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Abstract Missing data are a frequent problem in cost-

effectiveness analysis (CEA) within a randomised con-

trolled trial. Inappropriate methods to handle missing data

can lead to misleading results and ultimately can affect the

decision of whether an intervention is good value for

money. This article provides practical guidance on how to

handle missing data in within-trial CEAs following a

principled approach: (i) the analysis should be based on a

plausible assumption for the missing data mechanism, i.e.

whether the probability that data are missing is independent

of or dependent on the observed and/or unobserved values;

(ii) the method chosen for the base-case should fit with the

assumed mechanism; and (iii) sensitivity analysis should

be conducted to explore to what extent the results change

with the assumption made. This approach is implemented

in three stages, which are described in detail: (1) descrip-

tive analysis to inform the assumption on the missing data

mechanism; (2) how to choose between alternative

methods given their underlying assumptions; and (3)

methods for sensitivity analysis. The case study illustrates

how to apply this approach in practice, including software

code. The article concludes with recommendations for

practice and suggestions for future research.

Key Points for Decision Makers

Missing data are a frequent problem in cost-

effectiveness analysis within a randomised clinical

trial.

Different methods of handling missing data can yield

different results and affect decisions on the value for

money of healthcare interventions.

The choice of method should be grounded in the

assumed missing data mechanism, which in turn

should be informed by the available evidence.

The impact of alternative assumptions about the

missing data mechanism should be carefully assessed

in sensitivity analysis.

1 Introduction

Decisions on whether new interventions are cost effective

and should be offered by healthcare services are often

informed by a cost-effectiveness analysis (CEA) under-

taken within a randomised controlled trial (RCT), referred

to as a within-trial CEA. Missing data occur frequently in

RCTs: patients may be lost to follow-up, questionnaires

may be lost or unreturned and responses to individual
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questionnaire items may be illegible, nonsensical or non-

existent [1]. This is a concern in within-trial CEAs because

costs or health outcomes in individuals with missing data

may be systematically different from those with fully

observed information. Therefore, handling missing data

inappropriately can bias the results, make inefficient use of

the data available and ultimately mislead resource alloca-

tion decisions. This article focuses on within-trial CEAs;

however, the principles and methods are also applicable for

analysts who wish to estimate resource use, cost or health-

related quality of life (HR-QOL) statistics from RCTs for

use as inputs to decision models.

A few studies have explored how to handle missing data

in within-trial CEAs [2] or for CEA data (costs [3, 4] or

quality-of-life data [5, 6]). The general conclusion is that

removing individuals with missing data from the analysis

or replacing a missing observation with a single predicted

value (single imputation) is rarely adequate. Nevertheless,

a recent review concluded that most applied within-trial

CEAs take the former approach and remove individuals

with missing data from the analysis or are unclear on the

methodology used [7]. As a result, it can be difficult to

understand their assumptions and to use those findings in

subsequent research or in resource allocation decisions.

These failings may be because the implications of ignoring

missing data are not well-known or due to difficulties in

implementing more appropriate methods [e.g. multiple

imputation (MI), inverse probability weighting (IPW),

likelihood-based models] given the following specific

characteristics of CEA data. Firstly, costs and quality-

adjusted life-years (QALYs), the typical outcomes in

CEAs, are cumulative measures derived from longitudinal

data collected over the trial follow-up. Each component

may have a different missing data pattern. Missing data at

one timepoint or for a specific component implies that the

aggregate variable is also missing. Given their cumulative

nature, these variables can be dealt with at various levels of

aggregation (e.g. individual resource use items vs. costs;

and dimensions of HR-QOL vs. QALYs). Secondly, both

outcomes (costs and QALYs) are non-normally distributed

(e.g. QALYs are typically bimodal, left skewed and with a

spike at 1), which has implications for the choice of

missing data method. Thirdly, they tend to be correlated

and the probability of observing one outcome may be

dependent on the value of the other. For these reasons,

handling missing data in within-trial CEAs can be

challenging.

The purpose of this article is to bridge the gap between the

methodological literature and applied research by providing

a structured approach and practical guidance, including

software code, on how to handle missing data in within-trial

CEAs. These recommendations are complementary to

existing best practice in the conduct and reporting of applied

health economic evaluations [8–10] and will be useful for

analysts conducting within-trial CEAs as well as for those

wishing to estimate costs and QALYs from trial data for use

as inputs in modelling. The structured approach follows three

principles based on methodological recommendations for

the intention-to-treat analysis of RCTs with missing data

[11]: (i) the analysis should be based on a plausible

assumption for the missing data mechanism; (ii) the method

to handle missing data should fit with the assumed missing

data mechanism; and (iii) sensitivity analysis should be

conducted to explore to what extent the results change with

different assumptions. The missing data mechanism refers to

whether the probability that data are missing is dependent or

independent of observed and unobserved values. Section 2

describes the classification of missing data mechanisms and

implications for the choice of method. Sections 3, 4 and 5

describe three stages in the analysis. Section 3 shows how to

conduct descriptive analyses to inform a plausible assump-

tion about the missing data mechanism. Section 4 critically

reviews alternative methods for handling missing data and

their underlying assumptions, in order to help readers choose

a suitable method for the base case. Section 5 proposes

methods for sensitivity analysis to departures from the cho-

sen assumption on the missing data mechanism. The three-

stage approach is illustrated in Sect. 6 with a case study using

individual patient data from a published RCT. Section 7

discusses implications and makes recommendations for

practice and research. Stata� code is provided in the Elec-

tronic Supplementary Material.

2 Classifications of Missing Data Mechanisms

The method to handle missing data should be grounded in a

plausible assumption regarding the missing data mecha-

nism. The true mechanism is usually unknown given the

observed data. Nonetheless, Rubin’s framework for clas-

sifying missing data can help analysts define their

assumptions and choose an appropriate analysis method for

the base case [12]:

• Data are missing completely at random (MCAR) if the

probability that data are missing is independent of both

observed and unobserved values; i.e. the distribution of

outcomes in the observed individuals is a representative

sample of the distribution of outcomes in the overall

population (missing and observed).

