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Abstract

Three-dimensional nonlinear potential free surface flows in the presence of
vertical electric fields are considered. Both the e↵ects of gravity and surface
tension are included in the dynamic boundary condition. An asymptotic
analysis (based on the assumptions of small depth and small free surface
displacements) is presented. It is shown that the problem can be modelled
by a Benjamin-Ono Kadomtsev-Petviashvili equation. Furthermore a fifth
order Benjamin-Ono Kadomtsev-Petviashvili equation is derived to describe
the flows in the particular case of values of the Bond number close to 1/3.

Keywords: weakly nonlinear waves, electrohydrodynamics

1. Introduction

Classical nonlinear approaches for water waves leading to model equations
such as the Korteweg-de Vries equation (KdV) are useful in establishing an
analytical foundation for fully nonlinear studies. Our interest in this paper is
in the derivation of such models in the presence of vertical electric fields. The
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practical importance of interfacial electro-hydrodynamics has been reviewed
in [1] and computations of two-dimensional nonlinear waves in the presence
of electric fields were presented in [2] and [3] ( see also the references cited).

In [4] a Benjamin-Ono Korteweg-de Vries equation was derived to de-
scribe two-dimensional waves in the presence of vertical electric fields. Here
we consider the complete three-dimensional problem. We show that under
appropriate canonical scalings, the problem can be modelled by a Benjamin-
Ono Kadomtsev-Petviashvili equation. A special equation valid when the
Bond number is close to 1/3 is also derived. This equation can be described
as a fifth-order Benjamin-Ono Kadomtsev-Petviashvili equation. The contri-
bution of the electric field to all these equations is in the form of a nonlocal
term involving a Cauchy principal value. Such a term appears also in the
two-dimensional problems studied in [4].

The fully nonlinear problem is formulated in Section 2. The Benjamin-
Ono Kadomtsev-Petviashvili equation is derived asymptotically in Section 3.
The fifth-order Benjamin-Ono Kadomtsev-Petviashvili equation is presented
in Section 4. Some concluding remarks are given in Section 5.

2. Formulation

Consider a perfectly conducting, inviscid, irrotational and incompressible
fluid (region 1) bounded below by a wall electrode at z = �h and bounded
above by a free surface z = ⌘(x, y, t), here h is the mean depth of the surface.
The fluid motion is described by a velocity potential '(x, y, z, t) satisfying
Laplace’s equation in region 1. Surface tension with coe�cient � and gravity
g are included. The region z > ⌘(x, y, t), denoted by region 2, is occupied by
a hydrodynamically passive dielectric having permittivity ✏

p

(see Figure 1).

Figure 1: Sketch of the flow.

It is assumed that there are no free charges or currents in region 2 and
therefore the electric field can be represented as a gradient of a potential
function, E = �rV . A vertical electrical field is imposed by requiring that
V ⇠ �E0z as z ! 1, where E0 is constant. The voltage potential satisfies
Laplace’s equation.
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On the free surface the Bernoulli equation holds:
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The pressure p in (1) is obtained through the Young-Laplace equation:

[n̂ ·T · n̂]12 = �r
s

· n̂ (2)

where r
s

is the surface divergence operator and � is the surface tension,
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is the stress tensor and
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is the unit normal to the interface. The notation [. . . ]12 denotes the jump
across the interface. The quantity ⌃
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in (3) is the Maxwell tensor defined
by
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where E
i

, i = 1, 2, 3 are the cartesian coordinates of the electric field E.
The governing equations are then:
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V = 0 on z = ⌘(x, y, t) (10)

@'

@z
= 0 on z = �h (11)

V ⇠ �E0z as z ! 1 (12)

3. Weakly Nonlinear Theory

Given a typical velocity c0 =
p
gh, typical free surface amplitude a and

typical horizontal length scales � and µ, we define the dimensionless variables:

x = �x̂, y = µŷ, t =
�

c0
t̂, ⌘ = a⌘̂ ' =

g�a

c0
'̂ (13)

V = �E0V̂ z(1) = hẑ z(2) = �Ẑ, (14)

Here, z(1,2) denote the vertical coordinates in regions 1 and 2 respectively.
We also introduce the parameters
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In terms of the variables (13) and (14) the governing equations (6)-(12) be-
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@'̂

@ẑ
= 0 on ẑ = �1 (20)

V̂ = 0 on Ẑ = ↵
p

�⌘̂ (21)

V̂ = �Ẑ as Ẑ ! 1. (22)
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⇢gh2
, E
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✏
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E2
0

⇢gh
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These parameters are an inverse Bond number representing the ratio of capil-
lary to gravitational forces, and an electric Bond number measuring the ratio
of electrical to gravitational forces. The dots in (19) correspond to higher
order terms in ↵, � and � which are not needed in the analysis. The constant
C can be calculated by using the solution '̂ = ⌘̂ = 0 and V̂ = �Ẑ and is
found to be C = �E

b

/2↵.
Next we introduce the shallow water scaling:

↵ = � = � = " ⌧ 1, T = "t̂, X = x̂� t̂. (24)

