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ABSTRACT: Optimization of ligand binding affinity to the
target protein of interest is a primary objective in small-
molecule drug discovery. Until now, the prediction of binding
affinities by computational methods has not been widely
applied in the drug discovery process, mainly because of its
lack of accuracy and reproducibility as well as the long
turnaround times required to obtain results. Herein we report
on a collaborative study that compares tropomyosin receptor
kinase A (TrkA) binding affinity predictions using two recently
formulated fast computational approaches, namely, Enhanced
Sampling of Molecular dynamics with Approximation of
Continuum Solvent (ESMACS) and Thermodynamic Integration with Enhanced Sampling (TIES), to experimentally derived
TrkA binding affinities for a set of Pfizer pan-Trk compounds. ESMACS gives precise and reproducible results and is applicable
to highly diverse sets of compounds. It also provides detailed chemical insight into the nature of ligand−protein binding. TIES
can predict and thus optimize more subtle changes in binding affinities between compounds of similar structure. Individual
binding affinities were calculated in a few hours, exhibiting good correlations with the experimental data of 0.79 and 0.88 from
the ESMACS and TIES approaches, respectively. The speed, level of accuracy, and precision of the calculations are such that the
affinity predictions can be used to rapidly explain the effects of compound modifications on TrkA binding affinity. The methods
could therefore be used as tools to guide lead optimization efforts across multiple prospective structurally enabled programs in
the drug discovery setting for a wide range of compounds and targets.

■ INTRODUCTION

The availability of computational methods that can reliably,
rapidly, and accurately predict the binding affinities of ligands
to a target protein of interest would greatly facilitate drug
discovery programs by enabling project teams to more
effectively triage design ideas and therefore synthesize only
those compounds with a high probability of being pharmaco-
logically active. The overall effect of this approach would be to
reduce the number of “design−synthesis−test” cycles needed to
generate compounds of sufficient bioactivity to progress to the
clinic. Until recently, in silico methods of binding affinity
prediction have not been regarded as reliable enough to
produce such actionable results. The American Chemical
Society’s Cross-Pharmaceutical Industry group has been
discussing this particular challenge of conducting elaborative
studies and has come out with an opinion piece recently, in
which it is specifically noted that “coordinated, blinded
prediction challenges offer the best opportunity to develop

broad understanding and broadly applicable methods”.1 The
Coveney group has now developed a suite of computational
methods that deliver rapid, accurate, precise, and reliable
binding affinity predictions. We report here a prospective
computational study on a then-ongoing project at Pfizer2 to
assess the effectiveness of these methods based on the use of a
Binding Affinity Calculator (BAC) software tool and associated
services.3 The approach makes use of an automated workflow4

running in a high-performance computing environment that
builds models, runs large numbers of calculations, and analyzes
the output data in order to place reliable error bounds on
predicted ligand binding affinities. In order to assess the
reliability of these methods, the predictions were performed
blind at UCL and subsequently compared with the
experimentally determined TrkA binding affinity data.2 For a
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new method being pursued by an industrial computational
chemist, these types of live blinded individual project team
collaborations are the best kinds of pilot studies that can be
performed.
Tropomyosin receptor kinase A (TrkA) is used as the target

protein in this study. TrkA is the cognate receptor of the nerve
growth factor (NGF) neuropeptide, a neurotrophic factor
involved in the regulation of growth, maintenance, prolifer-
ation, and survival of certain target neurons.5 Preclinical and
clinical studies have identified a crucial role for NGF in the
pathogenesis of pain; the clinical efficacy of anti-NGF
monoclonal antibody (mAb) therapies against several pain
end points is well-documented, and preclinically the inhibition
of the TrkA kinase domain by small-molecule kinase inhibitors
has been shown to reverse the effects of NGF-mediated pain
transduction.6,7 In view of the key role of NGF in modulating
pain, there is significant interest in the clinical development of

small-molecule TrkA inhibitors to complement anti-NGF mAb
treatment options.
The UCL group has recently introduced new approaches

termed Enhanced Sampling of Molecular dynamics with
Approximation of Continuum Solvent (ESMACS) and
Thermodynamic Integration with Enhanced Sampling
(TIES)8 for the reliable prediction of ligand−protein free
energies. The ESMACS approach centers on the molecular
mechanics Poisson−Boltzmann surface area (MMPBSA)
method,9 which employs a continuum approximation for the
aqueous solvent, while TIES is based on thermodynamic
integration. The approaches emphasize the necessity of
invoking ensemble-based sampling to reliably compute macro-
scopic quantities using microscopic modeling methods.10 The
BAC tool3 is employed to automate much of the complexity of
running and marshalling the required molecular dynamics
simulations as well as collecting and analyzing data. The BAC
tool utilized to perform the ESMACS and TIES studies

Table 1. Ligands Considered in This Study, Numbered as Per the Order in the Files Provided by Pfizera

aAll of the ligands have the same net neutral charge. The experimental TrkA inhibitory values (IC50) and the binding free energies derived from
them are shown. Experimental IC50 measurements were conducted independently in two separate laboratories using an identical protocol;2 Pfizer,
Sandwich (U.K.) IC50 values are shown in black; TCG Lifescience (India) IC50 values are shown in blue.
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constitutes a computational pipeline built from an array of
software tools and services and requires access to suitable
computing resources. Integration and automation are central to
the reliability of the method, ensuring that the results are
reproducible and can be delivered rapidly.

