
ar
X

iv
:1

30
4.

07
55

v6
  [

m
at

h.
PR

] 
 3

 S
ep

 2
01

3
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Abstract. We propose a topological approach to the problem of determining
a curve from its iterated integrals. In particular, we prove that a family of
terms in the signature series of a two dimensional closed curve with bounded
total variation are in fact moments of its winding number. This relation allows
us to prove that the signature series of a class of simple non-smooth curves
uniquely determine the curves. This implies that outside a Chordal SLEκ

null set, where 0 < κ ≤ 4, the signature series of curves uniquely determine
the curves. Our calculations also enable us to express the Fourier transform
of the n-point functions of SLE curves in terms of the expected signature of
SLE curves. Although the techniques used in this article are deterministic, the
results provide a platform for studying SLE curves through the signatures of
its sample paths.
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1. Introduction

The signature of a path is a formal series of its iterated integrals. In [6], K.T.
Chen observed that the map that sends a path to its signature forms a homomor-
phism from the concatenation algebra to the tensor algebra and used it to study
the cohomology of loop spaces. Recent interests in the study of signature has been
sparked by its role in the rough path theory. In particular, it was shown by Hambly
and Lyons in [10] that for ODEs driven by paths with bounded total variations,
the signature is a fundamental representation of the effect of the driving signal on
the solution.

This article has two purposes:
1. To determine the winding number of a curve from its signature.
2. To prove, using a relation obtained from answering 1., that the signature of

a class of simple curves uniquely determine the curves.
The first question was first considered as far back as 1936, in a paper by Rado[19],

who observed that the second term of the signature series of a smooth path is equal
to the integral of its winding number around (x, y), considered as a function of
(x, y). In [28], Yam considered the same problem as ours, but used a different
approach. He started with the formula

Winding number around z =
1

2πi

ˆ

γ

1

w − z
dw.
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and smoothened the kernel w → 1
w−z

around the singularity at w = z. He then

expanded 1
w−z

into a power series of w and used the fact that the line integrals
along γ of polynomials in w can be expressed in terms of the signature of γ.

Here we take a different approach and obtained a formula for the Fourier trans-
form of the winding number, which appears to be simpler than the formula for the
winding number itself. A classical result about iterated integrals, first proved by
Chen [7], states that the logarithm of the signature of any path is a Lie series. The
first result of this article states that the coefficient of some Hall basis elements in
the log signature series are in fact moments of the winding number. Throughout
this article, we will use S (γ)0,1 to denote the signature of a path γ.

Theorem 1. Let γ : [0, 1] → R2 be a continuous closed curve with bounded
total variation. Let {e1, e2} denote the standard basis of R2. Let N ≥ 1 and
let LN ({e1, e2}) denote the space of Lie polynomials of degree less than or equal to
N generated by the alphabets e1 and e2 with respect to the concatenation product.
Let BN denote a Hall basis of LN ({e1, e2}). Let Wn,k denote the set of all indices

(i1, . . . , in+k) ∈ {1, 2}n+k
which contains n 1s and k 2s and either

[
ei1 ,

[
ei2 ,

[
. . . ,

[
ein+k

, [e1, e2]
]]]]
∈ BN or −

[
ei1 ,

[
ei2 ,

[
. . . ,

[
ein+k

, [e1, e2]
]]]]
∈ BN .

Then
∑

(i1,...,in+k)∈Wn,k

(−1)k
[
ei1 ,

[
ei2 ,

[
. . . ,

[
ein+k

, [e1, e2]
]]]]∗

(logS (γ))

=

ˆ

R2

xnyk

n!k!
η (γ − γ0, (x, y)) dxdy.(1.1)

where η (γ − γ0, (x, y)) is the winding number of the curve γ− γ0 around the points

xe1 + ye2. Here
[
ei1 ,

[
ei2 ,

[
. . . ,

[
ein+k

, [e1, e2]
]]]]∗

denotes the dual basis corres-
ponding to the basis element

[
ei1 ,

[
ei2 ,

[
. . . ,

[
ein+k

, [e1, e2]
]]]]

in BN .

As the winding number of a path does not contain information about the order
at which it passes through points, whereas signature does, we cannot expect that
the signature of a path can be expressed in terms of just winding numbers. In
particular, let a and b be two closed curves in R2, both starting at 0 and let ⋆

denote the concatenation operation between two paths. Then a ⋆ b and b ⋆ a have
the same winding number around any point, but in general do not have the same
signature. Nevertheless, it is natural to ask how many terms in the signature series
of a path can be represented in terms of its winding numbers. The answer is that
the first four terms of a closed curve’s signature can be expressed in terms of its
winding number.

Corollary 2. Let γ : [0, 1] → R
2 be a continuous closed curve with bounded total

variation. The first four terms of log (S (γ)) can be expressed in terms of the func-
tion (x, y)→ η (γ − γ0, (x, y)) alone.

At the end of section three, we will prove that the number “four” is sharp. In
other words, there are two paths γ, γ′ which has the same winding number around
every point, but the fifth terms of the signature of γ and γ′ differs. The reason
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that the fifth term of the log signature is not a function of winding number alone
is because the Hall basis for L5 ({e1, e2}) will contain a basis element of the form:

[[e1, e2] , [ei, [e1, e2]]] , i = 1, 2.

However, we are unable to express [[e1, e2] , [e1, [e1, e2]]]
∗
(

logS (γ)0,1

)

in terms of

just the winding number of γ. This corresponds to the difficulty in expressing the
iterated integral

ˆ

0<s<t<1

[[γs, dγs] , [γt, [γt, dγt]]]

in terms of the moments of the winding number of γ.

Uniqueness of signature

If we consider the signature as a representation of paths, then an interesting
question is whether this representation is faithful. This was first considered by
Chen himself [8], who proved that irreducible, piecewise regular continuous paths
have the same signature if and only if they are equal up to a translation and a
reparametrisation.

His result was generalised with a new, quantitative approach by Hambly and
Lyons in [10] who showed that two paths γ and γ̃ with finite total variations have
the same signature if and only if γ can be expressed as the concatenation of γ̃ with
a tree-like path σ. A continuous function σ : [0, 1]→ Rd is tree-like if there exists
a continuous function h : [0, 1]→ [0,∞) such that h (0) = h (1) = 0 and

|σt − σs| ≤ h (t) + h (s)− 2 inf
s≤u≤t

h (u) .

Using the relation between signature of a path and its winding number, we are
able to establish uniqueness amongst paths γ satisfying the following conditions:

Let D be the unit disc in C.

(1) γ can be reparametrised as a continuous curve γ̃ : [0, 1] → D, such that
γ̃ (0) = −1, γ̃ (1) = 1 and γ̃ (0, 1) ⊂ D.

(2) γ has finite p-variation for some 1 ≤ p < 2.
(3) γ is a simple curve.

Let C2 (−1, 1,D) denote the set of paths γ satisfying these three conditions.

Theorem 3. Let γ, γ′ ∈ C2 (−1, 1,D). Then S (γ)0,1 = S (γ′)0,1 if and only if γ

and γ′ are equal up to a reparametrisation.

The p = 1 case of Theorem 3 is a direct consequence of the result of Hambly
and Lyons. An interesting, but difficult extension is to prove that if the signatures
of two curves with finite p > 1 -variations are equal, then the paths are equal up
to the tree-like path equivalence. The restriction 1 ≤ p < 2 gives us the existence
of signature for free, thanks to Young’s integration theory.

