
1 
 

X-ray imaging of horizontal jets in gas 

fluidised bed nozzles 
 

Luca Panarielloa,b, Massimiliano Materazzib,*, Roberto Solimenea, Piero Salatinoa, Paola 

Lettierib 

a Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universita’ degli Studi di 

Napoli Federico II, P.le Tecchio, 80-80125 Napoli, Italy 

b Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK 

Abstract 
 

A study on the hydrodynamics in gas-solid fluidized beds where the primary gas injection is achieved 

through a nozzle-type gas distributor has been carried out, using an innovative X-ray imaging 

technique. Qualitative and quantitative results are reported, with particular regards to the jet 

penetration length. Results show that the lighter and the finer are the particles, the larger is the jet 

penetration. A new non-dimensional correlation is proposed, since the experimental data do not 

match predictions available in literature, based on hydrodynamic scaling and Froude number. The 

new correlation takes into account the effects of jet velocity, particle density and particle size. A 

tentative mechanistic explanation for the departure from purely hydrodynamic scaling is offered. 

1. Introduction 
 

Gas distribution in fluidised beds may be accomplished with a variety of devices whose 

design, operational criteria and performance are widely addressed in the general 

fluidisation literature [1,2].  

The nozzle type of distributor has been found to be very effective for high temperature 

fluidised bed reactors and is the recommended type for most applications at industrial 

scale. Nozzles are usually screwed or welded to a flat horizontal plate which forms the roof 

of an air supply plenum chamber. If the nozzles are correctly spaced and the holes properly 

sized, this type of distributor gives excellent fluidisation and trouble-free operation for 

extended periods of service [1]. Due to the great impact jets have on the hydrodynamics 

and gas transfer within the bed, it is highly important to establish the correct jet penetration 

for the design and operation of nozzles in fluidized bed reactors. Improper nozzle spacing 

and density in the design phase may result in poor gas distribution and incorrect 
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penetration lengths and negatively impact vessel/reactor sizing, blower sizing, particle 

attrition, performance and durability of refractory lining, hence product yield and reactor 

lifetime.  

Despite extensive literature on the subject, the information on jets in fluidized beds 

available in the literature is still lacking and/or limited to specific case studies. Most studies 

address gas and solids flow properties of fluidised beds in small- or medium-scale 

transparent vessels operated at ambient conditions, some in 2-D configuration, with 

measurements made through viewing screens or with the aid of sensors located in the bed 

[3–9]. Observations are not only restricted but often distorted by the presence of walls and 

internal surfaces or from effects of downscaling. Consequently, most of the studies on jet 

measured by such techniques fail to detect interactions between adjacent nozzles or pipes 

because of the stabilising effects of the walls [10,11]. Furthermore, most studies reported 

observations of jet penetrations from single isolated orifices employing a background flow 

of gas through a porous plate in an attempt to simulate the effects of multiple nozzles or 

orifices [6]. These conditions are far from being representative of those encountered in 

commercial fluidised beds, where jets have to penetrate through a stagnant bed of particles 

laying at the bottom of the reactor. 

Non-invasive experimental techniques are invaluable for providing a detailed insight into jet 

penetration and general hydrodynamic patterns of fluidised beds at larger scale [12]. One 

such technique involves the use of X-rays to observe and quantify gas and solid flow 

patterns. In fact X-ray imaging overcome all the limitations mentioned above and provide 

information that cannot be obtained by other techniques. Since its embryonic applications, 

this technique has gained time- and space resolution and has been empowered to the point 

of providing an invaluable aid for improved design of internal structures such as gas 

distributors and heat transfer surfaces in industrial units [13].  

This study addresses X-ray imaging of the jetting region of a gas fluidized bed, with the aim 

of estimating jet penetration for different materials at simulated but realistic conditions and 

in reactor configurations which are representative of full scale industrial operation. The 

experimental data obtained in this study are matched against prediction of available 

correlations, and a new empirical correlation for horizontal jet penetration is proposed. 