■ COMPUTATIONAL METHODS

The TrkA binding affinities of the compounds in Table 1 were
calculated using ESMACS and TIES. These compounds were
picked as representatives of the full series previously studied
experimentally,2 covering the dynamic range of the TrkA
pharmacology assay and containing the structural features
deemed as key determinants of TrkA activity. (A second series
of Pfizer pan-Trk inhibitors, structurally dissimilar to those
highlighted in Table 1, also showed good agreement between
their ESMACS-predicted and experimentally determined TrkA
binding affinities. Studies of those inhibitors will be published
in due course.) These congeneric compounds all have the same
net neutral charge. In ESMACS, the MMPBSA.py.MPI11

module of the AMBER12 package12 was employed for the
free energy calculations of the complex (Gcomplex), the receptor
(Greceptor), and the compound (Gligand) (eq 1). The polar
solvation free energy was calculated using the Poisson−
Boltzmann equation with a grid spacing of 0.5 Å and dielectric
constants of 1 and 80 for the protein and solvent, respectively.
The energetic analyses, including the configurational entropy
calculations, were conducted on 50 snapshots of complexes,
protein, and compounds extracted evenly from each 4 ns
production run in the ensemble MD simulations of complexes
only (1-traj and 2-traj; see below) or from separate ensemble
simulations of complexes and compounds (3-traj). In TIES, the
energy derivatives ∂V/∂λ (eq 2) were recorded every 2 fs
during the simulations, and a stochastic integration10,13 was
performed using a trapezoidal method. Hydrogen-bond
analyses were performed for the ensemble simulation
trajectories. A hydrogen bond is considered to be formed
when the distance between a hydrogen-bond acceptor and a
hydrogen-bond donor is less than a defined distance cutoff and
the acceptor−hydrogen−donor angle is greater than an angle
cutoff. The cutoffs used in the current study are 3.0 Å for the
distance and 135° for the angle. The protein and the
compounds can have intramolecular and intermolecular
hydrogen bonds, of which the intermolecular ones contribute
significantly to the binding affinities. Some “bridging” water
molecules, which are hydrogen-bonded to the protein and the
compounds at the same time, also play an important role in
binding of ligands to proteins, in addition to their direct
interactions. In ESMACS predictions, the inter- and intra-
molecular interactions of the compounds and the protein are
calculated explicitly, while the interactions with water, including
such bridging water molecules, are taken into account
implicitly.
In ESMACS, the free energy is evaluated approximately on

the basis of the extended MMPBSA method,8,14 including
configurational entropy and the free energy of association.15

Free energy changes (ΔGbinding) are determined for the
molecules in their solvated states. The binding free energy
change is then calculated as

Δ = − −G G G Gbinding complex receptor ligand (1)

where Gcomplex, Greceptor, and Gligand are the free energies of the
complex, the receptor, and the ligand, respectively.

The three terms on the right-hand side of eq 1 can be
generated from single simulations of the complexes or from
separate simulations of complexes, receptor(s), and ligand(s).
The former is the so-called one-trajectory (1-traj) method, in
which the trajectories of the receptor(s) and ligand(s) are
extracted from those of the complexes. The latter is the so-
called three-trajectory (3-traj) method when the energies are
derived from independent simulations of the three components
or the two-trajectory (2-traj) method when the energy is
derived from independent simulations for only the receptor or
the ligand. In the drug development field, binding is usually
investigated for a set of ligands bound to the same protein
target. The free energy of the receptor, Greceptor, is then the
same for all of ligands when it is derived from an independent
simulation of the receptor and hence can be treated as a
constant. In the current study, we employ three approaches to
calculate ΔGbinding: (a) employing only simulations of the
complexes (1-traj); (b) the same as (a) but using the average of
the receptor free energies ⟨Greceptor⟩ from the 1-traj method
(denoted as 2-traj); and (c) the same as (b) but also invoking
separate ligand simulations for the derivation of Gligand (denoted
as 3-traj).
In our more recent TIES method,13 an “alchemical

transformation”16 for the mutated entity, either the ligand or
the protein (in this study it is always the ligand), is used in both
aqueous solution and within the ligand−protein complex. The
relative free energy changes for the alchemical mutation
processes, ΔGaq

alch and ΔGcomplex
alch , are calculated as

∫ λ
λ

λΔ = ∂
∂ λ

G
V( )

dalch

0

1

(2)

where λ (0 ≤ λ ≤ 1) is a coupling parameter such that λ = 0
and λ = 1 correspond to the initial and final thermodynamic
states, V(λ) is the potential energy of an intermediate state λ,
and ⟨···⟩λ denotes an ensemble average over configurations
representative of the state λ. The relative binding free energy
difference is then calculated as

ΔΔ = Δ − ΔG G Gbinding
aq
alch

complex
alch

(3)