Theorem 3 only applies to paths with finite p-variations, where p < 2. In par-
ticular, our results can only be applied to study stochastic processes whose sample
paths are almost surely smoother than the Brownian motion sample paths. One
example of such processes is the Chordal SLEκ measure. The SLE measures were
born from the study of lattice models which have conformally invariant scaling
limit. There are a number of other lattice models whose scaling limit have been
proved to be an SLE curve under some boundary conditions, such as the loop erased
random walk (κ = 2, [12]), the Ising model (κ = 3, [5]), the level lines of Gaussian
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Free Field (κ = 4, [23]), percolation on the triangular lattice (κ = 6, [4] and [25]),
and the Peano curve of the uniform spanning tree (κ = 8, [12]).

The path regularity and, in particular, the roughness of SLE curves, in relation
to the speed κ of the driving Brownian motion, is an extremely interesting topic. It
is intuitively clear that the SLE curves becomes rougher as the speed of the driving
Brownian motion increases. In [11], the optimal Hölder exponent for SLE curves
under the capacity parametrisation was proved to be

min

(
1

2
, 1− κ

24 + 2κ− 8
√
8 + κ

)

.

In [2], V. Beffara proved that the almost Hausdorff dimension of SLE curves is
min

(
1 + κ

8 , 2
)
. Therefore, the optimal Hölder exponent cannot exceed 1

1+κ
8
. B.

Werness[27] proved that for 0 < κ ≤ 4, almost surely, the SLE curve has finite p

variation for any p > 1+ κ
8 . In another words, the roughness of an SLE curve grows

linearly with the speed of the driving Brownian motion. It is strongly believed
that this remains true for 4 < κ < 8. However, to the best of our knowledge, this
problem remains open.

Werness’s result allowed him to define the signatures of SLE curves using Young’s
integral and used Green’s theorem to compute the first three gradings of the ex-
pected signature of SLE curves.

In the study of SLE curves we often do not care about the curves’ parametri-
sations and in some cases, it may be convenient to study the curves’ signature
instead. In order to do so, one must prove that there is a 1− 1 correspondence be-
tween curves and their signatures, outside a null set. Such injectiveness was proved
for Brownian motion by Le Jan and Qian in [13] and for general diffusion processes
by Geng and Qian. Both results rely on the Strong Markov property. Although
the Chordal SLEκ measure is not Markov, the inversion problem can be tackled for
κ ≤ 4 since the Chordal SLEκ measure is supported on simple curves from −1 and
1. Therefore, it follows from Theorem 3 that:

Theorem 4. Let 0 < κ ≤ 4. Let Pκ be the Chordal SLEκ measure in D with
marked points −1 and 1. Then there exists a P-null set N such that if γ, γ′ ∈ N c

and S (γ)0,1 = S (γ′)0,1, then γ and γ′ are equal up to a reparametrisation.

The expected signature can be considered as the “Laplace’s transform” of a sto-
chastic process and has first been studied in [16]. The sequence of n-point functions
of the Chordal SLE measure was first studied by O. Schramm. Using a generalised
Green’s theorem for non-smooth curves, we may prove the following relationship
between the expected signature and the sequence of n-point functions.

Theorem 5. Let 0 ≤ κ ≤ 4. Let Pκ be the Chordal SLEκ measure in D with marked
points 1 and −1. For each γ ∈ C2 (−1, 1,D), let Φ (γ) denote the concatenation of
γ with the upper semi-circular boundary of D from 1 to −1. Let Γn denotes the
n-point function associated with Pκ, then
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ˆ

R2N

e
∑

N
i=1 λixi+µiyiΓN ((x1, y1) , . . . , (xN , yN)) dx1 · · · dyN

=
∑

n1,...,nN ,k1...kN≥0

ΠN
i=1 (λi)

ni (−µi)
ki
e
∗⊗(n1+1)
1 ⊗ e

∗⊗(k1+1)
2 ⊔ . . .

. . . ⊔ e
∗⊗(nN+1)
1 ⊗ e

∗⊗(kN+1)
2

(

E

[

S (Φ (γ))0,1

])

.

where e∗i is the dual basis corresponding the standard basis of R2 (see section 2.1)
and ⊔ denotes the shuffle product (see Proposition 7).

The plan for the rest of the article is as follows.
In section 2, we recall the basic results about the signature and winding number.
In section 3, we prove Theorem 1 and Corollary 2.
In section 4, we prove Theorem 3.
In section 5, we prove Theorem 4.
In section 6, we prove Theorem 5.

2. Preliminaries

2.1. Basic notations. Let T n
(
Rd

)
and T

(
Rd

)
denote the graded algebras on Rd

defined by

T n
(
R

d
)
:= ⊕n

k=0

(
R

d
)⊗k

and

T
(
R

d
)
:= ⊕∞

k=0

(
R

d
)⊗k

where
(
Rd

)⊗0
:= R. We equip T

(
Rd

)
with the Euclidean metric by identifying

(
Rd

)⊗k
with Rdk

.
We shall define two projection maps as follow:

(1) π(n) will denote the projection map from T
(
Rd

)
to

(
Rd

)⊗n
.

(2) πn will denote the projection map from T
(
Rd

)
onto T n

(
Rd

)
.

Let {e1, . . . , ed} be the standard basis of Rd. Let e
∗
1, . . . , e

∗
d denote the corres-

ponding dual basis of Rd∗. Note that {ei1 ⊗ · · · ⊗ ein : (i1, . . . , in) ∈ {1, . . . , d}n}
forms a basis for

(
Rd

)⊗n
. We now embed, in the algebraic sense, T

((
Rd

)∗
)

into

T
((
Rd

))∗
by extending linearly the map e

∗
i1
⊗ . . .⊗ e

∗
in

in
(
Rd∗

)⊗n
defined by

e
∗
j1
⊗ . . .⊗ e

∗
jk
(ei1 ⊗ . . .⊗ ein) = 1 if n = k and j1 = i1, . . . , jn = in.

= 0 otherwise.

2.2. Signature. Let p > 1 and let Vp
(
[0, T ] ,Rd

)
denote the set of all continuous

functions γ : [0, T ]→ Rd such that

(2.1) ‖γ‖pVp([0,T ],Rd) := sup
P

∑

k

∣
∣γtk+1

− γtk
∣
∣
p
<∞.

where the supremum is taken over all finite partitions P := (t0, t1, .., tn−1, tn), where
0 = t0 < t1 < ... < tn−1 < tn = T .

The elements of Vp
(
[0, T ] ,Rd

)
will be called curves with finite p-variation.

Note that ‖·‖Vp([0,T ],Rd) defines a norm on Vp
(
[0, T ] ,Rd

)
.
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Definition 6. Let γ ∈ V1
(
Rd

)
and let△n (s, t) := {(t1, . . . , tn) : s < t1 < · · · < tn < t}.

The lift of γ is a function S (γ) : {(s, t) : 0 ≤ s ≤ t} → T
(
Rd

)
defined by

(2.2) S (γ)s,t = 1 +
∞∑

n=1

ˆ

△n(s,t)

dγt1 ⊗ . . .⊗ dγtn

where the sum + is the direct sum operation in T
(
R

d
)

and the integrals are taken
in the Lebesgue-Stieltjes sense.