• An extension of Rubin’s MCAR is the covariate-

dependent missingness (CD-MCAR); in CD-MCAR,

the probability that data are missing may depend on

observed baseline covariates (e.g. age and gender) but

is independent of the missing and observed outcome

[13]. This distinction is useful in within-trial CEAs
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because RCTs often have multiple data collection

points and the probability that data are missing may

depend on individuals’ baseline characteristics but not

on previous outcome measurements.

• Data are missing at random (MAR) if the probability that

data are missing is independent of unobserved values,

given the observed data (including previous outcome

measurements). Therefore, any systematic differences

between the observed and unobserved values can be

explained by differences in observed variables.

• Data are missing not at random (MNAR) if, given the

observed data, the probability that data are missing is

dependent on unobserved values. For example, indi-

viduals with worse outcomes may be more likely to

have missing data on outcomes. Assuming that data are

MCAR or MAR when in fact data are MNAR may bias

the estimates of treatment effect.

3 Stage 1: Descriptive Analysis of Missing Data

A within-trial CEA should report average HR-QOL scores

and average resource use per patient (and average costs

prior to handling missing data if applicable) by trial group

over time. In addition to these, a descriptive analysis of the

missing data helps inform the base-case assumption

regarding the missing data mechanism and the range of

methods that can be used to handle it. Based on the

authors’ experience in conducting analyses with missing

data, the descriptive analysis should include the following:

(1) Amount of missing data by trial group at each follow-

up period. Data are unlikely to be MCAR if the

proportion of missing data differs by treatment

allocation (and potentially across different time-

points). Further, any imbalance in the amount of

missing data by treatment group increases the sensi-

tivity of the estimated treatment effects to departures

from MAR.

(2) Missing data patterns. Graphical tools (such as

‘misspattern’ in Stata�) are useful to visualise

and understand the pattern of missing data. These

graphs indicate whether patients with missing data are

lost to follow-up throughout the duration of the trial

(monotonic pattern), and therefore whether relatively

simpler approaches can be used, such as IPW. In

addition, these graphs can be plotted to determine

whether data are missing for all the questions in HR-

QOL or resource use or for individual items in each

category (more detail in Sect. 6.1). These patterns can

guide the choice of whether missing data need to be

modelled in the individual components or in the

aggregate score.

(3) Association between missingness and baseline vari-

ables. Logistic regressions can be used to investigate

which factors, such as baseline covariates and post-

randomisation variables, are associated with the

probability of missingness. Data are not MCAR if a

baseline variable predicts missingness. Determining

whether a specific variable is a predictor of missing-

ness should be based on statistical significance (either

univariate or multivariate associations) and on clin-

ical plausibility.

(4) Association between missingness and observed out-

comes. Logistic regressions can also explore whether

missingness is associated with previously observed

outcomes (e.g. costs or HR-QOL score at follow-up).

A significant association indicates that data are not

CD-MCAR and that MAR may be a more plausible

assumption under which to conduct the analysis.

The results of the descriptive analysis should be dis-

cussed by the trial team (trialists, clinicians, trial man-

agement group, patient involvement group, etc.) to infer

possible reasons for missing data and inform the assump-

tion about the missing data mechanism. The descriptive

analysis can distinguish between MCAR, CD-MCAR and

MAR. However, it is usually impossible to rule out MNAR

since the unobserved data are, by definition, unknown. The

implications of MNAR should be explored in the sensi-

tivity analysis (see Sect. 5).

4 Stage 2: Choosing and Implementing a Method

to Handle Missing Data

The method to handle missing data should fit with the

assumption regarding the missing data mechanism and

account for the uncertainty around the unknown values. In

addition, the method should be able to handle the particular

characteristics of CEA data, namely, their longitudinal

structure, non-normal distributions and correlations.

4.1 Handling Missing Baseline Values

Missing baseline values can affect the analysis if they are

used to predict subsequent missing outcomes or to improve

the precision of estimates of treatment effect. Removing

individuals with missing baseline data is rarely adequate.

Both mean imputation and MI are good options for

imputing missing baseline values. Mean imputation fills in

each missing value of the baseline covariate with the mean

of the observed values and ensures that the imputed values

are independent of the treatment allocation [14]. Alterna-

tively, MI can impute the missing baseline covariates when

imputing the cost-effectiveness outcomes [15]. MI may be
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less efficient than mean imputation because it imputes in an

arm-dependent way, thereby exacerbating covariate

imbalance. Imputing in an arm-dependent way has been

shown to be less efficient in imputing missing baselines in

RCTs [14].

4.2 Complete Case Analysis, Available Case Analysis

and Inverse Probability Weighting

Complete case and available case analyses are valid under

MCAR and, if the analysis model includes all baseline

variables that predict both outcome and missingness, under

CD-MCAR [13]. In complete case analysis (CCA), only

individuals with complete data on all variables at all fol-

low-up points are included. This assumes that individuals

with complete data are representative of those with missing

data, conditional on the variables included in the analysis

model. It is inefficient in studies with more than one fol-

low-up assessment because all the information from indi-

viduals with at least one assessment missing is discarded.

In addition, the analysis cannot be considered ‘intention-to-

treat’ because some randomised patients with follow-up

data are excluded [11]. CCA is a useful starting point and

benchmark but should not constitute the base case for

within-trial CEAs.

Available case analysis makes more efficient use of the

data than CCA. With available case analysis, the mean

costs and QALYs are calculated by treatment group at each

follow-up point. Total mean costs and QALYs by treatment

group over the whole time horizon are then estimated as the

sum of these means. A limitation is that available-case

analysis may result in using different samples for the costs

and for the health outcomes, which may lead to non-

comparability between the patient groups and affect the

covariance structure [4].