Compared with ESMACS, the TIES approach, like all other
alchemical-based free energy methods, is usually more accurate
in comparing one congeneric ligand to another. However, the
nature of these alchemical methods implies that their
applications will be limited when diverse sets of compounds
are of interest. A recent publication17 in which the authors
claimed that their implementation of free energy perturbation
(FEP) calculations successfully predicted a number of more
active compounds (a correlation coefficient of 0.71 between the
predicted and experimental binding affinities was achieved) has
the same limitations. ESMACS, however, has no such
limitations. Our previous studies8 have shown that ESMACS
can be applied to sets of compounds that are highly diverse in
terms of both the number of atoms and the net charge. In
addition, ESMACS is able to make assessments of the effect
that an individual ligand has on the protein to which it binds. In
particular, the application of two- and three-trajectory versions
of ESMACS allows one to probe the extent to which both the
ligand and protein adjust their conformations on binding,
broadly according to a “lock and key” or “induced fit”
recognition mechanism.
In the current study, we apply the ESMACS approach for all

of TrkA compounds highlighted in Table 1 and consider TIES
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for a selected subset. In the evaluation and characterization of
TrkA binding affinity predictions from the Pfizer compound
set, the ESMACS and TIES protocols were conducted as
recently described.8,13 TrkA compounds were optimized at the
Hartree−Fock level with the 6-31G* basis (HF/6-31G*) in
Gaussian 0318 and parametrized using Antechamber and RESP
in AmberTools 12 with the general AMBER force field
(GAFF).19 The Amber ff99SBildn force field20 was used for
the protein. In ESMACS, we used 25 replicas in an ensemble
calculation for each ligand. In TIES, five replicas were used for
each selected pair of ligands. The MD package NAMD2.921 was
used throughout the equilibration and production simulations
with periodic boundary conditions. We used a protocol
established in our previous publications13,14 in which 2 ns of
equilibration and 4 ns of production were conducted for each
replica. Energy analyses showed that a 4 ns production run was
sufficient to have convergence results for the current molecular
systems (see Figure S1 in the Supporting Information). In
ESMACS, the MMPBSA.py.MPI11 module of the Amber
package12 was used to extract the free energies of the
complexes, the protein, and the compounds (eq 1), including
configurational entropy from normal mode calculations.
ESMACS was performed on SuperMUC, two separate high-

end supercomputers with a total of ca. 245 000 cores in a
combination of various processor technologies (https://www.
lrz.de/services/compute/supermuc/systemdescription/), at the
Leibniz Rechenzentrum (Leibniz Supercomputing Centre) in
Garching, Germany. We were able to run our calculations on
them as if it were a single supercomputer.22 TIES calculations
were performed on ARCHER, a Cray XC30 supercomputer
(equipped with ca. 110 000 cores), the U.K.’s National High
Performance Computing Service located in Edinburgh. A single
ESMACS study of one ligand−protein interaction and a TIES
study of the binding free energy difference for two congeneric
ligands can both be completed in about 8 wall-clock hours on
1200 and 3120 CPU cores, respectively, on ARCHER (see
details in our previous publication8,13). (It is possible to further
reduce the time required by use of GPU accelerators.) The
ESMACS and TIES approaches are both scalable, allowing a
large number of calculations to be performed concurrently,
depending only on the computing resources available.

■ RESULTS
We report a collaborative study performed between academic
computational chemists and a pharmaceutical company on a
data set of 16 pan-Trk ligands (Table 1).2 Of the TrkA
cocrystal structures provided by Pfizer,2 we elected to utilize the
cocrystal structure of TrkA and 1 (Figure 1, PDB code 5JFV) as
it contained the highest number of crystallographically defined
TrkA residues. The missing residues were built by ModLoop,23

while the initial structures of the complexes were constructed
by a docking method employing UCSF DOCK.24 Nine of the
16 compounds were successfully docked into the binding site of
the TrkA protein with orientations agreeing with those from
available X-ray structures. Compounds that failed to generate
suitable cocomplexes via docking were manually positioned on
the basis of X-ray and/or modeled structures of similar
compounds.
Comparison of Experimental TrkA Binding Free

Energies with ESMACS Predictions. The comparison of
the TrkA binding free energies obtained from ESMACS
predictions and those determined experimentally is shown in
Figure 2. The predicted binding free energies from the 1-traj

approach exhibit a moderate Pearson correlation with the
experimental data (with a coefficient of 0.42; Figure 2a). The 2-
traj approach, in which the same free energy of the receptor
averaged from the 1-traj method is used, significantly improves
the correlation between the predictions and experimental data
(with a coefficient of 0.76; Figure 2b). Incorporating the free
energies of the ligands from their individual simulations in
water (the 3-traj approach) generates a correlation similar to
that from the 2-traj approach (with a coefficient of 0.79; Figure
2c). The improvements are achieved by including the
adaptation energies8 of the receptor in the current study, and
possibly of the ligands in general cases, which quantify the free
energy changes of a molecule between its bound and free states.
The 3-traj ESMACS results are in good agreement with the
experimental measurements. It should be noted that the
ESMACS method is capable of comparing the binding affinities
of the entire set of ligands, notwithstanding the relatively
significant structural differences. It should also be noted that
the experimental TrkA binding free energies were approxi-
mated from half-maximal inhibitory concentration (IC50)
values, which provide only semiquantitative estimates. In
addition, experimental IC50 values for individual compounds
vary between intralab measurements, and their average IC50
values vary between 1.6- and 4.2-fold when measured
independently across the two laboratories (Table 1 and Table
S1 in the Supporting Information). A root-mean-square (RMS)
error of ∼24% has recently been inferred from interlaboratory
variations of reported binding affinities by Chodera and
Mobley.25

Improvement of Docking Predictions by the ESMACS
Approach. For the nine compounds that were successfully
docked into the TrkA protein, the binding free energies were
also calculated using the structures after docking and energy
minimization. The minimization process optimizes the
geometry of a collection of atoms so that the net interatomic
force on each atom is acceptably close to zero. The remaining
seven compounds were not included in these calculations
because the manually constructed structures exhibit some close
contacts between the protein and the compounds, to which the
binding free energy estimations are very sensitive. When the
compounds could be docked into a single protein structure, the
ranking of their binding affinities was reasonably predicted from
the docked structures (Figure 3a). However, the results from

