 0.414

E ′ 0+ 4 2 E ′′ 0− 3 2 1109700 0.174E-1 0.320

E ′′ 0+ 4 1 E ′ 0− 3 1 1132340 0.233E-1 0.268

E ′′ 0− 5 4 E ′ 0+ 4 4 4925223 0.744E+0 -1.309

A′2 0+ 5 0 A′′2 0+ 4 3 4703383 0.813E-3 -1.020

A′2 0− 5 3 A′′2 0+ 4 3 4862806 0.128E+1 -1.296

E ′ 0+ 5 4 E ′′ 0− 4 4 1730710 0.322E-1 -0.121

E ′′ 0− 5 2 E ′ 0+ 4 2 4819190 0.165E+1 -1.288

E ′ 0− 5 1 E ′′ 0+ 4 1 4793510 0.187E+1 -1.283

A′′2 0+ 5 3 A′2 0− 4 3 1783394 0.633E-1 -0.185

E ′′ 0+ 5 2 E ′ 0− 4 2 1819952 0.889E-1 -0.228

E ′′ 0+ 5 1 E ′ 0− 4 1 1841471 0.106E+0 -0.252

A′2 0+ 5 0 A′′2 0− 4 0 1848471 0.111E+0 -0.260

A′2 0− 5 3 A′′2 0− 4 0 2007895 0.113E-3 -0.990
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Table C.5: The frequencies (ν), Einstein coefficients (A), and sensitivities (T ) of the

strongest ‘forbidden’ rotation-inversion transitions in the ground vibrational state

of H3
16O+.

Γ′ p′ J ′ K ′ Γ′′ p′′ J ′′ K ′′ νcalc/MHz A/s−1 Tcalc

A′2 0+ 7 0 A′′2 0+ 6 3 6013041 0.532E-1 -1.012

A′2 0− 7 3 A′′2 0− 6 0 3320905 0.115E-1 -0.982

A′′2 0+ 8 3 A′2 0+ 7 0 3986710 0.132E-1 -0.985

A′′2 0− 8 0 A′2 0− 7 3 6509745 0.713E-1 -0.980

A′2 0+ 9 0 A′′2 0+ 8 3 7288334 0.473E+0 -1.011

E ′ 0− 9 1 E ′′ 0− 8 4 7989021 0.354E-2 -0.974

A′2 0− 9 3 A′′2 0− 8 0 4609322 0.133E+0 -0.962

E ′′ 0+ 10 1 E ′ 0+ 9 2 7028329 0.327E-2 -0.991

E ′′ 0+ 10 1 E ′ 0+ 9 4 8788561 0.292E-2 -0.996

E ′′ 0− 10 2 E ′ 0− 9 5 9456048 0.352E-2 -0.970

E ′ 0− 10 1 E ′′ 0− 9 4 8605372 0.737E-2 -0.971

A′′2 0− 10 0 A′2 0− 9 3 7767436 0.758E+0 -0.983

A′′2 0+ 10 3 A′2 0+ 9 0 5280810 0.218E+0 -0.969

A′2 0− 11 3 A′′2 0− 10 6 10906889 0.460E-2 -0.964

E ′′ 0− 11 2 E ′ 0− 10 5 10058374 0.717E-2 -0.967

E ′′ 0+ 11 1 E ′ 0+ 10 4 9392283 0.509E-2 -0.990

A′2 0+ 11 0 A′′2 0+ 10 3 8521500 0.203E+0 -0.991

E ′ 0− 11 1 E ′′ 0− 10 4 9213773 0.138E-1 -0.967

A′2 0− 11 3 A′′2 0− 10 0 5884393 0.687E-1 -0.970

E ′ 0− 12 5 E ′′ 0− 11 8 13229315 0.464E-2 -0.965

E ′′ 0− 12 4 E ′ 0− 11 7 12356185 0.663E-2 -0.963

A′2 0− 12 3 A′′2 0− 11 6 11498974 0.917E-2 -0.963

E ′ 0+ 12 2 E ′′ 0+ 11 5 10862715 0.255E-2 -0.986

E ′′ 0− 12 2 E ′ 0− 11 5 10651877 0.132E-1 -0.962

E ′′ 0+ 12 1 E ′ 0+ 11 4 9985895 0.813E-2 -0.983

E ′ 0− 12 1 E ′′ 0− 11 4 9813803 0.238E-1 -0.963

A′2 0− 12 0 A′′2 0− 11 3 8987776 0.381E+0 -0.967

E ′ 0+ 12 4 E ′′ 0+ 11 1 5706783 0.502E-2 -0.979

A′′2 0+ 12 3 A′2 0+ 11 0 6554476 0.142E+0 -0.975
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Table C.6: Combination differences (CD) of the ‘forbidden’ (∆|k − l| = 3) and

allowed (∆|k − l| = 0) transitions between the ν3 and ground vibrational states in

H3
16O+ a .

