Auditory Efferent System Modulates Mosquito Hearing

Marta Andrés†*, Marvin Seifert†, Christian Spalthoff†, Ben Warren†#, Lukas Weiss†, Diego Giraldo†, Margret Winkler†, Stephanie Pauls†, and Martin C. Göpfert†*

1Department of Cellular Neurobiology, University of Göttingen, 37077 Göttingen, Germany.
2International Max Planck Research School Neurosciences, 37077 Göttingen, Germany
3Present address: Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
4Present address: Department of Neuroscience Psychology and Behavior, University of Leicester, Leicester LE1 7RH, UK
5*Correspondence: martaandresm@gmail.com (M.A.), mgoepfe@gwdg.de (M.C.G.)

Graphical abstract

Highlights
- Auditory efferent systems analogous to those of vertebrates occur in mosquitoes
- Auditory efferents innervate dendrites and axons of auditory sensory neurons
- Efferent neurotransmitters/-modulators include octopamine, GABA, and serotonin
- Neurotransmitters/-modulators alter auditory organ performance

eTOC Blurb
Andrés et al. report that auditory efferent systems, as known from vertebrate hearing, modulate mosquito hearing organs.
Summary

The performance of vertebrate ears is controlled by auditory efferents that originate in the brain and innervate the ear, synapsing onto hair cell somata and auditory afferent fibers [1-3]. Efferent activity can provide protection from noise and facilitate the detection and discrimination of sound by modulating mechanical amplification by hair cells and transmitter release as well as auditory afferent action potential firing [1-3]. Insect auditory organs are thought to lack efferent control [4-7], but when we inspected mosquito ears we obtained evidence for its existence. Antibodies against synaptic proteins recognized rows of bouton-like puncta running along the dendrites and axons of mosquito auditory sensory neurons. Electron microscopy identified synaptic and non-synaptic sites of vesicle release, and some of the innervating fibers co-labelled with somata in the central nervous system (CNS). Octopamine, GABA, and serotonin were identified as efferent neurotransmitters/neuromodulators that affect auditory frequency tuning, mechanical amplification, and sound-evoked potentials. Mosquito brains thus modulate mosquito ears, extending the use of auditory efferent systems from vertebrates to invertebrates and adding new levels of complexity to mosquito sound detection and communication.

Results and discussion

Male mosquitoes rely on female wing-beat sounds to locate potential mates [8-11]. Sound detection is mediated by some 16,000 ciliated Johnston’s organ (JO) neurons in the pedicel of each antenna [10, 12-14] (Fig. 1A). Analogous to vertebrate hair cells, JO neurons serve sensory and motor roles, transducing and amplifying sound-induced vibrations of the antennal flagellum [15-17]. Flagellar vibrations are transmitted to the circularly arranged neurons via
some 70 radial cuticular prongs [10,18] (Fig. 1A), and the neurons send axons into the brain where they synapse in the deutocerebrum [19]. This central synapsing means that there should be no peripheral synapses in JO, as was previously shown for *Drosophila melanogaster* [6]. When we labelled the JO of male *Culex quinquefasciatus* mosquitoes against the presynaptic protein SAP47 [20] (see Supplemental Experimental Procedures online), however, a punctate staining within JO was obtained (Fig. 1B). In longitudinal antennal sections, the anti-SAP47 antibody nc46 [20] recognized rows of puncta running through JO, and it also strongly labelled the proximal JO region where the axons of JO neurons come together to leave the pedicel (Fig. 1B). An equivalent staining was seen in oblique pedicellar sections (Supplemental Information online, Fig. S1A), including nc46 signals in the latter axonal region as well as rows of puncta running circularly through JO, peripherally to each prong. Inspection of confocal stacks revealed that, in longitudinal sections, nc46-positive fibers interconnect adjacent puncta (Fig. 1C), indicating that the puncta are associated with presynaptic fibers and represent synaptic boutons. Judged from oblique sections (Fig. S1A), the fibers are three-dimensionally arranged in the organ like the ribs of an upside down umbrella, with distinct fibers running in parallel to each prong. We note that the fibers cannot be motoneurons innervating muscles: in mosquitoes, as in all ectognath insects, the pedicel and the flagellum are un-muscled, and antennal muscles are restricted to the scape (Fig. 1A) [15, 21]. Superimposing the antibody stainings onto the respective bright field-images further revealed that the puncta and fibers do not follow major tracheae (Fig. S1B), arguing against artifacts from tracheal autofluorescence. Microtrachea autofluorescence, if present, would be expected to be more diffuse and not punctate in tangential views, and probably generate fluorescence hotspots in cross-sections.
JO is composed of multicellular scolopidia, each comprising supporting cap and scolopale cells as well as two to three bipolar, monodendritic JO neurons with ciliated dendritic outer segments [13] (Fig. 1A). Within the organ, the dendrites of the neurons point centrally with their outer segments connecting to the prongs, whereas the axons project in the opposite direction, running peripherally of the somata along the organ (Fig. 1A). Counterstaining the neurons with an anti-horseradish peroxidase (anti-HRP) antibody localized the rows of nc46-immunoreactive puncta between JO neuron somata and cilia to the dendritic inner segments (Fig. 1B). An equivalent staining, including rows of puncta as well as strong immunoreactivity in the proximal JO region where the axons come together, was obtained with the monoclonal antibody 3C11 that recognizes presynaptic Synapsin [22] (Fig. 1D). Both nc46 and 3C11 also yielded punctate stainings in the female JO (Fig. S1C), and counterstaining the actin-based scolopale rods, which support the dendritic outer segments, confirmed that the immunoreactive puncta localize to the dendritic inner segments (Fig. 1D, Fig. S1C). Because of this dendritic localization, the respective fibers are unlikely to be JO neuron axons, which are confined to the exterior region of JO, peripherally of JO neuron dendrites and their somata (Fig. 1A).