The signature of a path γ ∈ V1
(
Rd

)
on [0, T ] is defined to be S (γ)0,T .

We shall use the following properties of signature, whose proofs can be found in
[14].

1. (Invariance under reparametrisation)For any t ∈ [0,∞), S (γ)0,t is invariant

under any reparametrisation of γ on [0, t].
2. (Inverse) S (γ)0,T ⊗ S (←−γ )0,T = 1, where ←−γ (t) := γ (T − t) is the reversal of

γ and 1 is the identity element in T
(
R

d
)
.

3. (Chen’s Identity)S (γ)s,u ⊗ S (γ)u,t = S (γ)0,t for any 0 ≤ s < u < t ≤ T

4. (Scaling and translation)Let λ ∈ Rd, µ ∈ R, then

S (λ+ µγ)s,t = 1 +
∞∑

n=1

µn

ˆ

△n(s,t)

dγ (t1)⊗ ...⊗ dγ (tn)

5.(Shuffle product formula) We define a (r,s)-shuffle to be a permutation of
{1, 2, ..., r + s} such that σ (1) < σ (2) < .. < σ (r) and σ (r + 1) < ... < σ (r + s) .

Proposition 7. ([14],Theorem 2.15)Let 1 ≤ p < 2 and γ ∈ Vp
(
[0, T ] ,Rd

)
, then

e
∗
k1
⊗ . . .⊗ e

∗
kr

(S (γ)) e∗kr+1
⊗ . . .⊗ e

∗
kr+s

(S (γ))

=
∑

(r,s)−shuffles σ

e
∗
k
σ−1(1)

⊗ . . .⊗ e
∗
k
σ−1(r+s)

(S (γ)) .

where · is the multiplication operation in R.

The sum
∑

(r,s)−shuffles σ

e
∗
k
σ−1(1)

⊗ . . .⊗ e
∗
k
σ−1(r+s)

is denoted by e
∗
k1
⊗ . . .⊗ e

∗
kr
⊔ e

∗
kr+1
⊗ . . .⊗ e

∗
kr+s

.

2.3. Winding number. In this section, we shall recall the definition of winding
number and a few key basic facts that we shall use.

Definition 8. A continuous function γ : [0, 1]→ R
2 is a closed curve if γ0 = γ1.

Let γ : [0, 1]→ R2 be a continuous function. Let z ∈ R2\γ [0, 1]. Then

gγz (s) :=
γs − z

‖γs − z‖
defines a function [0, 1]→ S1.

Let p : R → S1, p (x) = eix be a covering map for S1. Then there exists a lift
g̃γz : [0, 1]→ R such that p ◦ g̃γz = gγz . The winding number of γ will be defined in
terms of g̃s (z) by the following lemma:



UNIQUENESS OF SIGNATURE FOR SIMPLE CURVES 7

Lemma 9. ([18], Chapter 3 Lemma 1 and 2)Let γ : [0, 1] → R2 be a continuous
closed curve, and z ∈ γ [0, 1]. Then the number

(2.3) η (γ, z) :=
1

2π
(g̃γz (1)− g̃γz (0))

depends only on γ and z but not on the lift g̃γz . Moreover, η (γ, z) is an integer and
is called the winding number of γ around the point z.

Remark 10. We may define the winding angle for any γ : [a, b] → R2 by simply
replacing 0 by a, 1 by b in the above definition.

The following theorem, which we shall need, is intuitively clear but is highly
non-trivial:

Theorem 11. ([17], p404)Let γ : [0, 1]→ R
2 be a simple closed curve. Let Int(γ)

and Ext(γ) be its interior and exterior respectively. Then η (γ, z) = 0 for all
z ∈Ext(γ). Moreover, either η (γ, z) = 1 for all z ∈ Int(γ) or η (γ, z) = −1 for all
z ∈ Int (γ). γ is called positively oriented if η (γ, z) = 1 and negatively oriented
otherwise.

A key tool in our proof of Proposition 1 is the following Green’s theorem for
paths with bounded total variations.

Theorem 12. ([19] and [1])Let γ =
(
γ(1), γ(2)

)
: [0, T ]→ R2 be a closed curve with

bounded total variation. Let f, g : R2 → R have continuous partial derivatives in
both variables. Then

(2.4)

ˆ

C

(∂xf (x, y) + ∂yg (x, y)) η (γ, (x, y)) dxdy =

ˆ

γ

fdγ(2)
s − gdγ(1)

s .

and

(2.5) ‖η (γ, ·)‖L2 ≤ 1√
4π
‖γ‖V1([0,T ],R2)

where the equality in (2.5) holds if and only if there exists (x, y) ∈ R2, n ∈ N and
R > 0 such that γt = (x+R cos 2πnt, x+R sin 2πnt).

The f (x, y) = x, g (x, y) = y case in (2.4) was proved in [19] and the proof
for the general case is essentially the same. New, complete proofs for (2.4) were
subsequently given by [26] and [28].

The second inequality is the well-known Banchoff-Pohl isoperimetric inequality[1].

3. Proof of Theorem 1

Before we give a proof of Theorem 1, we would like to first recall some elementary
Lie algebra.

3.1. Hall basis. Let A be a set. Let K be a field. The Hall basis, introduced in
[9], is the simplest way of assigning a basis to a free Lie algebra L (A) generated by
A through the operation of concatenation. Let us describe the construction of the
Hall basis.

Let M (A) denote the set of planar rooted complete binary trees with leaves
labelled as elements of A. A Hall set H is a subset of M (A) satisfying the following
conditions:

• A ⊆ H .
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• We may assign a total order ≤ on H .
• h = (h1, h2) in M (A) \A belongs to H if and only if

h1, h2 ∈ H and h < h2, h1 < h2

and

either h1 ∈ A or h1 = (h′
1, h

′
2) where h′

2 ≥ h2.

There is in general infinitely many Hall sets for each set A, unless |A| = 1 or 0.
Let A∗ denote the set of all words formed by a finite concatenation of elements of

A. Let f : M (A)→ A∗ be the map defined by f (t) = t if t ∈ A, and if t = (t1, t2),
then f (t) = f (t1) f (t2).

Let H be a fixed Hall set. For each h ∈ f (H), define a polynomial Ph by the
rule that:

• Ph = h if h ∈ A.
• Ph = [Ph1 , Ph2 ], if h = h1h2, where h1, h2 ∈ f (H).

It is a theorem of Hall (for a proof see [20], Theorem 4.9) that for each Hall set H ,
the set {Ph : h ∈ f (H)} forms a basis for the free Lie algebra generated by A over
a field K.

3.2. Proof of Theorem 1. A key idea in proving Theorem 1 lies in the fact that
the coefficients of some Hall basis elements can be reduced to a single line integral,
as illustrated by the following lemma.

Lemma 13. Let γ : [0, 1] → R2 be a continuous closed curve with bounded total
variation. Let η (γ, (x, y)) denote the winding number of γ around xe1 + ye2.

Then

(3.1) e
∗⊗(n+1)
1 ⊗ e

∗⊗(k+1)
2

(

S (γ)0,1

)

=
(−1)k
n!k!

ˆ

R2

xnykη (γ − γ0; (x, y)) dxdy.

Proof. Let γ(1)and γ(2) be the first and second coordinate components of γ respec-
tively.

