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ABSTRACT 

Bone cells constitutively release ATP into the extracellular environment where it acts locally via 

P2 receptors to regulate bone cell function. Whilst P2Y2 receptor stimulation regulates bone 

mineralisation the functional effects of this receptor in osteoclasts remain unknown. This 

investigation used the P2Y2 receptor knockout (P2Y2R
-/-) mouse model to investigate the role of 

this receptor in bone.  MicroCT analysis of P2Y2R
-/- mice demonstrated age-related increases in 

trabecular bone volume (≤48%), number (≤30%) and thickness (≤17%). In vitro P2Y2R
-/- 

osteoblasts displayed a 3-fold increase in bone formation and alkaline phosphatase activity 

whilst P2Y2R
-/- osteoclasts exhibited a 65% reduction in resorptive activity.  Serum cross-linked 

c-telopeptide levels (CTX, resorption marker) were also decreased (≤35%). The resorption 

defect in P2Y2R
-/- osteoclasts was rescued by the addition of exogenous ATP, suggesting that 

an ATP deficit could be a key factor in the reduced function of these cells. In agreement, we 

found that basal ATP release was reduced up to 53% in P2Y2R
-/- osteoclasts. The P2Y2 

receptor agonists, UTP and 2-thioUTP, increased osteoclast activity and ATP release in 

wildtype but not P2Y2R
-/- cells.  This indicates that the P2Y2 receptor may regulate osteoclast 

function indirectly by promoting ATP release.  UTP and 2-thioUTP also stimulate ATP release 

from osteoblasts suggesting that the P2Y2 receptor exerts a similar function in these cells. 

Taken together, our findings are consistent with the notion that the primary action of P2Y2 

receptor signalling in bone is to regulate extracellular ATP levels.   
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INTRODUCTION 

Adenosine triphosphate (ATP) has long been recognized for its role in intracellular energy 

metabolism; however, it is also exported to the extracellular environment where it acts as an 

important signalling molecule (Burnstock 2007a).  Outside cells, ATP and related compounds 

act via purinergic receptors to modulate a range of biological processes.  These receptors are 

classified into two groups; P1 and P2 receptors. There are four P1 receptors (A1,A2a,A2b,A3), 

which are activated by adenosine. The P2 receptors are further subdivided into the P2X ligand-

gated ion channels and the P2Y G-protein-coupled receptors.  P2X receptors are activated by 

ATP whilst P2Y receptors respond to nucleotides including ATP, adenosine diphosphate 

(ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP) (Abbracchio and Burnstock 

1994; Burnstock 2007b). Currently, seven P2X receptors (P2X1-7) and eight P2Y receptors 

(P2Y1,2,4,6,11-14) have been identified (Burnstock 2007b).    

 The P2Y receptors display distinct pharmacology with some being activated by adenine-

containing nucleotides (P2Y1, P2Y12, P2Y13), whilst others are stimulated by uridine-containing 

nucleotides (P2Y2, P2Y4, P2Y6, P2Y14) (Burnstock 2007a, b).  The primary agonist at the P2Y2 

receptor is UTP but it is also activated by ATP. Selective synthetic agonists (e.g. 2-thioUTP) 

are also available. Receptor stimulation activates phospholipase C and results in Ca2+ release 

from internal stores. Expression of the P2Y2 receptor has been reported in many tissues 

including heart, blood vessels, lung, kidney and skeletal muscle (Burnstock 2007a). 

Bone cells express multiple P2 receptor subtypes and knowledge of the functional effects of 

extracellular nucleotides in bone has increased significantly in recent years (Burnstock, et al. 

2013; Gartland, et al. 2012; Noronha-Matos and Correia-de-Sa 2016; Orriss 2015).  P2Y2 

receptor expression by osteoclasts has been widely reported (Bowler, et al. 1995; Buckley, et 

al. 2002; Hoebertz, et al. 2000; Orriss, et al. 2011b).  Early work using cells from a human 

osteoclastoma suggested that ATP could act via the P2Y2 receptor to promote bone resorption 

(Bowler et al. 1995).  However, in a follow up study UTP failed to stimulate resorption, 

suggesting this was not the case (Bowler, et al. 1998).  To date, there are no studies directly 
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describing the functional effects of P2Y2 receptor activation on osteoclasts. In contrast, 

activation of several other P2Y receptor subtypes (P2Y1, P2Y6, P2Y12, P2Y14) has been 

associated with increased osteoclast formation and/or activity (Hoebertz, et al. 2001; Lee, et al. 

2013; Orriss et al. 2011b; Su, et al. 2012; Syberg, et al. 2012b). 

The role of the P2Y2 receptor in osteoblasts has been more extensively investigated.  P2Y2 

receptor expression by osteoblasts has been extensively reported (Bowler et al. 1995; 

Hoebertz et al. 2000; Maier, et al. 1997), with several studies describing that expression is 

differentiation-dependent with the highest levels seen in mature, bone forming cells (Noronha-

Matos, et al. 2012; Orriss, et al. 2006).  P2Y2 receptor activation in osteoblast-like cells 

activates several intracellular signalling pathways including protein kinase C, p38 mitogen-

activated protein kinase, c-Jun NH2-terminal protein kinase and RhoA GTPase  (Costessi, et al. 

2005; Gardinier, et al. 2014; Katz, et al. 2006, 2008; Pines, et al. 2005).  The P2Y2 receptor has 

also been shown to mediate the Ca2+ mobilisation induced by oscillatory fluid flow (You, et al. 

2002).  