2. Materials and methods 

2.1 Reactor and Nozzle 
 

The experimental apparatus consists of a fluidization column equipped with a single nozzle 

acting as gas distributor. The column consists of a 150 mm ID Perspex tube closed at the 

bottom by means of a plate through which a pipe threaded at the exit is fitted for the 
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connection to the nozzle. The nozzle-connected pipe, with a 12 mm internal diameter, is 

located along the axis of the vessel.  

Air is injected in the tube using an industrial scale nozzle located at its the centre. The nozzle 

has been realized in Acrylonitrile-Butadiene-Styrene with a 3D printer, and is characterized 

by an orifice diameter 𝑑𝑜 = 4.1 mm (Figure 1). Two different orifice configurations have 

been tested in order to analyse the influence of the number of jets: a single orifice nozzle 

and a double orifice nozzle, with the two orifices forming an angle of 180°. The nozzle was 

located at the centre of the fluidization column, at a distance from the bottom of the 

column of 25 cm. 

 

 

 

 

 

 

 

 

 
The fluidizing gas is technical air metered to the vessel through a pressure regulator and a 

flowmeter.  

2.2 Materials 

 
Three different bed materials (Table 1) have been used in the tests, characterized by 

different median particle size, particle densities and incipient fluidization velocity 𝑢𝑚𝑓, 

computed according to Wen and Yu [14]. All the materials belong to the Group B of the 

Geldart classification of powders [15]. 

 

 

 

 

 

 

 

 

 

  

 
Figure 1 – (a) Nozzle design (double orifice 
configuration), (b) Nozzle section 
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Table 1: Material Properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Material 

Name 
ρp  [kg/m3] 

d10  

[μm] 

d50  

[μm] 

d90  

[μm] 

Sauter mean 

diameter  [μm] 
𝒖𝒎𝒇 [cm/s] 

Geldart 

Group 

Material A Sand 2500 

118 176 263 185 3.9 

B 182 250 344 258 7.6 

263 365 511 380 16.6 

Material B Natural rutile 4200 
89 150 252 162 5 

B 
193 268 369 276 14.7 

Material C 
Synthetic 

rutile 
3200 

107 155 227 163 3.9 

B 154 215 300 222 7.2 

209 307 454 320 15 
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Figure 2 –  Particle size distributions of the materials tested: (a) Material A 𝑑𝑝 = 175 μm, (b) Material A 𝑑𝑝 =

250 μm, (c) Material A  𝑑𝑝 = 365 μm, (d) Material B 𝑑𝑝 = 150 μm, (e) Material B 𝑑𝑝 = 268 μm, (f) Material 

C 𝑑𝑝 = 155 μm, (g) Material C 𝑑𝑝 = 215 μm, (h) Material C 𝑑𝑝 = 307 μm 
 

In order to investigate the effects of different particle sizes, the three materials have been 

sieved, each class characterized by a narrower particle size distribution (Figure 2 and Table 

2), so that for each class the particle size has been considered equal to its median diameter. 
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Three size classes were obtained for material A (𝑑𝑝 = 175 μm, 𝑑𝑝 = 250 μm and 𝑑𝑝 =

365 μm), two for material B (𝑑𝑝 = 150 μm and 𝑑𝑝 = 268 μm) and three for material C 

(𝑑𝑝 = 155 μm, 𝑑𝑝 = 215 μm and 𝑑𝑝 = 307 μm). 

 

 Table 2: Model parameters 

 

 
 

 

 

 

 

 

 

 

2.3 Experimental procedure, X-ray imaging and post-processing 
  
For every experiment, the reactor was filled with the solid particles up to a height of 65 cm, 

equivalent to 40 cm above the nozzle level. The flow rate was set to the maximum value 

tested, and then decreased down to the minimum value tested. At every flow rate, images 

were recorded using the X-ray system. Every flow rate corresponds to a different jet velocity 

𝑣𝑗 =
𝑄

𝜋 𝑑𝑜
2 4⁄  𝑛

, where Q is the flow rate, do is the orifice diameter and n is the number of 

orifices. Then the images were post-processed, and from the corrected images voidage 

distribution and jet penetration were measured. 

 

The new high power pulsed X-ray generation system (Lettieri & Yates 2013) has been 

employed to record the images in the jetting area. The system is able to provide X-ray pulses 

down to 200 μs with an intensity of up to 450 mA at a voltage variable from 50 kV to 150 kV. 