Recall that

e
∗⊗(n+1)
1 ⊗ e

∗⊗(k+1)
2

(

S (γ)0,1

)

=

ˆ 1

0

dγ(1)
s1

. . .dγ(1)
sn

dγ(2)
sn+1

. . . dγ(2)
sn+k

.
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The key idea here is to integrate with respect to γ(1)s first and then integrate
the γ(2)s.

e
∗⊗(n+1)
1 ⊗ e

∗⊗(k+1)
2

(

S (γ)0,1

)

=

ˆ

...

ˆ

0<t1<..<tn+1<s1<...<sk+1<1

dγ
(1)
t1

...dγ
(1)
tn+1

dγ(2)
s1

...dγ(2)
sk+1

=

ˆ

0<s1<...<sk+1<1

1

n!

(

γ(1)
s1
− γ

(1)
0

)n+1

dγ(2)
s1

...dγ(2)
sk+1

=

ˆ 1

0

ˆ 1

s1

...

ˆ 1

sk−1

ˆ 1

sk

1

n!

(

γ(1)
s1
− γ

(1)
0

)n+1

dγ(2)
sk+1

...dγ(2)
s1

by Fubini’s theorem

=
1

(n+ 1)!

1

k!

ˆ 1

0

(

γ(1)
s1
− γ

(1)
0

)n+1 (

γ
(2)
1 − γ(2)

s1

)k

dγ(2)
s1

=
1

n!

1

k!

ˆ

D

(

x− γ
(1)
0

)n (

γ
(2)
1 − y

)k

η (γ; (x, y)) dxdy by (2.4)

=
(−1)k
n!k!

ˆ

D

xnykη (γ − γ0; (x, y)) dxdy.

�

We will now give a proof of Theorem 1.

Proof. (of Theorem 1)By Proposition 13, it suffices to prove that
∑

(i1,...,in+k)∈Wn,k

(−1)k
[
ei1 ,

[
ei2 ,

[
. . . ,

[
ein+k

, [e1, e2]
]]]]∗

(logS (γ))

= (−1)k e∗⊗n
1 ⊗ e

∗⊗k
2 (S (γ)) .

Let LN {e1, e2} denote the set of Lie polynomials of degree lass than or equal
N generated by {e1, e2}. Let BN be a Hall basis for LN . Any basis element in BN
of degree at least two can be written as

± [Pn, [. . .P1, [e1, e2]]]

where P1, . . . ,Pn are homogeneous Lie polynomials.
As γ is closed,

e
∗
1 (log S (γ)) = 0 = e

∗
2 (logS (γ))

and therefore we may write πN (S (γ)) as

(3.2) exp




∑

n,k≥0

∑

(i1,...,in+k)∈Wn,k

ai1,...,in+k

[
ei1 ,

[
. . . ,

[
ein+k

, [e1, e2]
]]]

+B





where B denote a linear combination of terms of the form

(3.3) [Pj, [. . .P1, [e1, e2]]]

where P1, . . . ,Pj are homogeneous Lie polynomials and at least one of P1, . . . ,Pj

has degree at least 2.
Note that the the word e1

⊗n+1 ⊗ e
⊗k+1
2 has only one change of alphabet, from

the n+ 1 th to the n+ 2th alphabet.
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On the other hand, in the series expansion of exp, the words appearing in the
expansion of the tensor powers of B or the cross terms between

[
ei1 ,

[
ei2 , . . . ,

[
ein+k

, [e1, e2]
]]]

and B or the quadratice or higher tensor powers of
[
ei1 ,

[
ei2 , . . . ,

[
ein+k

, [e1, e2]
]]]

will have at least two change of alphabet. This means that the only contribution
to the coefficient of e1

⊗n+1⊗e
⊗k+1
2 in the series expansion in (3.2) comes from the

term
∑

(i1,...,in+k)∈Wn,k

ai1,...,in+k

[
ei1 ,

[
ei2 , . . . ,

[
ein+k

, [e1, e2]
]]]

,

with n 1s and k 2s in front of [e1, e2]. In another words, we have

e
∗⊗n
1 ⊗ e

∗⊗k
2 (S (γ))

=e
∗⊗n
1 ⊗ e

∗⊗k
2




∑

(i1,...,in+k)∈Wn,k

ai1,...,in+k

[
ei1 ,

[
ei2 , . . . ,

[
ein+k

, [e1, e2]
]]]



 .

Note that

e
∗
1 ⊗ . . .⊗ e

∗
1

︸ ︷︷ ︸

n

⊗ e
∗
2 ⊗ . . .⊗ e

∗
2

︸ ︷︷ ︸

k

([
ei1 ,

[
ei2 , . . . ,

[
ein+k

, [e1, e2]
]]])

=(−1)k .

Hence

e
∗⊗n
1 ⊗ e

∗⊗k
2 (S (γ))

=
∑

(i1,...,in+k)∈Wn,k

ai1,...,in+k
(−1)k

for 1 ≤ n+ k ≤ N . �

We now prove Corollary 2.

Proof. (of Corollary 2)
According to [20] (Example 4.8), a Hall basis for the Lie polynomials up to degree

4 generated by the set {e1, e2} is

e1, e2, [e1, e2] , [e1, [e1, e2]] , [e2, [e1, e2]] ,(3.4)

[e1, [e1, [e1, e2]]] , [e1, [e2, [e1, e2]]] , [e2, [e2, [e1, e2]]] .(3.5)

Let B∗
4 be the dual basis corresponding to the basis (3.4). To prove Corollary

2, it is sufficient to express, for each f ∈ B∗
4 , the value f (logS (γ)) in terms of the

winding number of γ.

As γ is a closed curve, e∗i

(

log
(

S (γ)0,1

))

= 0 for i = 1, 2.
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By Theorem 1,

[e1, e2]
∗
(log (S (γ))) =

ˆ

η (γ − γ0, (x, y)) dxdy

[e1, [e1, e2]]
∗
(log (S (γ))) =

ˆ

xη (γ − γ0, (x, y)) dxdy

[e2, [e1, e2]]
∗ (log (S (γ))) =

ˆ

yη (γ − γ0, (x, y)) dxdy

[e1, [e1, [e1, e2]]]
∗
(log (S (γ))) =

1

2

ˆ

x2η (γ − γ0, (x, y)) dxdy

[e1, [e2, [e1, e2]]]
∗
(log (S (γ))) =

ˆ

xyη (γ − γ0, (x, y)) dxdy

[e2, [e2, [e1, e2]]]
∗ (log (S (γ))) =

1

2

ˆ

y2η (γ − γ0, (x, y)) dxdy.

�

3.3. Sharpness of Corollary 2. The purpose of this section is to prove the fol-
lowing sharpness compliment to Corollary 2.

Proposition 14. There exists two paths γ, γ′ such that the winding number of γ
and γ′ around every point is equal, but the fifth term of their signature differs.

Proof. Let ei denote the path t→ tei, t ∈ [0, 1] and let

γ = e1 ⋆ e2 ⋆−e1⋆−e2 ⋆−e1 ⋆−e2 ⋆ e1 ⋆ e2

and

γ′ = −e1 ⋆−e2 ⋆ e1 ⋆ e2 ⋆ e1 ⋆ e2 ⋆−e1 ⋆−e2.
where ⋆ denote the concatenation operation on paths.

By Theorem 11 and the additivity of the winding number with respect to the
concatenation product,

η (γ, (x, y)) = 1[0,1]×[0,1]∪[−1,0]×[−1,0] (x, y) = η
(

γ′ ˙(x, y)
)

.