In IPW, the observed cases are weighted by the inverse

of the probability of being observed. IPW is suitable for a

monotonic pattern of missing data, in which individuals

lost to follow-up do not return to the study. The IPW

approach applied to within-trial CEAs has two steps. First,

the probability of being observed at each time period is

estimated using a Kaplan–Meier survival function, para-

metric survival curves or logistic regression [1, 16]. IPW

assumes MCAR, CD-MCAR or MAR depending on whe-

ther the model used to estimate the probability of being

observed includes no predictors of missingness, baseline

predictors of missingness, or baseline and time-dependent

predictors of missingness, respectively. Second, the costs

and QALYs of each individual at each time period are

weighted by the inverse of the probability of being

observed. The mean weighted difference in costs and

QALYs and its associated uncertainty can be estimated

with regression analysis (e.g. using a system of seemingly

unrelated regressions or via bootstrap). IPW can be sensi-

tive to the correct specification of the model estimating the

probability of being observed and can give biased estimates

if some individuals have very low probabilities of being

observed (large weights) [1]. More sophisticated methods

have been developed in order to improve precision and

reduce the reliance of IPW on the correct specification of

the model [17, 18].

In principle, all randomised individuals should be

included in the analysis as long as some follow-up data

were collected. Individuals with only baseline data typi-

cally contribute very little. The impact of including indi-

viduals with only baseline data should be explored in a

scenario to make the analysis truly intention-to-treat.

4.3 Single Imputation Methods

Imputation methods fill in the missing data with a predicted

value. In mean imputation, the missing data are filled in

with the unconditional mean of the observed cases. Mean

imputation may be valid for missing baseline variables, as

noted above, but it is never appropriate for missing out-

comes because it underestimates uncertainty. In conditional

regression imputation, each missing value is replaced by

the predicted value from a regression model conditional on

the observed variables, such as baseline covariates and

treatment allocation. While this imputation approach

assumes MAR, it does not recognise that the imputed

values are estimated rather than known. Therefore, this

method underestimates the standard errors and distorts the

correlation structure of the data, which can affect estima-

tion of the probability that the intervention is cost effective.

Last-value carried forward (LVCF) assumes that the out-

come remains constant after dropout; i.e. the last obser-

vation observed is representative of the missing data in

subsequent observations. LVCF has been shown to bias

parameter estimates even if data are MCAR [19]. For these

reasons, single imputations methods are not appropriate to

handle missing data on outcomes.

4.4 Multiple Imputation

MI replaces each missing observation with a set of plau-

sible imputed (predicted) values, drawn from the posterior

predictive distribution of the missing data given the

observed data. MI can handle both monotonic and non-

monotonic missing data under MAR and can be modified

to handle MNAR (see Sect. 5). Unlike single imputation

methods, MI recognises the uncertainty associated with

both the missing data and estimated parameters in the

imputation model. It relies on the correct specification of

the imputation model, particularly as the amount of
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missing data increases. Interactions and non-linear terms

require specification in advance; therefore, MI may be

difficult to implement for a large number of variables (e.g.

types of resource use or types of costs).

The MI procedure follows three steps [12]. In step 1,

regression models are used to predict plausible values for

the missing observations from the observed values. This

step has two parts: first, the regression parameters used to

predict the values are randomly drawn from their posterior

distribution; then, the predicted values are drawn from their

posterior predictive distribution. These values are then used

to fill in the gaps in the dataset. This process is repeated

m times (m being the number of imputations), creating

m imputed datasets. Generating multiple datasets reflects

the uncertainty arising from imputation. White et al. [20]

suggest that, as a rule of thumb, the number of imputed

datasets should be similar to the percentage of incomplete

cases. In step 2, each dataset is analysed independently

using standard methods to estimate the quantity of interest

(e.g. expected costs and QALYs in each treatment group

over the trial time horizon). Finally, the estimates obtained

from each imputed dataset are combined using Rubin’s

rules to generate an overall mean estimate of the quantity

of interest together with its standard error. Rubin’s rules

ensure that the standard error reflects the variability within

and across imputations.

There are two main approaches to implementing MI:

joint modelling (MI-JM) and chained equations (MICE).

MI-JM is a parametric approach where the variables to be

imputed are assumed to follow a multivariate normal

distribution. This can be an issue for within-trial CEAs

since costs and QALYs are usually non-normally dis-

tributed, although variables can be transformed to nor-

mality [21, 22]. MICE specifies one imputation model for

each variable. Imputed values in one variable are used to

predict missing values in other variables in an iterative

way until the model converges to a stable solution [20].

Theoretically, MICE should accommodate non-normal

variables better than MI-JM because the model for each

variable can be specified separately (e.g. logistic regres-

sion for binary variable, Poisson regression for counts,

etc.). However, some simulation studies suggest that MI-

JM and MICE can handle non-normality equally well

[23, 24]. An advantage of MICE over MI-JM is that

MICE can allow for interactions and non-linear terms and

incorporate variables that are functions of imputed vari-

ables (termed ‘passive variables’), which can be useful in

within-trial CEAs (e.g. to predict costs as a function of

imputed counts of resource use). In addition, the fully

conditional specification of MICE makes it easier to

handle datasets with a large number of variables with

missing data, which is often the case in within-trial

CEAs.

MI can be implemented in Stata� as MI-JM using ‘mi

impute mvn’ or as MICE using ‘mi impute chained’ or

the ‘ice’ package. The analysis step can be performed

using ‘mi impute estimate’ or the ‘mim’ package.

Multiply imputed data created by ‘ice’ can be imported

into ‘mi impute’ for analysis using the command ‘mi

import ice’; otherwise, it can be analysed directly using

the ‘mim’ command. Equivalent programmes are available

in SAS� and R. The subsequent sections focus on the

implementation of MICE because its flexibility makes it

more applicable to missing data in within-trial CEAs.

