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Abstract

Nonlinear periodic gravity waves propagating at a constant velocity at the
surface of a fluid of infinite depth are considered. The fluid is assumed to be
inviscid and incompressible and the flow to be irrotational. It is known that
there are both regular waves (for which all the crests are at the same height)
and irregular waves (for which not all the crests are at the same height).
We show numerically the existence of new branches of irregular waves which
bifurcate from the branch of regular waves. Our results suggest there are
an infinite number of such branches. In addition we found additional new
branches of irregular waves which bifurcate from the previously calculated
branches of irregular waves.
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1. Introduction

Nonlinear periodic gravity water waves propagating at the surface of a
fluid at a constant velocity c have been studied for over 150 years and many
interesting theoretical results have been obtained (see [1] for a review and
references). Such waves can be studied by choosing a frame of reference
moving with the wave speed c and by assuming that the flow is potential and
steady. For simplicity only waves in water of infinite depth are considered in
this paper.

Stokes ([2], [3]) constructed a solution in the form of an expansion in pow-
ers of the amplitude of the wave and calculated the first few terms. Based on
his results, he conjectured that, as the amplitude of the wave increases, the
family of solutions will ultimately reach a limiting confitguration with a stag-
nation point at the crests of the waves with an enclosed angle of 1200. This
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conjecture was confirmed numerically by Michell [4]. Early theoretical work
on the subject can be found in Levi-Civita [5] and Struik [6]. A rigourous
proof of the existence of the limiting configuration was provided in [7].

Detailed numerical studies of the properties of gravity waves became pos-
sible in the second half of the 20th century. In particular the computations
in [8]-[11] show that for very steep waves (i.e. waves close to the limiting
configuration), c is not a monotonic function of the steepness

s =
H

λ
. (1)

Here H is the difference of heights between a crest and a trough and λ is
the wavelength. More precisely it was found that c goes through an infiinte
succession of maxima and minima as the limiting configuration is approached.
These waves were the only type of waves known up to 1980. We shall refer
to them as the branch of regular waves.

Chen and Saffman [12] (see also Saffman [13]) discovered numerically new
branches of solutions which bifurcate from the branch of regular waves. They
refer to them as irregular waves of type n. They are characterised by n crests
per wavelength with n − 1 crests at a different height than the remaining
one. They calculated irregular waves of type 2 and 3 explicitly. These waves
bifurcate from a train of regular waves of finite amplitude whose wavelengths
is n times the fundamental wavelength. They have limiting configurations
for which the highest crests are stagnation points with an enclosed angle of
1200.

Olfe and Rottman [14] calculated directly the limiting configurations of
irregular waves by generalising the method used by Michell [4] for the limiting
configuration of regular waves. They obtained results for irregular waves of
type 2, 3 and 4.

Vanden-Broeck [15] extended the results in ([12], [14], [15]) to larger value
of n (up to n = 9). He provided numerical evidence that the irregular waves
approach a ’generalised solitary wave’ as n → ∞. Here a generalised solitary
wave refers to a non-periodic wave characterised by a train of ripples in the
far field.

In this paper we study further the properties of irregular waves. For
simplicity we limit our attention to the case n = 2. We provide numerical
evidence that in addition to the bifurcation point discovered by Chen and
Saffman [12], there are an infinite number of similar bifurcation points. Each
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bifurcation point occurs between two successive extrema (maximum or min-
imum) of the branch of regular wave. In addition we follow numerically the
first branch of irregular wave with n = 2 (i.e. the one computed by Chen and
Saffman [12]) up to the limiting configuration with a 1200 angle at the crests
and we show that this branch oscillates also infinitely often as the limiting
configuration is approached. This suggests that there might be further bi-
furcation points between each pair of successive extrema. This is confirmed
by our numerical calculations.

2. Formulation

We consider a train of two-dimensional periodic waves travelling at a
constant velocity c at the surface of a fluid of infinite depth. We take a frame
of reference moving with the wave, so that the flow is steady. At infinite depth
the flow is characterised by a uniform flow with a constant velocity c. We
choose cartesian coordinates with the y-axis directed vertically upwards and
x = 0 at a crest or a trough of the wave. Gravity is acting in the negative
y-direction.