Two focal spots may be selected (0.6 mm and 1.2 mm), and the target can be rotated at 

either 50/60 Hz or 180 Hz, depending on the power required. X-rays are detected on a 30 

cm industrial X-ray Image Intensifier, optically coupled to a 1024x1024 pixel high speed 

digital CCD camera. The camera is triggered by the control software, which in turn is 

triggered by the X-ray generator at frame rates from 24 to 72 Frames per second. The 

configuration of the X-ray system and the rig used in this study are sketched in Figure 3. 

Different X-ray settings were adopted for each material in order to record images at the 

best quality possible. The images were then processed in Matlab to improve their quality by 

subtracting a reference image of the static bed and correcting the pincushion effect, as 

shown in Figure 4.  

 

 𝒅𝒑 [𝛍𝐦] α 𝜷 

Material A 

175 1.79 0.43 

250 1.71 0.43 

365 1.29 0.44 

Material B 
150 1.32 0.44 

268 1.23 0.46 

Material C 

155 1.66 0.42 

215 1.51 0.44 

307 0.93 0.5 
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Figure 3 – Rig schematic and X-ray configuration 

 

 
Figure 4 – (a) A raw image of a jet from a nozzle and (b) the same image after post processing 

 
From the images recorded it was possible to measure the voidage distribution in the jetting 

area, by using the Lambert-Beer equation [16]. 

 

 

Where 𝐼  is the transmitted intensity, 𝐼0 the incident intensity, 𝜇𝑚the attenuation coefficient 

of the material, 𝜌𝑏the bulk density of the material and 𝑙 the optical path. The voidage has 

𝐼 = 𝐼0exp (−𝜇𝑚𝜌𝑏𝑙) (1) 
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been measured by applying equation (1) to 720 images (corresponding to approximately 10 

seconds recording) and then converted into a single image, representative of the time-

averaged voidage distribution. By applying equation (1) to the images, the voidage values 

obtained are not representative of the punctual values, but consist in averaged values along 

chords corresponding the depth of the bed. However, these maps allow a significant 

qualitative analysis of the hydrodynamic structures in the jetting region, which results 

clearly identifiable in this way.  

Furthermore, the good resolution of the images obtained with the X-ray system allowed 

visualising and measuring the horizontal jet penetration Lj (Figure 5). Measurements were 

taken at different flow rates, with different materials and different particle sizes in order to 

investigate the effect of these parameters on Lj.  

 

 

  
 

 

 

 

 

 

 

 

 

 

3. Results and discussion 
 

The images recorded enabled a preliminary qualitative characterization of the 

hydrodynamics associated to the gas distribution area. Their digital post-processing was 

directed to obtain quantitative information on jet penetration length. 

3.1 Single orifice configuration 
The single orifice configuration has been tested covering a range of different flow rates from 

below to above the incipient fluidization velocity umf. The materials tested belong to Group 

B of Geldart classification of powders [15], so 𝑢𝑚𝑓 ≈ 𝑢𝑚𝑏, where umb is the minimum 

 
Figure 5 – Jet penetration sketch 



9 
 

bubbling velocity. Hence, the presence of bubbles indicates a condition of local fluidization 

in the bed. 
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Figure 6 shows the evolution of a single jet at two different flowrates. Figure 6 (a) refers to a 

condition where no bubbles are observed: here the jet appears with a peculiar meandering 

S-shaped path. A stable void appears on top of the plume of the jet, which is absorbed in the 

emulsion phase. On the other hand, in Figure 6 (b) bubbles can be seen detaching from the 

plume of the jet and rising along the fluidized bed. However, even in this case the jet 

appears with the same particular S-shape.  

Wall effects on the S-shape of the jet can be confidently ruled out, since further tests 

performed with larger vessels did not show any dependence with the column diameter. 

Bubbles appear at flow rates below  that of minimum fluidization referred to the whole bed 

cross section in both single and double orifice nozzle configuration. This suggests an uneven 

distribution of the gas through the cross section of the bed. 