One of the first functional effects to be attributed to the P2Y2 receptor was the inhibition of 

bone mineralisation by ATP and UTP (Hoebertz, et al. 2002; Orriss, et al. 2013; Orriss, et al. 

2007).  Consistent with this, initial skeletal analysis of 8-week old P2Y2 receptor knockout mice 

(P2Y2R
-/-) demonstrated large increases in trabecular and cortical bone parameters in the long 

bones (Orriss et al. 2007; Orriss, et al. 2011a).  Furthermore, P2Y2 overexpression leads to 

decreased bone formation (Syberg, et al. 2012a) and polymorphisms in the P2Y2 receptor gene 

are associated with increased bone mineral density and a decreased risk of osteoporosis 

(Wesselius, et al. 2013). In contrast, a recent study using P2Y2R
-/- mice on a different genetic 

background, described small decreases in the trabecular bone in knockout animals (Xing, et al. 

2014), this work additionally reported that the P2Y2 receptor promotes bone mineralisation.   

 The P2Y2 receptor may also have a functional role in mediating osteoblast 

mechanosensitivity. Studies suggest that the P2Y2 receptor promotes mechanotransduction 

(Xing et al. 2014) and  increases cell stiffness and cytoskeletal rearrangement in response to 

fluid shear stress (Gardinier et al. 2014). 



5 

 

Expression of the P2Y2 receptor has also been reported in MLO-Y4 osteocyte-like cells 

(Kringelbach, et al. 2014).  The same study also demonstrated controlled ATP release from 

these cells and reported that UTP, probably acting via the P2Y2 or P2Y4 receptors, increased 

this ATP release. 

 Available evidence thus indicates that the P2Y2 receptor plays significant, although not yet 

fully defined roles in regulating bone remodelling.  This study used the P2Y2R
-/- mouse, which 

was first generated almost 2 decades ago (Cressman, et al. 1999),  to determine how P2Y2 

receptor-mediated signalling influences bone cell function in vitro and in vivo, with a particular 

focus on its effects in osteoclasts.  
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METHODS 

Reagents 

Tissue culture reagents were purchased from Life Technologies (Paisley, UK); unless 

mentioned, all chemicals were purchased from Sigma Aldrich (Poole, Dorset, UK).  UTP and 2-

thioUTP were purchased from Tocris Bioscience (Bristol, UK).   

Animals 

Mice lacking the P2Y2 receptor gene (P2Y2R
-/-) were obtained from Jackson Laboratories (Bar 

Harbor, Maine, USA).  The generation and characterisation of P2Y2R
-/- mice (C57BL/6J 

background) has been previously described (Homolya, et al. 1999).  All animals were housed 

under standard conditions with free access to food and water. Animals were bred from 

homozygote (P2Y2R
-/-) and parental strain wildtype (P2Y2R

+/+) breeding pairs. All procedures 

complied with the UK animals (Scientific Procedures) Act 1986 and were reviewed and 

approved by the Royal Veterinary College Research Ethics Committee.  

Microcomputed x-ray tomographic (µCT) analysis of P2Y2R
-/- mice 

The tibiae and femora were isolated from male 4, 8, 16 and 24-week old P2Y2R
-/- and P2Y2R

+/+ 

mice (n=10), fixed in 10% neutral buffered formalin (NBF) for 24 hours and stored in 70% 

ethanol until scanning.  µCT analysis of trabecular and cortical bone parameters was 

performed on the tibial and femoral metaphysis (SkyScan 1172, Bruker, Belgium). The 

appearance of the first cartilage bridge was used as a reference point, with an offset of 0.4mm 

and 2.5mm for trabecular and cortical bone, respectively. In all cases the length of bone 

analysed was 1mm.  The µCT scanner was set at 50Kv and 200µA using a 0.5mm Al filter and 

a resolution of 4.3µm.  Analysis of isolated bones was performed blind.  The images were 

reconstructed, analysed and visualised using SkyScan NRecon, CTAn and CTVol software. 

Bone mineral density (BMD) was calibrated and calculated using hydroxyapatite phantoms with 

a known density.  
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Osteoblast formation assay 

Osteoblasts were isolated from the calvariae of 3-5 day old P2Y2R
+/+ or P2Y2R

-/- mice by 

trypsin/collagenase digestion as previously described (Orriss, et al. 2012b; Taylor, et al. 2014). 

Cells were cultured for up to 21 days in alpha Minimum Essential Medium, (αMEM) 

supplemented with 2mM -glycerophosphate and 50g/ml ascorbic acid, with half medium 

changes every 3 days. The total area of bone nodules formed was quantified by image 

analysis, as described previously (Orriss et al. 2012b).  

Primary osteoblasts of bone marrow/stromal cell origin were obtained from the long bones of 

6-week old male P2Y2R
+/+ or P2Y2R

-/- animals. The collected cells were suspended in α-MEM 

and pre-cultured in a 75 cm2 flask in 5% CO2 at 37ºC. After 24 hours the α-MEM was replaced 

in order to eliminate non-adherent cells; adherent stromal cells were cultured for a further 7 

days. When confluent, cells were plated into 6-well trays and cultured as above.   

