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Abstract

The application of ecological models to human conflict scenarios has given rise
to a number of models which describe antagonistic relationships between ad-
versaries. Recent work demonstrates that the spatial disaggregation of such
models is not only well-motivated but also gives rise to interesting dynamic
behaviour, particularly with respect to the spatial distribution of resources.
One feature which is largely absent from previous models, however, is the
ability of an adversary to coordinate activity across its various locations.
Most immediately, this corresponds to the notion of ‘support’ - the realloca-
tion of resources from one site to another according to need - which plays an
important role in real-world conflict. In this paper, we generalise a spatially-
disaggregated form of the classic Richardson model of conflict escalation by
adding a cross-location interaction term for the within-adversary dynamics
at each location. We explore the model analytically, giving conditions for the
stability of the balanced equilibrium state. We then also carry out a num-
ber of numerical simulations which correspond to stylised real-world conflict
scenarios. Potential further applications of the model, and its implications
for policy, are then discussed.

Keywords: conflict, reaction-diffusion, within-adversary action, stability
analysis

∗Corresponding author.

Preprint submitted to Physica A April 13, 2017



1. Introduction

Over the last century, human conflict has become an increasingly popu-
lar topic for mathematical modelling. Both outbreaks of conflict themselves
and the interactions that lead to them display significant dynamics which,
in many cases, invite modelling by analogy with other systems, particularly
those within ecology. The ability to capture these dynamics using mathemat-
ical models has significant potential value from the perspectives of research
and policy: as well as offering insight into the behaviours involved, such mod-
els can be used to investigate strategies for conflict resolution and avoidance.

The majority of conflict modelling to date has been based on the adapta-
tion of ecological models which mimic the competition between species, since
both feature growth and decay elements, coupled to reflect the interactions
between distinct entities. This approach is exemplified by the two landmark
models which inspired much of the subsequent interest in the field: Lanch-
ester’s [1] model of attrition in warfare and Richardson’s [2] model of conflict
escalation. In both of these cases, the evolution of a resource (respectively,
manpower and military expenditure) is described using equations which in-
corporate both internal and external influences. This general approach -
closely related to the Lotka–Volterra model of predator-prey interaction -
has since been refined and adapted to apply to a number of different types
of conflict [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] .

One feature which is absent from the majority of conflict models is the
influence of space: most approaches are based on an assumption of ‘well-
mixedness’, and describe the dynamics purely in terms of total resource lev-
els. This assumption, however, neglects the important role played by spatial
configuration in conflict scenarios. In general, the ability of one entity to
exert either violence or threat upon another is inversely proportional to the
distance between them. This observation, coupled with the fact that en-
tities participating in conflict are often spread over a number of locations
(e.g. territories or bases), suggests that conflict is highly dependent on non-
trivial spatial interactions, and this undermines approaches which consider
only total resource levels.

In order to address these issues, a spatially-disaggregated variation of the
classic Richardson model has recently been introduced [13]. In this model,
each adversary has resources situated at multiple locations on a 2-dimensional
manifold; that is, its total resources are spread over a number of sites. The
central idea of the model is to describe how the total effect emanating from
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any location is allocated across the locations of the adversary; that is, how
much threat is felt at location j as a result of an opponent’s military capabil-
ity at i. This threat level is estimated using an entropy-maximising approach,
and the influence acts as the coupling term for a system of Richardson equa-
tions describing the behaviour at each location. Analysis of the model reveals
a bifurcation as the parameter representing aggression is increased, in which
the spatial distribution of resources at equilibrium becomes highly concen-
trated on a small number of locations.

The spatial Richardson model is still, however, unrealistic in some re-
spects. In particular, it fails to account for an individual adversary’s ability
to coordinate resources across its locations: while external interactions are
coupled, internal effects act independently at each location. In reality, how-
ever, locations are not autonomous in this respect. An adversary’s activities
at each location are typically coordinated by a central authority which, in
particular, has the ability to reallocate resources from one site to another.
This represents the provision of ‘support’: if an adversary is experiencing
threat at one of its locations, it can bolster its presence by moving resources
from locations where it is less exposed. In mathematical terms, this requires
the introduction of coupling in the within-adversary growth effects at each
location.

