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� We created a validation method for the evaluation of automated classification of interictal spikes.
� We used a modified version of Wave_clus (WC) to automatically classify the data of 5 patients.
� WC classification was similar to EEG reviewers providing an unbiased evaluation of the clinical data.

a b s t r a c t

Objective: To validate the application of an automated neuronal spike classification algorithm, Wave_clus
(WC), on interictal epileptiform discharges (IED) obtained from human intracranial EEG (icEEG) data.
Method: Five 10-min segments of icEEG recorded in 5 patients were used. WC and three expert EEG
reviewers independently classified one hundred IED events into IED classes or non-IEDs. First, we deter-
mined whether WC-human agreement variability falls within inter-reviewer agreement variability by
calculating the variation of information for each classifier pair and quantifying the overlap between all
WC-reviewer and all reviewer-reviewer pairs. Second, we compared WC and EEG reviewers’ spike iden-
tification and individual spike class labels visually and quantitatively.
Results: The overlap between all WC-human pairs and all human pairs was >80% for 3/5 patients and
>58% for the other 2 patients demonstrating WC falling within inter-human variation. The average sen-
sitivity of spike marking for WC was 91% and >87% for all three EEG reviewers. Finally, there was a strong
visual and quantitative similarity between WC and EEG reviewers.
Conclusions: WC performance is indistinguishable to that of EEG reviewers’ suggesting it could be a valid
clinical tool for the assessment of IEDs.
Significance: WC can be used to provide quantitative analysis of epileptic spikes.
� 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As part of standard practice for assessing patients with epilepsy,
clinical neurophysiologists are able to detect interictal epileptiform
discharges (IED or ‘epileptic spikes’) during interictal EEG record-
ings. Although there is no gold standard as to what constitutes
an epileptic spike, they tend to comprise a high amplitude deflec-
tion event lasting approximately 40–100 ms (De Curtis and
Avanzini, 2001). Some patients evaluated for resective surgical
treatment for epilepsy are investigated with intracranial EEG
(icEEG) usually when there is strong evidence of an epileptogenic
focus but not sufficient information to define a surgically resect-
able area using non-invasive methods. These patients may be
implanted with multiple electrodes targeting deep areas of the
brain or placed on the cortex to record epileptic activity
(Fernández and Loddenkemper, 2013). In these patients, evidence
suggests that a good postsurgical outcome is associated with the
removal of the region generating the most frequent epileptic spikes
(Asano et al., 2003; Marsh et al., 2010). However, detection of
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epileptic spikes on icEEG has shown a low level of agreement
(<50%) for both the intra-rater (Brown et al., 2007) and the inter-
rater comparisons between clinical neurophysiologists
(Dümpelmann and Elger, 1999; Barkmeier et al., 2012; Gaspard
et al., 2014). To reduce this subjectivity, computational algorithms
designed for the automated detection of IEDs on icEEG have been
implemented (Dümpelmann and Elger, 1999; Bourien et al.,
2005; Valenti et al., 2006; Brown et al., 2007; Barkmeier et al.,
2012; Gaspard et al., 2014). However, to our knowledge, the work
on IED classification has been limited (Bourien et al., 2005; Yadav
et al., 2011; Janca et al., 2013).

Classification of IEDs into various IED ‘populations’ generally
relies on clinicians distinguishing between different IED types by
assessing the EEG waveform which often takes into account the
epileptic spike’s field distribution (Gotman, 1999; James et al.,
1999), which may also help highlight the boundaries of the region
responsible for generating them (the so-called irritative zone). A
previous study by our group (Pedreira et al., 2014) demonstrated
the successful use of an automated neuronal spike classification
algorithm, Wave_clus (WC) (Quian Quiroga et al., 2004), to classify
epileptic spikes on scalp EEG for the purpose of modelling the con-
currently acquired functional MRI. In this study we present and
apply a validation framework for a similar application of WC to
icEEG recordings (for the purpose of modelling concurrent fMRI
data; which will be the topic of future work).

Our aim was to compare human expert IED classification as it is
performed in normal (‘optimal’) conditions against the automated
classification method to be used with WC. To our knowledge no
formal comparison of automated vs human observer classification
of epileptic spikes on icEEG has been published to date. Our
approach targets the following questions:

� Does WC-human epileptic spike classification agreement vari-
ability fall within inter-human classification agreement
variability?

