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Abstract. We consider how microlocal methods developed for
tomographic problems can be used to detect singularities of the
Lorentzian metric of the Universe using measurements of the Cos-
mic Microwave Background radiation. The physical model we
study is mathematically rigorous but highly idealized.

1. Introduction

We study the dectection of singularities of the Lorenzian metric of
the Universe from Cosmic Microwave Background (CMB) radiation
measurements. The singularities are considered in the sense of the wave
front set that describes where the metric is non-smooth in the spacetime
and also in which direction the singularity occurs. The direction of the
singularity is characterized by using the Fourier transform of the metric,
see Definition 2.1 below.

A singularity in the metric could be caused for example by a cosmic
string [5, 33]. A cosmic string is a singularity in the stress energy
tensor that is supported on a two-dimensional timelike surface in the
spacetime. The existence of cosmic strings finds support in super-
string theories [25], however, there is no direct connection between
string theory and the theory of cosmic strings. We refer to [2, 3, 27]
regarding the existence (or inexistence) of cosmic strings in view of
CMB measurements collected by the Planck Surveyor mission in 2013.

The singularities of which potential detectability is interesting to
study include cosmic stings, monopoles, cosmic walls and black holes.
There is a vast physical literature concerning the effects of particular
types of singularities or topological defects on the CMB measurements,
see e.g. [6, 7, 9] and references therein. The contribution of the present
paper is to adapt techniques from the mathematical study of inverse
problems to CMB measurements. These techniques allow us to detect
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singularities without apriori knowledge of their geometry. Hence it
might be also possible to detect singularities that are not predicted
by the current physical knowledge. Furthermore, the techniques allow
us to study the opposite question, that is, what type of singularities
are invisible to our measurements and therefore can not be detected
[10, 11].

Several types of measurements have been proposed in astrophysical
literature for detection of topological defects of Universe. These include
optical measurements, such as gravitational lensing effects caused by
cosmic stings [4, 26, 28], observations of density of mass in Universe,
measurements of gravitational waves [1], and the temperature changes
in the Cosmic Microwave Background [2, 3, 9, 27]. We show that the
CMB measurements have a tomographic nature, and concentrate on
them in this paper.

The detection of singularities has been extensively studied in mi-
crolocal theory of tomography, see e.g. [12, 13, 22] and the review [8].
In many problems related to tomography, for instance in medical imag-
ing, it has been shown that measurements can be used to detect sin-
gularities. Moreover, the visible singularities have been characterised
in many cases. In this microlocal context, a singularity is considered
to be invisible if it causes only a smooth perturbation in the measured
data.

In the present paper we characterize the singularities of the Lorenzian
metric that are visible from a linearization of the CMB measurements,
and that move slower than the speed of light. We show also that all
singularities moving faster than the speed of light are invisible. We
do not analyze recovery of singularities moving at the speed of light.
Our approach is based on a highly idealized deterministic model of
CMB measurements, but such a model can be viewed as a first step in
developing tomographic methods for more realistic, possible stochastic,
models of the CMB measurements, see e.g. [17].

We obtain the characterization of visible singularities via microlo-
cal analysis of the geodesic ray transform on a Friedmann-Lemâıtre-
Robertson-Walker type spacetime. The transform is restricted on light
rays and we call it the light ray transform. Such a light ray transform
has been studied in 1 + 2 dimensions in [16], and the 1 + 3 dimensional
light ray transform, as considered in the present paper, belongs to the
class of Fourier integral operators studied in [14].

Contrary to [14], we avoid using the Ip,l calculus by first microlo-
calizing on spacelike covectors. Then we invert microlocally the light
ray transform up to potential fields, see (11) below for the definition,
and conformal multiples of the metric of the spacetime. This is sharp
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since those two subspaces belong to the kernel of the linearization and
they correspond to the gauge invariance of the non-linear problem un-
der diffemorphisms and conformal changes. The spacelike covectors
correspond physically to singularities moving slower than the speed of
light.

This paper is organized as follows. Section 1 is the introduction
and Section 2 introduces some notations. In Section 3 we formulate
the inverse problem for the CMB measurements and its linearization,
and in Section 4 we state the main results. Section 5 deals with the
parametrization of the CMB measurements. In Section 6 we describe
the conformal invariance inherent in the problem. Section 7 contains
the reduction of the linearized problem to inversion of the light ray
transform. In Section 8 we study the light ray trasform in a translation
invariant case and express its normal operator as a Fourier multiplier.
This motivates our subsequent study in the general case which is not
translation invariant due to the fact that measurements are available
only in a small set in the spacetime. In Section 9 we study the null space
of the light ray transform that corresponds to the gauge invariance of
the problem. In Sections 10 and 11 we characterize the visible spacelike
singularities. Moreover, we compute the symbol of the normal operator
of the light ray transform on the cone of spacelike covectors, on which
it is a pseudodifferential operator.

2. Notations

Let M ⊂ Rn be open. We denote by D′(M) the distributions on
M and by E ′(M) the distributions with compact support. Moreover,
we denote by Cm(M), m = 0, 1, 2, . . . ,∞, the space of m-times con-
tinuously differentiable functions, and let Cm

0 (M) ⊂ Cm(M) be the
subspace of functions with compact support. For m < ∞, we define
also the Banach space

Cm
b (M) = {u ∈ Cm(M);

∑
|α|≤m

sup
x∈M
|∂αxu(x)| <∞}.

We denote by Sym2 the symmetric 2-tensors on M , and by Λ1 the
1-forms on M . We use the notations F(M ;E), F = D′, E ′, Cm, Cm

b ;
E = Sym2,Λ1,C, for the subspaces F of distributions taking values on
the vector bundle E.

We denote by Sm(T ∗M) = Sm1,0(T
∗M), m ∈ R, the symbols as de-

fined in [18]. If χ ∈ Sm(T ∗M) then we denote the corresponding pseu-
dodifferential operator also by χ. We denote the wave front set of a
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distribution u ∈ D′(M ;E) by WF(u). For reader’s convenience we
recall the definition here.

Definition 2.1. Let u ∈ D′(M ;E), E = Sym2,Λ1,C. A point (x, ξ) ∈
T ∗M \ 0 is in the wave front set of u if there does not exists an open
cone Γ ⊂ T ∗xM containing ξ and a function φ ∈ C∞0 (M) satisfying
φ(x) 6= 0 such that for all N = 1, 2, . . . there is C > 0 such that the
Fourier transform of φu decays as follows:

|φ̂u(ξ)| ≤ C(1 + |ξ|)−N , ξ ∈ Γ.

Let us recall a typical example, see e.g. [20, Th. 8.1.5]. Let u ∈
C∞0 (M), k ≤ n, and let us consider coordinates (x′, x′′) ∈ Rk×(n−k)

on M . Then the Euclidean surface measure δ(x′′) of {(x′, 0);x′ ∈ Rk}
satisfies

WF(uδ(x′′)) = {(x′, 0; 0, ξ′′) ∈ T ∗M \ 0; (x′, 0) ∈ supp (u)},
where ξ′′ is the covector corresponding to x′′. As all smooth surfaces
in M are locally of this form, it can be seen that the wave front set
of a surface measure is the conormal bundle of the corresponding sur-
face. This applies in particular to cosmic strings that are singularities
supported on two dimensional surfaces, see e.g. [5, Chapter 6].

3. Mathematical formulation of the CMB measurements

3.1. The data and the inverse problem. Let us begin by formu-
lating a mathematical problem on a time-oriented Lorentzian manifold
(M, g) of dimension 1 + n. Below, we will consider a linearized version
of this problem, and solve the linearized problem only in a microlo-
cal sense. We assume that M is a smooth manifold and that g is a
C2-smooth metric tensor with signature (−,+, . . . ,+).

We recall that a point (x, V ) on the tangent bundle TM is called
spacelike if the inner product (V, V )g is strictly positive, timelike if
(V, V )g < 0, and lightlike if (V, V )g = 0. A submanifold Σ ⊂ M is
called spacelike if all the tangent vectors in TΣ are spacelike, and a
geodesic γ : [0, `] → M is called a null geodesic if its tangent vector
γ̇(τ) is lightlike for one, and hence for all τ ∈ [0, `]. Let us also recall
that (x, Z) ∈ TM is called an observer if Z is future pointing and
(Z,Z)g = −1.

Let Σ ⊂ M be a smooth spacelike submanifold of codimension one,
and let ν be the future pointing normal vector field on Σ that is of
unit length in the sense that (ν, ν)g = −1. Let U be another smooth
submanifold of M and let Z be a smooth section of TM defined on U ,
and suppose that (x, Z) is an observer for all x ∈ U .



INVERSE PROBLEM OF FINDING COSMIC STRINGS 5

Let E0 > 0 and let us consider a null geodesic β satisfying

β(0) ∈ Σ, (β̇(0), ν)g = −E0,(1)

and suppose that β(τ) ∈ U for some τ ∈ R. We define

x = β(τ), V = E−1β̇(τ)− Z,(2)

where E = −(β̇(τ), Z)g. Note that V satisfies

(V, Z)g = 0, (V, V )g = 1,(3)

and that (x, V ) determines uniquely a null geodesic β satisfying (1).

