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ABSTRACT 

 

Objectives: Life history trade-offs may manifest between competing organs and tissues in the 

body. Sexual dimorphism in tissue investment is well-established in humans, with sex-

associated body shape differences linked to natural and sexual selection. This study uses three-

dimensional (3D) photonic scanning to test whether males and females differentially invest 

energy in various body regions in relation to two independent proxies of growth.  

 

Materials and Methods: Body shape data (multiple girths) came from a Thai cohort (n=11,610; 

53% female; age range 21-88 years). Weight was considered a proxy for recent energy 

acquisition. Stature represented completed growth, a proxy for energy acquisition earlier in life. 

The data were analyzed using growth-proxy by sex interaction log-log regression models 

adjusting for age, salary and number of children. 

 

Results: For a given percentage increase in weight, females showed greater percentage 

increases than males in girths of the arm, chest, hip, thigh, knee and calf (p < .001), whilst males 

exceeded females in head and waist girths (also p < .001). For a given percentage increase in 

height, weight and all girths showed greater proportional changes in males than females (p < 

.001). 

 

Discussion: These results indicate sex-specific life history strategies wherein the direction and 

timing of energy investment in girths varies between the sexes. The results add to literature 

suggesting that sexual dimorphism in body morphology is not a fixed trait; rather, differential 

energy allocation to specific body regions appears to be a plastic strategy adjusted in relation to 

energy acquisition across the life course.  
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Introduction 

 

Life history theory predicts that organisms use energy captured from the environment in ways 

which promote survival and reproduction. Assuming energy is finite, the optimization of energy 

investment strategies is characterized by a series of trade-offs, where resources used for one 

function are unavailable for allocation to others (Stearns, 1992; Hill, 1993; Ellison, 2003). In 

contemporary human populations, rising levels of overweight and obesity indicate that many 

individuals do not overtly lack energy; nevertheless, how energy is allocated for functional 

purposes may still reflect trade-offs that evolved in past environments.  

 

Energy trade-offs have largely been examined in the anthropological literature in relation to 

essential functions like growth, reproduction, maintenance and immune defense (Kirkwood and 

Rose, 1991; Hill and Kaplan, 1999; Charnov, 2001; Tracer, 2002). However, trade-offs may also 

manifest in the construction of the body, for example between competing organs and tissues, 

and these trade-offs may vary based on environmental conditions and across the life course 

(see Aiello and Wheeler, 1995; Isler and van Schaik, 2006; Wells, 2010, 2013; Pomeroy et al., 

2012; Kotrschal et al., 2013). It is well-established that mammals demonstrate sexual 

dimorphism in tissue investment, yet humans appear to do so in a manner different to other 

animals, including their close primate relatives (Pond, 1978, 1998; Norgan, 1997; Wells, 2007). 

Marked contrasts are apparent in human body shape due to variation in the deposition of fat 

and lean tissues, even when BMI is similar (e.g. Wells et al., 2007).  

 

Explanations for human body shape dimorphism, which are not mutually exclusive, include the 

differential exposure of the sexes to natural selective pressures, and sexual selection (Darwin, 

1871; Lande, 1980; Gaulin and Sailer, 1984; Fairbairn, 1997; Olsson et al., 2002; Plavcan, 2001, 

2012; Wells, 2007). Zillikens et al. (2008) identified genetic differences between males and 

females for body composition variables including percentage fat and lean mass. Waist-to-hip 

ratio (WHR), an index of fat distribution that is heritable independently of BMI, also 
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demonstrates sex-specific effects at a number of loci (Heid et al., 2010; Shungin et al., 2015). At 

the same time, core genes controlling growth are shared by males and females, and the sexes’ 

ontogenetic divergence in morphology may principally arise through sex-specific gene 

expression (Badyaev, 2002). The characteristics of dimorphism can vary over time and in 

association with cultural preferences or ecological conditions, indicating that phenotypic 

plasticity is also relevant (Norgan, 1990; Holden and Mace, 1999; Teder and Tammaru, 2005; 

Deaton, 2008; Guntupalli and Moradi, 2008; Wells, 2012; Freedman and Ford, 2015).  