� Looking at the classification labels (or clustering groups) of indi-
vidual spikes; are WC results similar to those of human
observers?

To validate this framework we used data from 5 patients
reviewed by 3 human observers for the comparison with WC. We
hypothesise that WC can produce similar IED classification results
to that of human EEG reviewers whilst also providing additional
information.
2. Data and methods

2.1. Patients, icEEG recording and pre-processing

We analysed icEEG signals recorded in 5 right-handed men
(24–39 years) who were undergoing simultaneous intracranial
EEG-fMRI (Table 1). The five patients were selected based on the
small number of polyspikes observed during the recording. All
patients underwent intracranial EEG recordings for clinical pur-
poses to delineate the ictal onset zone and/or to perform direct
electrocortical stimulation following a recommendation of a multi-
disciplinary teammeeting. Patients were invited to undergo simul-
taneous intracranial EEG-fMRI (icEEG-fMRI) recordings at the end
of their clinical evaluation. This study was approved by the Joint
UCL/UCLH Committees on the Ethics of Human Research, and the
patients gave written informed consent. The icEEG recording
obtained during the simultaneous icEEG-fMRI study was used
since we ultimately want to apply WC in the analysis of icEEG fMRI
data however, no fMRI data was analysed for the purpose of this
study.
In each patient there were between 31 and 84 implanted elec-
trode contacts on configurations including grid electrodes, depth
electrodes or both. The electrodes were connected to an MR-
compatible amplifier system (Brain Products, Gilching, Germany).
icEEG signals were acquired at a sampling rate of 5 kHz. After
recording, we applied offline correction for MR scanning artefacts
(Allen et al., 2000) and the resulting EEG was down sampled to
250 Hz. The EEG was band-pass filtered (2–70 Hz) and the same
referential montage was used for all 4 EEG reviewers.

2.2. IED detection

The 5 icEEG recordings were inspected by EEG reviewer ‘H1’ for
clinical purposes using BrainVision Analyser (Brain Products, Ger-
many). During this procedure H1 placed a marker close to the neg-
ative/positive peak of each IED event (across the entire recording)
that had a single sharp component. We then randomly selected
100 IEDs, using a random number generator, from each recording
for this study (see Fig. 1; step 1).

2.3. IED classification by human observers (H2, H3 and H4)

Reviewers H2 (10 years of experience in icEEG interpretation),
H3 (4 years of experience in icEEG interpretation) and H4 (2 years
of experience in icEEG interpretation) independently classified the
IED events selected by H1 through visual inspection of the wave-
forms in a 300 ms time window using BrainVision Analyzer. H2-4
performed the classification by visualizing the EEG activity in all
recorded channels, in order to replicate their standard modus oper-
andi. For each patient they were asked to classify the events into
IED classes or as non-IEDs. H2-4 were free to define and use as
many IED classes as they felt appropriate for each recording. Of
the three EEG reviewers, two (H2 and H3) were trained at the same
institution. Implantation diagrams, showing the position of the
electrodes in relation to the brain, were provided.

2.4. Automated IED classification (WC)

The automated classification method Wave_Clus is a modifica-
tion of the one described in Pedreira et al. (2014) and summarised
in a flowchart (see Fig. 1; step 2). First, between 8 and 14 channels
of interest were selected for each patient based on channels in
which the IEDs were noted in the clinical EEG report as being most
prominent and frequent. Second, we modified the IEDs’ temporal
marking (by H1) by automatically adjusting them to the peak of
the sharp wave across the channels of interest (details of this pro-
cess can be found in Supplementary Methods 1.0).

The IEDs were segmented in 300 ms epochs around the peak of
the sharp wave (100 ms pre-peak to 200 ms post-peak) and con-
catenated across the channels of interest to form meta-IEDs
(Pedreira et al., 2014). WC was then used to perform automated
classification on the meta-IEDs similarly to our previous work
(Pedreira et al., 2014). Based on the morphology and distribution
of the IEDs, the algorithm automatically determined the number
of classes per case and the events assigned to them. Then, the user
performed a visual verification of the final classes obtained; includ-
ing some events which were labelled as ‘non-IED’.