Indeed, β(τ) = x and β̇(τ) = E(V + Z) determine a null geodesic up
to an affine reparametrization, that is, up to a choice of τ and E, and
(1) fixes the parametrization.

We denote by Sg,x,Z the set of vectors V ∈ TxM satisfying (3). The
set Sg,x,Z is called the celestial sphere of the observer (x, Z), see e.g.
[24]. Furthermore, we denote by Sg,ZU the set of points (x, V ) ∈ TM
such that x ∈ U , V ∈ Sg,x,Z , and that there is a null geodesic β
satisfying (1) and (2) for some τ ∈ R.

Physically, the null geodesics β satisfying (1) correspond to photons
that are emitted with a fixed energy E0 uniformly in all future pointing
lightlike directions on Σ. Moreover, E and V in (2) are the energy and
the Newtonian velocity of β as measured by the observer (x, Z). The
proportional difference between the emitted and observed energies,

Rg,Z(x, V ) =
E0 − E
E

=
(β̇(0), ν)g

(β̇(τ), Z)g
− 1, (x, V ) ∈ Sg,ZU ,(4)

is called the redshift of β as measured by (x, Z). Here β is the null
geodesic satisfying (1) and (2) for some τ ∈ R. A general formulation
of the inverse problem that we consider is the following:

Problem 3.1 (Inverse problem for redshift measurements). Given the
function Rg,Z : Sg,ZU → R determine (W, g) where W ⊂ M is the
union of the null geodesics connecting points of U to points of Σ.

The red shift measurements (4) do not change under the group of
transformations generated by diffeomorphisms and conformal changes.
Indeed, if ψ is a diffeomorpism that is identity on Σ and U , then the
redshift data corresponding to g and its pullback ψ∗g are the same.
Next, if c is a smooth strictly positive function on M satisfying c = 1
on Σ and U , then the redshift data corresponding to cg and g are the
same. This is based on the fact that the null geodesics of cg are the
same as those of g as point sets but they are parameterized differently,
see Lemma 6.1 below. Hence the determination of (M, g) in Problem
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3.1 should be understood modulo the gauge invariance given by this
group of transformations.

3.2. The linearized CMB inverse problem. Let us now turn to
a linearization of Problem 3.1 at a Friedmann-Lemâıtre-Robertson-
Walker type model, that is, at a Lorenzian manifold of the following
warped product form

g(x) = −dt2 + a2(t)dy2, x = (t, y) ∈M = (0,∞)× R3,(5)

where a > 0 is smooth on (0,∞) and may have singularity as t → 0.
A singularity at the boundary t = 0 corresponds physically to the Big
Bang. In particular, the choice a(t) = t2/3 gives the Einstein-de Sitter
cosmological model [24, p. 31]. Occasionally we write a(x) = a(t) for
x = (t, y).

Let t0 > 0 be small and consider the surface

Σ = {(t, y) ∈M : t = t0}.(6)

Then the photons satisfying (1) give a model for the CMB radiation.
Physically, the time t0 corresponds to the time when the Universe was
cool enough so that stable atoms could form. As these atoms could
no longer absorb the thermal radiation, the photons that were around
stayed forming the CMB radiation.

The model is highly idealized as the initial frequency spectrum of
microwave background radiation would more likely follow e.g. Planck
photon distribution function, see e.g. [24, Ex. 5.5.4]. A physically
more realistic model would allow the photons emitted at the surface
Σ to have an energy distribution with median E0. This would lead
to similar considerations as below, by assuming that we measure the
energy distribution of photons and find the median of this distribution.
However, for simplicity we consider the case when all emitted photons
have constant energy.

Let gε ∈ C2(M ;Sym2), ε ∈ [0, 1], be a one parameter family of
Lorentzian metrics, and suppose that gε = g in M \M0 where

M0 = (t0,∞)× R3.

Here t0 is as in (6). We will now describe the CMB measurements on
(M, gε). Let t1 > t0, let U1 ⊂ R3 be open and bounded, and define
U = {t1} × U1. To avoid technicalities in the exposition, we assume
that gε = g on U and consider the observers (x, ∂t), x ∈ U . We will
study more general observers in Section 5.
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β̇(0) Σ

β̇(τ1)
Singularity

ξ

∂t
β̇(τ2)
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y

x

Figure 1. The observer (y, ∂t) measures the energy of
the photon β. The photon has the Newtonian veloc-
ity v on the celestial sphere of (y, ∂t). We show that
the measurement carries information on the singular-
ity (x, ξ) ∈ WF(∂εgε|ε=0) that satisfies β(τ1) = x and

ξ(β̇(τ1)) = 0, see Theorem 4.4.

Let S2 be the Euclidean unit sphere in R3. We define the diffeomor-
phism

θ : S2 → Sgε,x,∂t − ∂t, θ(v) = −(1, a(t1)
−1v) ∈ R1+3.(7)

If gε is sufficiently close to the background metric g then Lemma 3.2
below says that Sg,ZU can be parametrized by U1 × S2, and the red-
shifts Rgε,∂t of CMB photons as measured by (x, ∂t), x ∈ U , can be
parametrized as follows

Rε(y, v) = (γ̇ε(τε(x, θ);x, θ), ∂t)gε − 1, (y, v) ∈ U1 × S2,(8)

where x = (t1, y), θ = θ(v), γε(·;x, θ) is the geodesic of (M, gε) with
the initial data (x, θ), and

τε(x, θ) = min{τ > 0; γε(τ ;x, θ) ∈ Σ}.(9)

Lemma 3.2. Let g be a Lorentzian metric tensor of the form (5).
Let t1 > t0, let U1 ⊂ R3 be bounded, and define U = {t1} × U1. Let
gε ∈ C2(M ;Sym2), ε ∈ [0, 1], be a one parameter family of Lorentzian
metrics satisfying g0 = g. Suppose that the map ε 7→ gε is differentiable
from [0, 1] to C2

b (M0;Sym
2) and that gε = g in U ∪ Σ. Let (x, v) ∈

U × S2, and define θ = θ(v) and τε = τε(x, θ) for small ε. Let c > 0.
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Then the geodesic

βε(ρ) = γε(−cρ+ τε;x, θ),

satisfies βε(0) ∈ Σ and βε(τε/c) = x. In particular, if we choose the

parametrization c = E0/(γ̇ε(τε;x, θ), ∂t)gε, then (β̇ε(0), ∂t)gε = −E0 and
the redshift of βε as measured by (x, ∂t) satisfies

Rgε,∂t(x, θ + ∂t) = (γ̇ε(τε;x, θ), ∂t)gε − 1.

Proof. We will show that τε is well-defined for small ε > 0 in Lemma
5.1 below. We have βε(0) ∈ Σ, βε(τε/c) = x, (β̇ε(0), ∂t)gε = −E0, and
the redshift is

(β̇ε(0), ∂t)gε

(β̇ε(τε/c), ∂t)gε
− 1 =

−E0

−c(θ, ∂t)gε
− 1 = (γ̇ε(τε;x, θ), ∂t)gε − 1,

since (θ, ∂t)gε = 1. �

We are ready to formulate the linearized version of Problem 3.1 that
we will consider.

Problem 3.3 (Linearized microlocal CMB inverse problem). Given
∂εRε(x, v)|ε=0, (x, v) ∈ U×S2, determine the wave front set WF(∂εgε|ε=0)
on T ∗W where W ⊂M is as in Problem 3.1.

We characterize the spacelike vectors in WF(∂εgε|ε=0) that can be
recovered, and show that all timelike vectors are smoothed out. Phys-
ically, the timelike vectors in WF(∂εgε|ε=0) correspond to singularities
moving faster than light, whence we do not expect such singularities
to be present to begin with.

Lightlike singularities could correspond to gravitational waves. Their
recovery from the anisotropies in the Cosmic Microwave Background
radiation is an interesting question. However, we leave this as a topic
for future work.

4. Statement of the results

Let f be a symmetric 2-tensor on a Lorentzian manifold (M, g), and
define the light ray transform of f by

Xgf(x, θ) =

∫
R
(flm ◦ γ)γ̇lγ̇mdτ,(10)

where x ∈M , θ ∈ TxM is lightlike, and γ(τ) = γ(τ ;x, θ) is the geodesic
of (M, g) with the initial data (x, θ). When g is of the form (5), we
define for t1 > t0,

Lt1f(y, v) = Xgf(x, θ), y ∈ R3, v ∈ S2,
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where x = (t1, y) and θ = θ(v) is defined by (7). Note that for an
arbitrary Lorentzian manifold (M, g), the map Xg may fail to be well
defined even when f ∈ C∞0 (M ;Sym2). This is the case, for example,
if (M, g) has closed null geodesics. However, we show the following
lemma.

Lemma 4.1. The light ray transform Lt1 is a Fourier integral operator
of order −3/4 whose associated canonical transformation is the twisted
conormal bundle of the following point-line relation

{(p, y, v) ∈M × R3 × S2; p = γ(τ ; (t1, y), θ(v)) for some τ ∈ R}.
In particular, Lt1 is continuous from E ′(M ;Sym2) to D′(R3 × S2).