Alkaline phosphatase (TNAP) activity 

Osteoblast TNAP activity was measured in cell lysates taken at defined stages of osteoblast 

differentiation as previously described (Orriss et al. 2012b; Taylor et al. 2014).  TNAP activity 

was normalised to cell protein using Bradford reagent. Time points in osteoblast cultures were 

defined thus:  proliferating (day 4, calvarial only); differentiating (day 7); mature (day 14) and 

mature, bone-forming (day 21) 

Osteoclast formation assay 

Osteoclasts were isolated from the long bones of 6-8 week-old male P2Y2R
+/+ or P2Y2R

-/-mice 

as described previously (Orriss and Arnett 2012).  Cells were plated onto 5mm diameter ivory 

discs (106 cells) in 96-multiwells in αMEM supplemented with 10% FCS, 5% gentamicin, 100nM 

PGE2, 200ng/ml M-CSF and 3ng/ml receptor activator of nuclear factor ΚB ligand (RANKL, R&D 

Systems Europe Ltd, Abingdon, UK).  After 24 hours, discs containing adherent osteoclast 

precursors were transferred to 6-well trays (4 discs/well in 4ml medium) for a further 6 days.  

Culture medium was acidified to pH~7.0 by the addition 10meq/l H+ (as HCL) on day 7 to 

activate resorption (Orriss and Arnett 2012).  P2Y2 receptor agonists (10nM-10µM UTP or 2-
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thioUTP) were added from day 3 of culture.  Apyrase (a broad spectrum ecto-nucleotidase) was 

used to determine the effects of endogenous ATP.  

Osteoclasts were fixed in 2.5% glutaraldehyde and stained to demonstrate tartrate-resistant 

acid phosphatase (TRAP). Osteoclasts were defined as TRAP-positive cells with 2 or more 

nuclei and/or clear evidence of resorption. The total number of osteoclasts and the plan surface 

area of resorption pits on each disc was assessed ‘blind’ by transmitted light microscopy  and 

reflective light microscopy and dot-counting morphometry, respectively. 

Measurement of serum bone markers 

Blood was collected from 4, 8, 16 and 24-week old male P2Y2R
-/- and P2Y2R

+/+ mice by cardiac 

puncture immediately after termination.  Following clotting, samples were centrifuged at 500g 

and the serum frozen until analysis.  Levels of the bone formation marker, N-terminal propeptide 

of type I collagen (P1NP) and the bone resorption marker, cross-linked C-telopeptide (CTX) 

were assayed using the P1NP and RatLaps™ ELISAs, respectively (Immunodiagnostics 

Systems Ltd, UK).  

Histology 

Histological analysis was performed on the femur of 8 and 24-week old male P2Y2R
+/+ or 

P2Y2R
-/-mice. Tissues were fixed in 10% NBF, decalcified in 10% EDTA for three weeks and 

embedded in paraffin wax blocks.  Serial sections were cut every 5µm and slides stained with 

TRAP counterstained with haematoxylin to visualise osteoclasts.  

Total RNA extraction and DNase treatment 

P2Y2R
+/+ and P2Y2R

-/- osteoclasts were cultured on dentine discs for 9 days (mature, resorbing 

cells) before total RNA was extracted using TRIZOL reagent (Invitrogen, Paisley, UK) 

according to the manufacturer’s instructions.  Osteoblasts were cultured for 14 days (mature, 

bone-forming cells) before RNA collection.  Extracted RNA was treated with RNase-free DNase 

I (35U/ml) for 30 min at 37C. The reaction was terminated by heat inactivation at 65C for 10 
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min.  Total RNA was quantified spectrophotometrically by measuring absorbance at 260nM.   

RNA was stored at –80C until amplification by qRT-PCR. 

Quantitative real time polymerase chain reaction (qRT-PCR) 

Osteoclast and osteoblast RNA (50ng) was transcribed and amplified using the qPCRBIO 

SyGreen one-step qRT-PCR kit (PCR Biosystems, London, UK), which allows cDNA synthesis 

and PCR amplification to be carried out sequentially.  qRT-PCR was performed according to 

manufacturer’s instructions with initial cDNA synthesis (45°C for 10 min) and reverse 

transcriptase inactivation (95°C for 2 min) followed by 40 cycles of denaturation (95C for 5 

sec) and detection (60°C for 30 sec). All reactions were carried out in triplicate using RNAs 

derived from 4 different cultures.  Data were analysed using the Pfaffl method of relative 

quantification (Pfaffl 2001). Primers were obtained from Qiagen Ltd (Manchester, UK).  

Measurement of ATP release  

Prior to measurement of ATP release, culture medium was removed, cell layers washed and 

cells incubated with serum-free DMEM (phenol red free).  To measure the effects of P2Y2 

receptor deletion on basal ATP release, samples were collected after 1 hour and immediately 

measured luminometrically using the luciferin-luciferase assay, as described previously  

(Orriss, et al. 2009).  All ATP measurements were normalised to cell number.  Cell viability and 

cell number were determined using the CytoTox 96® colorimetric cytotoxicity assay (Promega 

UK, Southampton UK). 

To examine the effects of acute exposure to UTP or 2-thioUTP (0.1-50µM) agonists were 

added to the serum-free DMEM and samples taken for quantification after 10, 30, 60 and 90 

minutes.  The luminescence of the DMEM (± UTP/2-thioUTP) was used as a background 

reading and subtracted from the relevant measurements. Standard curves used to calculate the 

ATP concentrations in the presence or absence of UTP/2-thioUTP are shown in Fig. 5.  To 

investigate the effects of long-term treatment with P2Y2 receptor agonists, osteoclasts and 

osteoblasts were cultured with UTP or 2-thioUTP (0.1-100µM) for 7 or 14 days, respectively. 

Fresh UTP/2-thioUTP was added at each medium exchange.  On the day of assay culture 
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medium was removed and cells incubated with serum-free DMEM without agonists.  Samples 

were collected after 1 hour and measured immediately.  

To determine the effects of P2Y2 deletion on ATP breakdown, cells were swapped to DMEM 

containing 1µM ATP and samples taken after 2, 5, 10, 30 and 60 minutes.  