Allowed νcalc/cm−1 νexp/cm−1 A/s−1 Forbidden νcalc/cm−1 νexp/cm−1 A/s−1 CD/cm−1

rP(3,0)+ 3457.025 0.390E+3 oP(3,3)− 3447.266 0.826E-1 9.7594
rQ(3,0)+ 3523.544 0.964E+3 oQ(3,3)− 3513.785 0.189E-1 9.7594
rR(3,0)+ 3610.441 0.530E+3 oR(3,3)− 3600.682 0.326E-1 9.7594
pP(3,3)− 3474.787 0.934E+3 sP(3,0)+ 3484.546 0.420E-1 9.7594
pQ(3,3)− 3539.922 0.233E+3 sQ(3,0)+ 3549.681 0.142E+0 9.7594
pR(3,3)− 3626.725 0.246E+2 sR(3,0)+ 3636.484 0.222E+0 9.7594
rR(3,3)− 3564.692 0.730E+3 uR(3,0)+ 3574.452 0.104E-1 9.7594

rP(5,0)+ 3409.061 0.434E+3 oP(5,3)− 3402.343 0.543E+0 6.7184
rQ(5,0)+ 3520.120 0.954E+3 oQ(5,3)− 3513.402 0.206E-1 6.7184
rR(5,0)+ 3649.203 0.508E+3 oR(5,3)− 3642.485 0.558E+0 6.7184
pP(5,3)− 3428.386 0.577E+3 sP(5,0)+ 3435.104 0.441E+0 6.7184
rP(5,3)− 3366.353 0.222E+2 uP(5,0)+ 3373.071 0.110E-1 6.7184
pQ(5,3)− 3536.580 0.375E+3 sQ(5,0)+ 3543.298 0.130E+0 6.7184
rQ(5,3)− 3474.807 0.274E+3 uQ(5,0)+ 3481.525 0.153E+0 6.7184
pR(5,3)− 3666.517 0.650E+2 sR(5,0)+ 3673.236 0.673E+0 6.7184
rR(5,3)− 3604.698 0.540E+3 uR(5,0)+ 3611.416 0.356E+0 6.7184

rP(7,0)+ 3359.844 0.441E+3 oP(7,3)− 3357.106 0.877E+1 2.7377
rQ(7,0)+ 3515.328 0.930E+3 oQ(7,3)− 3512.590 0.965E+1 2.7377
rR(7,0)+ 3685.519 0.482E+3 oR(7,3)− 3682.782 0.104E+2 2.7377
pP(7,3)− 3381.138 3385.075 0.442E+3 sP(7,0)+ 3383.876 3387.725 0.762E+1 2.7377(2.650)
rP(7,3)− 3319.319 3323.231 0.664E+2 uP(7,0)+ 3322.056 3325.884 0.111E+1 2.7377(2.653)
pQ(7,3)− 3531.771 3535.834 0.421E+3 sQ(7,0)+ 3534.508 3538.495 0.205E+1 2.7377(2.661)
rQ(7,3)− 3470.509 0.340E+3 uQ(7,0)+ 3473.246 0.617E+1 2.7377
pR(7,3)− 3704.670 0.851E+2 sR(7,0)+ 3707.407 0.387E+1 2.7377
rR(7,3)− 3642.850 0.445E+3 uR(7,0)+ 3645.587 0.903E+1 2.7377