 

At birth, human females have on average slightly less lean mass (here used synonymously with 

fat-free mass) and slightly more fat than males (Tanner, 1990; Rodriguez et al., 2004; Andersen 

et al., 2013). Whilst males continue to accrete lean tissue through to early adulthood (Marshall 

and Tanner, 1968; Maynard et al., 2001, Wells et al., 2012a), from puberty females 

preferentially invest in peripheral adipose tissue, a strategy attributed to their primary role in 

funding reproduction and lactation (Rebuffé-Scrive et al., 1985; Foley and Lee, 1991; Lee, 1996; 

Dufour and Sauther, 2002; Ellison, 2003; Lassek and Gaulin, 2006, 2009).  

 

Gonadal steroid hormones and growth hormone are central to the sexually dimorphic 

distribution of adipose tissue, whilst testosterone is especially important in males’ accretion of 

lean mass in adolescence (Tanner, 1965; Martin and Daniel, 1993; Bogin, 1999; Rogol et al., 

2002). Hormones and transcription factors may interact at sexually-dimorphic loci, like those 

described above for WHR, to differentially impact on the regulation of gene activity (Shungin et 

al., 2015). Regional variability in the action of the enzyme lipoprotein lipase may also be 

important for sex-specific fat distribution on the body (Norgan, 1997).  

 

That males demonstrate greater overall lean mass than females has been shown in diverse 

populations (Immink et al., 1992; Deurenberg et al., 1995, 2001; Deurenberg-Yap et al., 2000; 

Maynard et al. 2001), and this investment strategy may have been shaped by aggressive 

male:male competition for mates (Trivers, 1972; Pagel, 1994; Hawkes, 2004; Dixson, 2009; 

Lassek and Gaulin, 2009; Puts, 2010; Plavcan, 2012). In an examination of data across several 
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 5

populations, males on average had 18% greater lean mass than females, who in contrast had 

34% more fat mass than males, after adjusting for height (Wells, 2006). Unlike in females, sex 

steroid hormones in males mediate increased fat storage on the trunk (Norgan, 1997; Santosa 

and Jensen, 2014) where it may promote immune function (Gabrielsson et al., 2003; Wells and 

Cortina Borja, 2013).  

 

Sexual dimorphism likewise extends to skeletal morphology. From puberty, sex hormones drive 

differential skeletal development in males and females, and bone mineral content, size and 

mass are often increased in males, resulting in relatively larger skeletal elements and overall 

body size compared to females (Riggs et al., 2002; Wells, 2007). However, certain aspects of 

skeletal growth, for example in the pelvis, are greater in females than males (Schultz, 1949; 

Tague, 2005).  

 

These components of dimorphism likely have two main implications for fitness: they allow the 

sexes to prioritize different physiological functions, especially regarding reproduction, and they 

also allow them to signal in different ways to the opposite sex. Females may signal their 

capacity to nourish offspring via both quantity and pattern of fat deposition. Muscle mass might 

signal a male’s capacity to attract mates and produce offspring with similar reproductive 

potential (Zaadstra et al., 1993; Singh, 1993; Norgan, 1997; Ellison, 2003; Wells, 2006; Lassek 

and Gaulin, 2008, 2009). 

 

The extent to which sexual dimorphism arises through genetic mechanisms or plastic responses 

to ecological circumstances at different life stages is still inadequately understood. Rather than 

dimorphism being ‘fixed’ at adulthood, there is evidence that it continues to change through 

adult life (Gallagher et al., 1997; Wells et al., 2007, 2008; Shen et al., 2009). It is therefore 

especially informative to consider dimorphism in tissue trade-offs as a function of energy 

acquisition at different points in the life course. 
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On this basis, we hypothesize that the two sexes invest in body girths differently, in association 

with energy acquired relatively recently (proxied by current weight) or during development 

(proxied by stature, representing completed linear growth). Given the evidence for shape 

dimorphism described above, we hypothesize that males preferentially invest energy in 

building a bigger body overall, in particular during early development when fat-free mass is 

most readily accreted. In contrast, we hypothesize that females preferentially invest in 

reproductive fat stores, especially during adolescence and adulthood. During adult life, fat is 

relatively more plastic than lean. We therefore expect associations between girths and height 

to be stronger in males, and those between girths and weight to be stronger in females. 