As regards the jet penetration, Figure 7 shows its increasing trend with the increase of the 

jet velocity . 

 

3.2 Double orifice configuration  
 

Figure 6 – Jet evolution within 1.3 seconds. Single orifice nozzle, Material A, (a) jet velocity of 39 m/s (flow rate 
of 30 L/min), (b) jet velocity of 57 m/s (flow rate of 45 L/min). Dotted line indicates the position of the nozzle 
(2 cm diameter)  

 
Figure 7 – Jet penetration at different jet velocities for the single orifice configuration (Material A) 
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The same investigation has been performed with the double orifice configuration. Here the 

evolution of the hydrodynamics when increasing the flow rate appears more complex, as 

shown in Figure 8 to 10. In all cases the two jets tend to interact with each other: at low 

flow rates (Figure 8) no fluidization occurs, and the jets arch to coalesce with each other to 

form a ‘horseshoe’ structure, also called gas bridge [17,18]. This type of jet coalescence 

usually occurs at low nozzle flowrates, short separation distances of two orifices, or when 

gas is discharged from vertical nozzles. At lower flowrates, a spherical cap, high voidage 

region forms in the interaction zone of the two jets. Gas is believed to circulate in this 

region.  

When increasing the flow rate (Figures 9, 10) the gas bridge structure breaks down to give 

rise to two distinct fluidizing jets. The jets still interact with each other by conveying to the 

centre of the reactor, forming a triangular structure above which bubbles break off [1]. 

Above the jets a smooth bubbling is observed across the bed [1,7,19–21]. 

 
Figure 8 – Double orifice, flow rate of 20 Litre/min, Material A: (a) X-ray image, (b) voidage distribution 
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Figure 9 – Double orifice, flow rate of 35 Litre/min, Material A: (a) X-ray image, (b) voidage distribution 

 
Figure 10 – Double orifice, flow rate of 60 Litre/min, Material A: (a) X-ray image, (b) voidage distribution 

 

This behaviour seems to be in line with the experiments of Liseth [22,23], who showed that 

when horizontal buoyant jets are discharged simultaneously from a diffuser, the plumes 

tend to bend backward because of pressure interaction. The plumes eventually merge at a 

certain height above the diffuser, which is found to increase with holes spacing and jet 

Froude number. 

As for the single jet configuration, an increasing trend in the jet penetration is observed 

when increasing the two jets velocity (Figure 12).  

3.3 Comparison between single and double orifice configurations 
 

A first comparison between the two orifice configurations is possible by qualitatively 

analysing the voidage distributions at a given flow rate. Avoiding stagnant region is one of 

the most challenging aspect when using this type of gas distributor [1]: gas results to be 

more equally distributed using the double orifice configuration, with less stagnant regions 

when compared with the single orifice configuration (Figure 11), so the increased number of 

orifices warrants better gas distribution in the jetting area. 
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Figure 11 – Voidage distribution, Material A, flow rate of 35 Litre/min: (a) single orifice configuration, (b) 
double orifice configuration 

 
In Figure 12 single and double orifice configurations are compared in terms of jet 

penetration. It appears that the jet penetration is not significantly affected by the orifice 

configuration adopted. The standard deviation at low jet velocities (up to 20 m/s) is in the 

order of the 10% of the mean value, while dropping significantly at higher jet velocities, in 

the order of the 2% of the mean value. This is due to the much higher definition of the 

images at higher flow rates, where the hydrodynamic structures are much clearly 

identifiable.   

3.4 Jet penetration correlation 

 

 
Figure 12 – Jet penetration for single and double orifice configuration at different jet velocities (Material A) 

(a) (b) 
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According to the approach proposed by Yang [24], the relationship between the gas 

momentum at the orifice and gravity forces acting on the jet can be written as a function of 

the Froude number, from which the penetration length can be obtained: 

  

where Fr is the two phase Froude number 𝐹𝑟 =
𝜌𝑜

𝜌𝑝−𝜌𝑜

 𝑣𝑗
2

𝑔 𝑑𝑜
 , 𝜌𝑜 is the fluid density, 𝜌𝑝 is the 

particle density,  𝑣𝑗  is the jet velocity, 𝑑𝑜 is the orifice diameter and 𝑔 is the gravitational 

acceleration. The Froude number integrates the effects of particle size, jet diameter and jet 

gas velocity, and represents the ratio of the inertial force of gas at the nozzle and the gravity 

force on particles. In literature many correlations are available based on the same basic 

concept [3,7–9,11,19,25–27]: however the discrepancy between the prediction from 

different correlations sometimes can be more than an order of magnitude [28–31].  