rP(9,0)+ 3309.424 3313.435 0.424E+3 oP(9,3)− 3311.889 3315.944 0.311E+2 2.4653(2.509)
rQ(9,0)+ 3509.010 3513.136 0.833E+3 oQ(9,3)− 3511.475 3515.651 0.856E+2 2.4653(2.515)
rR(9,0)+ 3719.122 0.449E+3 oR(9,3)− 3721.587 0.287E+2 2.4653
pP(9,3)− 3333.778 3337.640 0.350E+3 sP(9,0)+ 3331.312 3335.123 0.292E+2 2.4653(2.517)
rP(9,3)− 3271.958 3275.802 0.946E+2 uP(9,0)+ 3269.492 3273.280 0.752E+1 2.4653(2.522)
pQ(9,3)− 3525.875 3529.900 0.394E+3 sQ(9,0)+ 3523.410 3527.384 0.540E+2 2.4653(2.516)
rQ(9,3)− 3465.261 3469.262 0.340E+3 uQ(9,0)+ 3462.796 3466.750 0.241E+2 2.4653(2.512)
pR(9,3)− 3741.744 0.958E+2 sR(9,0)+ 3739.278 0.351E+1 2.4653
rR(9,3)− 3679.393 0.375E+3 uR(9,0)+ 3676.927 0.222E+2 2.4653

rP(11,0)+ 3258.726 0.445E+3 oP(11,3)− 3266.211 0.861E+1 7.4847
rQ(11,0)+ 3501.923 0.856E+3 oQ(11,3)− 3509.407 0.340E+2 7.4847
rR(11,0)+ 3750.757 0.456E+3 oR(11,3)− 3758.241 0.527E+1 7.4847
pP(11,3)− 3286.368 3290.155 0.317E+3 sP(11,0)+ 3278.883 3282.529 0.937E+1 7.4847(7.626)
rP(11,3)− 3224.017 3227.779 0.121E+3 uP(11,0)+ 3216.532 3220.154 0.295E+1 7.4847(7.625)
pQ(11,3)− 3518.513 0.433E+3 sQ(11,0)+ 3511.028 0.310E+2 7.4847
rQ(11,3)− 3458.662 0.353E+3 uQ(11,0)+ 3451.178 0.502E+1 7.4847
pR(11,3)− 3777.943 0.975E+2 sR(11,0)+ 3770.459 0.343E+0 7.4847
rR(11,3)− 3714.190 0.261E+3 uR(11,0)+ 3706.706 0.738E-1 7.4847

a Experimental frequencies from Tang and Oka [379] and Uy et al. [378]. Experimental CD data

in parentheses. Transitions with ∆J = −1, 0,+1 are described using the labels P, Q, R

respectively, whilst the superscript o, p, q, r, s, t, u notation corresponds to transitions with

∆K = −2,−1, 0,+1,+2,+3,+4 respectively. All transitions are between states of A′2 and A′′2
symmetry, where +(−)→ +(−) are allowed, and +(−)→ −(+) are forbidden.
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Table C.7: The ‘forbidden’ combination differences (ν) and sensitivities (T ) of the

H3
16O+ and H3

18O+ ground vibrational state transitionsa .