Figure 1. Crystal structure of 1 bound to TrkA, viewed from the N-
lobe to the C-lobe of the kinase. Hydrogen bonds are displayed by
dashed lines. The protein is shown in cyan cartoon, and ligand atoms
are colored by element: hydrogen in white, carbon in cyan, oxygen in
red, and nitrogen in blue. For clarity, the N-lobe is not shown.
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Figure 2. Comparisons of the TrkA experimental data and the calculated binding free energies from (a) 1-traj, (b) 2-traj, and (c) 3-traj ESMACS
approaches. The equation in each panel indicates the calculations used in each case. The term Gcom/rec/lig

com/lig represents the free energy of the component
(subscript: complex, receptor, or ligand) obtained from simulation of the same or different component (superscript: complex or free ligand in
aqueous solution). The calculated binding free energies are associated with standard errors of ca. 0.6 kcal/mol in the 1-traj approach and ca. 3 kcal/
mol in the 2- and 3-traj approaches (see Table S2), which are not shown in the figures for reasons of clarity. The experimental data from two sites
(Pfizer, Sandwich and TCG Lifescience) are displayed in black and red, respectively. The correlation coefficients shown in the figure were calculated
using the averages of the calculated binding free energies and the experimental data from Pfizer, Sandwich (black circles) and TCG Lifescience (red
circles) where the former are not available. Large uncertainties are associated with the correlation coefficients because of the large error bars of the
calculated and experimental binding affinities. Further analyses with bootstrapping resampling (see details in the Supporting Information) generate
correlation coefficients of 0.39 ± 0.26, 0.60 ± 0.26, and 0.62 ± 0.27 for the 1-, 2-, and 3-traj approaches, respectively. It is evident that the 2- and 3-
traj methods improve the ranking provided by the 1-traj method.

Figure 3. Calculated binding free energies for 1, 3, 4, 6, 7, 8, 13, 16, and 22 (a) from single structures after docking, (b) from 25 structures for each
compound after 11 000-step minimization with a sophisticated conjugate-gradient method, and (c) from ensemble averages from three-trajectory
ESMACS studies. Compounds 1, 3, 4, 6, 7, 8, 13, 16, and 22 are highly structurally similar (see Table 1).

Figure 4. Correlations of free energy components and the experimental data from the 3-traj approach. Both (a) bonded and (b) nonbonded energy
terms contribute to the ranking of binding affinities, with similar correlation coefficients between the calculations and experimental data. Their
combination, the MMPBSA energy (c), exhibits better correlations with the experimental data than the components themselves.
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the docking structures overestimate the free energy differences
among the compounds, as shown in Figure 3a, in which the
large slope of the regression line (3.33) indicates that the
predicted energy differences are on average more than 3 times
larger than the experimentally measured ones. The energy
minimization significantly decreases the overestimations
(Figure 3b, with a regression slope of 1.81). The ESMACS
study further decreases the overestimation and makes the
points on the scatter plot more concentrated around the
regression line (Figure 3c). The docking method ranks the
binding affinities reasonably well only for the compounds with
closely related structures. Its results are also strongly dependent
on the quality and choice of the structure(s) of the target
protein.26 The ESMACS approach, however, is not sensitive to
the initial structure and achieves a similar correlation coefficient
between the calculated and experimental binding affinities for
all of the compounds irrespective of whether they can be
successfully docked (Figure 2c).
ESMACS Binding Affinities: Contributions from En-

ergy Components. The components of the free energy
calculations (see the Supporting Information for more details)
may provide insight into the mechanism of compound
binding.27 In this study, no apparent correlations could be
found for the individual energy components of the internal van
der Waals, electrostatic, or electrostatic solvation energies. The
total bonded energies, including bond, angle, and dihedral
interactions, manifest a moderate correlation with the
experimental binding free energies in the 3-traj approach,
with a Pearson coefficient of 0.54 (Figure 4a). The nonbonded
interactions, including the internal electrostatic, solvation
electrostatic, and van der Waals interactions, have a slightly
weaker correlation (Pearson coefficient of 0.43) than the
bonded energies. The combination of bonded and nonbonded
interactions significantly improves the correlation, with a
Pearson coefficient of 0.75 (Figure 4c). The bonded and
nonbonded energies are the two components of the total
adaptation energy (see below), which is associated with the
conformational changes upon compound binding. It is
therefore not surprising that both of them show correlations
with the binding affinities. The configurational entropy
components do not exhibit a significant correlation with the
experimental binding affinity (Figure S2). They vary in a range
of 4.6 kcal/mol; the MMPBSA energies vary in a range of 14.41

kcal/mol by comparison. Inclusion of the contribution from
configurational entropy into the MMPBSA energy does not
improve the Pearson correlation coefficients significantly (see
Figure 2c, which includes configurational entropy, and Figure
4c, which does not).