2.5. Automated IED classification validation

We wanted to answer the question: can the results of the auto-
mated classification be distinguished from those obtained from
humans?More specifically, we compared the two types of IED clas-
sification in two ways: first, we determined whether WC-human
reviewer agreement variability falls within inter-human reviewer
agreement variability; second, we compared Wave_Clus and



Table 1
Patient implantation summary and the channels of interest selected for all patients. R: right, L: left, A: anterior, P: posterior.

Patient 1 2 3 4 5

Type of
epilepsy

FLE FLE FLE TLE TOLE

Implantation
summary

L superior (SFG), middle (MFG) and inferior
(IFG) frontal gyrus. L precentral gyrus. L central
sulcus and part of postcentral sulcus. L superior
frontal sulcus. L postcentral regions

L frontal lobe (laterally
and inferiorly). L M
(MFG) and I (IFG) frontal
gyrus. L frontal pole

R A and P insula. R A (R ASMA)
and P(R PSMA) supplementary
sensorimotor areas. R A, M and
P cingulum (P C)

R and L
amygdalae
(R A). R and
L
hippocampi

Lateral temporal.
Temporooccipital
junction

Number of
icEEG
contacts
(+channel
label)

One 8 � 8 contact grid (G). Two 4-contact
depths (DA & DP)
One 2 x 8 contact grid (GA)

One 8 � 8 contact grid
(GA).
One 2 � 8 grid (GD)
Two 6-contact depths
(DA & DP).
Two 6-contact strips (GC
& GB)

Two 6-contact depths (ASMA &
PSMA)
Three 8-contact depths (AC,
MC & PC)

Five 6-
contact
depths (LA,
LAH, LPH, RA
& RH)

One 4 � 8 grid (GA)
One 4 � 5 grid (GP)
Three 6-contact strips
(SAT, SMBT & SPBT)

Channels of
interest

G4 G5 G13 G20 G21 G22 G23 G29 DP2 DP3 GA50 GA51 GA52 GA53
DA4 DA5

ASMA1 ASMA2 ASMA3 PSMA1
PSMA2 PSMA3 PC4 PC5 AI5 AI6

LAH1 LAH2
LPH1 RA1
RA2 RA3
RH1

GA1 GA2 GA9 GA10
GA11 GA17 GA18 DH1
DH2 SAT3 SAT4 SPBT4
SPBT5 SPBT6

Fig. 1. EEG reviewer and WC classification: Step 1: Initial IED detection of 100 lEDs carried out by HI. Step 2: The 100 lEDs detected by HI are classified by Wave_clus. This
involves selecting channels of interest and adjusting the marker of the sharp wave according to GFP. Step 3: The same set of 100 lEDs detected by HI are independently
classified by 3 EEG reviewers H2, H3 and H4. These three steps are carried out for all patients.
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human reviewers’ classifications in terms of comparing IED identi-
fication and classification between Wave_Clus and all H reviewers.

2.5.1. Does WC-Human IED classification variability fall within inter-
human variability?
2.5.1.1. Variation of information (VI). We compared Wave_Clus-
human classification agreement variability to inter-human classifi-
cation variability at a summary level. To this effect we calculated
the variation of information (VI) between classifications in a pair-
wise fashion. The variation of information is a general method to
assess the relationship (distance) between two classifications (par-
titions) of elements (IEDs in this case) (Meilă, 2007). One can quan-
tify the variation of information using the following equation:

VIX;Y ¼ �
X
i;j

rij log 2
rij
pi

� �
þ log 2

rij
qj

 !" #
ð1Þ
where pi = number of IEDs in class i for X, qj = number of IEDs in
class j for Y, rij = number of IEDs classified as i by X and j by Y. There-
fore, for each classifier pair VI quantifies how similar the classifica-
tion results were. Two classifications with perfect agreement have a
VI value of 0. In order to determine a threshold of similarity
between two classifications, we generated randomised surrogate
classifications for 50 artificial observers (see Supplementary Meth-
ods 2.0); two classifications were considered similar if their VI value
was below the mean of VI minus 2 SD from the surrogate sample.

To compensate for the small sample size, non-parametric boot-
strapping (Singh and Xie, 2008) was used on the 100 IEDs for each
classification pair. As a result, 1000 VI values were calculated for
each classifier pair.