 

To test these hypotheses, we used body shape data derived from three-dimensional (3D) 

photonic scanning. Previous analysis of a large British cohort found contrasting associations 

between body girths and height in men and women (Wells et al., 2007). Here, we use similar 3D 

scan data from the Thai National Sizing Survey, and include an interaction term in multivariable 

regression analyses to further elucidate patterns of sexual dimorphism in association with 

energy supply at different life course stages. To our knowledge, this is the first study to 

investigate in men and women the potential statistical interaction of sex and height, and also 

sex and weight, on various girths of both the trunk and limbs.  

 

 

MATERIALS AND METHODS 

 

The Size Thailand survey was conducted in Thailand from 2006-2007 (Charoensiriwath and 

Tanprasert, 2010) to obtain information on body size and shape in the Thai population. The 

data and methods have been described previously (e.g. Wells et al., 2011, 2012b). Briefly, data 

were collected using a single [TC]
2 

body scanner (Cary, North Carolina, USA; www.tc2.com) 

transported between five geographical regions (Bangkok, North, South, Northeast and Central). 

Individuals from 74 of 76 Thai provinces ultimately took part. No information on ethnicity was 

recorded, although participants were required to show proof of Thai nationality in order to 

participate. 
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 7

 

Recruitment utilized quota sampling based on age, gender and geographical region, and 

reached potential participants through advertisements including flyers, websites, and TV and 

radio interviews. Transport was provided from rural areas to scanning sites, where data 

collection centers were set up. A minimum number of males and females were recruited within 

set age cells: 17-25, 26-35, 36-45, 46-59 and 60+ years, with an age range of 17-88 years. 

Information on number of children, medical history, and salary was collected via questionnaire. 

Salaries ranged from 5,000 baht (USD ~140) to >40,000 baht (USD ~1140) per month. Exclusion 

criteria included pregnancy, disabilities, and lack of proof of Thai nationality. Participants gave 

written consent for their data to be analyzed and published in anonymized form. 

 

Participants were scanned in a standardized position, with feet shoulder-width apart and arms 

held out from the sides of the body at a 45° angle. They wore tight-fitting underwear to avoid 

artefacts of bulky clothing. The scanner projects strips of safe, white light onto the body, and 

computer algorithms reconstruct skin surface topography from a raw point cloud of photonic 

data (Douros et al., 1999; Treleaven, 2004). [TC]
2
 Body Measurement System Software version 

5.3 was used to automatically extract a number of measurements, with technical precision 

within 0.5 cm, from each scan. Those used in this analysis were girths of the head, mid-upper 

arm, chest, waist (taken at the level of the small of the back), hip, mid-thigh, knee and calf, 

along with manually measured weight and height. Limb measurements were on the right-hand 

side.  

 

Compared to manual anthropometry, 3D scans tend to overestimate girths due to differences 

in the manner of acquisition and the location of landmarks (Wells et al., 2007). However, 

epidemiological analyses are unlikely to be confounded by this problem, as previous studies 

have reported high correlations and excellent consistency in ranking between the two 

techniques (Wang et al., 2006; Wells et al., 2011, 2012b).  
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 8

STATISTICS   

 

Body girths, height and weight were natural log transformed to capture the allometric 

relationships between the variables. Correlations were calculated between the girths, weight 

and height in each sex. The data were plotted to visualize sex differences in the associations of 

each girth with weight or height.  

 

Two sets of multivariable regression models were fitted, with each body girth as a separate 

outcome. The first set included as covariates sex, height and their interaction, while the second 

set included sex, weight and their interaction. Weight was also analyzed as an outcome in the 

first set of models. Weight and height were mean-centered prior to analysis, to ensure that 

their main effects did not confound the interaction term. Due to the log transformations, the 

interaction terms tested for differences between males and females in the percentage 

difference in each girth associated with a one percent difference in height or weight. In the 

presence of the interaction term, the corresponding main effect coefficient for height or weight 

corresponded to that for females. 