Statistical analysis 

Data were analysed using GraphPad Prism 6 software (San Diego, CA).  Results are 

expressed as means ± SEM for between 6-12 biological replicates.  Statistical analyses of bone 

parameters were performed by two-tailed unpaired student’s t-test.  In vitro data were analysed 

using an unpaired student’s t-test, one-way or two-way ANOVA, followed by a Bonferroni post 

hoc test.  For all in vitro work, results are representative of experiments performed at least 

three times, using cells isolated from different animals.   
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RESULTS 

P2Y2R
-/-mice show age-related increases in trabecular bone 

High resolution µCT analysis revealed that P2Y2R
-/- mice display increased levels of trabecular 

bone compared to age-matched P2Y2R
+/+ controls. These differences appear to be age-related 

with the biggest changes observed in the 24-week animals.  Trabecular bone volume (BV/TV) 

was increased ≤46% in the femur and ≤48% in the tibia of P2Y2R
-/- mice (Fig. 1A-1B, 1O).  

Trabecular number (Tb.N) was increased ≤27% in the femora (Fig. 1C, 1O) and ≤30% in the 

tibiae (Fig. 1D, 1O).  Trabecular thickness (Tb.Th) was unchanged up to 8 weeks of age but 

increased ≤10% and ≤17% at 16 and 24 weeks, respectively (Fig. 1E-1F, 1O).  Trabecular 

bone mineral density (Tb.BMD) was ≤12% higher in P2Y2R
-/- mice (Fig. 1G-1H). No differences 

were observed in the cortical bone volume (Fig. 1K-1L, 1O), cortical thickness (Fig. 1K-1L), 

endosteal and periosteal diameter (Fig. 1M-1N) and bone length at any age. 

Increased bone formation by osteoblasts from P2Y2R
-/- mice 

The level of mineralised bone nodule formation was increased ~3-fold in P2Y2R
-/- calvarial 

osteoblasts (Fig. 2A, 2G) and 5-fold in P2Y2R
-/- long bone osteoblasts (Fig. 2B).  P2Y2 receptor 

deletion increased basal TNAP activity (≤3-fold) in calvarial and long bone osteoblasts at all 

stages of differentiation with the largest effects being observed in the mineralising cells (Fig. 

2C-2D).  Serum TNAP activity was up to 60% higher in P2Y2R
-/- animals (Fig. 2E); no 

differences were observed in the serum P1NP levels (Fig. 2F).  No differences in total protein 

content were observed in any TNAP activity experiments. 

Osteoclasts from P2Y2R
-/- mice exhibit defective resorption 

Whilst no differences in osteoclast numbers were observed (Fig. 3A, 3D), the level of 

resorption per osteoclast was decreased 75% in P2Y2R
-/- cultures (Fig. 3B, 3D).  Serum CTX 

levels were reduced up to 35% in P2Y2R
-/- mice (Fig. 3C).  Qualitative histology suggested that 

decreased numbers of osteoclasts were evident on the trabecular and endocortical bone 

surfaces of 24-week old P2Y2R
-/-; however, no differences were observed in 8-week old 

animals (Fig. 3E). 
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Changes in gene expression in P2Y2R
-/- osteoclasts and osteoblasts 

The effect of P2Y2 receptor deletion on the expression of resorption associated genes and 

ecto-nucleotidases was investigated in mature, resorbing osteoclasts.  mRNA expression of 

many genes (TRAP, CICN7, RANK, c-fms) showed a downward trend but only cathepsin K 

expression was significantly reduced (4.8-fold). Osteoclasts express a range of ecto-

nucleotidases that hydrolyse ATP (Hajjawi, et al. 2014) and NDPK (nucleoside 

disphosphokinase), which can regenerate ATP from ADP.  P2Y2 receptor deletion did not 

influence the expression of any of these genes (Table 1).  

In osteoblasts, deletion of the P2Y2 receptor increased osteocalcin (Ocn), osteopontin (Opn) 

and osteoprotegerin (OPG) expression 3.3, 6 and 4.5-fold, respectively.  The mRNA expression 

of Col1α1, Runx2, TNAP, osteonectin, RANKL, MCSF and the ecto-nucelotidases was 

unchanged (Table 1).  

Activation of the P2Y2 receptor increases bone resorption 

Treatment with UTP and 2-thioUTP had no effect on osteoclast formation in P2Y2R
+/+ or P2Y2R

-

/- cells (Fig. 4A-4B). However, the area resorbed per osteoclast was dose-dependently 

increased by up to 80% and 45% in P2Y2R
+/+ cells treated with UTP and 2-thioUTP (≥100nM), 

respectively. No effects on resorption were seen in P2Y2R
-/- osteoclasts (Fig. 4C-4D).    

Reversal of resorption defect in P2Y2R
-/- osteoclasts by extracellular ATP 

P2Y2R
-/- osteoclasts displayed a 53% reduction in ATP release (Fig. 4E) but showed no 

difference in the rate of ATP breakdown (Fig. 4F).  Apyrase (≥1U/ml), a broad spectrum ecto-

nucleotidase that rapidly degrades ATP and ADP, inhibited bone resorption by up to 55% (Fig. 

4G). To determine if reduced extracellular ATP was the cause of the decreased resorption seen 

in P2Y2R
-/- osteoclasts, cells were cultured with exogenous ATP (1-10µM).  Treatment with ATP 

(≥1µM) fully rescued the resorption defect see in P2Y2R
-/- osteoclasts (Fig. 4H). 