By a directly calculation, we see that the signature of ei is

eei .

Therefore, by Chen’s identity,

S (γ) = ee1ee2e−e1e−e2e−e1e−e2ee1ee2(3.6)

and

(3.7) S (γ′) = e−e1e−e2ee1ee2ee1ee2e−e1e−e2 .

We claim that

〈e∗1 ⊗ e
∗
2 ⊗ e

∗
1 ⊗ e

∗
2 ⊗ e

∗
1, S (γ)〉 = 1

and

〈e∗1 ⊗ e
∗
2 ⊗ e

∗
1 ⊗ e

∗
2 ⊗ e

∗
1, S (γ)〉 = −1.



UNIQUENESS OF SIGNATURE FOR SIMPLE CURVES 12

Note that the word e1⊗e2⊗e1⊗e2⊗e1 is “square-free”, i.e. none of the alphabet
in the word is identical to the alphabet on its immediate left or right. This means
the contribution to the value of both

〈e∗1 ⊗ e
∗
2 ⊗ e

∗
1 ⊗ e

∗
2 ⊗ e

∗
1, S (γ)〉

and

〈e∗1 ⊗ e
∗
2 ⊗ e

∗
1 ⊗ e

∗
2 ⊗ e

∗
1, S (γ)〉

only comes from the first order term in exponentials in (3.6) and (3.7). For both,
the contribution can only comes in one of the following five combinations:

Combination 1. 1st, 2nd, 3rd, 4th, 5th exponentials.
Combination 2. 1st, 2nd, 3rd, 4th, 7th exponentials.
Combination 3. 1st, 2nd, 3rd, 6th, 7th exponentials.
Combination 4. 1st, 2nd, 5rd, 6th, 7th exponentials.
Combination 5. 1st, 4nd, 5rd, 6th, 7th exponentials.
For S (γ), the contributions from Combination 1 and Combination 5 is −1, while

the contribution from Combination 2− 4 is 1. Therefore,

〈e∗1 ⊗ e
∗
2 ⊗ e

∗
1 ⊗ e

∗
2 ⊗ e

∗
1, S (γ)〉

= −1 + 1 + 1 + 1− 1

= 1.

For S (γ′), the contributions from Combination 1 and Combination 5 is 1, while
the contribution from Combination 2− 4 is −1. Therefore,

〈e∗1 ⊗ e
∗
2 ⊗ e

∗
1 ⊗ e

∗
2 ⊗ e

∗
1, S (γ′)〉

= 1− 1− 1− 1 + 1

= −1.
�

3.4. Tree-like path and winding number.

Lemma 15. A two dimensional tree-like path γ with bounded total variation is
closed and has winding number zero around all points (x, y) in R2\γ [0, 1].
Proof. A path γ with bounded total variation is tree-like if and only if it has
signature 1 := (1, 0, 0, 0 . . .). As the first term of the signature of γ is zero, we
have

ˆ 1

0

dγ = γ1 − γ0 = 0.

By Theorem 1,
ˆ

R2

xnyk

n!k!
η (γ − γ0, (x, y)) dxdy = 0

for all n, k ≥ 0. Therefore,
ˆ

R2

eλ1x+λ2yη (γ − γ0, (x, y)) dxdy = 0

for all λ1, λ2 ∈ R. As the function (x, y)→ η (γ − γ0, (x, y)) lies in L2 by (2.5), we
have by the injectiveness of Fourier transform on L2 that

η (γ, (x, y) + γ0) = η (γ − γ0, (x, y)) = 0
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for all (x, y) ∈ R2 except a Lebesgue null set. As the function (x, y)→ η (γ, (x, y) + γ0)
is locally constant on R2\γ [0, 1], we have

η (γ − γ0, (x, y)) = 0

for all (x, y) ∈ R2\γ [0, 1]. �

Remark 16. The converse of Lemma 15 is not true. Let γ and γ′ be the paths defined
in the proof of Proposition 14 and η be the concatenation of γ and the reversal of
γ′. Then by the additivity of winding number with respect to the concatenation
product, η has zero winding number around every point. As the signature of γ

and γ′ are different, we have by Chen’s identity that the signature of η is not 1.
Therefore, η is not tree-like.

4. Uniqueness of signature

4.1. Young’s integrals and approximation theorems. While the Lebesgue-
Stieltjes integration theory is sufficient to define integrals against functions with
finite 1-variations, we need Young’s integration theory to define integrals against
functions with finite p variations, where 1 ≤ p < 2. A proof of the following criterion
for the existence of Young’s integral can be found in [14]:

Theorem 17. (L. Young[29]) Let T > 0 and t ∈ [0, T ] and let p, q ≥ 1 be such that
1
p
+ 1

q
> 1. Then for γ· ∈ Vp ([0, t] ,R) and γ′

· ∈ Vq ([0, t] ,R), the following limit
exists:

(4.1)

ˆ t

0

γdγ′ := lim
‖P‖→0

∑

γti

(

γ′
ti+1
− γ′

ti

)

where the sum is over partition points 0 = t0 < t1 < .. < tn = t in P, and
‖P‖ := supi |ti+1 − ti|.

Furthermore, as a function of t, t →
´ t

0 γdγ
′ ∈ Vq ([0, T ] ,R), and there is a

constant Cp,q > 0 depending only on p and q such that

(4.2)

∥
∥
∥
∥

ˆ ·

0

(γs − γ0) dγ
′
s

∥
∥
∥
∥
Vq([0,T ],R)

≤ Cp,q ‖γ‖Vp([0,T ],R) ‖γ′‖Vq([0,T ],R) .

The limit in (4.1) is called the Young’s integral of γ with respect to γ′. In the
case when γ′ has finite 1-variation, the integral coincides with the Lebesgue-Stieltjes
integral.

Theorem 17 allows us to define the signature of γ ∈ Vp
(
[0, T ] ,Rd

)
for 1 ≤ p < 2.

We will use △n (s, t) to denote the set {(t1, .., tn) : s < t1 < ... < tn < t} and △ to
denote the set {(s, t) : 0 ≤ s ≤ t ≤ T }.
Definition 18. Let 1 ≤ p < 2 and γ ∈ Vp

(
[0, T ] ,Rd

)
. The lift of γ is a function

S (·) : △→ T
(
Rd

)
, defined by

(4.3) S (γ)s,t := 1 +

∞∑

n=1

ˆ

△n(s,t)

dγt1 ⊗ ...⊗ dγtn

where the sum + is the direct sum operation in T
(
Rd

)
.

The signature of γ on [0, T ] is defined as S (γ)0,T .
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Remark 19. S (γ)·,· is well-defined for γ ∈ Vp
(
[0, T ] ,Rd

)
, with p < 2 because, for

instance,
´

dγ ⊗ dγ exists because 1
p
+ 1

p
> 1. Moreover, the resulting integral

remains in Vp
(
[0, T ] ,Rd

)
, so the resulting integral can be integrated again with

respect to γ.

Remark 20. The signatures of rougher paths, if exist, will have to be defined using
the rough path theory. We shall not need it in this article.