The proof of the lemma will be presented in Section 10. The following
theorem reduces the linearized CMB inverse problem to inversion of a
limited angle restriction of the light ray transform.

Theorem 4.2. Let t1 > t0, let U1 ⊂ R3, and let gε ∈ C2(M ;Sym2),
ε ∈ [0, 1], satisfy the assumptions of Lemma 3.2. Define

f(t, x′) =

{
∂εgε(t, x

′)|ε=0, t ∈ (t0, t1),

0, otherwise,

Then on U1 × S2,

∂εRε|ε=0 =
1

2a(t0)
Lt1a

2La∂ta−2f,

where La∂t is the Lie derivative along the scaled world velocity a∂t,
and the powers a2 and a−2 of the warping factor are interpreted as
multiplication operators.

The light ray transform has a non-trivial null space.

Lemma 4.3. Let g be a Lorentzian metric tensor of the form (5) and
let t1 > 0. Define M1 = (0, t1)× R3 and

N = {cg + dsω; c ∈ E ′(M1), ω ∈ E ′(M1; Λ1)},
where ds is the symmetric differential defined in coordinates as follows

(dsω)ij =
(∇iω)j + (∇jω)i

2
.(11)

Here ∇i = ∇∂xi
is the covariant derivative on (M, g). Then Lt1f = 0

for all f ∈ N .
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Proof. By density of C∞0 in E ′, we may assume that c ∈ C∞0 (M1) and
that ω ∈ C∞0 (M1; Λ1), and consider f = cg + dsω. Then Lt1f = 0 on
R3 × S2, since (γ̇, γ̇)g = 0 holds for null geodesics γ and

∂τω(γ̇(τ)) = (dsω)ij γ̇
i(τ)γ̇j(τ)

holds for all geodesics γ. �

In fact, this lemma holds for every Lorentzian metric as far as the
null-geodesics are non-trapping. Note that the group of transforma-
tions g 7→ g + h, h ∈ N , is the linearization of the gauge invariance of
the nonlinear problem, see the discussion after Problem 3.1.

The lemma is an analog of the corresponding results for compact
Riemannian manifolds, where it is known that the geodesic ray trans-
form vanishes on potential fields, i.e., on tensors of order m ≥ 1 which
are symmetric differentials of tensor fields of order m− 1 vanishing on
the boundary, see [29]. What is new here is the scalar multiple cg of
the metric.

Our main result is the following.

Theorem 4.4. Let g be a Lorentzian metric tensor of the form (5).
Let t1 > 0, let U1 ⊂ R3 be open, and define M1 = (0, t1) × R3. Let
(x, ξ) ∈ T ∗M1 be spacelike, and suppose that there is a null geodesic γ
of (M, g) and τ1, τ2 ∈ R such that

γ(τ1) = x, ξ(γ̇(τ1)) = 0, γ(τ2) ∈ {t1} × U1.(12)

Then there is χ ∈ S0(T ∗(R3× S2)) supported in T ∗(U1× S2) such that
for all f ∈ E ′(M ;Sym2) the following are equivalent

(i) (x, ξ) ∈WF(L∗t1χLt1f),
(ii) (x, ξ) ∈WF(f + h) for all h ∈ N .

In particular, the theorem says that the operator L∗t1χLt1 does not
move spacelike singularities. We will give an explicit choice of χ in
Section 11 and show that L∗t1χLt1 is a pseudodifferential operator of
order −1. We will also compute its principal symbol after a conformal
scaling, see Proposition 11.4 below.

Note that the visibility condition (12) is analogous with the visibility
condition for limited angle X-ray tomography, see e.g. [22, Th. 3.1]. It
is also sharp in the sense that if for a spacelike (x, ξ) ∈ T ∗M there does
not exist a null geodesic γ satisfying (12) then for all χ ∈ C∞0 (U1) the
wave front set WF(χLt1f) is empty if WF(f) is contained in a small
conical neighborhood of (x, ξ) in T ∗M .

We will also show that all timelike singularities are lost in the sense
that if WF(f) contains only timelike covectors then WF(Lt1f) is empty.
In other words, Lt1 is smoothing on the cone of timelike covectors.
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5. Parametrization of the CMB measurements

In this section we show that the function τε, see (9), is well-defined.
We do this in a slightly more general context than that in Lemma
3.2, that is, we relax the assumption that gε = g on U , and consider
observers (x, Zε) on U where Zε is not necessarily ∂t.

Let gε ∈ C2(M ;Sym2), ε ∈ [0, 1], be a one parameter family of
Lorentzian metrics satisfying g0 = g, where g is a Lorentzian metric
tensor of the form (5). Let Wε ⊂ M be a spacelike submanifold of
codimension one, and let Zε be a section of TM defined on Wε such
that (x, Zε) is an observer with respect to gε. Let U1 ⊂ R3 be open
and suppose that Φε : U1 →Wε is a diffeomorphism. In this section we
consider measurements by the observers

(Φε(y), Zε), y ∈ U1.(13)

We assume that W0 = {t1} × U1 where t1 > t0, Φ0(y) = (t1, y), and
that Z0 = ∂t.

For small ε > 0, the CMB measurements by observers (x, Zε) can be
parametrized by the vectors in the celestical spheres Sgε,x,Zε , x ∈ Wε.
Indeed, we have the following lemma:

Lemma 5.1. Let M ⊂ Rn be open, let g be a smooth Lorentzian metric
tensor on M , let Z be a smooth vector field on M , and suppose that
(x, Z) is an observer for all x ∈M . Let K0 ⊂M be compact and define

K = {(x, V − Z) ∈ TM ; x ∈ K0, V ∈ Sg,x,Z}.
Let Σ ⊂ M be a smooth submanifold of codimension one, and suppose
that the geodesics γ(·;x, θ), (x, θ) ∈ K, intersect Σ non-tangentially.
Then there are neighborhoods G ⊂ C2

b (M ;Sym2) of g and K ⊂ TM of
K such that the geodesics γh(·;x, θ), (x, θ) ∈ K, with respect to h ∈ G
intersect Σ. Moreover, the function

τh(x, θ) = min{τ > 0; γh(τ ;x, θ) ∈ Σ}
is C1 in K × G, and the functions γh(τ ;x, θ) and γ̇h(τ ;x, θ) are C1 in
a neighborhood of the set

{(τ, x, θ, h); τ ∈ [0, τh(x, θ)], (x, θ) ∈ K, h ∈ G}.
Proof. Let G0 ⊂ C2

b (M ;Sym2) be a neighborhood of g such that all
h ∈ G0 are Lorentzian. We define the open set U = TM × G0 on the
Banach space E = TM × C2

b (M ;Sym2), and consider the vector field
F : U → E, F (x, θ, h) = (θ, f(x, θ, h), 0), where f : E → Rn has
components

f j(x, θ, h) = −Γjk`(x, h)θkθ`, (x, θ) ∈ TM, h ∈ C2
b (M ;Sym2),
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and Γjk`(x, h) are the Christoffel symbols of the metric tensor h at x.
We recall that

Γjk`(x, h) =
1

2
hjm

(
∂hmk
∂x`

+
∂hm`
∂xk

− ∂hk`
∂xm

)
,

where hjm is the inverse of hjk, and see that Γjk` : M × G0 → R is
continuously differentiable. Hence F is continuously differentiable, and
the flow of F is continuously differentiable on its domain of definition
Dom(F ) ⊂ R × U , see e.g. [21, Th. 6.5.2]. Note that the projection
of the flow on TM gives the geodesic flow with respect to the metric
tensor h.

Let κ = (x, θ) ∈ K. We have assumed that (τg(κ), κ, g) ∈ Dom(F ).
As γ(·;κ) intersects Σ non-tangentially, the implicit function theorem
gives neighborhoods Kκ ⊂ TM of κ and Gκ ⊂ C2

b (M ;Sym2) of g such
that τh is C1 on Kκ×Gκ. The set K is compact since K0 is compact and
Sg,x,Z is diffeomorphic to the sphere Sn−2. We choose a finite set J ⊂ K
such that Kκ, κ ∈ J , is an open cover of K, and define K = ∪κ∈JKκ
and G = ∩κ∈JGκ. �

Let us now continue our study of the observers (13). We choose a
smooth family of diffeomorphisms Ψx,ε : S2 → Sgε,x,Z , x ∈ Wε, such
that

Ψx,0(v) = (0,−a(t1)
−1v) ∈ R1+3, x ∈ W0.

Then the redshift measurements can be parametrized as

R̃ε(y, v) = (γε(τε(xε, θε);xε, θε), Zε)gε , (y, v) ∈ U1 × S2,

where xε = Φε(y), θε(x, v) = Ψxε,ε(v)− Zε, γε(·;x, θ) is the geodesic of
(M, gε) with the initial data (x, θ), and τε is defined by (9). Note that
θ0 = θ where θ is defined by (7).