All the derivatives with respect to x̂ and t̂ are rewritten in terms of derivatives
with respect to X and T by using the transformations
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We now drop the hats on the various variables and assume the following
asymptotic expansions

' = '0 + "'1 + "2'2 + o("2) (26)

⌘ = ⌘0 + "⌘1 + o(") (27)

V = �Z + "
3
2V1 + o
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3
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p = "p1 + o (") . (29)

The asymptotic expansion of V deserves an explanation. Expanding (21) as
a Taylor expansion around Z = 0 gives

V + ✏3/2⌘0
@V

@Z
+ · · · = 0 on Z = 0. (30)
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Writing the expansion for V as V = �Z + �(✏)V1 and inserting it into (30)
gives to leading order

�(✏)V1 � ✏3/2⌘0 = 0 (31)

which shows that �(✏) = ✏3/2. Furthermore (31) implies

V1 = ⌘0 on Z = 0. (32)

The coupling between electrostatics and hydrodynamics enters through
the term multiplied by E

b

in (19) which is to leading order

E
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The first term in the square bracket of (33) cancels the Bernoulli constant
C in (19). This leaves the term of order "

3
2 in (33). To include this term

with the other terms of order " in (19), the electric Bond number needs to
be scaled according to

E
b

= Ē
b

p
". (34)

Equation (17) gives at leading order
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The boundary condition (32) implies
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It can then be shown that (35) and (36) imply that (see [4] for details)
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where H is the Hilbert Transform operator defined by

H [g] =
1

⇡
PV

Z 1

�1

g(⇣)

⇣ �X
d⇣ (38)

with PV denoting the Cauchy principal value.
We substitute the expansions (26) and (27) into (16) and the boundary

conditions (18) and equate powers of ✏. Since the boundary condition (18)
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is applied on z = ↵⌘ and since ⌘ is itself given as an expansion in powers of
✏, we need to expand ' and its derivative as Taylor expansions about z = 0.
This means for example
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Note that equations (41), (44) and (47) represent the first three orders of
the kinematic boundary condition, and equations (42), (45) and (48) are the
no penetration conditions at the wall. Integrating (40) with the boundary
conditions (41) and (42) gives

'0 = '0(X, y, T ) (49)

Equation (49) simply says that '0 does not depend on z.
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Similarly equations (43) -(45) yield
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where D(X, y, T ) is to be determined.
Integrating (46) and using the boundary condition (47) gives
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Setting z = �1 in (51) and using (48) yields

@2'0

@y2
� 1

6

@4'0

@X4
+

1

2

@3⌘0
@X3

+
@2D

@X2
+ ⌘0

@2'0

@X2
� @⌘1

@X
+

@⌘0
@T

+
@'0

@X

@⌘0
@X

= 0. (52)

We now consider the dynamic boundary condition (19) and equating
terms of O(1) and of order O(✏) in (19) we obtain
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Using (50) we see that the last term in (54) is equal to @D

@X

. Eliminating ⌘1
between (52) and (54) yield

@2'0

@y2
� 1

6

@4'0

@X4
+

1

2

@3⌘0
@X3

+ ⌘0
@2'0

@X2
+

@⌘0
@T

+
@'0

@X

@⌘0
@X

� B
@3⌘0
@X3

+
@2'0

@T@X
+

Ē
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The final equation is obtained by di↵erentiating (55) with respect to X
and using (37) and (53). This gives after some algebra
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In terms of the dimensional variables, (56) becomes
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where we have dropped the subscript 0 on ⌘.

4. Analysis around B = 1/3

A new equation can be derived by assuming that B close to 1/3. We
replace the scaling (24) by

↵ = "2, � = ", � = "2, T = "2t̂, X = x̂� t̂. (58)

The expansions are now given by
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The asymptotic expansion (61) of V can be justified by an argument similar
to that used in Section 3 . Expanding (21) as a Taylor expansion around
Z = 0 gives
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Writing the expansion for V as V = �Z + �(✏)V1 and inserting it into (63)
gives to leading order
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which shows that �(✏) = ✏5/2. Furthermore (64) implies (32)
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The first term in the square bracket of (33) cancels the Bernoulli constant
C in (19). This leaves the term of order "

5
2 in (65). The size of E

b

is chosen
to compete with the third- and fifth-order dispersion terms. This happens
at the order ✏2. Therefore we need to scale E

b

according to

E
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b

✏3/2 (66)

The potential V1 still satisfies (37).
Next we substitute the expansions (59)-(62) into (16) and (18) and pro-

ceed as in Section 3. This yields the equations (40)-(45)
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Solving (40)-(45), (67), (68) and (48) (we are omitting the details since

the calculations are very similar to those of Section 3) gives (49), (50) and
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where the function H is to be determined.
Proceeding to order ✏3, equations (16), (18) and (20) give
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We now expand (19) up to order ✏2. This yields the second equation (49),
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Using (50) and (69) we can rewrite (73) and (74) as
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Next we substitute (69) into (70) and integrate with respect to z with the
boundary condition (71). This gives
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Setting z = �1 in (77) and using (72) gives
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We now eliminate ⌘1 and ⌘2 between (75), (76) and (78). The constants