For a continuous function γ and a partition P := t0 = 0 < t1 < .. < tn = T ,
the piecewise linear interpolation of γ with respect to P is defined as the following
function on [0, T ]:

γP
t := γti +

(
γti+1 − γti

ti+1 − ti

)

(t− ti) for t ∈ [ti, ti+1]

Then the following approximation theorem holds:

Lemma 21. (Lemma 1.12 and Proposition 1.14, [14])Let p and q be such that
1 ≤ p < q. Let γ ∈ Vp

(
[0, T ] ,Rd

)
. Then for all finite partitions P,

∥
∥γP

∥
∥
Vp([0,T ],Rd)

≤ ‖γ‖Vp([0,T ],Rd)

Furthermore for all ε > 0, there exists a δ > 0 such that for all partitions P of
[0, T ] satisfying ‖P‖ < δ we have

∥
∥γ − γP

∥
∥
Vq([0,T ],Rd)

< ε, and

sup
t∈[0,T ]

∥
∥γt − γP

t

∥
∥ < ε.

We shall need to use Green’s theorem to evaluate the signature. In order to
ensure that the domain we are integrating over is Jordan, we will approximate our
curves by simple curves. This is made possible by the following lemma:

Lemma 22. ([27], Lemma 4.3) Let γ : [0, 1] → C be a continuous simple curve.
Then for all ε > 0, there exists a partition P of [0, 1] such that ‖P‖ < ε and γP is
simple.

The following corollary, which is the only place we have used the convexity of D,
follows immediately.

Corollary 23. Let γ : [0, 1]→ D be a continuous simple curve such that γ0 = −1,
γ1 = 1 and γt ⊂ D for all t ∈ (0, 1). Then for all ε > 0, there exists a partition P
of [0, 1] such that ‖P‖ < ε and γP is simple. Furthermore, γP

t ⊂ D for t ∈ (0, 1)
and γP

0 = −1, γP
1 = 1 .

Proof. The only thing to prove is γP (0, 1) ⊂ D. Since γti , γti+1 ⊂ D for i 6= 0 or
n − 1, thus by the convexity of D, the line segment between γti and γti+1 lies in
D. Note also that the line segment strictly between γ0 and γ1 and the segment
between γn−1 and γn also lies in D by convexity. �

The following lemma is extremely useful in proving the properties of Young’s
integral.
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Lemma 24. Let γ : [0, 1]→ Rd be a continuous curve with finite p-variation, where
p < 2. Let Pm be a sequence of partitions such that Pm contains both 0 and 1 for
all m and ‖Pm‖ → 0 as m→∞. For any (i1, . . . , in) ∈ {1, . . . , d}n,

(4.4) e
∗
i1
⊗ . . .⊗ e

∗
in

[

S (γ)0,1

]

= lim
m→∞

e
∗
i1
⊗ . . .⊗ e

∗
in

[

S
(
γPm
s

)

0,1

]

.

Proof. See Corollary 2.11 in [14]. �

4.2. Proof of Theorem 3. The following lemma is a direct consequence of Lemma
13.

Lemma 25. Let η : [0, 1] → R2 be a positively oriented, simple closed curve with
bounded total variation and D be its interior, then
(4.5)

e
∗⊗n
1 ⊗ e

∗⊗k
2

(

S (η)0,1

)

=
1

(n− 1)!

(−1)k−1

(k − 1)!

ˆ

D

(

x− η
(1)
0

)n−1 (

η
(2)
0 − y

)k−1

dxdy

Proof. This follows from Lemma 13 and Theorem 11. �

Note that Lemma 25 cannot be applied directly to elements of C2 (−1, 1,D) as
they are not closed curves and are “too rough”. For the first problem, we need to
“closed off” the curves in C2 (−1, 1,D) by concatenating it with the upper semi-
circular boundary of D from 1 to −1. Let us describe this more precisely.

Recall that C2 (−1, 1,D) is defined just before the statement of Theorem 3.
Let φ denote the anti-clockwise semi-circular boundary of D, or more precisely,

φ (t) := (cos t, sin t) , 0 ≤ t ≤ π.
Let p ≥ 1. For elements γ and γ̃ in Vp

(
[0, T2] ,R

d
)

and Vp
(
[0, T1] ,R

d
)
, define a

concatenation product ⋆:Vp
(
[0, T2] ,R

d
)
×Vp

(
[0, T1] ,R

d
)
→Vp

(
[0, T1 + T2] ,R

d
)

by

γ ⋆ γ̃ (u) := γ (u) , u ∈ [0, T1] ,

γ ⋆ γ̃ (u) := γ̃ (u− T1) + γ (T1)− γ̃ (0) , u ∈ [T1, T1 + T2]

Then for γ ∈ C2 (−1, 1,D), η = γ ⋆ φ is a simple closed curve.
As η does not in general has bounded total variation, we will prove a version of

Lemma 25 that works for η.

Lemma 26. Let γ ∈ C2 (−1, 1,D) . If η = γ ⋆ φ and D is the interior of η, then

(4.6) e
∗⊗n
1 ⊗ e

∗⊗k
2

(

S (η)0,1

)

=
1

(n− 1)!

(−1)k−1

(k − 1)!

ˆ

D

(x+ 1)n−1
yk−1dxdy.

If (k1, l1) , ..., (kn, ln) ∈ N
2, we have

Πn
i=1e

∗⊗ki

1 ⊗ e
∗⊗li
2

(

S (η)0,1

)

(4.7)

= Ck,l

ˆ

R2n

[

Πn
j=1 (xj + 1) kj−1y

lj−1
j

]

1Dndx1dy1...dxndyn(4.8)

where Ck,l = Πn
j=1

[
(−1)lj−1

(kj−1)!(lj−1)!

]

.

Proof. Let γ ∈ C2 (−1, 1,D). By Corollary 23, there exists a sequence of partitions

(Pm)
∞
m=1 such that ‖Pm‖ → 0 as m → ∞, γPm

0 = −1, γPm

1 = 1 and γPm ⋆ φ is a
simple closed curve. Let Dm be the interior of γPm ⋆ φ , which we shall denote as
η(m).
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Since γPm → γ in ‖·‖∞, we have for each (x, y) ∈ R2\η∪∞m=1 η
(m), 1Dm

(x, y)→
1D (x, y), where D is the interior of η. As γ has finite p-variation, where p < 2, γ can
be reparametrised to be a 1

p
-Hölder continuous path ([14], Section 1.2.2) and hence

γ [0, 1] has Hausdorff dimension strictly less than 2. Therefore, the set η ∪∞m=1 η
(m)

has two dimensional Lebesgue measure is zero. Thus 1Dm
→ 1D almost everywhere

on R
2 in Lebesgue measure.

By the bounded convergence theorem,

lim
m→∞

ˆ

R2

(x+ 1)n−1 (−y)k−1 1Dm
dxdy

=

ˆ

R2

(x+ 1)
n−1

(−y)k−1
1Ddxdy

By Lemma 24,

lim
m→∞

e
∗⊗n
1 ⊗ e

∗⊗k
2

(

S
(
γPm

)

0,1

)

= e
∗⊗n
1 ⊗ e

∗⊗k
2

(

S (γ)0,1

)

.

(4.6) then follows from Lemma 25.
(4.7) follows by multiplying n terms of the form (4.6) together. �

Remark 27. B. Werness [27] is the first to realise that the Green’s theorem can
be used to compute some terms in the signature of a curve. He used it to prove
the n = 2, k = 1 case of Lemma 26 and to compute the first three gradings of the
expected signature of SLE curve. The main idea in generalising Werness’s result to
Lemma 26 is an interchange of integration, see the proof of Lemma 13.