To directly test for synapses in JO, we analyzed ultrathin sections of male antennae with electron microscopy (Fig. 2A). Transmission electron micrographs showed abundant synaptic sites in the proximal JO region where JO neurons come together (Fig. 2A,B). Presynaptic fibers, identified by a dense packing with electron-lucent synaptic vesicles, were intermingled between –and made contacts with– JO neuron axons (Fig. 2B). Electron-dense presynaptic active zone and postsynaptic specializations confirmed these contacts as synaptic sites (Fig. 2B), documenting peripheral synapses for the male JO. Electron microscopy also identified fibers packed with large dense core vesicles and smaller electron-lucid vesicles near almost
every sectioned dendritic inner segment (Fig. 2A,C). The latter fibers were intermingled between the dendritic inner segments next to their ciliary rootlets (Fig. 2A,C) and, more distally, near the ciliary basal bodies (Fig. 2A,D) that demarcate the junction between dendritic inner and outer segments (Fig. 2A,D). Bulging into (Fig. 2D, upper panels) –and passing through (Fig. 2D, lower panels)– the supporting scolopale cells, the fibers closely approached the dendrite membrane. Direct fiber-dendrite contacts or electron-dense synaptic specializations, however, could not be observed (Fig. 2D), pointing to a non-synaptic mode of vesicle release as known, for example, from modulatory octopaminergic neurons innervating insect muscles [23].

Hints on a central origin of the innervating fibers were obtained when we injected the neural tracer dextran-biotin into the pedicel of the antenna. Besides staining JO neurons, we co-labelled fibers in JO together with a somata cluster in the brain (Fig. 3A). Golgi impregnations of somata in the brain also co-stained fibers projecting up into the pedicel (Fig. 3B), further indicating a central JO innervation. Additional evidence for a central origin of the fibers was obtained when we tested for octopaminergic and serotonergic immunoreactivity in pedicellar sections. Anti-octopamine antibody labelled rows of puncta running along JO neuron dendrites (Fig. 3C), whereas cell bodies only displayed un-specific staining. Anti-serotonin antibody likewise failed to label somata within JO, yet it also recognized rows of puncta running along JO neuron dendrites (Fig. 3C). This anti-serotonin staining in JO is consistent with a previous report [24], which also failed to detect anti-serotonin-positive cell bodies in JO, but identified labelled fibers running through JO, along with one fiber projecting up in the flagellum (Fig.3D). In principle, the absence of stained somata in JO could reflect a local transmitter synthesis within the fibers, and at least some of the fibers could originate locally in JO. Invertebrate octopaminergic and serotonergic neurons, however, usually all seem
to have somata inside the CNS, the only reported exception being a cell in the gut of an earthworm species that seems part of the worm’s peripheral nervous system [25-27]. In the mosquito JO, the anti-serotonin-positive puncta could be traced down to the brain (Fig. 3E), further documenting that the respective fibers connect to the CNS and that, rather than harboring peripheral aminergic neurons, JO receives efferent CNS innervation.