 

In addition, the models controlled for age, salary and fertility as potential confounders. Age was 

analyzed as a continuous variable; salary was coded as a binary variable designating two 

groups: ≤10,000 or >10,000 baht/month, and fertility was based on the number of children 

categorized as 0, 1, 2, 3 or 4 children in both sexes, and additionally, 5 and 6+ children in 

women, or 5+ children in men.  

 

Statistical analyses were carried out using SPSS (IBM SPSS Statistics for Macintosh, Version 24.0) 

and the R language and environment for statistical computing (Version 1.0.136), with two-tailed 

tests for significance at an alpha level of 0.05.  

 

 

RESULTS  
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Analyses were conducted on 11,610 individuals (53% female). Those <21 years old (n= 774, 48% 

female) and possibly not yet at final height were excluded, hence the age range for analysis was 

21 to 88 years (females: range=21-88, median=41, IQR=30-54; males: range=21-88, 

median=40.5, IQR=30-52). Raw values for body size and shape outcomes are shown in Table 1. 

Means and standard deviations for height, weight, BMI and eight girths stratified by sex and six 

age categories are given in Table 2.  

 

[Table 1 and 2 near here] 

 

Correlations of weight and height with body girths are shown in Table 3. Head girth, unlike the 

other girths, was only weakly correlated with weight in both sexes, while hip had the strongest 

relationships with weight.  

 

[Table 3 near here] 

 

Girth-height correlations were generally weaker than girth-weight correlations in both sexes. In 

males, waist was most weakly correlated with height (r = 0.13), while in females, waist girth (r = 

-0.04) and chest girth (r = 0.04) were both very weakly correlated. In general, the girth-height 

correlations were more sexually dimorphic than the girth-weight correlations.  

 

Plots of height versus body girths illustrate the sex differences, with males having steeper 

slopes than females for all girths (Fig. 1, and Supporting Information). 

 

[Figure 1 near here] 

 

Plots for weight and body girths are more mixed, with interactions evident for some girths, but 

not others. Where the interactions are apparent, they are smaller than for height. Head-weight 

and waist-weight plots demonstrate steeper slopes for males, whilst male and female slopes in 

the calf-weight plot are virtually identical (see Supporting Information). For arm, chest, and 
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 10 

knee plots, slopes are steeper for females than males to varying degrees (Fig. 2, and Supporting 

Information). Hip and thigh plots show relatively consistent sex differences across the whole 

range of weight, whereas the slopes show very little contrast between the sexes (Fig. 2).  

 

[Figure 2 near here] 

 

Table 4 shows multivariable log-log regression models of body girth, and also weight, on the 

interaction between sex and height, adjusting for sex, height, age, number of children, and 

salary. (Fuller results including the age, salary and fertility variables are available online as 

Supporting Information, Table S1). In each model, the interaction term tested for sex-

dependent variation in the relationship between the girth (or weight) and height. This term was 

positive and highly significant in every model (p < .0001). Thus, males demonstrated a larger 

percentage difference in every girth and in weight for a given percentage difference in stature, 

compared to females. The largest interaction coefficients were for arm and waist, and the 

smallest for head and knee. 

 

[Table 4 near here] 

 

Table 5 (and Supporting Information, Table S2) shows similar models for body girths on sex-

weight interactions, controlling for sex, weight, age, number of children and salary. Again, all 

the interaction terms were highly significant (p < .0001). For head and waist the terms were 

positive, indicating that males had a larger percentage difference for a given percentage 

difference in body weight, compared to females. For the other girths the interactions were 

negative and the reverse was true. Arm and knee girth had the largest interactions, and hip 

girth the smallest. 

 

[Table 5 near here] 
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Adding to the models information on salary and number of children did not appreciably alter 

the coefficients for the other variables, including the interaction term, and R
2 

values remained 

largely unchanged. Thus, these variables are not interpreted further. For information, 

unadjusted values are given online for weight, height, BMI, and all shape variables stratified by 

sex and number of children (Supporting Information, Table S3), along with unadjusted values 

for the same variables stratified by sex and salary (Supporting Information, Table S4).  