We omit writing ε as a subscript when it is zero. The linearized
measurements satisfy

∂εR̃ε(y, v)|ε=0 = ∂εRε(y, v)|ε=0 + ∂ε(γ(τ(xε, θε);xε, θε), Zε)g|ε=0,

where the second term is a smooth function on U1×S2 if the derivatives
at ε = 0 of Zε and the local parametrizations Φε and Ψx,ε are smooth on
U1×S2. Thus the second term plays no role in the microlocal analysis

of ∂εR̃ε(x, v)|ε=0 and we are reduced to the case covered in Theorem
4.2.

6. Conformal invariance

In this section we show that Theorem 4.4 is invariant under conformal
scaling. Let us recall that a metric tensor g of the form (5) is conformal
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to the Minkowski metric tensor in suitable coordinates. Indeed, we
define the strictly increasing function

s(t) :=

∫ t

0

a(t)−1dt.(14)

Then

g(s, x′) = a2(s)(−ds2 + (dx′)2), (s, x′) ∈ (0,∞)× R3.

For example, the Einstein-de Sitter model corresponds to a(t) = t2/3,
and then s(t) = 3t1/3 and a(s) = s2/9.

It is well known that null geodesics are invariant up to a reparametriza-
tion under a conformal change of the metric. For the reader’s conve-
nience we give a proof here.

Lemma 6.1. Let g be a smooth Lorentzian metric tensor, let a be
a smooth strictly positive function, and define g̃ = a−2g. Then the
null geodesics γ of g correspond to the null geodesics µ of g̃ under the
reparametrization

γ(τ) = µ(σ(cτ)), τ(σ) =

∫ σ

0

a(µ(ρ))2dρ,(15)

where c = a(γ(0))2, τ(σ) is a strictly increasing function and σ(τ) is its
inverse function. The reparametrization is chosen so that γ(0) = µ(0)
and γ̇(0) = µ̇(0).

Proof. We define α by eα = a. Koszul formula implies

∇XY = ∇̃XY + (Xα)Y + (Y α)X − (X, Y )g̃gradg̃α,(16)

where gradg̃ is the gradient with respect to the metric g̃. We apply this
formula to X = Y = µ̇, where µ is a null geodesic with respect to g̃.
Then the first and the last term on the right hand side vanish and we
have

Dσµ̇ = 2(α ◦ µ)′µ̇,

where Dσµ̇ is the covariant derivative of µ̇ with respect to g along µ,
and the prime denotes the derivative of a real valued function on R.
We have τ ′ = e2α◦µ, σ′ = e−2α◦µ◦σ and

σ′′ = −2(α ◦ µ ◦ σ)′σ′ = −2((α ◦ µ)′ ◦ σ)(σ′)2.

Let us consider the curve γ defined by the formula (15) with c = 1.
Then the covariant derivative Dτ γ̇ with respect to g along γ satisfies

Dτ γ̇ = Dτ (σ
′(µ̇ ◦ σ))

= ∂τ (σ
′(µ̇k ◦ σ))∂k + (σ′)2(µ̇i ◦ σ)(µ̇j ◦ σ)(Γkij ◦ µ ◦ σ)∂k

= σ′′(µ̇ ◦ σ) + (σ′)2(Dσµ̇) ◦ σ = 0.
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Here Γkij are the Christoffel symbols of g. We see that γ is a geodesic
with respect to the metric g. The same is true for any c 6= 0 since affine
reparametrizations of geodesics are geodesics. Moreover,

γ̇(τ) = ca−2(γ(τ))µ̇(ρ), ρ = σ(cτ).(17)

�

Corollary 6.2. Let g be a smooth Lorentzian metric tensor, let a be
a smooth strictly positive function, and define g̃ = a−2g. Then the
corresponding light ray transforms satisfy Xgf = a2Xg̃a

−2f .

Proof. We set ρ = σ(cτ) and use (17) and dτ = c−1a2dρ. �

Lemma 6.3. Let g be a smooth Lorentzian metric tensor, let a be
a smooth strictly positive function, and define g̃ = a−2g. Let c be a
smooth function and ω be a smooth 1-tensor. Then

a−2(cg + dsω) = c̃g̃ + d̃sω̃,

where c̃ = c + (ω̃, d log a)g̃ and ω̃ = a−2ω. Here d̃s is the symmetric
differential with respect to g̃.

Proof. We define α by eα = a, and write (16) in coordinates. This gives

the following formula for the Christoffel symbols Γkij and Γ̃kij of g and
g̃, respectively,

Γkij = Γ̃kij + δki ∂jα + δkj ∂iα− bkg̃ij,
where bk = (gradg̃α)k. The symmetric derivative transforms as

(dsω)ij =
1

2
(∂iωj + ∂jωi)− Γkijωk = (d̃sω)ij − ωi∂jα− ωj∂iα + ωkb

kg̃ij.

Moreover,

e2α(d̃s(e−2αω))ij = (d̃sω)ij − ωj∂iα− ωi∂jα.
�

Let g be of the form (5) and define g̃ = a−2g. Let x ∈ M and let
ξ ∈ T ∗M be spacelike for g. Then ξ is spacelike for g̃. Suppose that
γ is a null geodesic of (M, g) and that there are 0 < τ1 < τ2 such that
(12) holds. Let µ be the reparametrization (15) of γ. Then µ is a null
geodesic of (M, g̃) and there are ρ1, ρ2 ∈ R such that

µ(ρ1) = x, ξ(µ̇(ρ1)) = 0, γ(ρ2) ∈ {t1} × U1.
Suppose now that Theorem 4.4 holds for g̃, that is, there is a sym-

bol of order zero χ supported in T ∗(U1 × S2) such that for all f̃ ∈
E ′(M ;Sym2) the following holds:

(x, ξ) ∈WF(L̃∗t1χL̃t1 f̃) iff (x, ξ) ∈WF(f̃ + c̃g̃ + d̃sω̃)
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for all c̃ ∈ D′(M) and ω̃ ∈ D′(M ; Λ1). Here L̃t1(y, v) = Xg̃(x, θ), where

x = (t1, y) and θ = θ(v) is defined by (7). Note that Lt1 = a2(t1)L̃t1a
−2,

and
L∗t1χLt1 = a4(t1)a

−2L̃∗t1χL̃t1a
−2.

Let f ∈ E ′(M ;Sym2), c ∈ D′(M) and ω ∈ D′(M ; Λ1), and let us

define f̃ = a−2f , ω̃ = a−2ω, and c̃ = c+ (ω̃, d log a)g̃. Then

a−2(f + cg + dsω) = f̃ + c̃g̃ + d̃sω̃,

and

(x, ξ) ∈WF(L∗t1χLt1f), iff (x, ξ) ∈WF(L̃∗t1χL̃t1 f̃)

(x, ξ) ∈WF(f + cg + dsω) iff (x, ξ) ∈WF(f̃ + c̃g̃ + d̃sω̃).

Thus Theorem 4.4 holds for g if it holds for g̃.

7. Derivation of the tomography problem

In this section we prove Theorem 4.2. The proof is similar to that
in [23]. All the differentiations below are justified by Lemma 5.1. We
omit writing ε = 0 as a subscript.

Let t1 > t0, let U1 ⊂ R3, and define U = {t1}×U1. Let (x, v) ∈ U×S2

and write θ = θ(x, v). Note that ∂t = a−1∂s where s is defined by (14).
We have

∂ε(γ̇ε(τε(x, v);x, θ), ∂t)gε = a−1(t0)∂ε(γ̇ε(τ(x, v);x, θ), ∂s)gε ,

since γ̈ = 0 and therefore

∂ε(γ̇(τε(x, v);x, θ), ∂s)g = ∂τ (γ̇(τ ;x, θ), ∂s)g|τ=τε(x,v)∂ετε(x, v)

= (γ̈(τε(x, v);x, θ), ∂s)g∂ετε(x, v) = 0.

Moreover,
∂ε(γ̇ε(0;x, θ), ∂s)gε = ∂ε(θ, ∂s)g = 0,

since gε = g in U . Hence

a(t0)∂εR(x, v) = ∂ε ((γ̇ε(τ(x, v);x, θ), ∂s)gε − (γ̇ε(0;x, θ), ∂s)gε) .(18)

We use the reparametrization (15) and recall the formula (17). Then

(γ̇ε(τ ;x, θ), ∂s)gε = c(µ̇ε(ρ;x, θ), ∂s)g̃ε ,(19)

where c = a(x)2, ρ = σ(cτ), g̃ε = a−2gε and µε(ρ;x, θ) is the geodesic
of (M, g̃ε) with initial data (x, θ).

The computations below will use the fact that g̃ = −ds2 + (dx′)2

is a constant tensor in the (s, x′) coordinates. When computing in
coordinates we write (s, x′) = (x0, x1, x2, x3), and use also the notation
µε(ρ) = µε(ρ;x, θ).