Γ′ p′ J ′ K ′ Γ′′ p′′ J ′′ K ′′ νcalc/MHz νexp/MHz Tcalc Texp

H3
16O+

A′′2 0+ 8 3 A′′2 0− 8 6 2490592 2499819 -0.492 -0.490

A′′2 0+ 9 3 A′′2 0− 9 6 2549767 2557200 -0.536 -0.534

E ′ 0+ 7 4 E ′ 0− 7 7 3257694 3261952 -0.566 -0.565

E ′ 0+ 8 4 E ′ 0− 8 7 3311613 3316064 -0.597 -0.596

E ′ 0+ 8 4 E ′ 0− 8 7 3311613 3316124 -0.597 -0.596

E ′′ 0+ 7 7 E ′′ 0− 5 4 2096835 2100526 -0.196 -0.196

E ′′ 0− 7 4 E ′′ 0+ 7 7 6467432 6471380 -1.241 -1.240

E ′′ 0− 7 4 E ′′ 0+ 7 7 6467432 6473688 -1.241 -1.239

E ′′ 0− 8 4 E ′′ 0+ 8 7 6341551 6347955 -1.222 -1.221

A′1 0− 3 3 A′2 0+ 3 0 292579 -6.094

A′2 0− 5 3 A′2 0+ 5 0 201415 -7.803

A′2 0− 7 3 A′2 0+ 7 0 82072 79535 -15.416 -15.907

A′2 0− 7 3 A′2 0+ 7 0 82072 79445 -15.416 -15.925

A′2 0− 7 3 A′2 0+ 7 0 82072 79775 -15.416 -15.859

A′2 0− 9 3 A′2 0+ 9 0 73906 75308 10.518 10.322

A′2 0− 9 3 A′2 0+ 9 0 73906 75608 10.518 10.281

A′2 0− 9 3 A′2 0+ 9 0 73906 75458 10.518 10.302

A′2 0− 9 3 A′2 0+ 9 0 73906 75428 10.518 10.306

A′2 0− 9 3 A′2 0+ 9 0 73906 75218 10.518 10.344

A′2 0− 9 3 A′2 0+ 9 0 73906 75398 10.518 10.310

A′2 0− 11 3 A′2 0+ 11 0 224387 228592 2.508 2.462

A′2 0− 11 3 A′2 0+ 11 0 224387 228622 2.508 2.461

H3
18O+

A′2 0− 3 3 A′2 0+ 3 0 251040 -6.858

A′2 0− 5 3 A′2 0+ 5 0 159424 -9.453

A′2 0− 7 3 A′2 0+ 7 0 42250 -26.035

A′2 0− 9 3 A′2 0+ 9 0 111874 7.280

A′1 0− 11 3 A′2 0+ 11 0 263960 1.933

a Experimental frequencies from Tang and Oka [379] and Uy et al. [378].
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Table C.8: Inversion frequencies (ν), Einstein coefficients (A), and sensitivities (T )

of D3
16O+ in the ground vibrational state.

J K νcalc/MHz A/s−1 Tcalc J K νcalc/MHz A/s−1 Tcalc

1 1 461457.7 0.202E-2 -2.594 9 3 396223.5 0.262E-3 -2.532
2 1 457746.8 0.659E-3 -2.591 9 -3 396307.6 0.262E-3 -2.533
2 2 462036.6 0.271E-2 -2.595 9 4 404995.9 0.495E-3 -2.541
3 1 452238.3 0.318E-3 -2.586 9 5 416478.0 0.837E-3 -2.552
3 2 456477.0 0.131E-2 -2.590 9 6 430926.5 0.133E-2 -2.565
3 3 463624.8 0.307E-2 -2.596 9 7 448609.6 0.202E-2 -2.580
3 -3 463624.9 0.307E-2 -2.596 9 8 469861.2 0.301E-2 -2.597
4 1 445000.1 0.182E-3 -2.580 9 9 495091.4 0.441E-2 -2.617
4 2 449171.5 0.749E-3 -2.583 10 1 371355.7 0.197E-4 -2.506