D and H cancel exactly. The final equation is obtained by using (37) and
(53) to eliminate '0 and V1. It gives
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In terms of the original dimensional variables, (79) can be rewritten as
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where we have dropped the subscript 0 on ⌘.
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5. Conclusions

We have studied nonlinear three-dimensional free surface flows in the
presence of vertical electric fields. We have shown that these problems can
be reduced to two model equations, namely the equations (57) and (80).
These equations are useful because the computation of fully nonlinear three
dimensional free surface flows require a very large number of mesh points
even in the absence of electric fields (see [5], [6], [7] and [8]).

Equation (57) is a Benjamin-Ono Kadomtsev-Petviashvili equation while
equation (80) is a fifth order Benjamin-Ono Kadomtsev-Petviashvili equa-
tion. It can be shown that the linear terms in (57) and (80) can be obtained
by taking the long wave limit of the dispersion relation of linear waves (see
[9]).

These equations have a rich structure in the sense that they include many
canonical equations as particular cases. For solutions which do not depend
on y, (57) and (80) reduce (after integration with respect to x) to the two-
dimensional equations derived in [4]. If we assume that E

b

= 0 (i.e. that
there are no electrical fields), (57) and (80) are the Kadomtsev-Petviashvili
equation and the fifth order Kadomtsev-Petviashvili equation. The reader
can find a review of the properties of the Kadomtsev-Petviashvili in [10] and
an application of the fifth order Kadomtsev-Petviashvili equation in [11]. For
other related works on similar model equations without electric fields see [12],
[13], [14] and [15].

We now comment on the relevance of equations of (57) and (80) to experi-
mental situations. We use here the discussion presented in [16]. Experiments
in the cases when the region 1 is water and mercury were performed in [17]
and [18] respectively. In both papers, the region 2 is air which can be con-
sidered as a dielectric. Mercury and (impure) water can be approximated as
perfect conductors. The critical value B = 1/3 corresponds to h

W

⇡ 4.7mm
and h

M

⇡ 3.3mm (see [16]). Here the subscript W and M refer to water and
mercury. The experiments in water (see [17]) were performed for values of
h = 5cm and correspond therefore to B < 1/3. The experiments in mercury
(see [18]) were performed for values of h between 2.12mm and 8.5mm and
include therefore values of B ⇡ 1/3. All the results in [17] and [18] were
obtained in the absence of electric fields. There (57) with E

b

= 0 is relevant
to the experiments in [17] whereas (80) with E

b

= 0 is relevant to the exper-
iments in [18]. Relations (34) and (66) give some guidance on the magnitude
of the electrical fields to be used in experiments which can be modelled by
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(57) and (80).
Finally let us mention that the results presented can be generalised to

include some forcing (such as a prescribed distribution of pressure). Details
can be found in [9].
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[7] E.I. Părău, J.-M. Vanden-Broeck and M.J.. Cooker Nonlinear three-
dimensional gravity-capillary solitary waves J. Fluid Mech., 536 (2005)
99.

[8] R. Pethiyagoda, S.W. McCue, T. J. Moroney and J.M. Back Jacobian-
free Newton-Krylov methods with GPU acceleration for computing non-
linear ship wave patterns J. Comp. Phys., 269 (2014) 297.

[9] M.J. Hunt Linear and Nonlinear Free Surface Flows in Electrohydrody-
namics PhD Thesis, University College London (2013).

13



[10] T.R. Akylas Three-dimensional long water-wave phenomena Annu. Rev.
Fluid Mech. (1994) 26, 191.

[11] T.R. Akylas and Yeunwoo Cho On the stability of lumps and wave col-
lapse in water waves Phil. Trans. R. Soc. A (2008) 366, 2761.

[12] T.B. Benjamin A new kind of solitary wave J. Fluid Mech. (1992) 245,
401.

[13] J.L. Bona, J.P. Albert and J.M. Restrepo Solitary-wave solutions of the
Benjamin equation SIAM J. Appl. Math. (1999) 59, 2139.

[14] D.C. Calvo and T.R. Akylas On interfacial gravity-capillary solitary
waves of the Benjamin type and their stability Phys. Fluids (2003) 15,
1270.

[15] B. Kim and T.R. Akylas On gravity-capillary lumps. Part 2. Two-
dimensional Benjamin equation J. Fluid Mech. (2006) 557, 237

[16] P.W. Hammerton and Andrew P. Bassom The e↵ect of a normal electric
field on wave propagation on a fluid film Phys. Fluids (2014) 26, 012107.

[17] J.L. Hammack and H. Segur The Korteweg-de Vries equation and water
waves part 2. comparison with experiments J. Fluid Mech. (1974) 65,
289.

[18] E. Falcon, C. Laroche and S. Faure Observation of depression solitary
surface waves on a thin fluid layer Phys. Rev. Lett. (2002) 89, 204501.

14