P2Y2 receptor agonists increase ATP release from osteoclasts 

In P2Y2R
+/+ cells, 10 minutes after addition of UTP (≥1µM) extracellular ATP levels were 

doubled; the increase in ATP levels was sustained for up to 90 minutes post treatment (Fig. 
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5A). No effect of UTP on ATP release was seen in P2Y2R
-/- osteoclasts at any stage (Fig. 5B-

5D). Treatment with 2-thioUTP (≥0.1µM) also dose dependently increased extracellular ATP 

levels by ≤50% for up to 90 minutes in P2Y2R
+/+  osteoclasts (Fig. 5E); 2-thioUTP was without 

effect in P2Y2R
-/- cells (Fig. 5F-5H).   

The effect of long-term treatment (7 days) with P2Y2 receptor agonists on basal ATP release 

was also investigated in mature osteoclasts.  In P2Y2R
+/+ cells, UTP and 2-thioUTP (≥1µM) 

increased ATP release by up to 70% and 65% respectively (Fig.5I-5J).  No increase in ATP 

release was seen in P2Y2R
-/- osteoclasts. Standard curves used to calculate ATP levels are 

shown in Fig. 5K-5L.  In all experiments, cell viability was unchanged (not shown). 

ATP release from osteoblasts is stimulated by UTP and 2-thioUTP 

The rate of ATP breakdown was unchanged in P2Y2R
-/- osteoblasts (Fig. 6A). ATP release 

from P2Y2R
-/- cells was decreased (≤60%) at all stages of differentiation (Fig. 6B). Long-term 

treatment (14 days) with UTP and 2-thioUTP increased the levels of ATP release by up to 4-

fold and 3-fold, respectively, in P2Y2R
+/+osteoblasts (Fig. 6C-6D).  No effects were seen in 

P2Y2R
-/- osteoblasts.   

Acute UTP treatment increased ATP release from P2Y2R
+/+ osteoblasts up to 4-fold within 

10 minutes; stimulatory effects were sustained for up to 60 minutes (Fig. 6E).  UTP was without 

effect in P2Y2R
-/- osteoblasts (Fig. 6F-6H).  2-thioUTP also enhanced ATP release (≤4-fold) 

from P2Y2R
+/+, but not P2Y2R

-/- osteoblasts (Fig. 6I-6L).  
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DISCUSSION  

This study examined the role of P2Y2 receptor-mediated signalling in osteoclasts and 

osteoblasts.  We found that global deletion of the P2Y2 receptor resulted in greater amounts of 

trabecular bone and increased BMD.  Culture of cells derived from P2Y2R
-/- mice revealed that 

osteoclast resorptive activity was decreased whilst bone mineralisation was increased. 

Mechanistic analysis revealed that P2Y2 receptor activation (acute and prolonged) promotes 

ATP release from osteoclasts and osteoblasts.   

Several P2Y receptors (P2Y1, P2Y6, P2Y12, P2Y14) and extracellular nucleotides (e.g. ATP, 

ADP, UDP) have been implicated in the regulation of osteoclast formation and activity 

(Hoebertz et al. 2001; Lee et al. 2013; Orriss et al. 2011b; Su et al. 2012; Syberg et al. 2012b).  

However, there are no reports directly describing the functional role of the P2Y2 receptor in 

osteoclasts. This study found that the P2Y2 agonists, UTP and 2-thioUTP, dose-dependently 

stimulated bone resorption. Consistent with a pro-resorptive role for UTP and the P2Y2 

receptor, we observed that P2Y2R
-/- animals had decreased serum CTX levels and that cultured 

P2Y2R
-/- osteoclasts displayed reduced resorptive activity and cathepsin K expression. UDP, 

the breakdown product of UTP, acts via the P2Y6 receptor to promote osteoclast function 

(Orriss et al. 2011b). However, since the actions of UTP are lost in P2Y2R
-/- osteoclasts, it is 

unlikely that the effects observed here are due to P2Y6 receptor-mediated signalling.  

Earlier studies have reported that P2Y2 receptor activation by ATP and UTP can both inhibit 

(Hoebertz et al. 2002; Orriss et al. 2007; Orriss, et al. 2012a) and promote (Xing et al. 2014) 

bone mineralisation. Consistent with its role as a negative regulator of bone mineralisation, we 

observed that P2Y2R
-/- osteoblasts exhibited increased levels of bone formation, Ocn 

expression and TNAP activity. Suprisingly, TNAP mRNA expression was unaffected in P2Y2R
-/- 

osteoblasts. This could indicate that P2Y2 receptor signalling increases enzyme activity by 

influencing the post-translational modifications of TNAP rather than the overall expression level. 

We have previously shown that the effects of ATP and UTP are restricted to the mineralisation 
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process with collagen expression and activity being unaffected (Orriss et al., 2007).  The lack of 

effect of P2Y2 receptor deletion on serum P1NP levels is consistent with these observations. 

In agreement with the in vitro findings, our longitudinal µCT study revealed that P2Y2 

deletion led to age-related increases in trabecular bone and BMD. These data are also 

consistent with our earlier description of the bone phenotype of 8-week old P2Y2R
-/- animals 

(Orriss et al. 2011a), and the observation that P2Y2 receptor overexpression leads to 

decreased bone formation (Syberg et al. 2012a).  However, they are at variance to a recent 

report of reduced bone levels in P2Y2R
-/- mice (Xing et al. 2014).  The reasons for these 

divergent results are unclear but given that parental strain has been shown to affect the 

phenotype of the P2X7 receptor knockout (Syberg, et al. 2012a), the differing genetic 

background of the animals studied (C57BL/6 compared to SV129 (Xing et al. 2014)) could be a 

factor. Variations in µCT methodology could also contribute; for example, this study analysed a 

1mm region of the trabecular bone within the metaphyseal portion of the long bones at a 

resolution of 4.3µm.  In contrast, Xing et al measured the trabecular bone within a narrow 

region of the diaphysis at a lower resolution (10.5µm) (Xing et al. 2014). 