DISCUSSION 

 

Optimized reproduction is the fundamental factor in any organism’s successful life history 

strategy (Ellison, 2003), and male/female dimorphism in the amount and distribution of fat and 

lean tissue is functionally relevant to mating and producing offspring (Norgan, 1997; Wells, 

2010). Consistent with this, dimorphism becomes distinctly more marked from puberty, 

remains highly pronounced throughout the reproductive years (Boot et al., 1997; Norgan, 1997; 

Maynard et al., 2001; Nindl et al., 2002; Wells, 2006, 2007), and then declines in old age (Wells 

et al., 2008). This pattern is evident across ethnic and cultural groups (Immink et al., 1992; 

Deurenberg et al., 1995, 2001; Deurenberg-Yap et al., 2000; Maynard et al. 2001). Previous 

analyses of British 3D scan data reported significant sex-differences in body shape, indicating 

strategic, sex-specific investment in different tissues (Wells et al., 2007).  

 

With the incorporation of interaction terms in regression analyses, we were able to investigate 

statistically whether, as hypothesized, the relationship between a given girth and height or 

weight differs in a sex-dependent manner (Aiken and West, 1991). Our results constitute 

evidence for such sex-interactive effects with both height and weight on girth outcomes. These 

findings support the notion of distinct life history strategies in males and females, wherein both 

the direction and timing of investment in body girths differs between the sexes. 

 

Individuals demonstrate a wide scatter about the regression lines, particularly in girth-height 

plots (Fig. 1), within which we focus on average male and female effects. In Figure 1, it appears 

that investment in the arm and chest is similar for shorter and taller women, in comparison to 

starker differences between shorter and taller men. Taller men have larger waists than shorter 
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 12 

men, but for women the reverse is true. Regression analysis reveals that for a given percentage 

increase in height, a proxy for energy acquisition in early life, males invest in girths and overall 

weight to a greater degree than females. This is consistent with males’ differential accretion of 

lean tissue during development (Marshall and Tanner, 1968; Maynard et al., 2001), through 

which they may increase muscle mass and body size to facilitate successful competition for 

mates in adulthood (e.g. Hawkes, 2004; Lassek and Gaulin, 2009; Puts, 2010).  

Muscle mass is increased in males relative to females (Fuller et al., 1992; Shih et al., 2000; Abe 

et al., 2003), most notably in the upper body. Evidence suggests the combination in males of a 

broad chest, wide shoulders and narrow waist enhances females’ perception of male 

attractiveness (Maisey et al., 1999; Fan et al., 2005), although this may vary between urban and 

rural populations (Swami and Tovée, 2005). This was reflected in our sex-height interaction 

analyses, where weight as an outcome demonstrated the largest coefficient, followed by upper-

body girths including the arm and chest, along with the thigh. 

 

In contrast, in association with a given percentage increase in weight, Thai females appear to 

invest more than males in all girths except the head and waist. Here, we considered weight a 

proxy for more recent energy acquisition, more likely to represent an increase in adipose tissue. 

Fat is clearly essential to both sexes as an energy store, and a central component of immune 

function (Gabrielsson et al., 2003; Fantuzzi, 2005; Wells and Cortina-Borja, 2013). However, for 

both its overall amount and regional distribution, fat appears to be a key sexually-selected trait 

in females, in contrast to the greater lean mass favored in males (Singh, 1993; Lassek and 

Gaulin, 2008; 2009). Beyond other functions, fat provides energy for reproductive women, 

especially during lactation (Clutton-Brock et al., 1989; Dufour and Sauther, 2002).  

 

Several maternal fat depots (e.g. girths of the chest, arm, thigh and calf) have been linked with 

offspring birth weight, indicating that energy stores throughout the body may benefit 

reproductive investment (Neggers et al., 1995; Gupta et al., 2001). Females in our sample 

appear to favor several body girths for a given increase in weight relative to males, with the 
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greatest effect for the arm, followed by the knee and thigh. However, interaction coefficients in 

the sex-weight models are smaller than those in the sex-height models.  