To compare the performance between WC and H classifications,
the VI values for all possible WC-H pairs (WC-H2, WC-H3, WC-H4)
were merged to represent Wave_Clus classification agreement as a
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whole (WC_all), and all possible human expert classification agree-
ment H-H pairs (H2-H3, H2-H4, H3-H4) were merged to give an
overall human classification agreement (H_all). If Wave_Clus is to
be applied practically then it is probably preferable that it performs
in a way that is indistinguishable from humans, and therefore,
WC_all and H_all distribution should overlap. We calculated the
Bhattacharyya coefficient (Kailath, 1967; Comaniciu et al., 2000)
to measure the percentage of the distribution overlap between
WC_all and H_all.

2.5.2. Does Wave_Clus produce similar IED marking and classifications
to H reviewers?
2.5.2.1. IEDs vs non-IEDs. First, we considered an event labelled as
an IED by reviewer H1 to be a ‘‘true” IED if at least two of the
reviewers, H2-4, labelled it as an IED. If two reviewers of H2-4
labelled an event as a non-IED, we considered it a non-IED for
the purpose of this study (Barkmeier et al., 2012; Gaspard et al.,
2014). Second, we calculated the sensitivity and the specificity
for each classifier (H classifiers andWave_Clus). Then we compared
Wave_Clus sensitivity and specificity with the ones obtained from
the 3 reviewers H2, H3 and H4. We used the pair-wise Cohen’s
Kappa statistic to assess the inter-rater agreement for all possible
H classifier pairs, with a kappa value >0.4 noted as a high inter-
rater agreement (Zijlmans et al., 2008).

2.5.2.2. Visual comparison of IED classes and classification overlap. In
order to compare the similarity between WC and H IED classes, the
average of the IEDs (over 200 ms) in each WC class was calculated
and plotted (see Fig. 2). The average WC class was compared visu-
ally to the classes of each EEG reviewer. In addition to this, the
agreement Ai,j, between WC class i and H class j was calculated
as a percentage (the classification overlap):

AijðWC;HÞ ¼ rij
jWCij
� �

� 100 ð2Þ

where |WCi| is the number of IEDs in WC class i, rij = the proportion
of IEDs labelled as WCi and Hj. The H class with the greatest agree-
ment with each WC class was noted.

3. Results

3.1. IED classification by human observers (H2, H3 and H4) and WC

The agreement between different classifiers (either H or WC)
was not perfect and no two classifications were identical in any
given patient. Furthermore, the number of IED classes varied across
patients (range: 1–8). Across the group, Wave_clus identified 15
classes, 23 classes were identified by H2, 20 classes were identified
by H3 and 24 classes were identified by H4 (see Table 2).

3.2. Automated IED classification validation

We present here the results of the analysis for the 3 H observers
and WC classifications, following the procedure described in the
methods section to address the questions: Does WC-Human IED
classification variability fall within inter-human variability? And Does
Wave_clus obtain similar IED marking and classifications to H
reviewers?

3.2.1. Does WC-Human IED classification variability fall within inter-
human variability?

The mean (SD) for the randomly generated VI values was 408.60
(49.29). Looking at the classification agreement at the individual
classifier pair-wise level, the overlap values ranged between
[239–288] for patient 1, [121–222] for patient 2, [80–135] for
patient 3, [169–211] for patient 4 and [77–167] for patient 5 (see
Table 3). The VI distribution for each classification pair was signif-
icantly different from the randomly generated distribution for both
H-H pairs and WC-H pairs (p < 0.05; see Table 3 for details).

Fig. 3 shows the VI results for each patient for WC_all and H_all.
The VI distribution overlap between WC_all and H_all were: 93.4%
for patient 1, 66.3% for patient 2, 58% for patient 3, 96.4% for
patient 4, 81.1% for patient 5 (see Table 3). Therefore, WC classifi-
cation falls within inter-human variation.

3.2.2. Does Wave_clus obtain similar IED marking and classifications
to H reviewers?
3.2.2.1. Sensitivity and specificity: IED vs Non-IEDs. Across the group,
IED detection sensitivity was in the range [0.76–1] for WC, [0.62–1]
for H2, [0.91–1] for H3, [0.95–1] for H4 (see Fig. 4). At the level of
individual patients, sensitivity was in the range [0.92–0.95] for
patient 1, [0.8–1] for patient 2, [0.62–0.99] for patient 3 and 1
for patient 4 and 5 (see Fig. 4).