Adaptation Energy: A Measure of Conformational
Change upon Binding. The improvement obtained with the
3-traj approach compared with the 1-traj approach is achieved
by relaxing the assumption that the receptor and the
compounds sample similar conformations in both the free
and bound states. Unfavorable adaptation energies8 are usually
induced when the conformations within the free state are
significantly perturbed upon compound binding. The adapta-
tion energies from the 3-traj approach indeed provide more
insights into the mechanism of compound binding. They are
related to the structural modifications made to the compounds
and the protein and shed important light on the optimization.
As the ranking of the ligand binding is the main concern of the
study and the relative adaptation energies of the protein are
energetically as informative as the absolute ones in the binding
affinity comparison, no attempt has been made here to
compute accurate absolute adaptation energies for the protein.
All of the adaptation energies for the protein are relative ones in
the current paper. Non-negligible adaptation energies are
associated with conformational changes upon compound
binding, meaning that the binding involves “induced fit”
recognition. Compound 8, for example, introduces the largest
adaptation energy within the protein, while 16 has the largest
adaptation energy within the compound (Figure 5). The
binding of 8 induces a conformational change within the
protein because there is a reluctance to accommodate the
methoxy group in the linker region of 8 into the binding site;
the arrangement of the amide group in 16 forces the compound
to adopt a high-energy conformation in the protein’s binding
site (see details below).

Comparison of Experimental TrkA Binding Free
Energies with TIES Predictions. The TIES method provides
a more accurate approach to estimate relative binding affinities,
but the scope for its use is rather tightly circumscribed, as it is
applicable only for pairs of compounds that do not present
significant structural differences. Our previous studies have
demonstrated that TIES offers more quantitative accuracy in its
predictions than ESMACS.13,28 Here we apply TIES to the

Figure 5. Adaptation free energies of (a) the receptor and (b) the compounds showing the binding free energy changes between the 1- and 3-traj
approaches. The terms Grec/lig

com/lig are the free energies of receptor or ligands (subscript) calculated from simulations performed for the complex or the
ligands (superscript).
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TrkA data set to highlight the accuracy of the approach. In
TIES, studies are performed for 14 pairs of TrkA compounds
(Figure 6). The calculated binding free energy differences

correlate well with the experimental data, with a Pearson
correlation of 0.88 (Figure 6), compared with 0.79 from the 3-
traj ESMACS study (Figure 2c). A directional agreement is
achieved if a prediction has the same sign as the experimental
observation; otherwise, the result is deemed to be directional
disagreement. For 10 out of the 14 pairs studied, TIES
successfully achieves directional agreements, meaning that the
results predict the direction of the change in the binding affinity
correctly (Figure 6). As shown in the figure, all but one of the
TIES predictions that directionally disagree lie on the border of
quadrants II and III within their calculated error bars. When the
error bars of the experimental ΔΔG are also taken into account,
a better agreement might be achieved than that reported here.

■ DISCUSSION

The calculations, especially the ESMACS ones, can provide
further insights for binding affinity variation between
structurally similar ligands. In order to analyze the results, it
is necessary to consider the differences between the one-, two-,
and three-trajectory methods. The 1-traj simulation calculates
ΔGbinding assuming there is no energetic penalty for the
adaptation of the protein or ligand to the binding
conformation; the 2-traj method takes the change in protein
energy into consideration, and the 3-traj method accounts for
the changes in both protein and ligand energies. The
simulations enable the exploration of key differences in binding
modes for structurally related ligands, as we now discuss.

Hinge Binding Group Modifications: Compounds 1, 4,
and 22. Initial compounds in the pyrrolopyrimidine series,
such as 1, contain an amino group at the 4-position of the hinge
binding group (Table 2). Compounds such these, while TrkA-
active, required optimization of their kinase selectivity profile.29

It is known within the scientific literature that minimizing the
number of hydrogen-bonding interactions made between a
kinase inhibitor and the kinase hinge binding region can lead to
an enhanced kinome selectivity profile.30,31 In order to design
compounds with an optimal kinase selectivity profile, an
analysis of the crystal structure of 1 bound to TrkA and the
nonliganded TrkA apo structure was undertaken.29 The
aminopyrrolopyrimidine motif of 1 makes a two-point
hydrogen-bonding interaction with hinge residues E590 and
M592. When 1 is superpositioned onto the TrkA apo crystal
structure, the −NH2 motif of the aminopyrrolopyrimidine
group overlays directly with a conserved water molecule
observed in the apo structure. The −NH2 group was therefore
removed to generate compounds such as 4, in which a bridging
water molecule forms hydrogen bonds with the backbone
carbonyl oxygen at E590 and the ketone oxygen of the TrkA
ligand. The hydrogen bond between the ligand and the
backbone N−H of hinge residue M592 is maintained. The
deletion of the −NH2 group had only a minimal effect on the
TrkA activity, as 1 and 4 had broadly similar IC50 values in the
TrkA pharmacology assay.
ESMACS calculations show that compounds without the

−NH2 group at the 4-position (all compounds except 1, 3, 6,
and 22; Table 2) have a bridging water molecule between the

Figure 6. Correlation between TIES-predicted relative binding
affinities and experimental data. The black line is the correlation
line, while the dotted lines (x = 0 and y = 0) create four quadrants.
Ten out of the 14 data points are in quadrants I (x > 0 and y > 0) and
III (x < 0 and y < 0), meaning that the calculated binding free energy
differences have the same sign as those from the experimental data.