16 LASSAS, OKSANEN, STEFANOV, AND UHLMANN

The geodesic equations for µε can be written in the form

∂ρ(g̃ε,jkµ̇
k
ε ) =

1

2
(∂xj g̃ε,lm) µ̇lεµ̇

m
ε .(20)

Indeed, the equation (20) can be transformed to the equation,

∂2ρµ
j
ε + Γ̃jε,lmµ̇

l
εµ̇
m
ε = 0,

written in terms of the Christoffel symbols Γ̃jε,lm of the metric g̃ε, by us-
ing the chain rule on the left hand side and symmetrizing the obtained
sum, see e.g. [32, p. 51].

We denote h = ∂εg̃ε|ε=0 and have

∂ε
(
(∂xj g̃ε,lm) µ̇lεµ̇

m
ε

)
|ε=0 = (∂xj∂εg̃ε,lm|ε=0) µ̇

lµ̇m + (∂xj g̃lm) ∂ε
(
µ̇lεµ̇

m
ε

)
|ε=0

= (∂xjhlm) µ̇lµ̇m,

where we have used the fact that g̃ is a constant tensor. Hence

∂ρ∂ε(µ̇ε, ∂s)g̃ε|ε=0 = ∂ε∂ρ
(
g̃ε,0kµ̇

k
ε

)
|ε=0 =

1

2
(∂x0hlm) µ̇lµ̇m.

We integrate this with respect to ρ and obtain

1

2

∫ r

0

(∂shlm)µ̇lµ̇mdρ = ∂ε(µ̇ε(r), ∂s)g̃ε|ε=0 − ∂ε(µ̇ε(0), ∂s)g̃ε|ε=0,(21)

where r > 0. Now (21), (18) and (19) imply

c−1a(t0)∂εR(x, v)|ε=0 =
1

2

∫ σ0

0

(∂shlm)µ̇lµ̇mdρ,

where σ0 = σ(cτ(x, v)).
Let t1 > 0, let f be the cutoff of ∂εgε|ε=0 as in Theorem 4.2, and

suppose that x ∈ U1. Then h = a−2f on µ([0, σ0]) and f = 0 on
µ(R \ [0, σ0]). Note also that (La∂th)lm = (L∂sh)lm = ∂shlm. Hence

∂εR(x, v)|ε=0 =
c

2a(t0)
Xg̃La∂ta−2f =

1

2a(t0)
Xga

2La∂ta−2f,

and we have proven Theorem 4.2.

8. Backprojection of the light ray transform

Let us now turn to the proof of Theorem 4.4. By the conformal in-
variance, we may assume that the background metric is the Minkowski
metric, that is, a = 1 identically. If we have data on all the light
rays, i.e., if U1 = R3, then the light ray transform Lt1 is invariant with
respect to translations. Although the case U1 = R3 is physically un-
realistic, we discuss it briefly in this section since it allows for very
explicit computations.
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After a translation in the t coordinate, we may suppose that t1 = 0.
We write L = L0, and have

Lf(y, v) =

∫
R
flm(s, y + sv)θlθmds, y ∈ R3, v ∈ S2,(22)

where θ = (1, v) ∈ R1+3. Note that we have made change of variable
s = −τ in comparison with (10), and also use θ = −θ(v) in comparison
with (7).

We use the Euclidean surface measures in all the integrations below.
Let f, h ∈ C∞0 (R4;Sym2). Then

(Lf, Lh)L2(R3×S2)

=

∫
S2

∫
R

∫
R3

∫
R
flm(r, y + rv)hjk(s, y + sv)θjθkθlθmdsdydrdv

=

∫
S2

∫
R

∫
R4

flm(r, x′ + (r − x0)v)hjk(x)θjθkθlθmdxdrdv,

where we have used the fact that

(s, y) 7→ (s, y + sv) = x = (x0, x′)(23)

is a linear isometry on R1+3. After making the change of variables
ρ = x0−r, we see that and the normal operator L∗L is the convolution
Kjklm ∗ flm, with the kernel

(Kjklm, φ)D′×D(R4) =

∫
S2

∫
R
θjθkθlθmφ(ρθ)dρdv.

The following lemma is in the spirit of the representation of the ray
transform in [29, 31] if we allow for a singular weight on the light cone.

Lemma 8.1. The Fourier transform of Kjklm is a locally integrable
function and satisfies

K̂jklm(ξ) =

{
2π(|ξ′|2 − |ξ0|2)−1/2

∫
S1
ξ
θjθkθlθmdv, ξ is spacelike,

0, otherwise.

Here ξ = (ξ0, ξ
′) ∈ R1+3, θ = (1, v), | · | is the Euclidean norm, and

(24) S1
ξ = {v ∈ S2; ξ0 + ξ′v = 0}

is a circle of radius |ξ′|−1
√
|ξ′|2 − |ξ0|2.
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Proof. To simplify the notation, we fix the indices j, k, l,m and denote
a(v) = θjθkθlθm. Let us also define κ(v, ξ) = ξ0 + ξ′v. Then

(K̂jklm, φ)S′×S(R4) =

∫
S2

∫
R

∫
R4

ae−iρξ·θφ(ξ)dξdρdv

= 2π

∫
S2

(κ∗δ, φ)S′×S(R4) adv.

Here the pullback is by κv(ξ) = κ(v, ξ) with fixed v. Note that the
gradient ∇κv = θ does not vanish, and therefore the pullback is well-
defined.

Let us assume for a moment that supp (φ) does not intersect the set
of lightlike vectors

{ξ = (ξ0, ξ
′) ∈ R× R3; |ξ0| = |ξ′|}.

Then ∫
S2

(κ∗δ, φ)S′×S(R4) adv = ((κ∗δ, a)D′×D(S2), φ)S′×S(R4),

Here the second pullback is by κξ(v) = κ(v, ξ) with fixed ξ. Let us
now show that this is well-defined. We have ∇R3κξ = ξ′. Thus on
S1
ξ = κ−1ξ (0)

|∇S2κξ(v)|2 = |ξ′ − (ξ′v)v|2 = |ξ′|2 − |ξ′v|2 = |ξ′|2 − |ξ0|2.
We see that the pullback by κξ is well-defined if and only if ξ is not
lightlike.

If ξ is timelike, then |ξ′| < |ξ0| = |ξ′v| ≤ |ξ′| on S1
ξ which is a

contradiction. Thus S1
ξ does not intersect the timelike vectors and

K̂jklm = 0 on timelike vectors.
Suppose now that ξ is spacelike. Then

(κ∗ξδ, a)D′×D(S2) = (|ξ′|2 − |ξ0|2)−1/2
∫
S1
ξ

a(v)dv.(25)

The set S1
ξ is the intersection of S2 with the affine plane

Pξ = {v ∈ R3; ξ′v = −ξ0}.
As ξ is spacelike, 0 ≤ |ξ0| < |ξ′|, and we see that w = −ξ0ξ′/|ξ′|2 ∈ Pξ.
Thus S1

ξ is a circle of radius r satisfying r2 + |w|2 = 1, that is,

r = |ξ′|−1
√
|ξ′|2 − |ξ0|2.

To finish the proof, it is enough to show that K̂jklm coincides with a
locally integrable function. Let us first assume that supp (φ) does not
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intersect the set

{ξ = (ξ0, ξ
′) ∈ R× R3; |ξ′| = 0}.(26)

Then for each ξ ∈ supp (φ) we can choose spherical coordinates so that

v = v(α, β) = (sinα cos β, sinα sin β, cosα)

and v(0, β) = −ξ′/|ξ′|. In these coordinates∫
S2

(κ∗δ, φ)S′×S(R4) adv =

∫
S2

∫
R3

φ(−ξ′v, ξ′)a(v)dvdξ

=

∫
R3

∫ 2π

0

∫ π

0

φ(|ξ′| cosα, ξ′)a(α, β) sinαdαdβdξ.

The change of coordinates ξ0 = |ξ′| cosα gives∫
S2

(κ∗δ, φ)S′×S(R4) adv =

∫
R3

|ξ′|−1
∫ 2π

0

∫ |ξ′|
−|ξ′|

φ(ξ0, ξ
′)a(ξ0, β)dξ0dβdξ.

Hence away from the set (26), the Fourier transform K̂jklm is the func-
tion

|ξ′|−11C(ξ)

∫ 2π

0

a(ξ0, β)dβ,(27)

where 1C is the indicator function of the set of spacelike vectors, that
is, 1C(ξ) = 1 if ξ is spacelike and it is zero otherwise. Note that a is
bounded and that the function (27) is locally integrable.

We have seen that K̂jklm vanishes on timelike vectors and that it is
a function away from the set (26). The origin is the only vector in the
set (26) that is not timelike. As Kjklm is homogeneous of degree −3, its
Fourier transform is homogeneous of degree −1. The Fourier transform

K̂jklm is a function since the only distributions supported in the origin
are the linear combinations of derivatives of the delta distribution, and
these derivatives are homogeneous of degree −4 or less. �

Note that the integral
∫
S1
ξ
θjθkθlθmdv is homogeneous of degree zero

with respect to ξ. It can be evaluated explicitly for all the 44 combina-

tions of the indices. As an example, let us give K̂jjjj(ξ), j = 0, 1, 2, 3,
for a spacelike ξ ∈ R4. After a rotation in ξ′, we may assume that
ξ = (ξ0, 0, 0,−|ξ′|). Then at ξ it holds that

K̂0000(ξ) =
4π2

|ξ′| , K̂1111(ξ) =
3π2(|ξ′|2 − |ξ0|2)2

2|ξ′|5 , K̂3333(ξ) =
4π2ξ40
|ξ′|5 ,

and K̂2222(ξ) = K̂1111(ξ).
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An analogous light ray transform can be defined for scalar functions
as follows,

Lscf(y, v) =

∫
R
f(s, y + sv)ds, y ∈ R3, v ∈ S2,

and a variation of the above argument shows that L∗scLsc is given by the

Fourier multiplier K̂0000. The scalar case will be considered in depth
in [30].