Neither anti-serotonin nor anti-octopamine labelled the proximal JO region where the axons come together, although this region harbors synapses (Fig. 2B) and displays presynaptic marker staining (Fig. 1B,D). Staining of this region was also observed when we labeled antennal sections with an anti-GAD antibody (Fig. 3C), which recognizes glutamic acid decarboxylase (GAD) that converts glutamate into the neurotransmitter γ-aminobutyric acid (GABA) [28]. Apparently, fibers innervating JO neuron axons and dendrites use different neurotransmitters/neuromodulators, which might explain their different, synaptic and non-synaptic innervation (Fig. 2).

To gain insights into putative efferent effects, we used a pharmacological approach and tested whether octopamine impacts on JO function. Because auditory efferents reportedly modulate cochlear mechanics in mammals by affecting outer hair cell motility [1-3], we analyzed the mechanics of the male antennal flagellum whose vibrations are mechanically amplified by motile JO neurons [15]. Flagellar mechanics were probed by monitoring flagellar vibrations in response to sound and mechanical free fluctuations that arise from thermal bombardment and JO neuron motility [15,29]. Following previous protocols [15,30-32], about 0.5 µl solution containing 1mM octopamine dissolved in physiological saline [33] was administered via thoracic injection. Treating eight control males with saline only did not alter their flagellar mechanics: before treatment, the flagellar resonance frequency was 367 ± 24 Hz (mean ± SD), consistent with a previous report [17]. Five minutes after treatment, the resonance
frequency was not significantly altered (349 ± 24 Hz, p > 0.05, two-tailed paired t-test), nor
was the maximum mechanical sensitivity of the flagellum (ratio between the spectral
vibration velocity and the corresponding particle velocity at the flagellar resonance, 6.2 ± 0.9
(ms\(^{-1}/\) ms\(^{-1}\)) (before) vs. 5.7 ± 0.6 (ms\(^{-1}/\) ms\(^{-1}\)) (after), p > 0.05). Also the power of the
mechanical free fluctuations of the flagellum in the absence of sound stimuli remained un-
changed upon saline injection (total power in the frequency band between 100 and 3,200 Hz,
1.2 • 10\(^3\) ± 2.7 • 10\(^3\) nm\(^2\) (before) vs. 2.7 • 10\(^3\) ± 3.7 • 10\(^3\) nm\(^2\) (after), p > 0.05) (Fig. 4A,B),
documenting that JO neuron motility is not influenced by saline. Upon addition of
octopamine, however, the flagellar resonance frequency robustly shifted up from 370 ± 10 Hz
to 538 ± 38 Hz (N = 8, p < 0.05), which corresponds to approximately half an octave. This
alteration in frequency tuning associated with an increased maximum flagellar sensitivity (6.4
± 1.7 (ms\(^{-1}/\) ms\(^{-1}\)) (before) vs. 8.2 ± 2.4 (ms\(^{-1}/\) ms\(^{-1}\)) (after), p < 0.05) and fluctuation power
(0.5 • 10\(^3\) ± 0.1 • 10\(^3\) nm\(^2\) (before) vs. 3.8 • 10\(^3\) ± 3.9 • 10\(^3\) nm\(^2\) (after), p < 0.05), reporting
enhanced JO neuron motility and excess mechanical amplification [15, 33]. This excess
amplification associated with self-sustained feedback oscillations of the flagellum, giving rise
to sharp peaks in frequency spectra of its mechanical free fluctuations (Fig. 4A). Collectively,
these octopamine effects persisted when muscle activity was blocked by co-injecting 10 mM
glutamate [15] (Fig. S3), and equivalent effects were observed when we replaced octopamine
with the octopamine receptor agonist clonidine (1 mM) [34,35] (Fig. 4A,B). Treating animals
with the octopamine antagonist phentolamine (1 mM) [34,35] fully reverted the octopamine-
induced upward-shift of the flagellar resonance, shifting it back from 516 ± 49 Hz to 358 ± 29
Hz (N = 8, p < 0.05), close to the initial resonance frequency observed before octopamine
injection (384 ± 19Hz) (Fig. 4A,B). This restoration of the initial resonance, which documents
specificity and reversibility, was accompanied by a restoration of the initial flagellar
sensitivity, though in some animals the flagellum continued to oscillate self-sustained, and the fluctuation power stayed increased (Fig. 4A,B).