Table 2. Structures and Properties of 1, 4, and 22a

aTrkA free energy activities derived from experimental IC50 values are denoted as ΔGexp. The relative binding free energies from experiment and
ESMACS and TIES calculations are denoted as ΔΔGexp, ΔΔGESMACS, and ΔΔGTIES, respectively. Experimental data from Pfizer, Sandwich (U.K.)
are shown in black, and those from TCG Lifescience (India) are shown in blue.
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ketone oxygen of the ligand and the backbone carbonyl oxygen
of hinge residue E590, with an average occupancy of 41 ± 9%.
The occupancy indeed underscores the presence of a water
molecule at the location as the molecule dynamically moves
into and out of the cutoff distance and angle that designate the
occurrence of a bridging water molecule. Simulations of
compounds containing the −NH2 group at the 4-position (1,
3, and 6; Table 2) show the same bridging water to be present
but at a far lower frequency (occupancy values of just 2 ± 0%
for 1, 3, and 6) (Figure 7).
ESMACS confirms that the bridging water molecule

highlighted in Figure 7 helps mediate and thus satisfy key
protein−compound interactions, rendering the overall binding
free energies of compounds such as 4 less affected by the
absence of the H-bond when −NH2 is not present. This
capability is reflected in the close similarity between the
calculated TrkA free energy values for 1 and 4 and those
derived from TrkA pharmacology experiments (Table 2).
Compound 22 was synthesized as part of an effort to
characterize putative compound metabolites. As highlighted in
Table 2, 22 is only weakly active in the TrkA pharmacology
(IC50 = 1756 nM). ESMACS simulations show a low average
occupancy of the aforementioned bridging water molecule
(average occupancy 10 ± 6%) due to the presence of the −OH

group at the 4-position (Figure 7). The calculations also show
that the −OH group of 22 is more likely to form an
intramolecular H-bond with the carbonyl group of the ligand
than to form an intermolecular H-bond with hinge residue
E590 of the protein. Within the 25-member ensemble, only one
ESMACS replica has an intermolecular H-bond forming with
an occupancy of 84%, compared with <5% for all of the others.
The −OH group occupies the space of the bridging water
molecule and does not have a direct hydrogen-bonding
interaction with E590. The intramolecular H-bond of the
−OH group places the −OH oxygen in a position where an
electrostatic repulsion arises with the backbone carbonyl
oxygen of E590 (Figure 7b). The result of having a nonsatisfied
hydrogen-bonding group (−OH) in 22 is a reduction in overall
ligand binding affinity. This is reflected not only in the
measured activity data (ΔGexp = −7.1 kcal/mol) but also in the
relative binding affinities calculated by ESMACS and TIES
(Table 2).

Hinge Binding Group Modifications: Compounds 12,
17, 23, and 24. The TrkA cocrystal structure of compounds
such as 12 indicated that a polar atom capable of making an
additional hydrogen-bonding interaction with M592 might be
accommodated at the 2-position of the hinge binding group
(Table 3). Compound 17 was synthesized initially to test this

Figure 7. ESMACS simulations of (a) 1, (b) 22, and (c) 4 bound to TrkA. Final conformations of 4 ns production runs from all 25 replicas are
overlapped and smoothed by averaging over 10 frames. Key residues E590 and M592 (for clarity, side-chain atoms are not shown) at the TrkA hinge
region are highlighted. Hydrogen bonds are shown as dashed lines. The protein is shown in cyan cartoon, and ligand atoms are colored by element:
hydrogen in white, carbon in cyan, oxygen in red, and nitrogen in blue. For reasons of clarity, the N-lobe of the protein has been removed.

Table 3. Structures and Properties of 12, 17, 23, and 24a

aTrkA free energy activities derived from experimental IC50 values are denoted as ΔGexp. The relative binding free energies from experiment and
ESMACS and TIES calculations are denoted as ΔΔGexp, ΔΔGESMACS, and ΔΔGTIES, respectively. Experimental data from Pfizer, Sandwich (U.K.)
are shown in black, and those from TCG Lifescience (India) are shown in blue.
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theory and proved to be more active in the TrkA pharmacology
model than the parent molecule 12. Compound 23 was then
synthesized to see whether adding a methyl group to the amine
would further boost the potency through the introduction of
hydrophobic interactions with the lipophilic side chain of Y591.
Compound 23 was potent in the TrkA assay, albeit slightly less
so than 12. Compound 24 was synthesized as a putative
metabolite of 12 and was found to be >15-fold less active at
TrkA.
ESMACS shows that addition of polar groups at the 2-

position increases the total occupancy of hydrogen bonds with
M592 from 23 ± 4% (for 12) to 85 ± 4%, 80 ± 4%, and 91 ±
19% (for 17, 23, and 24, respectively). This includes the
occupancy of the hydrogen bond made between the pyrimidyl
nitrogen and the −NH group of M592, which is common to all
of the compounds. The increased occupancies of 17, 23, and 24
result in the additional hydrogen bonds between the polar
groups at the 2-position of the compounds and the CO
group of M592. The simulations also show that addition of an
−NH2 group (17) does not introduce any unfavorable steric
interaction within the protein or the ligand (see Figure 8). The

slightly improved binding affinity of 17 versus 12 stems from
the favorable electrostatic interaction (including the solvation
electrostatic component from the Poisson−Boltzmann calcu-
lation) between the compound and the protein. The addition of
the methyl group on the amine (23), however, induces an
unfavorable adaptation energy within the protein (see the
comparison of relative adaptation energies for 12/17 and 23 in
Figure 5a) due to steric hindrance between the protein and 23
(Figure 8c). The presence of an −NH2 group at the 2-position
(17) does not induce an unfavorable adaptation energy. The
introduction of an −OH group (24), however, introduces a
significant adaptation energy in the protein because the −OH
group forms the strongest hydrogen bond with M592 among
the subgroup of compounds 12, 17, 23, and 24, which induces
steric hindrance within the complex and reduces the overall
binding affinity (Figure 8).