9. The null space of the symbol of the normal operator

In this section we will characterize the null space of the tensor

K̂jklm(ξ) for spacelike ξ ∈ R4. Note that if ω ∈ C∞0 (R4; Λ1), then
the Fourier transform of its symmetric differential is

(d̂sω)ij(ξ) =
ξiω̂j + ξjω̂i

2
.

To cover also the limited angle case, to be discussed in the next two
sections, we will prove the following slightly more general result. We
refer to (24) for the definition of S1

ξ .

Lemma 9.1. Let ξ ∈ R4 be spacelike, let χ ∈ C∞(S1
ξ ) and suppose that

χ ≥ 0 and that χ does not vanish identically. Then the null space of
the linear map N : flm 7→ N jklmflm on Sym2, where

N jklm =

∫
S1
ξ

χθjθkθlθmdv, θ = (1, v), j, k = 0, 1, 2, 3,(28)

is Ker(N) = {cglm + ξlωm + ξmωl; c ∈ R, ω ∈ R4}. Here g is the
Minkowski metric.

Proof. We have glmθ
lθm = 0 since θ is lightlike, and θmξm = 0 since

v ∈ S1
ξ . Thus the tensors cg + ξ ⊗ ω + ω ⊗ ξ are in Ker(N). Let us

now show that there are no other tensors in Ker(N). Suppose that
f ∈ Ker(N). Then

0 =

∫
S1
ξ

χf̄jkθ
jθkθlθmflmdv =

∫
S1
ξ

χ|fjkθjθk|2dv.

Then fjkθ
jθk = 0 for v in a nonempty open subset of S1

ξ .

We write ξ = (ξ0, ξ
′) ∈ R1+3. After a rotation in ξ′, we may assume

that ξ′ = (0, 0, 1). As ξ is spacelike, there is a Lorentz boost B such
that ξ = Be3, where e3 = (0, 0, 0, 1). The boost B is a linear map Bk

j

such that if θ̃k = Bk
j θ

j then θ̃j = θj, j = 1, 2, and

θ̃0 = θ0 coshα + θ3 sinhα, θ̃3 = θ0 sinhα + θ3 coshα,(29)
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where α is the hyperbolic angle (or rapidity) of the boost.
When v ∈ S1

ξ and θ = (1, v) we have

0 = ξθ = (Be3)θ = θ̃3,

since the boost B is symmetric. Combining this with (29) and θ0 = 1

gives θ̃0 = 1/ coshα. Indeed,

θ3 = − sinhα

coshα
and θ̃0 = coshα− sinh2 α

coshα
=

1

coshα
.

Let us denote A = B−1 and define a 3× 3 symmetric tensor h by

hlm = cosh−2 α f̃lm, l,m = 0, 1, 2,

where f̃lm = Ajl fjkA
k
m. Let us also write W = coshα(θ̃0, θ̃1, θ̃2) ∈ R3

and w = (W 1,W 2) ∈ R2. Then

0 = fjkθ
jθk = f̃lmθ̃

lθ̃m = hlmW
lWm,

since θ̃3 = 0. Moreover, W 0 = 1 and w = coshα(θ1, θ2) satisfies

|w|2 = cosh2 α(1− |θ3|) = cosh2− sinh2 α = 1,

since θ = (1, v) and v ∈ S2. Thus

h((1, w), (1, w)) = hlmW
lWm = 0

for w in a nonempty open subset of S1. After a rotation we may assume
that w = (sin β, cos β) is in this set for small β. Differentiating three
times with respect to β we get

0 = h((1, w), (1, w)),(30)

0 = h((1, w), (0, w′)),(31)

0 = h((0, w′), (0, w′))− h((1, w), (0, w)),(32)

0 = −3h((0, w′), (0, w)).(33)

Now (33) implies that h12 = 0. By (33) we have

h((1, w), (0, w′)) = h((1, 0), (0, w′))+h((0, w), (0, w′)) = h((1, 0), (0, w′)),

which implies together with (31) that h02 = 0. Differentiating this once
more we see that h01 = 0. As all the cross terms vanish, (30) implies
that h11 = −h00. Differentiating (33) we see that

0 = h((0, w), (0, w))− h((0, w′), (0, w′)),

which implies that h11 = h22. Thus h is proportional to the 1 + 2
dimensional Minkowski metric.
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We have shown that there is c ∈ R such that f̃ml − cgml vanishes
when m, l = 0, 1, 2. Moreover, we can choose ω̃ ∈ R4 such that

f̃ − cg − e3 ⊗ ω̃ − ω̃ ⊗ e3 = 0.

We recall that ξ = Be3. As the 1 + 3 dimensional Minkowski metric g
is invariant under the Lorentz boost B, we have

f = cg + ξ ⊗ ω + ω ⊗ ξ,
where ω = Bω̃. �

Let us now construct a projection onto a complement of Ker(N) as
a symbol P of order zero that commutes with N . The construction
is inspired by [29, 31]. We will raise and lower indices by using the
Minkowski metric g. We define

λijkl = κikκ
j
l , κik = δik − ηkηi, η =

ξ√
g(ξ, ξ)

,

where ξ is assumed to be spacelike, and δik is the Kronecker delta. Then
ηiηi = g(η, η) = 1 and

κikηi = ηk − ηkηiηi = 0.(34)

Thus ξ ⊗ ω + ω ⊗ ξ ∈ Ker(λ) for any ω ∈ R4.
We have κikgij = gkj − ηkηj, whence λg = µ, where

µkl = gkl − ηkηl.
Let us define hij = gij − ηiηj, and

P = λ− µ⊗ h
3

.(35)

Lemma 9.2. Let N be a tensor of the form (28). Then P is a projec-
tion satisfying Ker(P ) = Ker(N) and PN = N = NP .

Proof. We have

hijgij = gijgij − g(η, η) = 4− 1 = 3,

whence g ∈ Ker(P ). Moreover,

hijηi = ηj − ηjηiηi = 0,(36)

whence ξ ⊗ ω + ω ⊗ ξ ∈ Ker(P ) for any ω ∈ R4. We have shown that
Ker(N) ⊂ Ker(P ).

Let us show that P 2 = P . We have κpkκ
i
p = κik by (34), whence

λ2 = λ. Similarly (36) implies that

hijµij = δijij − g(η, η) = 3,
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and (µ⊗ h)2 = 3µ⊗ h. Moreover,

λ(µ⊗ h) = (λµ)⊗ h = (λg)⊗ h = µ⊗ h.

Analogously with above, we have µ⊗ hλ = µ⊗ h. Thus

P 2 = λ2 − λµ⊗ h
3
− µ⊗ h

3
λ+

(µ⊗ h)2

9
= λ− 2

µ⊗ h
3

+
µ⊗ h

3
= P.

We have P pq
kl N

ij
pq = N ij

kl since

κpkθp = θk − ηk
ξpθp√
g(ξ, ξ)

= θk, hpqθpθq = g(θ, θ)− ξpθpξ
qθq

g(ξ, ξ)
= 0.

Analogously NP = N , therefore Ker(P ) ⊂ Ker(N). �

Lemma 9.3. Let M ⊂ R4 be open and let (x, ξ) ∈ T ∗M be spacelike.
Then for all f ∈ E ′(M ;Sym2) we have that (x, ξ) ∈ WF(Pf) if and
only if (x, ξ) ∈WF(f + cg+dsω) for all c ∈ E ′(M) and ω ∈ E ′(M ; Λ1).
Furthermore, if A is a pseudodifferential operator satisfying A(cg +
dsω) = 0 for all c ∈ E ′(M) and ω ∈ E ′(M ; Λ1), then (x, ξ) ∈WF(APf)
if and only if (x, ξ) ∈WF(Af).

Proof. Let χ ∈ S0(T ∗M) satisfy χ(x, ξ) = 1 and suppose that supp (χ)
contains only spacelike covectors. Note that (x, ξ) ∈ WF(Pf) if and
only if (x, ξ) ∈WF(Pχf), since P (1− χ) is smoothing near (x, ξ).

Let h be the Fourier transform of (1−P )χf . Then h(η) ∈ Ker(P ) =
Ker(N), and therefore h(η) is of the form

c̃(η)g + η ⊗ ω̃(η) + ω̃(η)⊗ η, η ∈ R4.