Across the group, spike detection specificity was in the range
[0.29–0.87] for WC, [0.8–1] for H2, [0.38–1] for H3 and [0.38–
0.93] for H4 (see Fig. 5). At the level of individual patients, speci-
ficity across classifiers was in the range [0.38–0.9] for patient 1,
[0.8–1] for patient 2 and [0.29–1] for patient 3. There were no
specificity values for patient 3 and 5 due to none of the events
being identified as a non-IED. Of note, for patient 1, the specificity
of WC was 0.38 vs 0.9 for H2, which is the largest discrepancy (see
Fig. 5).

In summary, WC sensitivity is high and similar to that of the
Human reviewers while its specificity is similar to that of Human
reviewers for 2/3 patients.

3.2.2.2. Visual comparison of IED classes and classification overlap:
Case reports. In all patients, visual inspection of the class represen-
tative IEDs allowed us to find meaningful correspondences
between the majority of WC and H classes. This was reflected in
the classification overlap values (see Supplementary Tables 1–6
for summary). The results for two patients (patients # 2 and 3)
are summarised below. Patient # 2 was chosen to illustrate WC’s
capacity to identify an IED class not previously identified by H2
and H3. The results for Patient #3 were chosen as an illustration
of good classification agreement between WC and all 3 H review-
ers. The case reports for the other three patients can be found in
the Supplementary Case Reports.

3.2.2.2.1. Patient 2. WC identified three classes, H2 and H3 identi-
fied two and H4 identified five; all four classifiers identified a non-
IED class (see Table 2). The numbers of events assigned to the non-
IED class were 24 for WC, 29 for H2, 16 for H3 and 14 for H4 (see
Table 4).

WC class A
Fifty-one IEDs were assigned to class WC_A and involved chan-

nels DA4 and DA5 which is identical to H2_A, H3_A and H4_A (see
Table 4).

The visual similarity between these classes was further
reflected in the classification overlap where WC_A agreed the most
with H2_A (71%), H3_A (94%) and H4_A (78%) (see Supplementary
Table 3).

WC class B
Twenty-five IEDs were assigned to class WC_B and involved

channels DA4 and DA5 with the field extending to channel GA51
(see Table 4).

This class involved similar channels for H4_B and _C for
reviewer H4 but did not correspond to any of the classes for
reviewers H2 and H3.

The visual similarity between WC_B and H4_B and H4_C was
further reflected in the classification overlap where WC_B agrees



Fig. 2. Wave_clus clustering results for Patient 2. (A) Output of Wave_clus classification. (B) Average waveform of the IED classes over 200 ms.

Table 2
Number of classes assigned by WC, H2, H3 and H4.

EEG
classifier

Patient

1 (# IED classes + # non-
IED)

2 (# IED classes + # non-
IED)

3 (# IED classes + # non-
IED)

4 (# IED classes + # non-
IED)

5 (# IED classes + # non-
IED)

WC 3 + 1 2 + 1 2 5 + 1 3
H2 8 + 1 1 + 1 3 6 + 1 5
H3 6 + 1 1 + 1 3 6 + 1 4
H4 6 + 1 4 + 1 3 5 + 1 6
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equally with H4_B (48%) and H4_C (48%) (see Supplementary
Table 3).

The visual comparison and classification overlap indicated that
WC classes did not correspond to H4_D.

3.2.2.2.2. Patient 3. WC identified two classes, and H2, H3 and H4
identified three classes. None of the classifiers had a non-IED class
(see Table 2).
WC class A
Thirty-nine IEDs were assigned to class WC_A and involved the

channels PSMA2 PSMA3. The channels involved in this class were
identical to those in classes H2_A, H3_B and H4_A (see Table 4).

This visual similarity was further reflected in the classification
overlap where WC_A agreed the most with H2_A (79%), H3_B
(64%) and H4_A (64%) (see Supplementary Table 4).



Table 3
Variation of information for all classifier pairs and the VI distribution overlap between WC_all and H_all for all patients.