4.4.1 The Imputation Model

Unbiased and reliable imputation of the missing data

requires the correct specification of the imputation model,

namely which variables to include, how to deal with their

distributions and how to capture their correlations. The

imputation model should include all variables that are

associated with both the missing data and CEA outcomes

(costs and health outcomes), and all covariates that are in

the analysis model [20]. Although all variables collected in

the RCT could, in principle, be included, this can be

unwise in practice because a large number of variables can

make the model difficult to estimate. Therefore, some

selection to identify the most predictive variables may be

required. The imputation should be implemented separately

by randomised treatment allocation [25]. This explicitly

recognises in the imputation model that imputations are

different between treatment groups, hence that the posterior

distribution of the missing data given the observed may be

different between treatment groups. Imputing the treatment

groups together but including all possible interactions

would only recognise differential means by treatment

group and not a differential covariance structure.

Costs and QALYs can be imputed at more or less di-

saggregated level, from counts of each type of resource use

or domains of the HR-QOL instrument to costs or QALYs

over the period of follow-up. A balance needs to be struck

between maintaining the data structure (hence imputing at

more disaggregated level) and achieving a stable imputa-

tion model (which becomes more difficult as more vari-

ables with missing data are added [26]). The choice of

approach should be informed by the structure of the data,

the pattern of missing data and by testing a variety of

approaches. We tentatively suggest the following:

i. For QALYs, imputing the individual domains may be

advantageous if the distribution of HR-QOL scores

(typically with a spike at 1 and/or bimodal) is difficult

to replicate with an imputation model at the score level

or if the individual domains are missing rather than the

whole questionnaire. In practice, either approach may

Missing Data in Within-Trial Cost-Effectiveness Analysis 1161



be equally valid as suggested by a recent simulation

study comparing imputing EQ-5D at individual

domains or index score level [27].

ii. For costs, imputing at the total cost level is likely to be

appropriate when the different types of resource use

that make up the cost have the same pattern of missing

data. Since it is generally recommended to report the

resource use components [8–10], a pragmatic approach

is to impute at both aggregate and disaggregate levels

as alternative sensitivity analyses, but having more

confidence in the former.

iii. Imputing at the resource use level is probably better

when the different types of resource use have different

patterns of missing data. If this makes the imputation

model difficult to estimate, the key drivers of costs

can be imputed at a resource level (e.g. length of stay

in hospital, inpatient admissions) and the other items

as one cost variable.

Results after imputation should be compared with the

descriptive analysis outlined in Sect. 3. Further research on

the assessment of these alternative approaches is

warranted.

Irrespective of the level of aggregation, data on costs

and QALYs are unlikely to be normally distributed. This

can be an issue because most readily available software

packages that implement MICE tend to rely on normality

for the imputation of continuous variables. One option is to

transform the data towards normality, e.g. with log trans-

formation. After imputation, the variables are back trans-

formed to the original scale before applying the analysis

model. This back transformation does not require correct-

ing for non-normal errors (also referred to as smearing

[28]) because the imputed value is drawn from the pos-

terior predictive distribution. Another option is to use

predictive mean matching. In predictive mean matching,

the missing observation is imputed with an observed value

from another individual whose predicted value is close to

the predicted value of the individual with the missing

observation [29]. This ensures that only plausible values of

the missing variable are imputed (e.g. costs are always

positive and HR-QOL is always B1). Two-part models

may be used for variables with a large proportion of zeros

(e.g. costs), with or without transforming the non-zero

values or in combination with predictive mean matching

[30, 31].

Validation is the final step in the development of the

imputation model. There is little guidance on how to assess

whether the imputation procedure is producing valid

results. One option is to assess whether the distributions of

observed and imputed values are similar [32, 33]. Another

option is to compare the results with an alternative method

that assumes the same missing data mechanism.

4.4.2 Analysis of the Multiply Imputed Dataset

A within-trial CEA aims to estimate the average difference

in costs and health outcomes between treatment groups,

standard errors and correlation as well as the probability

that the intervention is cost effective for a particular

threshold (or a range of thresholds) and the value of

additional information. The average difference in costs and

health outcomes and associated uncertainty are straight-

forward to obtain post-MI with Rubin’s rules. The proba-

bility that the treatment is cost effective can also be

estimated with Rubin’s rules or using bootstrap. In the

former, costs and QALYs are assumed to follow a bivariate

normal distribution. The multiply imputed datasets are

analysed with a seemingly unrelated regression model [34],

combining estimates of mean coefficients and the covari-

ance matrix as per Rubin’s rules. The validity of this

approach relies on the multivariate normality of the group-

specific mean costs and QALYs; this is often reasonable

with moderate sample sizes, even when the individual costs

and QALYs are skewed. The alternative approach is to

draw bootstrap samples from each of the multiply imputed

datasets and estimate the difference in net benefit between

the treatment groups in each bootstrap sample (at a given

threshold for cost per QALY) [30, 35]. The proportion of

bootstrap samples in which the net benefit is positive rep-

resents the probability that the treatment is cost effective

for each multiply imputed dataset. This probability is then

averaged across all multiply imputed datasets. Both

approaches are valid because they combine the multiply

imputed estimates in a manner that accounts for both the

within- and between-imputation variability.

4.5 Likelihood-Based Methods

Likelihood-based methods use all the observed data in a

single step to estimate the treatment effect (rather than

creating and then analysing the multiply imputed datasets).

Likelihood-based models assume MAR conditional on the

variables included unless MNAR is explicitly modelled.

The effect of the intervention on costs and QALYs can be

jointly estimated in order to maintain their correlation

structure. Longitudinal data can be handled with a mixed

(multilevel) model, where the time-specific effects are

modelled as random effects [36].