We assume that the fluid is incompressible and inviscid and that the flow
is irrotational. Therefore we can introduce a potential function φ(x, y) and
a streamfunction ψ(x, y). Without loss of generality we choose ψ = 0 on the
free surface and φ = 0 at x = 0. We also define the complex potential

f = φ+ iψ (2)

and the complex function

δ + iβ =
1

u− iv
. (3)

Here u and v are the horizontal and vertical components of the velocity.
On the free surface the pressure is constant and the dynamic boundary

condition yields
u2 + v2 + 2gy = B. (4)

Here B is the Bernoulli constant. We choose the origin of y to correspond
to the level of the free surface where the velocity is equal to c. This forces
B = c2.
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We use φ and ψ as independent variables. It then follows that δ+ iβ is an
analytic function of f in the lower half plane ψ < 0 of the complex f -plane.
(see for example Vanden-Broeck [1]). Furthermore

xφ + iyφ = δ + iβ (5)

where the subscript φ denotes the partial derivative with respect to φ.
We now introduce dimensionless variables by using the wavelength λ as

the unit length and c as the unit velocity. The dynamic boundary condition
(4) becomes in dimensionless variables

1

[δ̃(φ)]2 + [β̃(φ)]2
+ y0 +

4π

µ

∫ φ

0

β̃(ϕ)dϕ = 1 (6)

where y0 is the value of y at ψ = φ = 0 and

µ =
2πc2

gλ
(7)

is ta dimensionless squared Froude number. Here δ̃(φ) and β̃(φ) denote the
values of δ and β on the free surface ψ = 0. We have used (5) in (6) to
express y in terms of β̃(φ).

We restrict our attention to symmetric waves by assuming

δ̃(−φ) = δ̃(φ) and β̃(−φ) = −β̃(φ). (8)

Using Cauchy integral equation formula, it can be shown that δ̃(φ) and
β̃(φ) are related by the integral relation

δ̃(φ) = 1−
∫ 1/2

0

β̃(ϕ){cot[π(ϕ− φ)] + cot[π(ϕ+ φ)]}dϕ, (9)

where the integral is a Cauchy principal value (see for example [1] for details).
Subsituting (9) into (6) yields an integral equation for the unknown func-

tion β̃(φ). We shall solve this equation (referred below as the equation A)
numerically.

We introduce the N collocation points

φI =
I − 1

2(N − 1)
I = 1, 2, . . . , N (10)
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and the unknowns
βI = β̃(φI) I = 1, 2, . . . , N (11)

The assumed symmetry of the wave implies that β1 = βN = 0. We derive a
system of N equations for the N unknowns µ, y0 and βI , I = 2, 3, . . . , N −1.
We obtain N − 1 equations by satisfying the equation A at the mesh points

φm
I =

φI+1 + φI

2
I = 1, 2, . . . , N − 1 (12)

where the integrals are approximated by the trapezoidal rule. (see [1] for
details).

The last equation is obtained by fixing the amplitude of the wave, for
example by imposing

ϵ = 1− u2
0 (13)

where ϵ is given. Here u0 is the value of u at φ = ψ = 0. The system
of N nonlinear algebraic equations with N unknowns is solved by Newton’s
method.

The choice (13) as a measure of the amplitude of the wave is more con-
venient than the steepness s (see (1)) because the range 0 ≤ ϵ < 1 of the
possible values of ϵ is known a priori. This is easily checked by noting that
ϵ → 0 as the amplitude of the wave tends to zero since u − iv → 1. Fur-
thermore ϵ = 1 for the limiting configuration since there is then a stagnation
point at the crest (i.e. u0 = 0).

3. Results

The boundary integral equation method of Section 2 gives accurate re-
sults for waves of small or moderate amplitudes. However the curvature at
the crests of the waves tends to infinity as the limiting configuration is ap-
proached and larger and larger values of N are needed to compute accurate
solutions for very steep waves. This is due to the fact that points move away
from the crests as they get steeper. This problem can be overcome by con-
centrating mesh points near the crests. Following Chen and Saffman [12] we
introduce the change of variables

φ(t) = t− α

2πn
sin 2πnt (14)
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where α is a given parameter. Here n is the parameter characterising the
irregular waves (see Section 1). The branch of regular wave can be computed
with n = 1.

Near the crest at x = 0, |φ| << 1 and (14) yields

φ(t) ≈ (1− α)t (15)

Relation (15) implies that points can be concentrated near the crests by
choosing values of α close to 1. Here we choose α = 0.9999 to compute very
steep waves.