Alterations in flagellar frequency tuning also ensued from the application of picrotoxin (1 mM), which blocks GABA receptors [36]. In line with previous observations [37], picrotoxin was only effective when co-applied with collagenase, which itself left flagellar mechanics unaffected (Fig. S2). Picrotoxin/collagenase, in addition to modulating flagellar sensitivity and frequency tuning, strongly affected sound-evoked extracellular JO field potentials (Fig. 4C), which, analogous to cochlear potentials [38], display an oscillatory (AC) and a negative sustained (DC) component [39] (Figs. 4C, S3B). Neither the AC nor the DC components were affected by octopamine (Figs. 4C and S3B), and both components also remained unaltered when collagenase was applied alone (Fig. S3A). Picrotoxin/collagenase, however, strongly enhanced the DC component (Figs. 4C and S3B) — an effect that, in toadfish semicircular canals, has been observed upon efferent stimulation [40,41].

We have presented evidence for an auditory efferent system in mosquitoes. Precedence for an efferent innervation of arthropod mechanosensory organs comes from spiders [42-46] and crustacean species [44,46], but the only hexapod mechanosensory organ that was previously reported to receive efferent innervation is a locust hind leg proprioceptor [47]. Judging from our results, the auditory efferent system of mosquitoes shares multiple parallels with its vertebrate counterparts [1-3], including the targeting of auditory sensory cells and afferents (Figs. 1,2), the use of several neurotransmitters/neuromodulators (Fig. 3), and the modulation of mechanical and electrical sound responses (Fig. 4). The enhancement of the DC potentials by picrotoxin (Fig. 4C) might reflect switch between coding strategies; the DC potentials have been implicated in the ability of mosquitoes to detect –and to inter-individually synchronize— high frequency harmonics of their wing-beat sounds [39], yet more work seems needed to
assess the biological significance of both these potentials and their modulation. Mosquito mating behavior reportedly involves sophisticated acoustic interactions, including the matching of flight-tone harmonics [17,39,48,49] and dynamic alterations of hearing organ function [16]. Efferent modulation might enable male mosquitoes to dynamically lock onto – and follow– the changing flight tones of females, which, judging from synaptic marker stainings (Fig. S1C), also might use efferents for modulating auditory JO function [50]. Males of some mosquito species also structurally modulate their flagellum, erecting the flagellar hairs at dusks but collapsing them during the day via a turgor mechanism [51]. Also this flagellar hair erection seems under CNS control and is susceptible to picrotoxin and octopamine [52], indicating that efferents might control both JO function and the sound-receiving properties of the flagellum. *Culex* lacks the ability to collapse its flagellar hairs [48], yet its flagellum nonetheless receives serotonergic innervation (Fig. 3D) [24]. This suggests that mosquitoes might extensively use efferents for modulating sensory neurons, including JO neurons and, possibly, olfactory receptors in the antennal flagellum.