Before proving our main result, we need just one more technical lemma.

Lemma 28. Let γ, γ′ ∈ C2 (−1, 1,D). If γ [0, 1] = γ′ [0, 1], then there exists a
continuous strictly increasing function r (t) such that

γr(t) = γ′
t

for all t ∈ [0, 1].

Proof. Let γ−1 denote the inverse of the function t → γt, which exists as γ is a
simple curve.

Define a function r : [0, 1]→ [0, 1] by r (t) = γ−1 ◦ γ′ (t).
As both γ and γ′ are injective continuous functions and γ [0, 1] = γ′ [0, 1], thus

r is a bijective continuous function from [0, 1] to [0, 1]. Hence it is monotone.
But γ0 = γ′

0 = −1, γ1 = γ′
1 = 1, so r (0) = 0 and r (1) = 1. Hence r is an

increasing function and the result follows. �

We now prove Theorem 3.

Proof. (of Theorem 3)The only if direction follows from the invariance of signature
under reparametrisation.

Let γ, γ′ ∈ C2 (−1, 1,D) be such that S (γ) = S (γ′).
Let η := γ ⋆ φ andη′ := γ′ ⋆ φ . By Chen’s identity, S (γ) = S (γ′) implies

S (η)0,1 = S (η′)0,1 .

Let D and D′ be the interior of η and η′ respectively.
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Since γ, γ′ ∈ C2 (−1, 1,D), we have by Lemma 26 that for φ = η, η′, A = D,D′,

(4.9) e
∗⊗n
1 ⊗ e

∗⊗k
2

(

S (φ)0,1

)

=
1

(n− 1)!

(−1)k−1

(k − 1)!

ˆ

A

(x+ 1)
n−1

yk−1dxdy

Then S (η)0,1 = S (η′)0,1 implies that

ˆ

R2

(x+ 1)n−1
yk−11D (x, y) dxdy =

ˆ

R2

(x+ 1)n−1
yk−11D′ (x, y) dxdy

for all n and k.
Thus

eiλ1

ˆ

R2

eiλ1x+iλ2y1D (x, y) dxdy = eiλ1

ˆ

R2

eiλ1x+iλ2y1D′ (x, y) dxdy

for all (λ1, λ2) ∈ R2.
By the fact that Fourier transform is injective on L1

(
R

2
)
,

(4.10) 1D (x, y) = 1D′ (x, y)

for almost all (x, y) ∈ R2.
Therefore, both D\D′ and D′\D are null sets with respect to the Lebesgue

measure.
As both D\D′ and D′\D are open, so they must both be empty. This means

D ⊂ D′ and D′ ⊂ D. Thus D = D′.
Note that as γ, γ′ are simple curves and γ, γ′ ⊂ D except at the endpoints, the

domains D and D′ are Jordan domains. Using the Jordan curve theorem, we can

prove that R2\D = R2\D for any Jordan domain D.
As D = D′, we have R2\D = R2\D′, implying that γ [0, 1] = γ′ [0, 1]. The result

follows from Lemma 28. �

5. Uniqueness of signature for Schramm-Loewner Evolution

Let
(

Ω,F , (Ft)t≥0 ,P
)

be a filtered probability space. Let (Bt : t ≥ 0) be a one-

dimensional standard Brownian Motion. Let 0 < κ. Let z ∈ H\ {0}. For each
ω ∈ Ω, consider the initial value problem:

(5.1)
dgt (z, ω)

dt
=

2

gt (z, ω)−
√
κBt (ω)

g0 (z) = z

We shall recall the following facts about gt from [21].

(1) For each ω, a unique solution to this equation exists up to time Tz > 0,
where Tz is the first time such that gt −

√
κBt → 0 as t→ Tz.

(2) Define

Ht = {z ∈ H : t < Tz} and Kt = H\Ht

Then Ht is open and simply connected.
(3) For each time t > 0, gt defines a conformal map from Ht onto H. In

particular, gt is invertible.

(4) Let f̂t (z) := g−1
t (z +

√
κBt). There exists a P-null set N such that for all

ω ∈ N c, the limit

γ̂ (t, ω) := lim
z→0,z∈H

f̂t (z)
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exists and t→ γ̂ (t) is continuous. The two dimensional stochastic process
(γ̂t : t ≥ 0) is called the Chordal SLEκ curve.

The Loewner correspondence from a continuous path t → Bt (ω) to t → γ̂ (·, ω)
is in fact deterministic and one-to-one. Therefore, the measure on the Brownian
paths induces, through this correspondence, a measure on paths in H from 0 to ∞,
which we shall call the Chordal SLEκ measure in H.

Proposition 29. Let Pκ be the Chordal SLEκ measure in H. Then with probability
one, the following holds:

1. ([27], Section 4.1)If 0 < κ ≤ 4, then for any p > 1+ κ
8 , γ has finite p-variation.

2.([21],Theorem 7.1 and Theorem 6.1)γ : [0,∞) → H satisfies γ0 = 0 and
lim inft→∞ |γ̂t| =∞.

3.([21], Theorem 6.1)For 0 ≤ κ ≤ 4, t→ γ̂t is a simple curve and γ̂ (0,∞) ⊂ H.

The fact that limt→∞ γ̂t =∞ a.s. means that the signature S (γ̂)0,∞ will not be

defined. Therefore, we shall follow [27] and opt to study the Chordal SLEκ curve
in the unit disc D, from −1 to 1. The Chordal SLEκ measure in domain D with
marked points −1 and 1 is defined as follows:

Definition 30. For κ > 0. Let P be the Chordal SLEκ measure in H, D be a
simply connected subdomain of C, a, b ∈ ∂D and f be a conformal map from H

to D, with f (0) = a and f (∞) = b. Then the Chordal SLEκ measure in D with
marked points a and b is defined as the measure P ◦ f−1.

Remark 31. Although there is a one dimensional family of conformal maps f such
that f maps H to D, 0 to a and ∞ to b, the scale invariance of the Chordal SLE
measure in H means that the measure P◦f−1 is the same no matter which member
f in this one dimensional family we use.

We now prove our almost sure uniqueness theorem concerning the signature of
SLE curves.

Proof. (of Theorem 4)Let Pκ be the Chordal SLEκ measure in D with marked
points −1 and 1. Then by Proposition 29, there exists a Pκ-null set N , such that
for all γ ∈ N c,

1. γ (0) = −1, γ (1) = 1 and γ (0, 1) ⊂ D.
2. γ has with finite 1 ≤ p < 2 variations.
3. γ is simple.
Therefore, in particular, N c ⊂ C2 (−1, 1,D).
Let γ, γ′ ∈ N c be such that S (γ) = S (γ′), then by Theorem 3, γ and γ′ are

reparametrisations of each other. �

6. Expected signature and n-point functions

6.1. n-point functions from expected signature. We will need the following
immediate consequence of the shuffle product formula.

Lemma 32. Let (k1, l1) , ..., (kn, ln) ∈ N
2. Then

Πn
i=1e

∗⊗ki

1 ⊗ e
∗⊗li
2

(

S (γ)0,1

)

= e
∗⊗k1
1 ⊗ e

∗⊗l1
2 ⊔ . . . ⊔ e

∗⊗kn

1 ⊗ e
∗⊗ln
2

(

S (γ)0,1

)

where the operation ⊔ is the shuffle product operation defined in Proposition 7.