Unlike the observed effects in the trabecular bone, in both this study and that of Xing et al 

(Xing et al. 2014), cortical bone parameters were unaffected in P2Y2R
-/- mice.  This suggests 

that P2Y2 receptor deletion does not have significant effects on bone growth. Thus,  P2Y2 

receptor-mediated signalling appears to be more important in bone undergoing rapid turnover.   

In vivo, osteoblast and ostoclast function are tightly coupled with osteoclast activation being 

dependent on osteoblasts.  Gene expression analysis revealed a significant increase in 

osteoblast expression of OPG whilst RANKL expression was unchanged.  If reflected in vivo 

this would reduce osteoclast formation and activity and could contribute to the decreased bone 

resorption seen in P2Y2R
-/- mice.  In agreement, qualitative observations showed that 

osteoclast numbers on the trabecular and endocortical bone surfaces appeared reduced in 

these animals. Further bone histomorphometric analysis of in vivo parameters such as bone 

formation rate and osteoclast number would confirm this and build on the findings reported 

here.   
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 Controlled ATP release has been demonstrated from numerous cell types including bone 

cells.  Several studies have indicated that the primary method of ATP release from osteoblasts 

is vesicular exocytosis (Genetos, et al. 2005; Orriss et al. 2009; Romanello, et al. 2001), 

although the P2X7 receptor may also be involved (Brandao-Burch, et al. 2012).  In osteoclasts, 

ATP release involves the P2X7 receptor (Brandao-Burch et al. 2012; Pellegatti, et al. 2011).  

Increasing evidence now suggests that ATP can act to enhance its own release; ATP or UTP-

induced ATP release has been demonstrated from MLO-Y4 osteocyte-like cells (Kringelbach et 

al. 2014), leukocytes (De Ita, et al. 2016), urothelial cells (Mansfield and Hughes 2014) and 

cells from the carotid body (Zhang, et al. 2012).  The P2Y2 receptor is thought to mediate this 

increased ATP release in cells including osteocytes (Kringelbach et al. 2014) and leukocytes 

(De Ita et al. 2016).  Therefore we investigated whether UTP could exert its functional effects 

on bone cells indirectly i.e. acting via the P2Y2 receptor to induce ATP release. We found that 

P2Y2R
-/- osteoblasts and osteoclasts showed reduced levels of basal ATP release. 

Furthermore, UTP and 2-thioUTP increased ATP release from these cells following both acute 

(≤90 minutes) and long-term (≤14 days) treatment. These stimulatory effects were lost in 

P2Y2R
-/- cells suggesting that the increased extracellular ATP levels were mediated via P2Y2 

receptor signalling. For the long-term experiments, UTP and 2-thioUTP were present in the 

culture medium for the 7 or 14 days days prior to testing but not in the medium used for the 

subsequent ATP release assay. This suggests that repeated P2Y2 receptor stimulation could 

induce changes to the cellular processes which regulate ATP efflux from bone cells.  However, 

at present, the mechanisms by which this could occur are unknown.  Interestingly,  P2Y2 

receptor activation in osteoblast-like cells has been shown to induce to actin fibre formation in 

response to fluid shear stress (Gardinier et al. 2014).  This ability to regulate cytoskeletal 

rearrangement could result in alterations in the vesicular release pathway. 

 Extracellularly, ATP is rapidly broken down by ecto-nucleotidases, restricting its actions to 

cells close to the release site (Zimmermann, et al. 2012).  The rate of ATP breakdown and the 

mRNA expression of ecto-nucleotidases (NPPs, NTPdases) were unchanged in P2Y2R
-/- cells.  

Thus, our findings suggest that the primary effect of P2Y2 receptor activiation is to stimulate the 
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level of ATP release from bone cells rather than influence the rate of ATP degradation or 

regeneration.   

 Following release, ATP can act on other P2 receptors to influence the function of 

surrounding cells. In osteoclasts, ATP and its breakdown product ADP act via the P2Y1 and/or 

P2Y12 receptors to promote bone resorption (Hoebertz et al. 2001; Su et al. 2012).  Thus, our 

finding that P2Y2 receptor activation promotes ATP release suggest indrect actions of UTP on 

bone resorption (a potential mechanism of action is shown in Fig. 7).  Consistent with this idea, 

we observed that addition of exogenous ATP rescued the resorption defect in P2Y2R
-/- 

osteoclasts; although not studied here ADP would be expected to have a similar effect.  

Furthermore, apyrase, which breaksdown all endogenous ATP, inhibited osteoclast activity. 

The use of apyrase is likely to cause a rapid accumulation of adenosine. We have shown that 

adenosine has no effect on osteoclast function (Hajjawi, et al. 2016) whilst others report it 

promotes resorption (Kara, et al. 2010).  If the actions of apyrase were a consequence of 

higher adenosine levels, an increase (or no effect) in resorption would be expected.  However, 

since we observed the opposite it is more likely that the functional effects of apyrase are due to 

reduced extracellular ATP levels.  

 The role of purinergic signalling in osteoblasts has been widely studied and for some P2 

receptors multiple functional effects have been described (Burnstock et al. 2013; Gartland et al. 