Likelihood-based methods should lead to similar (and at

least as efficient) results when compared to MI when all

variables that relate to missingness are included in the

analysis model. However, an important limitation is that, in

within-trial CEAs, the covariates in the pre-specified ana-

lysis model are unlikely to include all variables associated

with missingness. In this respect, MI provides more
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flexibility by allowing the model for the missing data to be

estimated separately from the analysis model. In addition,

likelihood-based models rely on the correct specification of

the model, including its parametric assumptions (e.g.

multivariate normality). Since the specification of the

model may have an impact on the results, the impact of

different specifications should be compared and reported

[1].

5 Stage 3: Sensitivity Analysis to the Missing

at Random (MAR) Assumption

The sensitivity analysis to the MAR assumption evaluates

the impact of assuming that the data are MNAR rather than

MAR. In the context of CEA, an important concern is

whether the resource allocation decision changes if the data

are assumed MNAR; in other words, if individuals with

unobserved outcomes have systematically worse or better

outcomes than comparable individuals with observed out-

comes. Assessment of this specific form of structural

uncertainty is relatively well-established in biostatistics but

it is rarely undertaken in within-trial CEA. The two main

methods for assessing potential departures from MAR are

selection models and pattern mixture approaches [1]. As

both methods can be difficult for the non-specialist to

implement, a practical approximation to the pattern-mix-

ture model is presented in Sect. 6.3. The choice between

selection models and pattern mixture approach will depend

on which way of expressing differences between the

observed and unobserved data is more meaningful for the

specific research question being addressed.

Selection models formulate the sensitivity analysis in

terms of alternative missing data mechanisms. For exam-

ple, individuals in worse health may be more likely to have

missing data on QALYs. This requires the specification of

a model that explicitly recognises the MNAR selection

mechanism, which is then fitted jointly with the analysis

model for the observed data [37]. Selection models can be

approximated using a weighting approach [38]. In this, MI

is done under MAR, but the multiply imputed estimates are

combined using a weighted version of Rubin’s rules, where

imputations more compatible with a proposed MNAR

mechanism are given relatively higher weight. The

weighting approach tends to fail for large departures from

MAR because a small number of imputations is over-

weighted.

Pattern mixture modelling formulates sensitivity ana-

lysis according to differences between the distribution of

the observed and unobserved data. For example, outcomes

in individuals with missing data may be worse than those

observed in similar individuals with observed data. Under

this approach, data are initially imputed under MAR. The

distribution of the unobserved values is assumed to shift

from the MAR imputation distribution by a sensitivity

parameter. The imputed values then are shifted by this

sensitivity parameter to give a dataset imputed under

MNAR [39, 40]. Results are combined using the usual

Rubin’s rules. This is repeated for a range of plausible

values for the sensitivity parameter. Either a range of

results or the value of the sensitivity parameter required to

change the results are reported.

6 Illustration with the REFLUX Study

Data from a published RCT are used to illustrate the

structured approach to handle missing data in a within-trial

CEA. Descriptive analysis informs the base-case assump-

tion regarding the missing data mechanism. This assump-

tion determines the method used in the base case; other

methods are presented for comparison. Sensitivity analysis

explores the impact of alternative assumptions on the cost-

effectiveness results. Stata� code is provided in the Elec-

tronic Supplementary Material.

The REFLUX study was an RCT comparing a policy of

offering early laparoscopic fundoplication (with the option

of taking medication post-surgery if considered helpful)

with a policy of continued medical management, in

patients with stable gastro-oesophageal reflux disease eli-

gible for both options over 5 years of follow-up [41]. The

aim is to estimate mean differences in costs and QALYs

and associated uncertainty and the probability that the

intervention (surgery) is cost effective at £20,000 per

QALY gained, the conventional threshold used in the UK

[9].

6.1 Stage 1: Descriptive Analysis of Missing Data

6.1.1 Amount of Missing Data by Trial Group at Each

Follow-Up Period

The REFLUX study collected data on EQ-5D and health-

care resource use by postal questionnaire at 3 and

12 months, and yearly up to year 5. The proportion of

individuals with complete data decreased with the duration

of follow-up but remained similar between treatment

groups (Table 1): from 75 % (year 1) to 65 % (year 5) in

the surgery group and from 82 % (year 1) to 63 % (year 5)

in the medical management group. In the surgery group,

more individuals are observed in year 5 than in year 3;

therefore, the missing data do not follow a monotonic

pattern; i.e. there are individuals with intermittent missing

data (lost to follow-up one year but returned subsequently).

IPW would be inappropriate under such patterns. CCA

would be, as a minimum, inefficient because it would
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discard observed data from individuals with some missing

outcomes.

6.1.2 Missing Data Patterns

Figure 1 presents the pattern of missing data. As discussed

above, missing data is non-monotonic since individuals

with missing data at one follow-up may return to the trial

subsequently (Fig. 1a and b). For example, some individ-

uals have missing data at 3 months but have complete data

in other timepoints. In addition, the pattern of missing data

is different for QALYs and costs, but is the same over the

different types of resource use (general practitioner visits,

hospitalisations and drugs) for each year of follow-up.

Therefore, costs can be aggregated at each time period

without major loss of information. This pattern reflects the

assumption that missing resource use items in question-

naires otherwise filled in meant that no resource was used.

6.1.3 Association Between Missingness and Baseline

Variables

Table 2 presents the odds ratios from logistic regressions of

indicators of missing cost and QALY data on treatment

allocation and a selection of baseline variables. Lower EQ-

5D at baseline is associated with missing cost and QALY

data. This suggests that the data are unlikely to be MCAR.

The other baseline covariates [gender, body mass index

(BMI) and age] were associated with missingness but not

statistically significant at 5 %. However, all were signifi-

cant predictors of costs and QALYs at each year (data not

shown). This information would support both CD-MCAR

and MAR assumptions.