Author Contributions

M.A. and M.C.G. conceived the project. M.A. performed stainings, tracings, and electron microscopy together with L.W., M.W., and S.P.. M.S., C.S., B.W, D.G., and M.C.G. analyzed auditory effects, and M.A. and M.C.G. wrote the manuscript.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Acknowledgements

We thank Jörg Egger and Melanie Nolden, Bayer CropBioscience, for providing the experimental animals, the Developmental Hybridoma Bank for antibodies, Maike Kittelmann
and Carolin Wichmann for help with electron microscopy, and Bart Geurten, Heribert Gras, Ralf Heinrich, and Andreas Stumpner for discussions. This work was supported by the International Max Planck Research School Neurosciences, Göttingen (to L.W.) and the German Science Foundation (DFG, GO 1092/4-1, SPP 1608, GO 1092/2-3, SFB 889 A1, and INST 186/1081-1) to M.C.G.
References

Figure legends

Figure 1. Presynaptic marker staining in the male JO. (A) Sketches of JO (left) and a single JO scolopidium (right) with two neurons and supporting cap (CC) and scolopale (SC) cells. Ax: axons; D: dendrites; DI: dendritic inner segments; DO: ciliated dendritic outer segments; SO: somata. Modified from [13,53]. (B-D) Presynaptic marker staining. JO neurons are counterstained with the neuronal marker anti-HRP (red). (B) nc46. Left: overview, showing nc46-positive puncta running between JO neuron dendrites and somata (arrows) and nc46 staining the proximal JO region where JO neuron axons come together (asterisks). Middle: zoom-ins of the puncta (top, arrows) and the latter axonal region (bottom, asterisks). Right: Respective staining from another individual. (C) Close-up of nc46-positive puncta, showing nc46-positive fibers between puncta (arrows). (D) 3C11 staining. The actin-based rods that surround the dendritic outer segments are counterstained with phalloidin (blue). Left: overview. M: muscles. Right: close-up of 3C11-positive puncta at the dendritic inner segments. Asterisks and arrows as in B.

Figure 2. Synaptic and non-synaptic release sites in JO. (A) Top: ultrathin section through a male pedicel highlighting the zoom-in regions of panels B to D. Bottom: sketch of the junction between JO neuron dendritic inner and outer segments, with proximal (pB) and distal (dB) basal bodies, ciliary rootlets (Rt), and ciliary axoneme. (B) Presynaptic fibers (highlighted in blue) synapse onto JO neuron axons (AX). Top, left: overview. Top right: zoom-in, depicting two fibers and synaptic contact sites (arrowheads). Bottom: zoom-ins of single synapses. SV: synaptic vesicles. Arrowheads: electron-dense post- and presynaptic (possibly T-bars) specializations. (C) Fiber terminals at JO neuron inner dendritic segments. Top: overview, highlighting several fibers (blue) intermingled between inner dendritic segments next to the ciliary rootlets. Bottom: zoom-ins of the fibers, showing electron-dense
Figure 3. Fiber origins and neurotransmitters. (A). Dextran-biotin staining of fibers in JO co-stains somata in the brain. Left: bright-field image, depicting tracheae. Right: Superimposed dextran-biotin staining, showing fibers (pink circle) and somata (yellow circle), in addition to tracheal auto-fluorescence. (B) Golgi staining of somata in the anterior-lateral brain region (yellow arrows) co-stains fibers (white arrows) projecting in the pedicel (pink arrow). Right: zoom-in from (B), depicting the proximal edge of the pedicel (arrowheads) and entering fibers (pink arrows). (C) Anti-octopamine (left), -GAD (middle), and -serotonin (right) antibody stainings. Neurons are counterstained with anti-HRP (red). Anti-octopamine and –serotonin recognize puncta (arrows) running between JO neurons somata (SO) and dendrites (D). Anti-GAD recognizes the proximal JO region where the axons join (asterisks). (D) Anti-serotonin-positive puncta (arrows) in the flagellum. Inset: same puncta, without anti-HRP and bright-field. (E) Anti-serotonin-positive puncta (arrows) in JO project to the brain (left: overview, right, zoom-in).