4 3 456206.1 0.176E-2 -2.589 10 2 374847.8 0.811E-4 -2.510
4 -3 456205.3 0.176E-2 -2.589 10 3 380737.2 0.191E-3 -2.516
4 4 466229.2 0.333E-2 -2.597 10 -3 380588.7 0.191E-3 -2.515
5 1 436120.3 0.115E-3 -2.572 10 4 389060.1 0.361E-3 -2.525
5 2 440209.4 0.471E-3 -2.575 10 5 400099.1 0.610E-3 -2.536
5 3 447102.0 0.111E-2 -2.581 10 6 413989.0 0.968E-3 -2.549
5 -3 447105.0 0.111E-2 -2.581 10 7 430988.1 0.148E-2 -2.564
5 4 456929.3 0.209E-2 -2.590 10 8 451417.0 0.220E-2 -2.582
5 5 469861.8 0.354E-2 -2.600 10 9 475669.3 0.322E-2 -2.601
6 1 425705.7 0.765E-4 -2.562 10 10 504223.5 0.469E-2 -2.622
6 2 429698.4 0.314E-3 -2.565 11 1 355354.7 0.145E-4 -2.488
6 3 436431.4 0.739E-3 -2.572 11 2 358700.1 0.595E-4 -2.492
6 -3 436422.5 0.739E-3 -2.571 11 3 364095.1 0.140E-3 -2.497
6 4 446021.4 0.140E-2 -2.580 11 -3 364342.1 0.140E-3 -2.498
6 5 458648.4 0.236E-2 -2.590 11 4 372266.1 0.265E-3 -2.507
6 6 474539.6 0.374E-2 -2.603 11 5 382838.8 0.448E-3 -2.518
7 1 413879.5 0.529E-4 -2.550 11 6 396141.0 0.711E-3 -2.531
7 2 417762.9 0.217E-3 -2.554 11 7 412420.4 0.108E-2 -2.547
7 3 424290.4 0.511E-3 -2.560 11 8 431984.1 0.161E-2 -2.564
7 -3 424311.5 0.511E-3 -2.560 11 9 455208.5 0.237E-2 -2.584
7 4 433633.4 0.966E-3 -2.568 11 10 482551.0 0.345E-2 -2.605
7 5 445914.1 0.163E-2 -2.579 11 11 514564.3 0.500E-2 -2.629
7 6 461368.9 0.259E-2 -2.592 12 1 338716.8 0.106E-4 -2.468
7 7 480284.7 0.395E-2 -2.607 12 2 341909.8 0.438E-4 -2.472
8 1 400778.6 0.375E-4 -2.537 12 3 347292.8 0.103E-3 -2.479
8 2 404541.2 0.154E-3 -2.541 12 -3 346901.5 0.103E-3 -2.477
8 3 410886.1 0.363E-3 -2.547 12 4 354781.7 0.195E-3 -2.487
8 -3 410841.9 0.363E-3 -2.547 12 5 364869.9 0.330E-3 -2.498
8 4 419907.3 0.686E-3 -2.556 12 6 377561.1 0.524E-3 -2.512
8 5 431804.8 0.116E-2 -2.566 12 7 393092.4 0.800E-3 -2.527
8 6 446776.9 0.184E-2 -2.579 12 8 411756.9 0.119E-2 -2.545
8 7 465101.3 0.280E-2 -2.594 12 9 433913.7 0.175E-2 -2.565
8 8 487124.4 0.417E-2 -2.612 12 10 459998.3 0.255E-2 -2.587
9 1 386551.6 0.271E-4 -2.523 12 11 490536.8 0.369E-2 -2.610
9 2 390183.3 0.111E-3 -2.526 12 12 526162.6 0.535E-2 -2.635
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Table C.9: The frequencies (ν), Einstein coefficients (A), and sensitivities (T ) of the

