Supplementary Table 1. Principal component coefficients and correlations of the first Principal Component (PC1) with each Region of Interest (ROI) extracted from gLPCA

ROI	coefficients	correlations	
Frontal lobe, L	-0.503	-0.911	
Frontal lobe, R	-0.509	-0.902	
Parietal lobe, L	-0.266	-0.806	
Parietal lobe, R	-0.262	-0.802	
Temporal lobe, L	-0.222	-0.707	
Temporal lobe, R	-0.238	-0.707	
Cerebellum	-0.445	-0.633	
Thalamus, L	-0.029	-0.571	
Thalamus, R	-0.030	-0.559	
Insula, L	-0.024	-0.553	
Insula, R	-0.027	-0.548	
Hippocampus, R	-0.020	-0.538	
Hippocampus, L	-0.018	-0.515	
Cingulate, L	-0.044	-0.508	
Occipital lobe, R	-0.135	-0.495	
Occipital lobe, L	-0.136	-0.483	
Putamen, R	-0.017	-0.426	
Putamen, L	-0.016	-0.412	
Cingulate, R	-0.037	-0.385	
Accumbens, L	-0.003	-0.380	
Accumbens, R	-0.003	-0.374	
Pallidum, L	-0.002	-0.290	
Amygdala, R	-0.002	-0.262	
Amygdala, L	-0.002 -0.260		
Caudate, R	-0.007 -0.184		
Pallidum, R	-0.001	-0.165	
Caudate, L	-0.006	-0.006 -0.162	

gLPCA: Graph-Laplacian Principal Component Analysis;

ROI: region of interest; L: left; R: right. In bold face the highest correlations (>0.5).

Supplementary Table 2. P-values from the linear mixed effect interaction model.

	β	GS	GRN	МАРТ	C9orf72
Carriers : non carriers		108 : 123	61 : 170	14 : 217	33 : 198
GS	β1	0.002	0.385	0.239	0.000
Education	β2	0.020	0.047	0.016	0.019
TMEM106b	β3	0.600	0.567	0.487	0.886
GS*Education	β4	0.080	0.105	0.027	0.485
GS*TMEM106b	β5	0.680	0.077	0.305	0.043
Education* <i>TMEM106b</i>	β6	0.980	0.888	0.961	0.637
GS*Education* <i>TMEM106b</i>	β7	0.007	0.227	0.165	0.026

Principal Component 1 (PC1) score was the outcome variable and Genetic Score (GS) was computed considering all the pathogenetic mutations, i.e. *MAPT or GRN or C9orf72* carriers, and each mutation separately. GS= genetic score; *MAPT: Microtubuli Associated Protein Tau; GRN: Granulin; C9orf72: chromosome 9 open reading frame 72.*

Legend to Supplementary Figure 1. The skeleton graph resulting from grey matter (GM) volume measurers from the PC algorithm (http://www.jstatsoft.org/v47/i11) on the GM correlation matrix, setting the significance level for the individual conditional independence tests alpha=0.10.

Legend to Supplementary Figure 2. Regression lines of the results from the fitted three-way interaction model in different genetic subgroups.

x-axis, education attainment (years); y-axis, grey matter volume as obtained by considering Principal Component 1.

g=genetic score; g=1, mutation carriers; g=0, mutation non-carriers; GS: all sample; GRN: Granulin,

MAPT: microtubule-associated protein tau, C9orf72: chromosome 9 open reading frame 72.

TMEM=TMEM106B; (carriers: non carriers) between brackets

See result section for further details.