Classification pair Patient

1 2 3 4 5

WC-H2 288.56** 220.21** 112.1** 211.44** 109.28**

WC-H3 239.82** 162.54** 117.49** 169.51** 77.58**

WC-H4 276.13** 206.6** 135.97** 179.87** 146.08**

H2-H3 252.06** 121.74** 83.61** 172.49** 128.2**

H2-H4 262.3** 222.14** 84.2** 188.9** 167.29**

H3-H4 256.17** 134.91** 80.28** 169.75** 129.63**

Overlap (%) (WC_all/H_all) 93.4 66.3 58 96.4 81.1

** Significance at p < 0.05.

Fig. 3. VI distribution for WC_all (blue) and H_all (orange). 1st row (left to right): Patient 1, 2 & 3; 2nd row (left to right): Patient 4 & 5. The values for the null distribution are:
mean = 408.60 and SD = 49.29. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Sensitivity of IED marking of WC and H2, H3 and H4 for all 5 patients.

Fig. 5. Specificity of IED marking of WC and H2, H3 and H4 for patient 1, 2 and 4.
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WC class B
Sixty-one IEDs were assigned to class WC_B and involved the

channels ASMA1 ASMA2 PSMA2 PSMA3. The channels involved
in this class were identical to H2_B, H3_A and H4_B (see Table 4).
This visual similarity was further reflected in the classification
overlap where WC_B agreed the most with H2_B (90%), H3_A
(95%) and H4_B (90%) (see Supplementary Table 4).



Table 4
Summary of the classes and the channels for each class assigned by WC, H2, H3 and H4 for patient 2 and 3.

Patient EEG classifier

WC H2 H3 H4

2 A DA4 DA5 51 A DA4 DA5 71 A DA4 DA5 84 A DA4 DA5 45
B GA51 DA4 DA5 25 NS 29 NS 16 B DA4-5 GA51-52 18
NS 24 C DA4-5 GA43 GA51 21

D GA51-52 1
NS 14

3 A PSMA2 PSMA3 39 A PSMA2 PSMA3 37 A ASMA1 ASMA2 PSMA2
PSMA3

71 A PSMA2 PSMA3 31

B ASMA1 ASMA2 PSMA2
PSMA3

61 B ASMA1 ASMA2 PSMA2
PSMA3

62 B PSMA2 PSMA3 27 B ASMA1 ASMA2 PSMA2
PSMA3

68

C PC1-5 1 C PC1-5 1 C PC1-5 1

1252 N.K. Sharma et al. / Clinical Neurophysiology 128 (2017) 1246–1254
The visual comparison and classification overlap indicated that
WC classes did not correspond to classes H2_C, H3_C and H4_C.
4. Discussion

The focus of this work was to provide a validation framework to
determine whether automated classification of epileptic spikes on
icEEG can produce results comparable to those obtained by expert
human observers, and apply it to a modified version of the spike
classification algorithm Wave_clus. Our approach to validation is
based on answering the question: can the new (automated) classi-
fier provide a similar outcome to humans?We answered this ques-
tion in two ways: first, by determining whether Wave_clus
classification falls within the range of human EEG reviewer vari-
ability using information theory metrics. In this regard we found
comparable overlap between Wave_Clus-human and inter-human
classification comparisons, indicating that Wave_clus classifica-
tions cannot be distinguished from human results. Second, we
compared the human and automated IED classifications at the level
of the individual events; we found that the sensitivity ofWave_clus
was similar to that of the humans, and that there was generally
good classification overlap.

There is significant interest in the quantification of epileptic
spikes recorded in icEEG using automated algorithms
(Dümpelmann and Elger, 1999; Bourien et al., 2005; Valenti
et al., 2006; Brown et al., 2007; Barkmeier et al., 2012; Gaspard
et al., 2014). However, only a few algorithms exploit the relation-
ship between the activity across channels (Hufnagel et al., 2000;
Bourien et al., 2005), which is an important step in the human abil-
ity to distinguish between different IED types (Gotman, 1999;
James et al., 1999). Some algorithms cluster IEDs visible over mul-
tiple channels based on whether they occur in a similar temporal
interval (Hufnagel et al., 2000; Bourien et al., 2005) but do not take
the details of the waveform into account. Our spike classification
algorithm is able to cluster multiple features by considering the
details of the waveform across multiple channels. We also note
the lack of comparison of the results of automated IED classifica-
tion with human expert observers (Hufnagel et al., 2000; Bourien
et al., 2005; Janca et al., 2013). In this study we validated the per-
formance of Wave_clus as an automated IED classifier by compar-
ing it to the performance of expert EEG reviewers.