6.1.4 Association Between Missingness and Observed

Outcomes

Logistic regressions explored whether missingness is

associated with previously observed outcomes by regress-

ing indicators of missing costs or QALYs at each year on

their previously observed values (e.g. regressing missing

Table 1 Number and proportion of individuals with complete data

by treatment allocation

Complete at Surgery (n = 178) Medical management (n = 179)

Year 1 134 (75%) 147 (82%)

Year 2 121 (68%) 134 (75%)

Year 3 112 (63%) 119 (66%)

Year 4 114 (64%) 118 (66%)

Year 5 115 (65%) 113 (63%)

All years 88 (49%) 84 (47%)

Fig. 1 Pattern of missing data. Black shading represents missing data

for one or more individuals (arrayed along the horizontal axis) on a

particular variable (arrayed along the vertical axis); grey shading

represents observed data. a Pattern of missing data on costs. b Pattern

of missing data on health-related quality of life (EQ-5D). GP general

practitioner

Table 2 Logistic regression for missingness of costs and quality-

adjusted life-years on baseline variables

Odds ratio in logistic regression for missing

data (95 % CI)

Missing data on

costs

Missing data on

QALYs

Treatment allocation 1.04 (0.68–1.59) 1.04 (0.68–1.58)

Gender 1.29 (0.81–2.04) 1.10 (0.70–1.74)

BMI 1.01 (0.96–1.06) 1.01 (0.96–1.06)

Age 0.99 (0.97–1.00) 0.99 (0.97–1.00)

EQ-5D at baseline 0.38** (0.16–0.90) 0.46* (0.19–1.09)

QALYs quality-adjusted life-years

* Indicates statistical significance at 0.10

** Indicates statistical significance at 0.05
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costs in year 2 on costs and QALYs in year 1–3). Most

regressions produced statistically insignificant (p [ 0.05)

results with two exceptions: missing QALYs at year 5 were

significantly associated with QALYs at year 3 and 4;

missing costs at year 5 were significantly associated with

costs at year 3 and QALYs at year 3 and 4. Although these

regressions are likely to be affected by multicollinearity,

they provide an indication that data are unlikely to be CD-

MCAR. Therefore, data are assumed to be MAR. In the

analyses that follow, missingness is assumed to depend on

baseline covariates (gender, BMI, age, EQ-5D at baseline)

and observed costs and QALYs but independent of unob-

served costs and QALYs at each year. It is impossible to

know whether data are MNAR or MAR from the observed

data. Therefore, sensitivity analysis tests the impact of

assuming MNAR and the implications of the results for the

resource allocation decision.

6.2 Stage 2: Choosing and Implementing a Method

to Handle Missing Data

The methods that can handle non-monotonic missing data

under the MAR assumption whilst incorporating the

uncertainty around the unobserved data and maintaining

the correlation structure are MI and likelihood-based

methods (specifically, a mixed model to account for the

longitudinal nature of the data). The base case uses MI-

MICE under MAR. A mixed model is presented as an

alternative. CCA, which is not valid under MAR, is pre-

sented for comparison.

The MI model uses the baseline covariates, costs and

QALYs at each year to impute unobserved costs and

QALYs, so that, for example, missing costs at year 5 are

imputed using data on baseline covariates, costs at years

1–4 and QALYs at years 1–5. The imputation is run 60

times since there is up to 51 % missing observations.

Figure 1 shows that the cost components at any timepoint

are either all observed or all missing, so total yearly costs

are imputed. Predictive mean matching is used because

costs and QALYs are non-normally distributed. The MI

model is validated by comparing the distributions of the

observed with the imputed data (Fig. 2). The distributions

of imputed data are similar to the distribution of the

observed data. The multiply imputed datasets are analysed

with the same seemingly unrelated regression model used

for CCA.

The mixed model does not require an imputation step.

Costs and QALYs at each year are regressed on time,

baseline EQ-5D and treatment allocation. Costs are coded

in multiples of £1,000 to make their numerical values more

similar to QALYs and facilitate estimation. The mixed

model estimates the intervention effects on total yearly

costs and QALYs; these are discounted and summed to

give the discounted intervention effects on total costs and

QALYs.

Table 3 presents the cost-effectiveness results. The

mean differences in costs and QALYs and the incremental

cost-effectiveness ratio changed according to the method.

The difference in costs was £1,668 (95 % CI 1,142–2,194)

for CCA, £1,305 (95 % CI 805–1,806) for MI and £1,338

Fig. 2 Comparison of the

distribution of imputed values

(imputation number 1 to 10)

with the observed data

(imputation number 0) for

quality-adjusted life-years and

costs in years 1 and 5.

Individual values are

represented by dots; the width

of a row of dots represents the

frequency of values in the

distribution. QALYs quality-

adjusted life-years
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(843–1,833) for the mixed model; the difference in QALYs

adjusted for baseline EQ-5D was 0.301 (95 % CI

0.093–0.508) for CCA, 0.244 (95 % CI 0.052–0.437) for

MI and 0.227 (95 % CI 0.031–0.422) for the mixed model.

The standard errors are larger in the CCA, which reflects

the smaller sample size. The mixed model has slightly

larger standard errors than MI in the incremental QALYs,

possibly because of the large number of parameters to

estimate compared with the analysis model post-MI. The

average incremental costs and QALYs in the CCA are

greater than that estimated with the MI and mixed model,

suggesting a bias that would be introduced if MCAR has

been assumed. However, the three methods agree that

surgery is the cost-effective alternative. Sensitivity analysis

is useful here to determine which departures from MAR

can alter the conclusions.