2012; Noronha-Matos and Correia-de-Sa 2016; Orriss 2015). The diverse range of 

experimental models and culture conditions employed in vitro has often resulted in conflicting or 

confounding results regarding these actions.  This is particurly evident for the P2Y2 and P2X7 

receptors, stimulation of which has been shown to both inhibit and promote bone mineralisation 

(Noronha-Matos, et al. 2014; Orriss et al. 2012a; Orriss et al. 2007; Panupinthu, et al. 2007; 

Xing et al. 2014).  The data presented here show that P2Y2 deletion leads to increased levels of 

bone mineralisation.  Based on our findings one potential mechanism of action is summarised 

in Fig. 7.  We  suggest that UTP acts at the P2Y2 receptor to stimulate ATP release, once 

released ATP can then act via other P2 receptors to block bone mineralisation (Orriss et al. 
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2012a), as well as exerting a direct physiochemical blockade via its breakdown product, 

pyrophosphate (Orriss et al. 2007; Orriss, et al. 2016). 

Fluid flow and mechanical stress are well known stimulators of osteoblast ATP release 

(Genetos et al. 2005; Romanello et al. 2001; Rumney, et al. 2012).  This enhanced release of 

ATP has been implicated in mechanically-induced bone formation via increased prostaglandin 

E2 (PGE2) secretion (Genetos et al. 2005).  However, the ATP levels required to induce PGE2 

production are 10-fold higher than those needed to inhibit mineralisation and may only occur 

following mechanical stress. These potentially confounding actions serve to illustrate the highly 

complex, local effects of purinergic signalling on bone cell function. Thus, how a bone cell 

responds to these signals is likely to be influenced by factors including local nucleotide 

concentration, receptor expression profile, ecto-nucleotidase expression and activity, and, for 

osteoblasts and osteocytes, degree of mechanical stress experienced. 

  In conclusion, this study describes, for the first time, a role for the P2Y2 receptor in 

regulating osteoclast function. The in vitro findings also provide further support for the inhibitory 

actions of P2Y2 receptor signalling on bone mineralisation under normal conditions. Taken 

together our findings indicate that the P2Y2 receptor modulates bone homeostasis by regulating 

extracellular ATP levels and, consequently, local purinergic signalling.  
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FIGURE LEGENDS 

Figure 1.  P2Y2R
-/- mice display age-related increases in trabecular bone. 

Trabecular bone volume (BV/TV) was increased by ≤46% and ≤48% in the (A) femur and (B) 

tibiae of P2Y2R
-/- mice, respectively.  Trabecular number (Tb.N) was increased (C) ≤27% in the 

femur and (D) ≤30% in the tibia.  Trabecular thickness (Tb.Th) was ≤17% and ≤10% higher in 

the (E) femur and (F) tibia, respectively.  (G, H) Trabecular BMD was increased ≤12%. (I, J) 

Cortical bone volume, (K, L) cortical thickness, (M) periosteal diameter and (N) endosteal 

diameter were unchanged. Values are means  SEM (n=10), significantly different from 

controls: * = p<0.05, ** = p<0.01, *** = p<0.001.  (O) Representative 3D volumetric images of 

the trabecular and cortical bone of 24-week old P2Y2R
-/- and P2Y2R

+/+ mice 

Figure 2.  Increased bone formation by osteoblasts from P2Y2R
-/- mice  

In cultures of (A) calvarial and (B) long-bone osteoblasts from P2Y2R
-/- mice the level of 

mineralised bone nodule formation was increased 3-fold and 5-fold, respectively.  Basal TNAP 

activity was increased by ≤3-fold in P2Y2R
-/-  (C) calvarial and (D) long bone osteoblasts (n = 

6).  (F) Serum TNAP activity was increased up to 60% (n = 10).  (E) Serum P1NP levels were 

unchanged in P2Y2R
-/- mice (n = 10).  Values are means  SEM, significantly different from 

controls: * = p<0.05,  ** = p<0.01, *** = p<0.001. (G) Representative whole well scans 

(unstained) and phase contrast microscopy images (alizarin red stained) showing the increased 

bone formation in cultures of P2Y2R
-/- calvarial osteoblasts.  Scale bars: whole well = 0.5cm, 

microscopy images = 50µm.   

Figure 3.  Osteoclasts from P2Y2R
-/- mice exhibit defective resorption 

P2Y2 receptor deletion (A) had no effect on osteoclast number but (B) decreased resorption 

per osteoclast by 75% (n = 8). (C) Serum CTX levels were up to 35% lower in P2Y2R
-/- mice (n 

= 10). Values are means  SEM, significantly different from controls: * = p<0.05, *** = p<0.001.  

(D)  Representative transmitted and reflective light microscopy images showing the decreased 

resorption seen in P2Y2R
-/- osteoclast cultures. Scale bar = 50µm. (E) Qualitative histology 
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suggested that the number of TRAP-positive osteoclasts was reduced on the endocortical and 

trabecular bone surfaces in 24-week but not 8-week old P2Y2R
-/- mice.   Scale bar = 100µm 

Figure 4.  The role of the P2Y2 receptor and extracellular ATP in regulating bone 

resorption 

Treatment with (A) UTP (B) 2-thioUTP had no effect on osteoclast formation.  The area 

resorbed per osteoclast was increased up to (C) 80% by UTP and (D) 45% by 2-thioUTP 

(≥10nM) in P2Y2R
+/+ but not P2Y2R

-/- osteoclasts, (E) P2Y2R
-/- osteoclasts mice displayed a 

53% reduction in basal ATP release.  (F) ATP breakdown was unchanged in P2Y2R
-/- 

osteoclasts. (G) Culture with apyrase inhibited bone resorption in normal osteoclasts by up to 

55%.  (H) Addition of exogenous ATP (≥1µM) returned the level of resorption in P2Y2R
-/- 

osteoclast cultures to normal. Values are means  SEM (n = 8), significantly different from 

controls: * = p<0.05, ** = p<0.01,  *** = p<0.001. 