Figure 4. Octopamine and GABA effects on auditory organ function. (A) Frequency spectra (lin-log) of the mechanical sound responses (top) and free fluctuations (bottom) of male flagella before and after injections (N = 8 males each, whereby each line represents the spectrum of one male antenna). Amplitudes of sound responses (top) are given as the flagellar vibration velocity v_{vib} (m/s) normalized to the sound particle velocity u (m/s), and spectral amplitudes of the flagellar free fluctuations are presented in nm/Hz. For additional data, see Fig. S2. (B) Respective flagellar resonance frequencies (top) and maximum mechanical sensitivities (middle) of the flagellar sound responses and corresponding fluctuation powers
(bottom) determined by integrating the power spectra for frequencies between 100 and 3,200 Hz. *: significant difference (p < 0.05, two-tailed paired t-tests). (C) Tone-evoked (stimulus, top) JO field potentials (responses, bottom) before and after octopamine (left) or picrotoxin/collagenase (right) injection (examples from 3 animals each). Injecting picrotoxin/collagenase, but not octopamine or collagenase alone (Fig. S3A), enhances the DC potential component (see also Fig. S3B).
Inventory of supplemental materials
Supplemental Information includes three figures (associated with Figs. 1 and 4) and supplemental experimental procedures.
Supplemental Information

Auditory Efferent System controls Mosquito Hearing

Marta Andrés, Marvin Seifert, Christian Spalthoff, Ben Warren, Lukas Weiss, Diego Giraldo, Margret Winkler, Stephanie Pauls, and Martin C. Göpfert
Figure S1, associated with Fig. 1. (A) Oblique section through the pedicel stained with nc46 (green) and anti-HRP (red) antibodies. Left: bright field image (FL: antennal flagellum; Ped: antennal pedicel). Middle: respective antibody signals, depicting rows of nc46 puncta running peripherally through the organ (arrows) and staining in the proximal JO region (asterisks). Right: zoom-in. SO: somata; DI: dendrites, DO: dendritic outer segments; DI: dendritic inner segments; P: prongs (visible through cuticular autofluorescence). Note that several puncta occur peripherally of each prong. (B) nc46 signals are not caused by tracheal auto-fluorescence. Left: bright field image, highlighting tracheae in JO (pink arrows). Middle: respective nc46 antibody staining. Right: merge, documenting that nc46 signals do not follow tracheae. (C) Presynaptic markers yield punctate staining in the JO of female Culex quinquefasciatus. Left, green: nc46 antibody staining. Right, green: 3C11 antibody staining. Neurons are counterstained with anti-HRP antibody (red) and, in the right panel, the actin-based rods that surround the ciliated dendritic outer segments of JO neurons are stained with phalloidin (blue). White arrows highlight the punctate staining running along JO neurons, between dendrites (D) and somata (SO).
Figure S2, associated with Fig. 4A,B. (A) Frequency spectra (lin-log) of the mechanical sound responses (top) and free fluctuations (bottom) of the antennal flagellum before and after thoracic injection of glutamate (left), which blocks muscles, glutamate and octopamine together (middle), and collagenase (right). For details, see legend to Fig. 4A. (B) Respective resonance frequencies (top), maximum sensitivities (middle) and fluctuation powers (bottom). *: significant (p < 0.05, N = 5 animals each, sign tests). For additional details, see legends to Fig. 4A,B.
Figure S3, associated with Fig. 4C. Effects of octopamine and picrotoxin/collagenase on sound-evoked antennal nerve field potentials. (A) Collagenase alone does not affect the potentials. (B) AC and DC components of the sound-evoked potentials in Fig. 4C isolated by digital high- (AC component) and low-pass (DC component) filtering (230 Hz corner frequency). For additional details, see legend to Fig. C.
Supplemental Experimental Procedures

Experimental animals

Culex quinquefasciatus mosquito eggs were kindly provided by Bayer CropBioscience (Monheim am Rhein, Germany). Eggs were placed in aquarium water until pupariation. Pupae were collected in glass bowls and placed in square cages (20 x 20 x 20 cm) for hatching. Mosquitoes were kept at 25°C temperature and 60% humidity, with a photoperiod of 12:12 h light/dark. Adults were given constant access to cotton pads soaked with a 10% sucrose solution. For experiments, 3-day-old imagines were used.