Briens et al. [3] showed that the correlation developed by Benjelloun [26] matches their 

experimental data more closely. In this section the experimental data obtained for material 

A are compared with the predictions based on the Benjelloun correlation (Figure 13). The 

plot indicates that the correlation overestimates the jet penetration observed in the 

experiments. This result has been proven by Yates [11,19] and Newton [10] to be imputable 

to the invasive measuring technique based on the use of 2D reactors: here the walls exert a 

stabilizing effect on the jet, causing an increase in the penetration. Therefore correlation 

developed in 2D reactors are not accurate to predict the jet penetration in 3D reactors and, 

generally, in industrial cases [12,32]. The data gathered have then been compared with 

Yates correlation for the jet penetration prediction [11]. These predicted values match more 

closely the experimental one. This is an expected result, since the same technology (X-ray 

imaging) has been used by Yates to develop his correlation. The discrepancy between the 

experimental values and Yates correlation may be imputable to the absence of influence by 

particle size and density in Yates correlation.  

𝐿𝑗

𝑑𝑜
= 𝛼 𝐹𝑟𝛽 

(2) 



15 
 

 
Figure 13 – Comparison between prediction from the Benjelloun correlation and experimental results 
(Material A, double jet configuration) 
 

In this study, jet penetration was measured at different jet velocities for the different 

materials and the different particle size described in section 2.2. The results are represented 

in Figure 14. 

By introducing the dimensionless particle size dp/do, where dp is the particle size and do is 

the orifice diameter, it was possible to quantify the effect of the particle size on the jet 

penetration. At a given Fr, increasing the particle size causes the decreasing of the jet 

penetration (Figure 15), as also confirmed in literature [8,9,25]. Furthermore,  the 

experiments showed a plateau value at 𝑑𝑝/𝑑𝑜 → 0, which was not observed before due to 

the different conditions investigated (i.e. large particles do not show the plateau behaviour) 

[7].  
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Figure 14 – Dimensionless jet penetration vs. Froude number (a) Material A, (b) Material B, (c) Material C 
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Figure 15 – Dimensionless jet penetration vs. dimensionless particle size at given Fr, Material A 

 
Equation (2) has been applied to model the data gathered, giving different values of the 

parameters α and 𝛽 (Table 2). 

 

Material A 
 𝑑𝑝 = 175 μm 𝑑𝑝 = 250 μm 𝑑𝑝 = 365 μm 

 

α 1.79 1.71 1.29 
𝛽 0.43 0.43 0.44 

 

Material B 
 𝑑𝑝 = 150 μm 𝑑𝑝 = 268 μm 

 

α 1.32 1.23 
𝛽 0.44 0.46 

 

Material C 
 𝑑𝑝 = 155 μm 𝑑𝑝 = 215 μm 𝑑𝑝 = 307 μm 

 

α 1.66 1.51 0.93 
𝛽 0.42 0.44 0.5 

 
 
Table 3 – Model parameter 
 

 

A sensitivity analysis was then carried out on these parameters, with the results presented 

in Figure 16. 

The parameter 𝛽 does not show any particular trend when varying material and particle size 

(Figure 16 (b)), with a standard deviation from the mean value equal to 6%.  
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On the other hand, the parameter α shows a clear trend when varying both the particle size 

and density (Figure 16 (a)). The effect of the particle size is that previously explained: when 

the particle size increases, α decreases, and when the particle size approaches 0 a plateau in 

α is observed. Furthermore, when increasing the particle density at a given particle size, the 

value of α decreases. 