Proof. This follows from an iterated use of Proposition 7. �
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A well-known observable in the theory of SLE is the following sequence of n-point
functions:

Definition 33. Let 0 < κ ≤ 4. Let Pκ denote the Chordal SLEκ measure in
D with marked point −1 and 1. For each γ ∈ C2 (−1, 1,D), let Φ (γ) denote the
concatenation of γ and the upper semi-circular boundary of D, oriented in the
anti-clockwise direction. We shall define the n-point function associated with the
probability measure Pκ to be:

Γn (x1, y1, .., xn, yn) = Pκ [(x1, y1) , . . . (xn, yn) ∈ IntΦ (·)] .
The n−point functions for SLEκ curves were first studied by O. Schramm who

calculated the 1-point function explicitly in terms of hypergeometric functions (see
[22]). Although PDEs can be written down for the n-point functions, the analytic
expressions for general n and κ are not known. The only exception is n = 2 and
κ = 8

3 , which was predicted in [24] and computed rigorously in [3].

Proof. (of Theorem 5)
Let 0 < κ ≤ 4. Let Pκ be the Chordal SLEκ measure in D with marked points

−1 and 1.
As in the proof of Theorem 4, there exists a Pκ null set N such that N c ⊂

C2 (−1, 1,D).
By Lemma 26, we have for each γ ∈ N c,

Cn

ˆ

CN

ΠN
i=1 (1 + xi)

ni yki

i 1
(IntΦ(γ))

Ndx1dy1 · · ·dxNdyN

= ΠN
i=1e

∗⊗(ni+1)
1 ⊗ e

∗⊗(ki+1)
2

(

S (Φ (γ))0,1

)

.

where (IntΦ (γ))n is the set

∩Nk=1 {(x1, y1, . . . , xN , yN ) : (xk, yk) ∈ IntΦ (γ)}
and

Cn,k := ΠN
i=1

(−1)ki

ni!ki!
.

By Lemma 32,

ΠN
i=1e

∗⊗ni

1 ⊗e∗⊗ki

2

(

S (Φ (γ))0,1

)

= e
∗⊗n1
1 ⊗e∗⊗k1

2 ⊔. . .⊔e∗⊗nN

1 ⊗e∗⊗kN

2

(

S (Φ (γ))0,1

)

.

By taking linear combinations, we have
ˆ

R2N

e
∑

N
i=1 λi(xi+1)+µiyiE [1DN ] dx1 · · · dyN

=
∑

n1,...,nN ,k1...kN≥0

ΠN
i=1 (λi)

ni (−µi)
ki
e
∗⊗(n1+1)
1 ⊗ e

∗⊗(k1+1)
2 ⊔ . . .

. . . ⊔ e
∗⊗(nN+1)
1 ⊗ e

∗⊗(kN+1)
2

(

E

[

S (Φ (γ))0,1

])

The result then follows by noting E [1DN (·)] = ΓN (·). �

As we may determine the signature of Φ (γ) from the signature of γ using Chen’s
identity, this formula gives a relationship between the expected signature of the
Chordal SLE measure and the n-point functions.
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6.2. Expected signature from n-point functions. We may ask whether it is
possible to obtain the expected signature from the n-point functions. Unfortunately,
here we can do no better than the deterministic case and are only able to obtain
an explicit formula only up to the fourth term. To obtain a simpler formula, we
choose to study the Chordal SLEκ measure on 1 + D so that all paths start from
0. The n-point functions can be defined for the domain 1 + D in the obvious way.

Proposition 34. Let 0 < κ ≤ 4. Let γ denote the Chordal SLEκ curve from 0 to 2
in 1 +D. Let Φ (γ) denote the concatenation of γ with the upper semi-circle of the
unit disc 1 + D, oriented in the anti-clockwise direction. Then the first four terms
of the tensor element Φ (γ) is

1 +

ˆ

D

(

[e1, e2] + [x1, [e1, e2]] +
1

2
[x1, [x1, [e1, e2]]]

)

Γ1 ((x1, y1)) dx1dy1(6.1)

+
1

2

ˆ

R4

[e1, e2]⊗ [e1, e2] Γ2 ((x1, y1) , (x2, y2)) dx1dx2dx2dx4(6.2)

where x1 = x1e1 + y1e2 and x2 = x2e1 + y2e2, and Γn is the n-point function for
the Chordal SLEκ measure.

Proof. Let N be a Chordal SLEκ null set such that for all γ ∈ N c, γ is simple,
γ (0, 1) ⊂ D, starts from 0 and ends at 2 and has finite p variation for some p < 2.

Let γ ∈ N c. Using the exactly same computation as in the proof of Corollary 2
and replacing the use of Green’s theorem with Lemma 26, we have the following

[e1, [e1, . . . [e1 [e2, . . . [e2, [e1, e2]]]]]]
∗
(log S (Φ (·)))

=

ˆ

R2

xnyk

n!k!
1IntΦ(γ) (x, y) dxdy.

where [e1, [e1, . . . [e1 [e2, . . . [e2, [e1, e2]]]]]] contains n 1s and k 2s in front of [e1, e2].
As Φ (γ) is closed, e∗1 (logS (Φ (γ))) = e

∗
2 (logS (Φ (γ))) = 0. Hence

π4 (logS (Φ (γ))) =

ˆ

R2

[e1, e2] 1IntΦ(γ) (x, y) dxdy

+

ˆ

R2

x [e1, [e1, e2]] 1IntΦ(γ) (x, y) dxdy

+

ˆ

R2

y [e2, [e1, e2]] 1IntΦ(γ) (x, y) dxdy

+

ˆ

R2

x2

2
[e1, [e1, [e1, e2]]] 1IntΦ(γ) (x, y) dxdy

+

ˆ

R2

xy [e1, [e2, [e1, e2]]] 1IntΦ(γ) (x, y) dxdy

+

ˆ

R2

y2

2
[e2, [e2, [e1, e2]]] 1IntΦ(γ) (x, y) dxdy

=

ˆ

R2

([e1, e2] + [xe1 + ye2, [e1, e2]]

+
1

2
[xe1 + ye2, [xe1 + ye2, [e1, e2]]]

)

1IntΦ(γ) (x, y) dxdy
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By taking the exponential and writing xe1 + ye2 as x,

π4 (S (Φ (γ))) = 1 +

ˆ

R2

[e1, e2] 1IntΦ(γ) (x, y) dxdy

+

ˆ

R2

[x, [e1, e2]] 1IntΦ(γ) (x, y) dxdy

+

ˆ

R2

[x, [x, [e1, e2]]] 1IntΦ(γ) (x, y) dxdy

+

ˆ

R2

[e1, e2] 1IntΦ(γ) (x, y) dxdy ⊗
ˆ

R2

[e1, e2] 1IntΦ(γ) (x, y) dxdy

Note that
ˆ

R2

[e1, e2] 1IntΦ(γ) (x, y) dxdy ⊗
ˆ

R2

[e1, e2] 1IntΦ(γ) (x, y) dxdy

=

ˆ

R4

[e1, e2]⊗ [e1, e2] 1IntΦ(γ) (x1, y1) 1IntΦ(γ) (x2, y2) dx1dy1dx2dy2

The proof is completed by taking expectation. �
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