Table 3 Results of different methods to handle missing data

Complete case analysis

with seemingly unrelated

regression model

Multiple imputation of costs

and QALYs followed by seemingly

unrelated regression model

Mixed model with

adjustment for baseline

EQ-5D

Difference in costs (£) Mean 1,668 1,305 1,338

SE 268 255 253

95 % CI 1,142–2,194 805–1,806 843–1,833

Difference in QALYs adjusted for

baseline EQ-5D

Mean 0.301 0.244 0.227

SE 0.106 0.098 0.100

95 % CI 0.093–0.508 0.052–0.437 0.031–0.422

ICER £/QALY 5,547 5,340 5,903

Probability that surgery is cost effective at the

threshold of £20,000 per QALY gained

0.98 0.96 0.94

ICER incremental cost-effectiveness ratio, QALYs quality-adjusted life-years, SE standard error of the mean

Fig. 3 Sensitivity analysis: data are missing not at random for

QALYs or for costs. Note—imputed costs between year 2 and 5 are

increased by 10 %; imputed QALYs between year 2 and 5 are

reduced by 10 %. The probability that surgery is cost effective is

stable at values close to 1 even if the imputed costs are increased only

for the individuals with missing data randomised to the surgery group.

Changes in imputed QALYs have an impact on the probability of cost

effectiveness if the shift is implemented only in patients with missing

data randomised to the surgery group but probability remains above

50 % throughout all scenarios. QALY quality-adjusted life-year
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Table 4 Recommendations for practice

Recommendation Comments

Stage 1: Descriptive analysis

1.1 Conduct descriptive analysis of the data:

• Proportion of missing data by trial group at each follow-up

period

• Missing data pattern

• Association between missingness and baseline variables

• Association between missingness and observed outcomes

Report the descriptive analysis that was conducted to inform the

assumption on the missing data mechanism

1.2 Discuss among the trial team (trialists, clinicians, trial

management group, etc.) the possible mechanisms and reasons

for missing data

1.3 Make an assumption on the missing data mechanism based

on the information collected in 1.1 and 1.2

Note that the descriptive analysis can distinguish between MCAR,

CD-MCAR and MAR, but it cannot rule out MNAR

1.4 State the assumption on the missing data mechanism and

justify the choice of assumption

1.5 Report HR-QOL, resource use and costs (if applicable) by

treatment group prior to imputation

Stage 2: Choosing and Implementing a Method to Handle Missing data

2.1. Choose a method to handle the missing data in accordance

with the assumed missing data mechanism

Complete case analysis (with the baseline covariates related with

missing data included in the analysis model) for CD-MCAR, MI or

likelihood-base model for MAR, IPW for monotonic missing data

under MCAR, CD-MCAR or MAR

2.2. State up front any other assumptions required for the

analysis

e.g. whether missing data in individual resource use items are

assumed to be zero

2.3. Include all randomised individuals with follow-up data Individuals with data only at baseline may be excluded from the base

case but should be included in a scenario to make the analysis truly

intention-to-treat

2.4. Impute missing baseline covariates with mean imputation or

MI

MI is more complex, and may be less efficient, than mean imputation

2.5. MI seems the most widely applicable method of analysis:

• The imputation model should include all covariates related to

missingness, related to outcomes and any variable included in

the analysis model

• MI should be implemented separately by treatment allocation

• The number of imputations should be at least greater than the

proportion of missing data

• Predictive mean matching and/or transformations in MICE

can help with CEA data that is non-normal distributed

• Costs can be imputed at a resource use level or as costs

• QALYs can be imputed at HR-QOL domain level, at the

index score level or as QALYs

MI can be implemented with chained equations (MI-MICE) or by

joint modelling (MI-JM), which assumes multivariate normality.

The current evidence base does not allow for strict recommendations

for one approach over another

2.6. Likelihood-based models are a sensible alternative to MI but

can be more difficult to implement

Likelihood-based models avoid the imputation step but only

covariates allowed for the analysis model can be included. They can

be difficult to implement when costs or health outcomes are

disaggregated

2.7. IPW methods are useful if the missing data pattern is

monotonic

IPW avoids the imputation step but its reliability is dependent on the

model specification

2.8. Other ad hoc methods (e.g. complete case, mean imputation

or last-value carried forward) should be avoided

They cannot incorporate the uncertainty inherent in missing data, and

often make implausible assumptions about the missing data

mechanism

2.9. The method chosen to handle missing data can be validated

by comparing results with an alternative method that makes the

same assumption on the missing data mechanism (e.g.

likelihood-based model vs. MI with the same covariates)

If using MI, the imputation model can be validated by comparing the

distribution of observed and imputed data
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6.3 Stage 3: Sensitivity Analysis to the MAR

Assumption

The method described in Sect. 5 for multiply imputing data

under MNAR using the pattern mixture model is used for

sensitivity analysis, because it can easily be implemented

in any statistical software [39, 40]. Costs and QALYs are

imputed under MAR and then shifted under four separate

scenarios: (1) costs are increased by between 10 and 50 %

in the first year and by 10 % in subsequent years in the

surgery arm; (2) costs are increased as in (1) but in both

arms; (3) QALYs are reduced by between 10 and 50 % in

the first year and by 10 % in subsequent years in both arms;

and (4) QALYs are reduced as in (3) but only in the surgery

arm. These scenarios were judged of most interest after

discussion with clinical experts.

Figure 3 plots the probability that surgery is cost effective

at £20,000 per QALY gained against the assumed shift in

costs and QALYs. Increasing costs or decreasing QALYs in

individuals with missing data in both patient groups (sce-

narios 2 and 3) makes little difference to the results. Simi-

larly, the probability of cost effectiveness is robust to

increasing the costs for the individuals with missing data

allocated to surgery (scenario 1). The probability changes

considerably only when the QALYs of individuals with

missing data allocated to surgery are decreased, so that the

data are assumed MAR in the medical management arm

(scenario 4). Nonetheless, surgery remains the intervention

most likely to be cost effective even if imputed QALYs in

year 1 are reduced by 50 %. The results suggest, therefore,

that the positive cost-effectiveness profile of surgery is

robust to plausible departures from MAR. In other studies,

however, there may be information from the literature, from

the clinical team or trial coordinators that suggests that

individuals with missing data are likely to have experienced

much worse outcomes. Another option is to formally elicit

the opinion of the trial team in the form of informed priors to

use as a probability distribution around the variation in costs

and QALYs, either in a pattern mixture or in a selection

model framework. In any case, it is essential to discuss the

findings of the sensitivity analysis with the trial team to

ascertain the implications of its results to the overall con-

clusions of the study.