 

Females demonstrate preferential deposition of fat around the hips, buttocks and thighs, 

referred to as gluteofemoral fat (Lassek and Gaulin, 2006, 2008), although males have relatively 

larger hip bones and bi-iliac breadth (Kurki, 2011). Contrary to expectations, we did not find 

that females invest relatively more in hip and thigh girths in association with increasing weight. 

Rather, we observed a relatively fixed degree of dimorphism in these girths across the whole of 

the weight range, as shown by the large coefficients for male sex in the models. For the hip in 

particular, this may relate both to preferential fat deposition by females, and also to larger 

pelvic canal dimensions (Tague, 1992; Kurki, 2011). Since males showed greater investment in 

hip girth than females in association with height, this may indicate that greater female 

investment in pelvic dimensions occurs during/after puberty, consistent with evidence that 

pelvic dimensions of women continue to increase through this period (see Moerman, 1982). 

 

In the sex-weight models, most interaction coefficients indicated a larger proportional increase 

in a given girth for females, relative to males. However, the interaction coefficient in the waist 

girth model showed the reverse. This result is inconsistent with the notion of sexual selection 

for an ‘inverted triangle’ shape (broad chest and shoulders, narrow waist) in males (Maisey et 

al., 1999; Fan et al., 2005; Swami and Tovée, 2005). Instead, it suggests sex differences in the 

distribution of fat tissue. Studies indicate that visceral adipose tissue (VAT) increases in both 

sexes with age, but beyond this males have greater VAT depots compared to females (Lemieux 

et al., 1993; He et al., 2004; Kuk et al., 2005; Shen et al., 2009).  

 

We incorporated in our models a fertility variable principally to control for the confounding 

effects of parity on females, in whom associations between shape and parity have been 

demonstrated (Lassek and Gaulin, 2006; Wells et al., 2010; Wells et al., 2011). Similar 

associations have not been found for males, although evidence suggests that the hormone 

testosterone is lower in married fathers (Berg and Wynne-Edwards, 2001; Gray et al., 2002; 

Page 13 of 31

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 14 

Gray et al., 2006; Gettler et al., 2011). Testosterone impacts on tissue distribution (Norgan, 

1997), thus it is not unreasonable that fatherhood could impact on shape (Wells et al., 2011), 

although further data are needed to elucidate these possible effects.  

 

The large sample size is a principal strength of this study; statistical power to detect interaction 

effects is smaller than for main effects (McClelland and Judd, 1993; Brookes et al., 2004; 

Durand, 2013). The data were collected using a single scanner following a standardized 

protocol. Limitations include the cross-sectional nature of the data; for example, a proxy for 

energy acquisition in early life was used in the absence of available body shape data from 

adolescent individuals who would have been experiencing developmental trade-offs in real 

time. We were unable to address potential mechanisms that might underlie tissue trade-offs 

(e.g. the action of hormones). Additionally, with this methodology we were not able to 

attribute energy investment specifically to fat, lean, or other tissues, or investigate potential 

differences in investment related to BMI. These represent outstanding questions for future 

work. 

 

In conclusion, our findings of sex-interactive effects with height and weight on body girths 

indicate that males and females invest energy differently across competing parts of the body at 

different points in the life course. The present results are consistent with the notion that sexual 

dimorphism is a plastic strategy varying in association with developmental experience and 

ecological conditions. Further studies are required in additional populations in order to 

elucidate these findings in more detail.  
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Figure 1. Arm, chest, waist, and hip girths plotted against height in males and females. Females 

are dark blue, males are red-orange. Males demonstrate steeper slopes compared to females.  

 

Figure 2. Arm, chest, hip and thigh girths plotted against weight in males and females. Females 

are dark blue, males are red-orange. Interaction effects are evident for arm and chest girths on 

weight. Similar effects are less apparent for hip and thigh plots, wherein relatively consistent 

sex differences are seen across the range of weight.  
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Table 1. Raw anthropometric and shape statistics for males and females 

 