Immunohistochemistry

Upon removal of the proboscis, mosquito heads were fixed in 4% paraformaldehyde for 3-4 hours at 4°C. After fixation, heads were embedded in albumin/gelatin and post-fixed in 6% formaldehyde overnight at 4°C. Vibratome sections (40 µm) of post-fixed heads were made in 0.01 M phosphate-buffered saline (PBS, pH 7.4). Sections were washed in PBS with 0.3% TritonX-100 (PBST), and non-specific binding sites were blocked with a blocking solution containing 5% normal goat serum (NGS) and 2% bovine serum albumin (BSA) in PBS with 1% TritonX-100. Sections were incubated with primary antibodies diluted in the blocking solution overnight at 4°C. Primary antibodies were: mAb nc46 (anti-SAP47), mAb 3C11 (anti-Synapsin), (both 1:50; Developmental Studies Hybridoma Bank, University of Iowa, http://dshb.biology.uiowa.edu/), anti-HRP (1:500; Sigma-Aldrich, St. Louis, Missouri, USA), rabbit anti-serotonin (1:500; Sigma-Aldrich), and rabbit anti-glutamic acid decarboxylase (anti-GAD, 1:1000; Sigma Aldrich). Upon washing with PBST, sections were incubated with the secondary antibodies diluted in blocking solution at room temperature for 1 hour. Corresponding Alexa Fluor Dyes (1:500; Thermo Fisher) and Alexa Fluor Phalloidin 633 (1:50; Thermo Fisher) were used as secondary antibodies. After further washes in PBST and PBS, sections were mounted in DABCO (Sigma-Aldrich) and analyzed with a Leica TCS SP8 confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany).

For anti-octopamine staining, heads were fixed in 0.1M sodium cacodylate, 2% paraformaldehyde and 1% glutaraldehyde in phosphate buffer (pH 7.4) for 3-4 hours at 4°C. Heads were embedded in albumin/gelatin and post-fixed in 6% formaldehyde overnight at 4°C. Vibratome sections were made in 0.05M Tris buffer containing 0.85% sodium metabisulfite (Tris-SMB). Sections were incubated for 10 minutes in Tris-SMB containing 0.1M sodium borohydride and washed in Tris-SMB. Sections were additionally washed overnight at 4°C in Tris-SMB containing 30% saccharose. After some further washes in Tris-SMB, sections were treated with a blocking solution consisting of 1% normal goat serum, 0.25% BSA, and 3% milk powder in Tris-SMB containing 0.25% TritonX-100. Samples were incubated with primary mouse anti-octopamine antibody (1:1000; Jena Bioscience GmbH, Jena, Germany, http://www.jenabioscience.com/) and rabbit anti-HRP antibody (1:500; Sigma-Aldrich) dissolved in the blocking solution for 2 to 3 days at 4°C.

Electron microscopy

Heads were fixed in a solution containing 2% paraformaldehyde and 2.5% glutaraldehyde in 0.05M sodium cacodylate buffer (pH 7.4) overnight at 4°C [Ref. S1]. Heads were then washed in 0.05M sodium cacodylate buffer and treated with 2% osmium tetroxide for 1.5
hours at 4°C. Afterwards, they were transferred to phosphate buffer (pH 7.4) and dehydrated in ascending ethanol concentrations until 70%. At this point, heads were counterstained with uranyl acetate in 70% ethanol for 30 minutes and finally dehydrated in 100% ethanol. Samples were immersed twice in propylene oxide for 10 minutes, taken through ascending propylene oxide: Durcupan solutions (1 hour in 3: 1; overnight in 1:1 and 1 hour in 1:3), embedded in Durcupan, and allowed to polymerize for 48 hours at 65°C. 50-70 nm ultrathin sections were cut with a Leica/Reichert Ultracut E Ultramicrotome (Leica Microsystems, Wetzlar, Germany), collected on 50 mesh hexagonal copper grids and contrasted with uranyl acetate (30 min) and lead citrate (2 min) [Ref. S2] and examined with a Zeiss EM 902 B transmission electron microscope (Carl Zeiss AG, Oberkochen, Germany).