Linker Group Modifications: Compounds 1, 4, and 22.
The TrkA cocrystal structure of compounds such as 1
highlighted a conserved water molecule that formed hydro-
gen-bonding interactions with the N−H group of the amide
linker and protein residues K544 and E560 (Table 4 and Figure
9). A methyl group was added to the amide nitrogen to assess
the effect of displacing the conserved water molecule (and the
potentially altered amide conformation relative to the pyridyl
ring) on the TrkA activity. The effect of transposing the amide
N−H to the other side of the carbonyl group was also
investigated, as this, if the activity were retained, could open up
new parallel chemistry opportunities within the chemotype.
Compound 3, an example of the N-methylamide, remained
active at TrkA, although with reduced affinity versus its
desmethyl congener 1. Compound 6, an example of the
transposed N−H amide, also remained active at TrkA with
almost identical affinity as 1.
ESMACS shows that the modifications highlighted in Table

4 do not alter the key hydrogen-bonding interaction between
the carbonyl oxygen of the amide group of 1, 3, and 6 and the
backbone N−H of D668, with occupancies of 56 ± 7%, 54 ±
3%, and 51 ± 6%, respectively (Figure 9). The altered position
of the amide group in 1 and 6 slightly affects the appearance of
the bridging water molecules between the ligands and residue
E560, with occupancies of 15 ± 6% and 20 ± 5% for 1 and 6,
respectively. Minimal direct hydrogen-bonding interactions are
predicted between the amide −NH group of 1 and 6 and
residue K544 or E560. The replacement of the amide −NH
group of 1 by the more hydrophobic N-methyl group is
predicted to displace the adjacent bridging water molecule
(Figure 9a,b) and overall make binding to TrkA energetically
less favorable. There is a good correlation between the
ESMACS-predicted and experimentally derived free energies
of TrkA binding for 1, 3, and 6 (Table 4).

Linker Group Modifications: Compounds 7 and 8.
Although the linker group of the pyrrolopyrimidine/pyrrolo-
pyridine series binds to a relatively narrow region of the ligand
binding site, between the two adjacent ATP and DFG pockets,
the tolerance of the TrkA protein toward bulkier linker groups
was briefly investigated as part of the TrkA program. An
example from this work is 8, in which a methoxy group has
been added to the linker-group carbonyl. As highlighted in
Table 5, a significant reduction in TrkA activity is observed for
8 versus 7.
ESMACS calculations indicate that the oxygen atom of the

methoxy group of 8 is located proximal (3.47 ± 0.31 Å) to the
carbonyl group of residue D668. The occupancy of a bridging
water molecule between the methoxy group and the carbonyl is
only 5 ± 2%, indicating that the orientation and the space
between these groups preclude a bridging water molecule being
available to quench any electrostatic repulsion (Table 5 and
Figure 10). The chirality of the methoxy group also prevents
the polar oxygen from having any direct or favorable water-
bridged interactions with E560 or D668. The binding of 8
induces the largest adaptation energy (Figure 5a) in the TrkA
protein of all compounds assessed. Energetic analyses show that
although the bonded energy and the van der Waals interactions
are favorable for 8 compared with 7 (by 3.70 and 2.29 kcal/
mol, respectively), a significantly unfavorable electrostatic
energy (10.59 kcal/mol), mainly from the interactions between
the polar oxygen of the methoxy group and the polar/charged
groups of the protein (carbonyl group of D668 and carboxylate

Figure 8. ESMACS simulations of (a) 12, (b) 17, (c) 23, and (d) 24
bound to TrkA. Representative conformations are displayed using the
final conformations of 4 ns production runs of one replica from each
25-member ensemble. The protein is shown by the surface
representation and the ligand by the ball-and-stick representation
with hydrogen in white, carbon in cyan, oxygen in red, and nitrogen in
blue. The surfaces of the R2-position groups are shown in the
wireframe representation.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.6b00780
J. Chem. Inf. Model. 2017, 57, 897−909

905

http://dx.doi.org/10.1021/acs.jcim.6b00780
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jcim.6b00780&iName=master.img-013.jpg&w=239&h=171


group of E560; Figure 10), is introduced by the inclusion of the
(S)-OMe group.
The calculated free energies of TrkA binding for 7 and 8

correlate well with those obtained experimentally. Hence,

utilization of ESMACS to predict the TrkA binding affinity of 8
during the Pfizer TrkA project might well have influenced the
medicinal chemistry team to deprioritize this compound and
redirect synthetic efforts in other directions.

Linker Group Modifications: Compounds 4 and 16.
The hydrogen bond between the linker-group carbonyl and the
backbone N−H of D668 is a key interaction across the
pyrrolopyrimidine/pyrrolopyridine series. During the Pfizer
TrkA program, reversing the amide group was modeled to
assess whether the usual ligand binding mode could be adapted
to maintain this interaction in the new amide arrangement.
Docking of 16 into TrkA using a Pfizer docking protocol (data
not shown) suggested that the reverse amide would likely not
be able to adapt a conformation in which this interaction would
be retained. However, 16 was synthesized as an example of a
reverse amide system to challenge and/or verify the docking
result. As can be seen in Table 6, reversing the amide group led
to a significant reduction in TrkA activity.
ESMACS-based component binding analysis shows that 16

has the least favorable bonding and nonbonding interactions of
the compounds in Table 1. The reversed positions of the −NH
and CO groups prevent formation of the hydrogen bond
between the ligand and residue D668 (Figure 11), with an H-
bond occupancy of <1% compared with occupancies of 30−
56% for the rest of the compound set (except for 26, whose

Table 4. Structures and Properties of 1, 3, and 6a

aTrkA free energy activities derived from experimental IC50 values are denoted as ΔGexp. The relative binding free energies from experiment and
ESMACS and TIES calculations are denoted as ΔΔGexp, ΔΔGESMACS, and ΔΔGTIES, respectively. Experimental data from Pfizer, Sandwich (U.K.)
are shown in black, and those from TCG Lifescience (India) are shown in blue.