Figure 5.  The effect of UTP and 2-thioUTP on ATP release from osteoclasts 

(A) UTP (≥1µM) increased extracellular ATP release by ≤2-fold for up to 90 minutes post-

treatment. (B,C,D) No effects of UTP on ATP released were seen P2Y2R
-/- cells.  (E) 2-thioUTP 

(≥0.1µM) dose-dependently increased extracellular ATP levels by up to 50% (F, G, H) but had 

no effect in P2Y2R
-/- osteoclasts.  Long-term  treatment (7days) with (I) UTP and (J) 2-thioUTP 

treatment enhanced ATP release by up to 70% and 65%, respectively in P2Y2R
+/+ but not 

P2Y2R
-/- osteoclasts. Values are means  SEM (n = 10), significantly different from controls: * = 

p<0.05, ** = p<0.01,  *** = p<0.001. Differences between P2Y2R
+/+ and P2Y2R

-/-: # = p<0.05, ## 

= p<0.01, ### = p<0.001.  Standard curves used to calculate ATP concentrations in acute (K) 

UTP and (L) 2-thioUTP experiments. 

Figure 6.  The role of the P2Y2 receptor in ATP release from osteoblasts 

(A) No differences were observed in the rate of ATP breakdown between P2Y2R
+/+ and P2Y2R

-/- 

osteoblasts.  (B) Basal ATP release was up to 60% lower from P2Y2R
-/- osteoblast. Increased 

ATP release from P2Y2R
+/+ but not P2Y2R

-/- osteoblasts treated for 14 days with (C) UTP (≤4-

fold) and (D) 2-thioUTP (≤3-fold). (E) Acute treatment with UTP (≥10µM) increased ATP 
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release by ≤4-fold for up to 60 minutes.  (F,G,H) No effect of UTP (10µM) on  ATP release from 

P2Y2R
-/- osteoblasts. (I) ≥1µM 2-thioUTP also enhanced ATP release (≤4-fold) from 

P2Y2R
+/+osteoblasts but was without effect in P2Y2R

-/- cells (J,K,L). Values are means  SEM 

(n = 12), significantly different from controls: * = p<0.05, ** = p<0.01,  *** = p<0.001. 

Differences between P2Y2R
+/+ and P2Y2R

-/-: # = p<0.05, ## = p<0.01, ### = p<0.001. 

Figure 7.  Proposed role of the P2Y2 receptor in osteoclast and osteoblast function 

In osteoclasts, UTP acts via the P2Y2 receptor to promote the release of ATP (via the P2X7 

receptor).  Once released ATP (and ADP) can act via the P2Y1 and / or P2Y12 receptors to 

stimulate bone resorption. UTP can also act via the P2Y2 receptor to stimulate ATP release 

from osteoblasts (via vesicular exocytosis).  ATP can then act via other P2 receptors (e.g. 

P2X1 or P2X7) to inhibit bone mineralisation.  ATP can also be broken down by NPP1 to 

produce the mineralisation inhibitor, pyrophosphate (PPi). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

Table 1: The effect of P2Y2 receptor deletion on gene expression in osteoblasts and 

osteoclasts 

Gene 
Fold change in 

expression 
Gene 

Fold change in 

expression 

Osteoclasts    

RANK -2.6 ± 0.66 NPP1 -2.83 ± 0.47 

Cathepsin K -4.8 ± 0.13*  NPP3 1.14 ± 0.575 

c-fms -2.1 ± 0.52 NTPdase 1 -2.85 ± 0.50 

TRAP -2.3  ± 0.13 NTPdase 3 1.83 ± 0.57 

CICN7 -1.2 ± 0.10 NDPK -1.8 ± 0.27 

V-ATPase 1.1 ± 0.29   

Osteoblasts    

Ocn 3.3 ± 0.78*  TNAP 1.94 ±.476 

Opn 6.0 ± 0.14***  NPP1 -1.3 ± 0.48 

On 1.49 ± 0.18 NPP3 -1.13 ± 0.20 

Col1α1 1.67 ± 0.51 NTPdase 1 1.42 ± 0.41 

Runx2 1.28 ± 0.07 NTPdase 3 1.22 ± 0.391 

RANKL 1.28 ± 0.34 NDPK 1.44 ± 0.249 

M-CSF 1.09 ± 0.33   

Opg 4.52 ± 0.13 **   

 

Data obtained from qPCR. Values are means ± SEM (n = 4). Significantly different from 

controls * = p<0.05, ** = p<0.01, ** = p<0.001. 

RANK = receptor activator of nuclear factor ΚB, c-fms = M-CSF receptor, TRAP = tartrate 

resistant acid phosphatase, CICN7 = chloride channel CICN7, NPP1/3 = ecto-nucleotide 

pyrophosphatase/phosphodiesterase 1/3,  NTPdase = ecto-nucleoside triphosphate 

diphosphohydrolase, NDPK = nucleoside diphosphokinase, Ocn = osteocalcin, Opn = 

osteopontin, TNAP = alkaline phosphatase, On = osteonectin, Col1α1= collagen 1 alpha 1, 
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Runx2= runt related transcription factor 2, RANKL = receptor activator of nuclear factor ΚB 

ligand, M-CSF = macrophage colony stimulating factor, Opg = osteoprotegerin 
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