7 Implications for Practice and Research

This is the first study to provide a structured approach and

practical guidance on how to handle missing data on costs

and health outcomes in the context of within-trial CEAs

focusing on methods that are straightforward to implement

but ensure unbiased results and make efficient use of the

data. This study critically appraises these methods and

highlights the key considerations for within-trial CEAs in

the presence of missing data. In addition, it uses the prin-

ciples proposed for the analysis of RCTs to provide a

structured approach and practical recommendations to

handle missing data in the context of within-trial CEAs,

namely (i) how to choose a plausible assumption about the

missing data mechanism; (ii) how to conduct the analysis

under that assumption; and (iii) how to conduct sensitivity

analysis to test the impact of alternative assumptions. This

structured approach is illustrated with a case study, for

which Stata� code is provided. The code should assist

analysts to implement this approach in their analyses.

Table 4 summarises our recommendations for handling

missing data in within-trial CEAs. These recommendations

are based on current evidence and the authors’ experience

Table 4 continued

Recommendation Comments

2.10. If using MI, report resource use, HR-QOL scores (if

imputed at this level), costs and QALYs by treatment group after

imputation. Results after imputation should be compared with

the descriptive analysis pre-imputation

Stage 3: Sensitivity analysis to the MAR assumption

3.1. Sensitivity analysis explores the robustness of the results to

alternative assumptions on the missing data mechanism:

• The methods proposed here (weighting approach or an

additive shift of imputed values) are straightforward and

informative

Pattern mixture and selection models can be difficult to implement

3.2. Interpret the results of the sensitivity analysis in light of the

understanding of the disease and the trial context (see 1.2.)

Does the allocation decision (i.e. is the intervention likely to be cost

effective?) change given plausible changes in the assumption on the

missing data mechanism?

CD-MCAR covariate-dependent missing completely at random, CEA cost-effectiveness analysis, HR-QOL health-related quality of life, IPW

inverse probability weighting, MAR missing at random, MCAR missing completely at random, MI multiple imputation, MI-JM MI: joint

modelling, MI-MICE MI: chained equations, MNAR missing not at random, QALYs quality-adjusted life-years
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in conducing within-trial CEAs and handling missing data.

They complement existing best practice in the conduct and

reporting of applied health economic evaluations [8–10],

and are likely to change over time as the evidence base

develops. Often, the most plausible and practical base-case

assumption is that data are MAR. MAR can be imple-

mented with a variety of methods. Three methods are

reviewed (IPW, MI and likelihood-based methods) and the

two appropriate methods for the case study (MI and like-

lihood-based methods) are applied. MI may be more

attractive for within-trial CEA because the imputation

model can include variables that are predictive of miss-

ingness, beyond those included in the analysis model (e.g.

post-randomisation variables). Including these variables in

the imputation model can reduce bias, increase precision

and make more plausible assumptions about the reasons for

the missing data than likelihood-based methods. MI is

easier to implement when categories of cost data have

different missing data patterns and therefore cannot be

aggregated at overall cost level without loss of information.

An additional advantage of MI is that it naturally extends to

the sensitivity analysis using alternative assumptions about

the missing data mechanism. Other ad hoc methods that

cannot incorporate the uncertainty inherent in missing data

and make implausible assumptions regarding the missing

data mechanism (e.g. complete case, mean imputation or

LVCF) should be avoided. The base-case assumption

should be tested in the sensitivity analysis to assess how

departures from MAR affect the results.

The objective was to provide guidance on the methods

that are straightforward to apply to within-trial CEAs with-

out advanced statistical knowledge. The selection of meth-

ods was based on the methods recommended for RCTs,

methods explored in methodological papers and on the

authors’ experience in the area [1–4, 30]. An exhaustive list

of methods was beyond the scope, as well as methods for

non-randomised studies. Other methods that ensure unbiased

and efficient analysis of datasets with missing data are full-

Bayesian analysis and doubly robust methods. Full-Bayesian

analysis estimates the missing values and the parameters of

interest (incremental costs, incremental QALYs) simulta-

neously [42]. Doubly robust methods, which combine two

different methods such as IPW and a likelihood-based model

for the outcome, ensure unbiased estimates as long as one of

the models is correctly specified [43]. Both are complex to

implement and mostly the subject of methodological

research. A simple method for sensitivity analysis was

exemplified and showed that the results were robust to

departures from MAR. More sophisticated approaches (e.g.

selection models) would require a better understanding of the

possible MNAR mechanisms.

This practical guide has identified a few avenues for

further research. The main evidence gap is in the relative

performance of MI-MICE, MI-JM and likelihood-based

models in handling the complex distributions and correla-

tions of CEA outcomes and how best to implement them.

This relates to the appropriate level of aggregation for CEA

outcomes, handling non-normality and methods for model

validation. Another area for research is in the methods for

sensitivity analysis to the assumption on the missing data

mechanism. The case study illustrated a simple approach to

sensitivity analysis that tests the impact of assuming worse

outcomes than predicted for individuals with missing data.

Although pattern mixture and selection models can

explicitly model alternative MNAR mechanisms, they are

difficult to implement in practice. More research is war-

ranted on practical approaches for sensitivity analyses and

on the development of software tools to assist in their

implementation.
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