We rewrite the equation A by using t instead of φ as the independent
variable. The derivatives and integrals with respect to φ can be rewritten
as derivatives and integrals with respect to t by using the chain rule. We
introduce the N collocation points

tI =
I − 1

2(N − 1)
I = 1, 2, . . . , N (16)

and the unknowns

β∗
I = β̃[φ(tI)] I = 1, 2, . . . , N. (17)

The problem is then solved numerically by following the procedure of Section
2.

For simplicity we shall mainly concentrate on irregular waves with n = 2.
We start by recomputing the branch of regular waves by taking the wave-
length to be twice the fundamental wavelength. Values of µ versus ϵ are
shown in Figure 1 (see the curve starting at ϵ = 0.1 and extending to ϵ = 1).
We refer to this curve as the main curve. As mentioned in the introduction
this curve oscillates infinitely often as ϵ→ 1 (i.e. as the limiting configuration
is approached). The first maximum appears clearly in Figure 1.

At ϵ ≈ 0.88, a branch of irregular waves (with n = 2) bifurcates from the
branch of regular waves. The position of the bifurcation point is found by
monitoring the sign of the determinant of the Jacobian matrix. This branch
is also shown in Figure 1. Typical profiles are presented in Figures 2 and 3.
Figure 2 shows the regular wave at the bifurcation point (i.e. the point of
intersection of the two curves of Figure 1). As we move to the right from
the bifurcation point to the branch of irregular waves, the crest at x = 0.5 in
Figure 1 rises on top of the height of the two other crests. This is illustrated
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in Figure 3 where we present a typical profile on the branch of irregular waves.
We note that the branch of irregular waves in Figure 1 can be extended to
the left of the bifurcation point. The resulting waves are simply those on the
right of the bifurcation point but shifted of 0.5 in the x-direction. So profiles
are like those of Figure 3 but with the highest crest at x = 0 and x = 1
instead of x = 0.5.

The results so far are similar to those presented in [12]-[15]. We now
present new families of waves. Their construction is based on the following
two observations.

The first observation is that the existence of the bifurcation point in
Figure 1 can be intuitively justified by the fact that there are pairs of waves
travelling at the same speed µ near the first maximum of the branch of regular
waves (one wave on each side of this first maximum). The wave of Figure 3
can be viewed as a superposition of such a pair of waves. This is of course a
hand waving argument because superposition is not mathematically correct
for the present nonlinear problem. However it suggests that the existence of
irregular waves is related to the oscillations on the branch of regular waves.

The second observation is that the presence of oscillations on the branch
of regular waves is related to the fact that the limiting configuration of the
waves is characterised by a stagnation point at the crest with a 1200 degree
angle. This was shown explicitly by Longuet-Higgins and Fox ([10] and [11)
who found that the branch of regular waves oscillates infinitely often by
perturbing asymptotically the limiting configuration with the 1200 angle.

The first observation suggests that further bifurcation points should be
found between each successive maximum and minimum of the main curve of
Figure 1. This is confirmed by our computations. Figure 4 shows a blow up
of Figure 1. The first minimum of the main curve is now clearly visible. As
expected a branch of irregular waves (with n = 2) bifurcates from the branch
of regular waves between the first maximum and the first minimum. This
bifurcation was already mentioned in [16]. We found a further bifurcation
point between the first minimum and the second maximum. It is shown on
the extreme right of Figure 4. A further blow up (presented in Figure 5)
shows this new branch more clearly. We expect that this structure continues
indefinitely in the sense that there is a branch of irregular waves bifurcating
from the branch of regular waves between each pair of successive extrema of
the branch of regular waves. We have concentrated here on the case n = 2
but the findings in [15] suggest that similar results to hold for n = 3, 4, . . . .

All the branches of irregular waves ultimatey approach a limiting configu-
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ration with a stagnation point and an enclosed angle of 1200 at their highest
crest. Therefore the second observation suggests that the branches of ir-
regular waves also oscillate infinitely often as this limiting configuration is
approached. If this is correct, then the first observation suggests the possible
existence of new branches of irregular waves bifurcating from the branches
of irrregular waves between each pair of successive extrema of the branches
of irregular waves. These expectations are confirmed by our numerical com-
putations as explained below.