 Males n=5486 Females n=6124 

 Range Mean±SD Range Mean±SD 

Weight, kg 42-129 69.3±11.4 33.5-98.6 56.9±9.4 

Height, cm 148.5-188.4 169.3±5.9 130.7-177.1 156.7±5.7 

BMI, kg/m
2
 15.2-40 24.2±3.6 15.1-38.2 23.2±3.7 

Head, cm 43-65 55.9±1.6 42-60 53.7±1.5 

Arm, cm 18.7-44.8 29.5±3.3 17-39.8 27±3.6 

Chest, cm 78-127.2 99.7±7.2 66.2-111 91±7.6 

Waist, cm 60.6-121.4 85.6±10 56.2-110.8 79.8±9.4 

Hip, cm 76.1-125.6 95.2±6.6 76.1-129.3 96.1±7.2 

Thigh, cm 31.7-63.5 46.3±4 33.7-63.7 47±4.4 

Knee, cm 29.5-48 37.5±2.4 28.3-49.7 36.9±3 

Calf, cm 27.5-49.6 36.6±3 25.3-48 34.9±3 
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Table 2. Raw anthropometric and shape statistics (x ̅± SD) stratified by sex and age 

 

  Weight Height BMI Head Arm Chest Waist Hip Thigh Knee Calf 

 n kg cm kg/m
2 

cm cm cm cm cm cm cm cm 

Males             

Age (y)             

21-30 1454 67.1±11.9 171.3±5.7 22.8±3.6 56.0±1.7 28.6±3.6 97.6±7.3 80.6±9.8 93.9±7.1 46.6±4.3 37.3±2.5 36.4±3.1 

31-40 1289 71.2±12.2 170.2±5.9 24.5±3.7 56.0±1.7
 

30.0±3.4 100.9±7.3 85.8±9.9 96.2±6.8 47.5±4.1 37.9±2.5 37.1±3.1 

41-50 1195 70.8±10.7 169.1±5.8 24.7±3.3 55.9±1.6 30.0±3.1 101.1±6.7 87.5±9.1 96.0±6.1 46.6±3.6 37.6±2.3 36.9±2.8 

51-60 777 70.1±10.4 167.7±5.4 24.9±3.2 55.9±1.5 30.0±3.1 100.6±6.9 88.8±9.0 95.8±6.1 45.7±3.4 37.5±2.3 36.6±2.7 

61-70 583 67.8±9.6 166.2±5.1 24.5±3.0 55.5±1.6 29.5±2.8 99.0±6.3 89.1±8.5 94.9±5.8 44.5±3.3 37.3±2.2 35.8±2.5 

≥71 188 63.8±10.7 164.4±5.3 23.6±3.7 55.0±1.5 28.5±3.4 96.1±7.5 87.7±10.4 93.1±6.8 43.0±3.7 36.8±2.3 34.5±2.7 

Females             

Age (y)             

21-30 1614 53.3±9.3 158.8±5.5 21.1±3.4 53.7±1.5 25.0±3.3 86.8±6.9 73.8±8.4 93.1±7.0 46.1±4.5 36.4±2.9 34.3±3.0 

31-40 1348 57.0±9.3 157.7±5.1 22.9±3.5 53.7±1.6 26.8±3.4 90.6±7.1 78.4±8.5 96.1±6.8 47.7±4.2 37.0±2.9 35.2±3.0 

41-50 1250 58.8±9.0 156.8±5.3 23.9±3.5 53.7±1.5 27.8±3.4 92.7±7.0 81.2±8.4 97.4±6.6 47.9±4.1 37.2±3.0 35.5±3.0 

51-60 860 59.6±8.9 155.1±5.3 24.8±3.5 53.7±1.5 28.4±3.4 94.2±7.3 84.6±8.4 98.3±7.0 47.3±4.2 37.1±3.0 35.2±2.9 

61-70 835 58.3±8.7 153.8±5.5 24.6±3.4 53.5±1.4 28.5±3.3 93.6±7.2 85.4±8.3 97.9±7.4 46.1±4.3 37.1±3.2 34.6±3.0 

≥71 217 55.6±8.6 151.7±5.2 24.1±3.5 53.2±1.6 27.6±3.5 92.3±7.7 84.7±8.7 96.7±7.5 44.2±4.2 36.5±3.3 33.8±3.1 
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Table 3. Correlation coefficients of height and weight with eight body girths in males and females  

 