Taking into account these trends, the following corrected formula is proposed 

 

Equation (3) satisfies the dependencies on Fr, particle size and particle density: given the 

material (that is particle size and density), the jet penetration increases with Fr; given Fr and 
𝜌𝑜

𝜌𝑝
, when decreasing the particle size the jet penetration increases, leading to a plateau 

when 𝑑𝑝 approaches zero; furthermore, given Fr and 𝑑𝑝, an increase in the particle density 

corresponds to a decrease in the jet penetration. 

 

(a) 

𝐿𝑗

𝑑𝑜
=  𝛼 𝐹𝑟𝛽

1

(1 + 𝑑𝑝 𝑑𝑜⁄ )
𝛾  (

𝜌𝑜

𝜌𝑝
)

𝛿

   
 
(3) 
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 (b) 

 
Figure 16 – α (a) and 𝛽 (b) sensitivity analysis 

 

The regression of the experimental data gathered in this work allowed the parameters in 

formula 3 to be estimated, as shown in Table 3.  

 

α 𝛽 𝛾 𝛿 

61.2 0.4 5.6 0.4 
 
Table 3 – Correlation parameters 
 

To judge the quality of the results obtained, a statistical study was carried out by analysing 

the residuals and evaluating both the variance of the error term 𝑀𝑆𝐸 = 0.09 and the 

adjusted coefficient of determination 𝑅𝑐
2 = 0.934. The residuals appeared as scattered, 

with no particular trend or structure recognizable, giving a positive feedback on the quality 

of the regression. A one sample t-test has also been carried out on the resiudals, confirming 

that the mean of the residual approximates 0. Furthermore  the computed value of 𝑅𝑐
2 was 

close to 1.   

As shown in Figure 17 to 19, the data are well fitted from the regression, with a maximum 

discrepancy of 10% in the case of material B with a particle size of 𝑑𝑝 = 268 μm (Figure 18 

(b)). 

A definitive mechanistic explanation for the inadequacy of a purely hydrodynamic scaling 

(based on the use of Fr alone) to correlate the experimental data cannot be offered at the 

moment. But at least two arguments may be inferred from the reported data. On one hand, 

purely hydrodynamic scaling has already proven to fall short in predicting fundamental 

properties of dense gas fluidized beds, like the onset of bubbling, in beds of small and/or 

light particles as interparticle forces (of frictional and/or cohesive nature) come into play 
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[33]. On the other hand, the strong dependence on 𝑑𝑝/𝑑𝑜  expressed by the fairly large 

value of γ may indicate that the emulsion phase of the bed departs from behaving like a 

“continuum” and displays its inherently discrete nature as the ratio  𝑑𝑝/𝑑𝑜  increases. 

Accordingly, it may be speculated that increasing 𝑑𝑝/𝑑𝑜 promotes gas “leakage” across the 

jet boundaries into the emulsion phase, hence a reduction of the extension of the visible 

jetting region [34,35]. Further investigation is required to better characterize the role of 

these factors, and the likely interaction between them. 

 

 
Figure 17 -  Material A data fitted 
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Figure 18 -  Material B data fitted, (a) 𝑑𝑝 = 150 μm, (b) 𝑑𝑝 < 268 μm 
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Figure 19 - Material C data fitted, (a)  𝑑𝑝 = 155 μm and 𝑑𝑝 = 215 μm, (b) 𝑑𝑝 = 307 μm 
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4. Conclusions 
 

The innovative X-ray imaging technique has been employed to investigate the features of a 

nozzle-type gas distributor, with a specific focus on jet-emulsion phase interaction patterns 

and jet penetration.  

Comparing the observed jet penetration with predictions from previous correlations, these 

are shown to overestimate the jet penetration, due to a stabilizing effect exerted by the 

walls on the jet in 2-D reactors.  

Based on the experimental data obtained, a new and improved empirical correlation to 

predict the jet penetration has been proposed, whose validity has been checked with a 

variety of gas velocities, particle densities and sizes. . Departure from a purely 

hydrodynamic scaling are speculatively explained in terms of gas leakage across the jet 

boundaries and interparticle forces. 

Further study is intended to address different operative conditions (e.g. pressure and 

temperature) and to compare primary and secondary injections jet penetration by 

employing the same experimental technique.  
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