In Figures 6 and 7 we present a blow up of the branch of irregular waves
of Figure 1. These figures show clearly the first maximum and the first
minimum of the expected infinite set of extrema on the branch of irregular
waves. We seek new bifurcating branches by following the approach used to
find the results of Figures 1-3. We first recompute the waves corresponding to
the curve of Figure 6 by choosing the wavelength to be twice the fundamental
wavelength. Figure 8 shows the resulting values of µ versus ϵ (presented only
up to ϵ = 0.997). The values of µ are in Figure 8 are half of the values of
µ in Figure 6 since λ appears in the denominator of (7). As expected we
found a new branch of irregular waves bifurcating from that branch. This
branch is also shown in Figure 8. We should again expect similar branches of
irregular waves bifurcating between every pair of successive extrema of the
curves of Figures 6 and 7. Wave profiles of irregular waves for ϵ = 0.9999 are
shown in Figures 9 and 10. The profile of Figure 9 corresponds to the point
ϵ = 0.9999 on the curve of Figure 8 starting at ϵ = 0.982 (or more precisely
on the continuation of that curve past ϵ = 0.997). The profile of Figure 10
corresponds to the point ϵ = 0.9999 on the new bifurcating branch of Figure 8.
These two profiles are undistinguishable within graphical accuracy. However
they are different as shown in the blow ups of Figures 11 and 12. In Figures
9 and 11 the three highest crests are exactly at the same height. In Figures
10 and 12 they are not. The profiles of Figures 9 and 10 were obtained with
N = 1000. We checked that these profiles do not change as N is further
increased.

4. Conclusions

We have revisited the classical problem of gravity waves propagating at
the surface of a fluid of infinite depth. We have demonstrated numerically
the existence of new branches of irregular waves which bifurcate from the
main branch of regular waves. We have provided evidence that there are an
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infinite number of such branches. In addition we have shown that there are
further branches of irregular waves with bifurcate from these new branches
of irregular waves.

We have concentrated for simplicity to the case n = 2 but we expect
similar results to hold for n = 3, 4, . . . . This is suggested by the results in
[15].

In conclusion we have uncovered a very complex set of bifurcations near
the highest gravity wave. All the findings presented are consistent with the
theoretical results in [17] and the references cited there. It is interesting to
note that another complex structure (although different mathematically) was
also found in [18] for standing waves.
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Figure 1: Values of µ versus ϵ. The curve with a maximum (which is presented for values
of ϵ between 0.1 and 1) corresponds to the branch of regular waves. The wavelength is
here defined as twice the fundamental wavelength. The second curve at the top of the
picture is a branch of irregular waves with n = 2. This branch bifurcates from the branch
of irregular wave at the point where the two branches intersect.
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Figure 2: Profile of a regular wave corresponding to the bifurcation point in Figure 1 (i.e.
the point of intersection of the two curves). Only one wavelength of the wave is shown.
Here the wavelength is twice the fundamental wavelength.
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Figure 3: Typical profile of a wave on the branch of irregular waves of Figure 1. Only one
wavelength of the wave is shown.
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Figure 4: Blow up of Figure 1. The first minimum of the branch of regular waves is now
clearly visible. A second branch of irregular waves with n = 2, which bifurcates from the
branch of regular waves just after the first maximum, is shown. A third branch of irregular
waves with n = 2, which bifurcates from the branch of regular waves just after the first
minimum is also shown (see Figure 5 for further details).
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Figure 5: A further blow up of Figure 4 which shows clearly the third branch of irregular
waves with n = 2. This branch bifurcates from the branch of regular waves just after the
first minimum.
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Figure 6: Blow up of the branch of irregular waves of Figure 1. The figure shows the first
maximum and the first minimum.
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Figure 7: Blow up of Figure 6 showing more clearly the first minimum.
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Figure 8: Values of µ versus ϵ. The curve starting at ϵ = 0.982 is the branch of irregular
waves of Figure 6. It is shown only up to ϵ = 0.997. The values of µ are half of those in
Figure 6 because the wavelength was chosen as twice the fundamental wavelength. The
other curve is a new branch of irregular waves bifurcating from the branch starting at
ϵ = 0.982.

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.2  0.4  0.6  0.8  1

y

x

Figure 9: Profile of the irregular wave corresponding to the point ϵ = 0.9999 on the curve
of Figure 8 starting at ϵ = 0.982. Only one wavelength of the wave is shown. Here the
wavelength is twice the fundamental wavelength.
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Figure 10: Profile of the irregular wave corresponding to the point ϵ = 0.9999 on the curve
of Figure 8 terminating at ϵ = 1. Only one wavelength of the wave is shown.
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Figure 11: Bow up of the profile of Figure 9.
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Figure 12: Blow up of the profile of Figure 10.
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