By taking the inverse Fourier transform, we see that (1 − P )χf is of
the form cg + dsω for some c ∈ D′(R4) and ω ∈ D′(R4; Λ1). Let χ2 ∈
C∞0 (M) satisfy χ2(x) = 1. Now (x, ξ) /∈ WF(Pχf) implies (x, ξ) /∈
WF(f − χ2(cg + dsω)), since

χf = Pχf + (1− P )χf = Pχf + cg + dsω.(37)

Suppose now that there are c ∈ E ′(M) and ω ∈ E ′(M ; Λ1) such that
(x, ξ) /∈WF(f + cg + dsω). Then (x, ξ) /∈WF(Pf) since

χP (f + cg + dsω) = χPf,

and the pseudodifferential operator P does not move singularities. Fur-
thermore, the formula (37) implies that (x, ξ) ∈WF(APχf) if and only
if (x, ξ) ∈WF(Aχf). �
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10. Microlocal analysis of the light ray transform

Let us now study the light ray transform in the limited angle case,
that is, when U1 ⊂ R3 is an arbitrary open set in Theorem 4.4. Let
χ ∈ C∞0 (U1). The restricted light ray transform χL belongs to the class
of operators considered in [14]. Here we will complement the results
in [14] by computing the symbols of the restricted light ray transform
and its normal operator with a suitable cutoff.

It is well known that a restricted ray transform is a Fourier in-
tegral operator associated with the canonical relation given by the
twisted conormal bundle N∗Z ′ of its point-line relation Z [15]. We
will next give a parametrization of N∗Z ′ and the symbol of χL in this
parametrization.

We take the Fourier transform with respect to y ∈ R3 and get

FLf(η, v) = =

∫
R3

∫
R
flm(s, y + sv)θlθme−iηydsdy

=

∫
R4

flm(x)θlθme−iη(x
′−x0v)dx.

Here θ = (1, v) and we have used the change of variables (23). We see
that the Schwartz kernel of χL is the oscillatory integral∫

R3

eiφ(x,y,v,η)a(x, y, v, η)dη, x ∈ R4, (y, v) ∈ R3 × S2,(38)

where a(x, y, v, η) = (2π)−3θlθm and φ(x, y, v, η) = η(y − x′) + x0ηv.
We write C = R3 × S2. The critical set of φ is

Cφ = {(y, v;x; η) ∈ C × R4 × (R3 \ 0); φ′η = 0}
= {(y, v, x, η); y = x′ − x0v}.

The phase function φ parametrizes the conormal bundle N∗Z of the
point-line relation

Z = {(x′ − x0v, v;x0, x′) ∈ C × R4; v ∈ S2, x ∈ R4}
via the diffeomorphism Cφ 3 (y, v, x, η) 7→ (y, v, φ′y,v, x, φ

′
x) ∈ N∗Z.

Note that the twisted conormal bundle

N∗Z ′ = {(y, v, η, w; x0, x′, ξ0, ξ
′) ∈ (T ∗C × T ∗R4) \ 0;

y = x′ − x0v, η = ξ′, w = x0ξ′|TvS2 , ξ0 = −ξ′v,
v ∈ S2, η ∈ R3, x ∈ R4}(39)

is a canonical relation. Indeed, N∗Z ′ ⊂ (T ∗C \ 0) × (T ∗R4 \ 0), since
η = 0 if and only if ξ′ = 0, and ξ′ = 0 implies ξ0 = −ξ′v = 0.
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In the parametrization (38), the symbol of χL is

(2π)3/4χ(y)θlθm, θ = (1, v), (y, v) ∈ C.
The symbol is of order zero (38) and hence χL is a Fourier integral
operator of order −3/4 associated with the canonical relation N∗Z ′,
see [18, Def. 3.2.2]. The theory of Fourier integral operators implies
that χL gives a continuous map from E ′(R4) to D′(C). Taking into
account the conformal invariance, we have proven Lemma 4.1.

Let us next verify the claims in the end of Section 4 about the sharp-
ness of Theorem 4.4.

Lemma 10.1. Let (y, v, η, w; x, ξ0, ξ
′) ∈ N∗Z ′. Then ξ is lightlike if

and only if ξ′|TvS2 = 0. Moreover, if ξ is lightlike then ξ′ = −ξ0v.

Proof. We have |ξ0| = |ξ′v| ≤ |ξ′||v| = |ξ′| with the equality holding
if and only if ξ′ and v are collinear. But ξ′ and v being collinear is
equivalent with ξ′|TvS2 = 0. Thus ξ′|TvS2 = 0 if and only if |ξ0| = |ξ′|.
Suppose now that ξ is lightlike. Then ξ = cv for some c ∈ R, and thus
ξ0 = −ξ′v = −c. �

Lemma 10.2. Let (x, ξ) ∈ T ∗R4 \ 0. Then the relation C = N∗Z ′

mapping T ∗R4 to T ∗C satisfies the following:

(1) If ξ is timelike, then C(x, ξ) = ∅.
(2) If ξ is spacelike, then C(x, ξ) = {(x′ − x0v, v, ξ′, x0ξ′|TvS2); v ∈

S1
ξ}, where S1

ξ is the circle defined in Lemma 8.1.

(3) If ξ is lightlike, then C(x, ξ) = (x′ + x0

ξ0
ξ′,− ξ′

ξ0
, ξ′, 0).

Proof. If (y, v; η, w) ∈ T ∗C is in relation N∗Z ′ with (x, ξ) ∈ T ∗R4, that
is, (y, v; η, w) ∈ N∗Z ′(x, ξ), then

|ξ0| = |ξ′v| ≤ |ξ|.
Thus ξ is lightlike or spacelike. Let us suppose that ξ be spacelike. We
have y = x′ − x0v, η = ξ′ and w = x0ξ′|TvS2 . Finally, ξ0 = −ξ′v is
equivalent with v ∈ S1

ξ . Let us now suppose that ξ in lightlike. Note
that ξ0 6= 0 since otherwise ξ = 0. Lemma 10.1 implies that v = −ξ′/ξ0
and that w = 0. �

The restricted light ray transform χL maps singularites through the
relation N∗Z ′, that is, WF(χLf) ⊂ N∗Z ′ WF(f), see [18, Th. 4.1.1,
Th. 2.5.14]. Hence Lemma 10.2 implies that WF(χLf) is empty if
WF(f) contains only timelike covectors. Let us now suppose that
(x, ξ) ∈ T ∗R4 is spacelike and that the circle

S1
x,ξ = {x′ − x0v; v ∈ S1

ξ}(40)
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does not intersect U1. Then Lemma 10.2 implies that WF(χLf) is
empty if WF(f) is contained in a small conical neighborhood of of
(x, ξ) in T ∗R4.

The condition (12) is equivalent with S1
x,ξ ∩ U1 6= ∅. Namely, if

a null geodesic intersects x then, up to an affine reparametrization,
it coincides with γ(τ ;x, θ) where θ = (1, v) for some v ∈ S2. Now
ξ(γ̇(0;x, θ)) = ξ0 + ξ′v, whence v ∈ S1

ξ is equivalent with vanishing of

ξ(γ̇(0;x, θ)). Finally, γ(τ ;x, θ) intersects {0} × U1 for some v ∈ S1
ξ if

and only if S1
x,ξ ∩ U1 6= ∅.

Let us now suppose that (x, ξ) ∈ T ∗R4 \ 0 is lightlike, and consider
the null geodesic

µ(τ) = (x0 + τ, x′ − τξ−10 ξ′), τ ∈ R.(41)

Then N∗Z ′ maps all the points (µ(τ), ξ) ∈ T ∗R4, τ ∈ R, on the same
point in T ∗C. We expect that this leads to artifacts when trying to
recover lighlike singularities, however, we do not analyze this further
in the present paper.

11. Microlocal analysis of the normal operator

Let us consider an operator A having kernel of the form (38), and
use the following notation for the projections

N∗Z ′

π

zz

ρ

##
T ∗R4 T ∗C

(42)

When the projection ρ is an injective immersion, the diagram (42) is
said to satisfy the Bolker condition. In this case the corresponding
normal operator A∗A is a pseudodifferential operator [15]. In our case,
the Bolker condition holds only outside the set

L = {(y, v, η, w; x, ξ) ∈ T ∗C × T ∗R4; ξ is lightlike}.
Lemma 11.1. The restriction of ρ on N∗Z ′ \ L is an injective im-
mersion but dρ fails to be injective on N∗Z ′ ∩L .

Proof. We may use (y, v, ξ′, x0) ∈ C × R3+1 as coordinates on N∗Z. In
these coordinates

ρ = (y, v, ξ′, x0ξ′|TvS2), dρ =


id 0 0 0
0 id 0 0
0 0 id 0
0 ∗ ∗ ξ′|TvS2

 ,
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where ∗ denotes an element that does not play a role in the proof. We
see that dρ is injective if and only if ξ′|TvS2 6= 0. By Lemma 10.1 this
is equivalent with ξ being lightlike.