4.1. Validating automated icEEG waveform classification algorithms

Validating an automated algorithm often requires a gold stan-
dard to which one can compare its performance. Due to the lack
of a gold standard as to what constitutes an IED, the combined
opinions (e.g. consensus or majority) of a group of expert EEG
reviewers can be used as what may be called a silver standard
(Barkmeier et al., 2012; Halford et al., 2013; Gaspard et al.,
2014), allowing calculation of sensitivity and specificity. The
greater complexity of the epileptiform activity recorded intra-
cranially compared to scalp EEG means that validation methods
used for the latter are generally inadequate, either due to their reli-
ance on scalp topography or on the IED field’s at the lobar level
(Wilson et al., 1999; van Hese et al., 2008; Scherg et al., 2012).
As we have shown, the greater complexity means that the number
of classes assigned by each reviewer can vary greatly (see Table 2
and Supplementary Table 1).

As a result, we quantified agreement using amore general, infor-
mation theoretical metric (Meilă, 2007) to determine overall spike
classification similarity between automated and human spike clas-
sification. The theoretical advantage of this approach is its general-
isability; in particular it allows the comparison of classification
results for any number of classes. The indistinguishable perfor-
mance of WC spike classification to H spike classification is demon-
strated in the VI distribution overlap betweenWC_all and H_all that
ranges between 58% and 96% (mean 78%) across the 5 datasets (see
Table 3 and Fig. 3). To help better understand these results, let us
examine the results for patient 3, with the lowest VI distribution
overlap (58%), indicating the greatest difference between WC and
H classification results. We found that the overwhelming majority
of events were assigned in two classes by WC and the three H
reviewers, that were visually very similar (see Table 4 and Supple-
mentary Table 4 for the classification overlap statistics). Nonethe-
less in this patient dataset, the human raters tend to agree
amongst themselves slightly more than with WC, as reflected in
the lower VI values for the former. We argue that this observation
is not very striking from browsing the results of the event classifi-
cation overlap table (e.g. Supplementary Table 4), while it is evident
in Fig. 3. It is important to note that while the statistics of VI distri-
bution overlap are unknown (a much greater sample would be
required), there will be a lower value in any given dataset, and
we argue that 58% overlap, while suggestive of a degree of WC clas-
sification bias in this particular patient, represents a good level of
agreement. Second, in the absence of ground truth therewill always
be uncertainty about the true level of performance, and therefore it
may be argued that theWC result is in fact superior in someway; in
effect that humans make the same mistakes. In this regard, we note
that, when applied to IED recorded on scalp EEG during fMRI, WC
classification resulted in fMRImaps that had in some cases, a higher
of localisation concordance with the well-characterised generators
(Pedreira et al., 2014).
4.2. WC performance in IED marking and classification

Similarly to our previous study (Pedreira et al., 2014), we
focused on the clustering of IEDs that have already been detected
and therefore, did not include the automatic detection step.
Instead, we allowed our expert reviewers to ‘declassify’ the IED
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previously labelled by H1: this seemed necessary given the antici-
pated results and our knowledge of the way EEG raters work, and
had the benefit of allowing us to quantify sensitivity and speci-
ficity. Previous studies investigating the sensitivity of automated
IED detection algorithms on icEEG have demonstrated mixed
results with some algorithms having a low (between 14% and
25%) (Dümpelmann and Elger, 1999; Barkmeier et al., 2012) and
some having a high (between 63% and 75%) (Brown et al., 2007;
Gaspard et al., 2014) sensitivity. We found the sensitivity of WC
to be high (>76%) and similar to that of our group of EEG reviewers
(see Fig. 4). Furthermore, our results show that WC classifies IEDs
similar to H raters (see Supplementary Table 1), and it can identify
additional classes that were not initially identified by H raters. For
example WC was able to find one additional class (WC class B:
GA51 DA4 DA5) for patient 2 that was not identified by H2 or H3
(see Fig. 2; Supplementary Table 1), which may indicate different
generators. Furthermore, WC is also able to distinguish different
IED types based on the amplitude (patient 1 class A, class B – Sup-
plementary Table 1). An important finding in this investigation was
that while there was a low specificity for WC and a high specificity
for H2 (see Fig. 5), the classification of IEDs was very similar for
patient 4. Both WC and H2 separated IEDs occurring in channel
RA1 and RA2 with regards to polarity; WC class B (RA1 RA2 �ve)
agreed the most with H2 class A (RA1 RA2 �ve) – 89%, and WC
class E (RA1 RA2 +ve) agreed the most with H2 class B (RA1 RA2
+ve) – 100% (see Supplementary Table 5).