Figure 9. ESMACS simulations of (a) 1, (b) 3, and (c) 6 bound to TrkA. Final conformations of 4 ns production runs from all 25 replicas are
overlapped and smoothed by averaging over 10 frames. The key TrkA protein residues D668, K544, and E560 are highlighted. The protein is shown
in cyan cartoon, and ligand atoms are colored by element: hydrogen in white, carbon in cyan, oxygen in red, and nitrogen in blue. Hydrogen bonds
between the linker group carbonyl oxygen of 1, 3, and 6 and the backbone −NH group of D668 are shown as dashed lines.

Table 5. Structures and Properties of 7 and 8a

aTrkA free energy activities derived from experimental IC50 values are
denoted as ΔGexp. The relative binding free energies from experiment
and ESMACS and TIES calculations are denoted as ΔΔGexp,
ΔΔGESMACS, and ΔΔGTIES, respectively. Experimental data were
obtained from Pfizer, Sandwich (U.K.) for these two compounds.
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occupancy is 14% as a result of the competition from an extra
hydrogen bond between the polar oxygen at R4 and residue
K544) (Table 1). Indeed, ESMACS calculations reveal that the
−NH and CO groups of 16 align in a noncomplementary
fashion with the −NH and CO groups of residue D668,
introducing a large unfavorable electrostatic interaction (Figure

11). Compound 16 has the largest ligand adaptation energy,
indicating that the switching of N−H and CO does not
enable an alternate binding mode to be adopted, and therefore,
16 must adopt a high-energy conformation to complex with the
protein. As is clear in Table 6, ESMACS correctly predicts the
reduced TrkA potency of 16 compared with 4.

■ CONCLUSIONS

Methodologies that can predict the binding affinities of
molecules ahead of synthesis represent a key area of interest
in the pharmaceutical industry. The ability to effectively
prioritize prospective compounds on the basis of their likely
activity in a key pharmacology assay offers the potential to
rapidly improve lead optimization timelines in drug discovery
programs by reducing the number of “design−synthesis−
screen” cycles needed to identify candidate-quality molecules
suitable for clinical testing.32

Despite the relative diversity of the compounds in this study,
the 3-traj version of the ESMACS approach provides good
agreement between the theoretically predicted binding free
energies and those derived from experimentally measured
activities for the entire data set. TIES generates even better
agreement between the calculated and experimental binding
free energy differences for a selected subgroup of ligands. This
is manifest in the better correlation coefficient obtained in TIES
(0.88) than in ESMACS (0.79) and accurate binding free
energy differences from the former. This is the case for all of

Figure 10. ESMACS simulations of (a) 7 and (b) 8 bound to TrkA. Final conformations of 4 ns production runs from all 25 replicas are overlapped
and smoothed by averaging over 10 frames. The key TrkA protein residues D668, E560, and L564 are highlighted. The protein is shown in cyan
cartoon, and ligand atoms are colored by element: hydrogen in white, carbon in cyan, oxygen in red, and nitrogen in blue. The unfavorable
electrostatic interactions between the methoxy group of 8 and the carbonyl group of D668 and between the methoxy group and the carboxylate
group of E560 are highlighted by pink arrows.

Table 6. Structures and Properties of 4 and 16a

aTrkA free energy activities derived from experimental IC50 values are
denoted as ΔGexp. The relative binding free energies from experiment
and ESMACS and TIES calculations are denoted as ΔΔGexp,
ΔΔGESMACS, and ΔΔGTIES, respectively. Experimental data were
obtained from Pfizer, Sandwich (U.K.) for these two compounds.

Figure 11. ESMACS simulations of (a) 4 and (b) 16 bound to TrkA. Final conformations of 4 ns production runs from all 25 replicas are overlapped
and smoothed by averaging over 10 conformations. The key TrkA protein residue D668 is highlighted. The protein is shown in cyan cartoon, and
ligand atoms are colored by element: hydrogen in white, carbon in cyan, oxygen in red, and nitrogen in blue. The hydrogen bond between the linker-
group carbonyl oxygen of 4 and the backbone −NH group of D668 is shown as a dashed line. As can be seen in (b), switching of the N−H and C
O groups prevents the formation of a hydrogen bond between the carbonyl oxygen of 16 and the backbone −NH group of D668.
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molecular systems we have studied.13,28,33 ESMACS also
provides structural and energetic insight into the binding of
individual ligand−protein systems: some compounds bind by a
“lock and key” recognition mechanism, for which no significant
conformational adjustment is required by the protein and the
ligands; others bind according to an “induced fit” recognition
mechanism involving significant conformational changes
associated with non-negligible adaptation energies.
The Binding Affinity Calculator (BAC) used in this study

automates the workflows for ESMACS and TIES calculations,
making the use of these approaches easy and user-friendly.
With powerful computing resources now widely available, these
robust approaches should become more routine for industrial
groups in the field of structure-based drug design. The results
described herein, based on an analysis of TrkA ligands
synthesized as part of the TrkA program at Pfizer, suggest
that the binding affinity calculations have the potential to be
successfully applied in real-time prospective ligand design.
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