Neuronal tracings
To trace the auditory efferent neurons, the neuronal tracer dextran-biotin 3000 MW (Molecular Probes) was pressure injected into the pedicel of tethered mosquitoes. The following steps were performed mostly in the dark. Mosquitoes were kept 6 hours at room temperature in a humidity chamber to allow for retrograde transport. Upon decapitation and removal of the proboscis, heads were fixed in 4% paraformaldehyde for 1 hour, embedded in albumin/gelatin and post-fixed in 6% formaldehyde overnight at 4°C. For visualizations, 30 µm vibratome sections were treated with the conjugated antibodies Streptavidin Alexa Fluor 488 (1:500; Thermo Scientific, Waltham, USA) and anti-HRP-Cy3 (1:300; Jackson ImmunoResearch, Baltimore, USA), washed with PBST and PBS, and finally mounted in DABCO (Sigma Aldrich).

Golgi staining
Golgi impregnation was performed as described [19]. Mosquitoes were immersed in cold 2.5% potassium dichromate containing 3 g sucrose/100 ml. Animals were decapitated and the distal parts of the proboscis and the antennal flagella were removed. Heads were transferred to a 2.5% dichromate solution with 25% glutaraldehyde (5:1) containing 1.3 g sucrose/100 ml for 5 days at 4°C. Heads were washed several times in cold 2.5% potassium dichromate and transferred to 2.5% potassium dichromate with 1% osmium tetroxide (99:1) where they were kept at 4°C for 4 days in darkness. Heads were then briefly washed in dH2O and transferred to a series of 0.75% silver nitrate baths until no more precipitate appeared from the tissue and heads were kept in this solution in the dark for 3 days at 4°C. Subsequently, heads were briefly washed in dH2O, dehydrated in ascending alcohol concentrations and immersed in propylene oxide for 10 minutes before embedding them in a 1:1 mixture of propylene oxide and Durcupan plastic (Fluka, Heidelberg, Germany). After 24 hours under the fume hood to allow the propylene oxide to evaporate, fresh Durcupan was added and the preparations were polymerized at 65°C for 48 hours. Preparations were sectioned horizontally at 20 µm.

Auditory organ function
Methods of thoracic compound administration have been described [15,25]. In brief, a hole was punched into the thorax using a micropipette and a drop of the solution (ca. 0.5 µl) was put on top. Intake of the drop ensued automatically from the low pressure of the body, which sucked in the drop. All compounds tested were obtained from Sigma Aldrich.
respective solutions were set up at least 1 h prior to the experiments and stored at room temperature (21°C-23°C), excluding possible ectothermic effects that might take place while setting up the solutions. In control experiments, in which we heated up the solutions to 70°C and monitored their temperature with a miniature thermistor, they fully equilibrated to room temperature in the injection pipette within one minute. This equilibration time is shorter than the time it took us to start the injections, which means that even if the starting solutions would have been hot (or cold), they would have assumed room temperature at the time of their injection.

To assess auditory organ function, mechanical free fluctuations and sound-induced vibrations of the tip of the antennal flagellum were monitored with a Polytec PSV-400 laser Doppler vibrometer (Polytec GmbH, Waldbronn, Germany) [15,43] (see also Ref. S3). For acoustic stimulation, we used sound chirps (frequency-modulated sweeps) with a sound particle velocity amplitude of approximately 5 μm/s and a linear frequency increase from 1 to 3,200 Hz within one second. Sound-evoked field potentials were recorded via an electrolytically tapered tungsten electrode inserted into the joint between head and antenna, with the indifferent electrode placed in the thorax [15,43]. Potentials were measured in response to 320 Hz tones with a sound particle velocity amplitude of approximately 5 μm/s and a duration of 1.2 s. Sound stimuli were generated with Polytec signal generator software, power amplified, and fed to a loud speaker placed 7 cm behind the animal. The resulting sound particle velocity was monitored with an EM Emkay NR 3158 pressure gradient microphone (distributed by Knowles Electronics Inc., Itasca, USA) placed besides the animal (for microphone calibration, see Ref. S2). Signals were conditioned with antialiasing filters and digitized at a rate of 8.192 kHz by using an Analogic 16 Fast A/D board. To compute frequency spectra, time windows, 1 s in length (rectangular windowing function) were subjected to Fast Fourier transforms (FFTs), whereby ca. 20 (sound responses) or ca. 100 (free fluctuations) FFTs were averaged to determine the Fourier amplitudes of the laser and microphone signals (Ref. S2). The potential responses shown in Figs. 4C and S3 represent averages of 10 repetitions.

Supplementary references