Let us now show global injectivity of the restriction. Let (y, v, ξ′, x0)

and (ỹ, ṽ, ξ̃′, x̃0) be in C ×R3+1, and suppose that ξ is not lightlike and
that ρ maps the corresponding points in N∗Z on the same point. Then

ỹ = y, ṽ = v, ξ̃′ = ξ′, and x̃0ξ′|TvS2 = x0ξ′|TvS2 . Moreover, x̃0 = x0

since ξ′|TvS2 6= 0 as ξ is not lightlike. �

We will show next that A∗A is a pseudodifferential operator if we
microlocalize away from the set L .

Lemma 11.2. Let (x, ξ) ∈ T ∗R4 \ 0. Then the composed relation
C = (N∗Z ′)−1 ◦N∗Z ′ mapping T ∗R4 to itself satisfies

(1) If ξ is timelike, then C(x, ξ) = ∅.
(2) If ξ is spacelike, then C(x, ξ) = (x, ξ).
(3) If ξ is lightlike, then C(x, ξ) = {(µ(τ); ξ); τ ∈ R}, where µ is

the null geodesic (41).

Proof. The timelike case follows immediately from Lemma 10.2. Let ξ
be spacelike, and let (y, v; η, w) ∈ T ∗C be in relation N∗Z ′ with (x, ξ)

and with a point (x̃, ξ̃). We have ξ̃′ = η = ξ′. This implies that

also ξ̃0 = −ξ′v = ξ0. As ξ′|TvS2 6= 0 by Lemma 10.1, the equation
x̃0ξ′|TvS2 = w = x0ξ′|TvS2 implies x̃0 = x0. Finally x̃′ − x0v = y =
x′ − x0v, whence x̃′ = x′.

Let ξ be lightlike. Then Lemma 10.2 says that (x′ + x0

ξ0
ξ′,− ξ′

ξ0
, ξ′, 0)

is the only point in T ∗C that is in relation N∗Z ′ with (x, ξ). This
determines ξ uniquely but x only up to a translation along µ. �

Lemma 11.3. Let us define C = N∗Z ′ \L . The composition C−1 ◦C
is clean in the sense of [19, Th. 21.2.14]. The projection π2 from the
intersection of C−1 × C with T ∗R4 × diag (T ∗C)× T ∗R4 to (T ∗R4)2 is
proper, and the fibers π−12 (p), p ∈ (T ∗R4)2, are connected.

Proof. We write

X = C−1 × C, Y = T ∗R4 × diag (T ∗C)× T ∗R4.

We need to show that X ∩ Y is a smooth manifold and that

Tp(X ∩ Y ) = TpX ∩ TpY, p ∈ X ∩ Y.(43)

Lemma 11.2 implies that X ∩ Y coincides with the smooth manifold
diag (C) after a reordering of the factors in the Cartesian product. We
may use p = (y, v, ξ′, x0) ∈ C × R3+1 as coordinates on X ∩ Y . Notice
that a tangent vector of X, parametrized by (δp, δq) ∈ T(p,p)(C×R3+1)2,
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coincides with a tangent vector of Y if and only if dρ δp = dρ δq. This
implies δp = δq since dρ is injective on C. Thus (43) holds.

A fiber π−12 (p), p ∈ (T ∗R4)2, is diffeomorphic with the circle S1
ξ if

p = (x, ξ, x, ξ) and ξ is spacelike, and it is empty otherwise. �

Lemma 11.3 says that if we cut away the lightlike covectors, then
we can use the clean intersection calculus [19, Th. 25.2.3]. Let χ0 ∈
S0(T ∗R4) satisfy supp (χ0) ∩Lπ = ∅ where

Lπ = {(x, ξ) ∈ T ∗R4; ξ is lightlike}.
Then A∗Aχ0 is a Fourier integral operator with the canonical relation
C−1 ◦C where C = N∗Z ′ \L , and Lemma 11.2 implies that C−1 ◦C is
in N(diag (R4))′. Hence A∗Aχ0 is a pseudodifferential operator. The
calculus implies also that the order of A∗Aχ0 is −1 if the order of A
is −3/4 since the fibers π−12 (p), p ∈ (T ∗R4)2, are one dimensional (i.e.
the excess of the composition is one).

If we are given the data Af we can not compute Aχ0f , but we
can choose pseudodifferential operators χ0 on R4 and χ1 on C so that
χ1A = χ1Aχ0 modulo a smoothing operator. Altenatively, we could
choose pseudodifferential operators χ1 and χ0, both on R4, so that
χ1A

∗Aχ0 = χ1A
∗A modulo a smoothing operator. By Lemma 11.2

this follows if χ0 = 1 in supp (χ1) and supp (χ0) ∩Lπ = ∅. However,
we prefer using χ1 on C since we need also a cut off χ2 ∈ C∞0 (U1) due
to the fact that we do not have data on R3 \ U1.
Proposition 11.4. Let χ̃1 ∈ C∞0 (R) satisfy supp (χ̃1) ⊂ (−1, 1), and
define

χ1(v, η) = χ̃1(|ηv|/|η|), v ∈ S2, η ∈ R3.

Let U1 ⊂ R3 be open and let χ2 ∈ C∞0 (U1). Then the principal symbol
of the pseudodifferential operator L∗χ1χ2L is

σ0(x, ξ) =
2πχ̃1(|ξ0|/|ξ′|)
(|ξ′|2 − |ξ0|2)1/2

∫
S1
ξ

χ2(x
′ − x0v)θjθkθlθmdv,

where θ = (1, v).

Proof. We choose χ̃0 ∈ C∞0 (−1, 1) such that χ̃0 = 1 in supp (χ̃1), and
define χ0(ξ) = χ̃0(|ξ0|/|ξ′|). If (y, v, η, w; x, ξ0, ξ

′) ∈ N∗Z ′ then η = ξ′

and ξ0 = −ξ′v = −ηv. Thus |ηv|/|η| = |ξ0|/|ξ′| and χ0(ξ) = 1 if
χ1(v, η) 6= 0. Now χ1L = χ1Lχ0 modulo a smoothing operator and
supp (χ0) ∩Lπ = ∅. Hence L∗χ1χ2L is a pseudodifferential operator.

The kernel of L∗χ1χ2L is of the form∫
C×R3×R3

e−iφ(x,y,v,ξ
′)eiφ(z,y,v,η)a(z, v, η)dηdξ′dydv, x, z ∈ R4,
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where a(z, v, η) = (2π)−3χ1(v, η)χ2(z
′ − z0v)θjθkθlθm. We have

φ(z, y, v, η)− φ(x, y, v, ξ′) = (η − ξ′)y − φ̃(z, v, η) + φ̃(x, v, ξ′),

where φ̃(x, v, ξ′) = ξ′x′ − x0ξ′v. Hence the kernel simplifies to∫
S2×R3×R3

δ(η − ξ′)eiφ̃(x,v,ξ′)−iφ(z,v,η)a(z, v, η)dηdξ′dv

=

∫
S2×R3

eiξ
′(x′−z′)−i(x0−z0)ξ′va(z, v, ξ′)dξ′dv

=

∫
R4

∫
S2

eiξ(x−z)κ∗ξδ(v)a(z, v, ξ′)dvdξ,

where κξ(v) = ξ0 + ξ′v. By (25) the symbol σ(z, ξ) of L∗χ1χ2L is

σ(z, ξ) = (2π)4(|ξ′|2 − |ξ0|2)−1/2
∫
S1
ξ

a(z, v, ξ′)dv

=
2πχ̃1(|ξ0|/|ξ′|)
(|ξ′|2 − |ξ0|2)1/2

∫
S1
ξ

χ2(z
′ − z0v)θjθkθlθmdv.

Thus σ0(x, ξ) = σ(x, ξ). �

Proof of Theorem 4.4. By the conformal invariance it is enough con-
sider the Minkowski case. Let (x, ξ) be spacelike and choose the cutoff
χ̃1 in Proposition 11.4 so that χ̃1 = 1 near |ξ0|/|ξ′|. Then σ0(x, ξ) =
c(ξ)N jklm, where c(ξ) 6= 0 and N jklm is the tensor (28) with χ(v) =
χ2(x

′ − x0v). We recall that the visibility condition (12) is equivalent
to S1

x,ξ ∩ U1 6= ∅, where the circle S1
x,ξ is defined by (40). Thus we can

choose non-negative χ2 ∈ C∞0 (U1) so that χ does not vanish identically
on S1

ξ .
Let P be the projection (35). Note that both N and P are homo-

geneous of degree zero, and W0 = N + (1 − P ) is elliptic near (x, ξ).
Indeed, if W0f = 0 then

0 = PW0f = NPf, 0 = (1− P )W0f = (1− P )f.

Thus Pf ∈ Ker(N) = Ker(P ) and f = Pf = P 2f = 0.
As W0 is the principal symbol of the zeroth order pseudodifferential

operator

W = c−1L∗χ1χ2L+ (1− P ),

there is a parametrix Q of W such that W = 1 modulo a smoothing
operator near (x, ξ). Thus P = QWP = Qc−1L∗χ1χ2LP . Hence

(x, ξ) ∈WF(Pf) if and only if (x, ξ) ∈WF(L∗χ1χ2LPf),

and we apply Lemma 9.3 to conclude. �
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