Although the present work has focussed on the validation of
intracranial EEG, our approach could be generalised to other auto-
mated EEG algorithms since the validation analysis does not make
any assumption about the particular nature or distribution of the
electrodes or the exact nature of the signal.

4.3. Methodological considerations and future work

Our icEEG data was acquired during fMRI scanning and there-
fore, requires an offline correction for the MR gradient artefact
(Carmichael et al., 2012; Boucousis et al., 2012). Carmichael et al.
(2012) has shown that the EEG quality, once corrected for the
MR gradient artefact, is comparable to icEEG recorded outside
the scanner. We also note that quantitative analysis of the same
data has been done meaningfully to study the relationship
between haemodynamic changes and electrophysiological features
(Murta et al., 2016; Murta et al., 2017).

Concerning the selection of the channels of interest, by relying
on the notes of experienced clinician and technicians, this allowed
us to ignore channels that did not contain information relevant for
the classification, thereby circumventing the possibility that the
distribution of the epileptiform events being unduly affected by
non-epileptiform events. This approach also has the benefits of
being independent of our judgement (as investigators), thereby
possibly reducing bias, and having some clinical grounding (and
therefore greater relevance). The issue of the method for the selec-
tion of the channels of interest may be addressed in the context of
a study on automated IED detection.

Regarding the sample size used for our validation analysis, our
preliminary finding as part of an imaging study is that the number
and characteristics of the classes found by WC was the same when
applied to the entire recordings. This provides additional evidence
of the validity of our findings. We also note the lack of comparable
study to provide us with a suitable standard. As an alternative
comparison, for IED detection algorithm validation, we find sample
sizes ranging from 279 to 6534 IEDs (Dümpelmann and Elger,
1999; Barkmeier et al., 2012; Gaspard et al., 2014; Janca et al.,
2015) however, detection is a much less complex and arduous task
than IED classification (Gotman, 1999; James et al., 1999). Further-
more, fatigue and error of the EEG reviewer can be a source of error
in IED marking (Barkmeier et al., 2012) which may also result in
erroneous IED classification. By keeping our IED sample size to
100 per recording (for a total sample size of 500), we minimised
human rater fatigue and related error. Our human observers noted
that while they found the task demanding, they felt that their per-
formance level was sustainable throughout.

Training bias has been reported as a possible explanation
regarding disagreement between EEG reviewers (Barkmeier et al.,
2012). In our study reviewer H2 and H3 were trained at the same
institution however, the mean inter-rater agreement across all EEG
reviewer pairs was not significantly different (see Supplementary
Table 7), indicating that there was little institutional bias.

We note that automated icEEG IED detection algorithms have
paid little attention to IED event classification (Dümpelmann and
Elger, 1999; Brown et al., 2007; Barkmeier et al., 2012; Gaspard
et al., 2014). The high sensitivity of Wave_clus in IED marking (see
Fig. 4) as demonstrated in this study suggests that it could be com-
bined usefully with existing automated detection algorithms. As a
resultWave_clus can further improve the sensitivity of IED marking
by eliminating false positive automated IED detections and make
the process of quantifying IEDs as accurate as possible.

The results obtained in this study are encouraging enough to
apply WC across the whole EEG time course to the entire dataset
of IEDs. As a result this should provide a more reliable and unbi-
ased IED classification, which can be used to quantify the IEDs
based on their frequency and morphology to determine their rela-
tionship to the seizure-onset zone. Since the EEG analysed was
recorded during simultaneous fMRI acquisition this provides us
with a unique opportunity to localise haemodynamic changes
associated with epileptic spikes at a fundamental level.
5. Conclusion

We describe and apply a comprehensive framework for the
evaluation of automated classifications of IEDs for clinical use in
icEEG, based on a set of statistical tests chosen for their generalis-
ability. We demonstrated the framework’s utility to show that an
automated waveform EEG classification algorithm (Wave_clus) is
practically indistinguishable to that of human EEG reviewers and
can occasionally identify additional IED classes. These results also
suggest that Wave_Clus used in combination with automated spike
detection algorithms, has the potential to provide a more reliable
identification of the irritative zone.
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