rotation-inversion transitions in the ground vibrational state of D3
16O+.

Γ′ p′ J ′ K ′ Γ′′ p′′ J ′′ K ′′ νcalc/MHz A/s−1 Tcalc

A′′1 0− 1 0 A′1 0+ 0 0 799894a 0.703E-2 -1.919

A′′2 0− 0 0 A′2 0+ 1 0 122016 0.748E-4 -7.018

E ′ 0− 2 1 E ′′ 0+ 1 1 1137348 0.182E-1 -1.644

A′′2 0− 2 0 A′2 0+ 1 0 1135859 0.242E-1 -1.643

E ′′ 0+ 2 1 E ′ 0− 1 1 218144 0.128E-3 2.352

A′1 0+ 2 0 A′′1 0− 1 0 219509 0.174E-3 2.319

E ′′ 0− 3 2 E ′ 0+ 2 2 1475670 0.315E-1 -1.496

E ′ 0− 3 1 E ′′ 0+ 2 1 1471128 0.501E-1 -1.492

A′′1 0− 3 0 A′1 0+ 2 0 1469623 0.562E-1 -1.490

E ′ 0+ 3 2 E ′′ 0− 2 2 557156 0.170E-2 0.311

E ′′ 0+ 3 1 E ′ 0− 2 1 561143 0.278E-2 0.287

A′2 0+ 3 0 A′′2 0− 2 0 562464 0.315E-2 0.279

A′1 0− 4 -3 A′′1 0+ 3 -3 1814847 0.479E-1 -1.404

A′2 0− 4 3 A′′2 0+ 3 3 1814848 0.479E-1 -1.404

E ′′ 0− 4 2 E ′ 0+ 3 2 1807141 0.813E-1 -1.398

A′′2 0+ 4 3 A′2 0− 3 3 895017 0.574E-2 -0.183

A′′1 0+ 4 -3 A′1 0− 3 -3 895017 0.574E-2 -0.183

E ′ 0− 4 1 E ′′ 0+ 3 1 1802568 0.101E+0 -1.394

A′′2 0− 4 0 A′2 0+ 3 0 1801051 0.108E+0 -1.393

E ′ 0+ 4 2 E ′′ 0− 3 2 901493 0.101E-1 -0.203

E ′′ 0+ 4 1 E ′ 0− 3 1 905329 0.128E-1 -0.215

A′1 0+ 4 0 A′′1 0− 3 0 906601 0.137E-1 -0.219

E ′′ 0− 5 4 E ′ 0+ 4 4 2154875 0.675E-1 -1.342

E ′ 0+ 5 4 E ′′ 0− 4 4 1231716 0.126E-1 -0.403

A′2 0− 5 3 A′′2 0+ 4 3 2143872 0.119E+0 -1.334

A′1 0− 5 -3 A′′1 0+ 4 -3 2143874 0.119E+0 -1.334

E ′′ 0− 5 2 E ′ 0+ 4 2 2136144 0.154E+0 -1.328

A′′2 0+ 5 3 A′2 0− 4 3 1240564 0.230E-1 -0.423

A′′1 0+ 5 -3 A′1 0− 4 -3 1240564 0.230E-1 -0.423

E ′ 0− 5 1 E ′′ 0+ 4 1 2131556 0.176E+0 -1.325

A′′1 0− 5 0 A′1 0+ 4 0 2130034 0.183E+0 -1.324

E ′ 0+ 5 2 E ′′ 0− 4 2 1246763 0.307E-1 -0.436

E ′′ 0+ 5 1 E ′ 0− 4 1 1250435 0.354E-1 -0.443

A′2 0+ 5 0 A′′2 0− 4 0 1251654 0.370E-1 -0.446

a Experimental value of 798713.814 MHz measured in Furuya and Saito [381]. Note that states

with K = +3 are of A2 symmetry, whilst those with K = −3 are of A1 symmetry.
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Table C.10: The frequencies (ν), Einstein coefficients (A), and sensitivities (T ) of the

strongest ‘forbidden’ rotation-inversion transitions in the ground vibrational state

of D3
16O+.

Γ′ p′ J ′ K ′ Γ′′ p′′ J ′′ K ′′ νcalc/MHz A/s−1 Tcalc

A′′1 0− 9 0 A′1 0− 8 -3 3688528 0.170E-3 -0.989

A′1 0+ 10 0 A′′1 0+ 9 -3 4042517 0.147E-3 -1.000

A′′2 0− 10 0 A′2 0− 9 3 4016397 0.375E-3 -0.987

E ′ 0− 11 1 E ′′ 0− 10 4 4785669 0.151E-3 -0.985

A′2 0+ 11 0 A′′2 0+ 10 3 4368847 0.288E-3 -0.997

A′′1 0− 11 0 A′1 0− 10 -3 4342344 0.754E-3 -0.985

A′′1 0+ 11 -3 A′1 0+ 10 0 3024066 0.275E-3 -0.991

E ′′ 0− 12 2 E ′ 0− 11 5 5551457 0.191E-3 -0.983

E ′ 0− 12 1 E ′′ 0− 11 4 5107776 0.289E-3 -0.983

A′1 0+ 12 0 A′′1 0+ 11 -3 4692929 0.520E-3 -0.994

A′′2 0− 12 0 A′2 0− 11 3 4666233 0.140E-2 -0.983

A′′2 0+ 12 3 A′2 0+ 11 0 3354397 0.556E-3 -0.989

A′1 0− 12 -3 A′′1 0− 11 0 3347266 0.160E-3 -0.985

Note that states with K = +3 are of A2 symmetry, whilst those with K = −3 are of A1

symmetry.

Table C.11: The ‘forbidden’ combination differences (ν) and sensitivities (T ) of the

D3
16O+ ground vibrational state transitionsa .

Γ′ p′ J ′ K ′ Γ′′ p′′ J ′′ K ′′ νcalc/MHz νexp/MHz Tcalc Texp

A′2 0+ 8 6 A′2 0+ 7 6 2711462 2714369 -1.004 -1.003

A′2 0+ 7 6 A′2 0+ 6 6 2376103 2378622 -1.006 -1.005

E ′ 0+ 6 4 E ′ 0+ 5 4 2035287 2037351 -1.005 -1.004

A′′2 0+ 4 3 A′′2 0+ 3 3 1358641 1360071 -1.006 -1.005

A′′1 0+ 4 -3 A′′1 0+ 3 -3 1358642 1360071 -1.006 -1.005

E ′ 0+ 3 2 E ′ 0+ 2 2 1019193 1020224 -1.006 -1.005

E ′ 0+ 5 2 E ′ 0+ 4 2 1695934 1697704 -1.005 -1.004

a Experimental frequencies from Araki et al. [380].
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