 Head  Arm Chest Waist Hip Thigh Knee Calf 

Height         

Males 0.34 0.23 0.27 0.13 0.34 0.35 0.42 0.30 

Females 0.28 0.05 0.04 -0.04 0.14 0.16 0.24 0.18 

         

Weight         

Males 0.47 0.87 0.92 0.88 0.95 0.85 0.86 0.86 

Females 0.36 0.87 0.88 0.85 0.91 0.83 0.78 0.83 

     Males: n=5486; females: n=6124 

     All data log-transformed; all correlations significant at p ≤ 0.002 
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 Table 4. Multivariable log-log regression analysis of girths on height, sex, and sex-height interaction,  

  adjusted for age, salary and number of children  
 

 Height 

b 

95% CI Male sex 

b 

95% CI Male sex-height 

interaction 

b 

95% CI R
2
 

Head  0.247 0.23, 0.26 0.021 0.019, 0.022 0.072 0.04, 0.1 0.40 

Arm  0.819 0.76, 0.88 0.026 0.019, 0.033 0.544 0.43, 0.66 0.22 

Chest  0.519 0.48, 0.56 0.049 0.046, 0.054 0.453 0.38, 0.53 0.34 

Waist 

 

0.629 0.57, 0.69 0.022 0.016, 0.027 0.538 0.43, 0.65 0.26 

Hip 

 

0.627 0.59, 0.66 -0.059 -0.063, -0.056 0.369 0.30, 0.44 0.13 

Thigh 

 

0.571 0.52, 0.62 -0.061 -0.066, -0.056 0.448 0.36, 0.54 0.08 

Knee 

 

0.736 0.70, 0.77 -0.039 -0.044, -0.036 0.214 0.14, 0.28 0.14 

Calf 

 

0.577 0.53, 0.62 -0.001 -0.005, 0.004 0.285 0.20, 0.37 0.14 

Weight 

 

1.975 1.90, 2.05 0.040 0.032, 0.048 0.795 0.65, 0.94 0.41 

  n=11610 (f=6124) 

  Girths and height are mean-centered and natural log-transformed 

  See Supporting Information online for table including outcomes for age, salary and number of children 

  p-value for ‘Male sex’ coefficient in calf model non-significant; all other coefficients highly significant at p < 0.0001 

  With the interaction term included, ‘Height’ effect is for females; the sum of ‘Height’ and ‘Male sex-height interaction’ 

  is the height effect for males 
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Table 5. Multivariable log-log regression analysis of girths on weight, sex, and sex-weight interaction,  

adjusted for age, salary and number of children  

 

 Weight 

b 

95% CI Male sex 

b 

95% CI Male sex-weight 

interaction 

b 

95% CI R
2
 

Head  0.075 0.072, 0.078 0.025 0.024, 0.026 0.018 0.012, 0.023 0.46 

Arm  0.652 0.645, 0.659 -0.034 -0.037, -0.032 -0.077 -0.091, -0.064 0.80 

Chest  0.424 0.420, 0.428 0.009 0.008, 0.011 -0.035 -0.043, -0.028 0.86 

Waist 

 

0.604 0.598, 0.609 -0.045 -0.047, -0.043 0.058 0.047, 0.069 0.85 

Hip 

 

0.409 0.406, 0.412 -0.089 -0.090, -0.088 -0.014 -0.20, -0.008 0.86 

Thigh 

 

0.474 0.468, 0.479 -0.107 -0.109, -0.105 -0.041 -0.052, -0.031 0.74 

Knee 

 

0.367 0.362, 0.371 -0.054 -0.055, -0.052 -0.054 -0.064, -0.045 0.66 

Calf 

 

0.442 0.437, 0.447 -0.041 -0.042, -0.039 -0.025 -0.035, -0.015 0.75 

  n=11610 (f=6124) 

  Girths and weight are mean-centered and natural log-transformed 

  See Supporting Information online for table including outcomes for age, salary and number of children 

   All coefficients highly significant at p < 0.0001 

  With the interaction term included, ‘Weight’ effect is for females; the sum of ‘Weight’ and ‘Male sex-weight interaction’ 

  is the weight effect for males 
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