In this paper, we propose a new spatial model for the evolution of conflict,
incorporating both inter-adversary hostility and within-adversary support.
The inclusion of support is achieved via the addition of within-adversary
coupling to the internal reaction term, acting alongside the inter-adversary
antagonistic effects of the original Richardson model. The form of this term
is based on entropy-maximisation principles, and the resulting model rep-
resents a general framework for the modelling of hostile interactions. After
presenting the model, we analytically examine a number of low-dimensional,
simplified forms. We establish a number of stability conditions in these set-
tings, which reveal in particular the effect of the support term on the long-
term dynamics of the system. Finally, we examine the behaviour of the
model numerically: we demonstrate our basic analytical findings, and ad-
ditionally examine the behaviour of the model in a number of higher-order
configurations selected to correspond to real-world conflict scenarios.
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2. Model formulation

In 1960, Richardson proposed the following model to describe the levels
of military expenditure of two nations (denoted by p and q):

ṗ = −σ1p+ ρ1q + ε1,

q̇ = ρ2p− σ2q + ε2,
(1)

where σ1, σ2, ρ1, ρ2, ε1 and ε2 are parameters, and the overdot is the usual
notation for the time derivative. Each equation incorporates three effects,
relating to the acquisition and disposal of military resources. The internal
response term (parameterised by σ1 and σ2) reflects the influence of existing
spending levels on the acquisition rate. Both σ1 and σ2 are typically taken to
be positive, reflecting some notion of impedance associated with the accumu-
lation of arms: this may result either from an underlying tendency towards
non-aggression, or simply reflect depreciation in the value of existing arms.
The action–reaction term (determined by ρ1 and ρ2) encodes the interaction
between the nations; that is, the response of each to the acquisitions of the
other. In most scenarios, ρ1 and ρ2 are also taken to be positive, reflecting
antagonism between the adversaries: each responds to the other’s expendi-
ture by increasing its own spending. Finally, the terms ε1 and ε2 represent the
effect of external grievances, such as the threat posed by exogenous actors.

The dynamics of this basic system were studied by Richardson, and a
number of properties were established. Most immediately, under the as-
sumption ρ1ρ2 6= σ1σ2, the system can be shown to have a unique equilibrium
(p̄, q̄), where

p̄ =
σ2ε1 + ρ1ε2
σ1σ2 − ρ1ρ2

, q̄ =
ρ2ε1 + σ1ε2
σ1σ2 − ρ1ρ2

, (2)

and all solutions converge to (p̄, q̄) provided that ρ1ρ2 < σ1σ2 holds. In terms
of real-world behaviour, this implies that perpetually escalating ‘arms races’
will only occur if the tendency to aggression is sufficiently large, with the two
nations otherwise settling towards a deadlock of mutually-tolerable threat.

Taking this model as a basis, we formulate a new model of arms expen-
diture between two actors which takes into account the effect of space in
moderating conflict interactions. We do this by disaggregating the model in
a way which reflects the distribution of each actor’s resources in space, and
incorporates spatial interaction effects in the behaviour of each adversary.

We consider a situation involving two adversaries, P and Q, each of which
possesses resources at a number of discrete locations. The spatial setting for
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Figure 1: Schematic diagram illustrating the structure of flows in a hypothetical configu-
ration of the model with N = 3 and M = 2. The size of each location indicates its level
of expenditure, and the widths of the arrows represent the strength of the within- and
between-adversary effects. For clarity, the threat flows from only two locations are shown.

the model is a two-dimensional manifold, M, which represents the domain
in which the conflict takes place. Within this, each adversary controls a
number of sites: P is taken to be located at N spatially discrete points x1,
. . . , xN ∈M, and Q is taken to be located at M spatially discrete points y1,
. . . , yM ∈M.

We use the term pj to denote the level of P ’s hostility at location xj for
j = 1, . . . , N , and ql to denote the level of Q’s hostility at location yl for
l = 1, . . . ,M . For each j ∈ {1, . . . , N} and for each l ∈ {1, . . . ,M}, the
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dynamics of pj and ql are described by the following equations:

ṗj = − σ1pj − φ1pj + φ1

N∑
i=1

pi
paje

−α·d(xj ,xi)∑N
j′=1 p

a
j′e

−α·d(xj′ ,xi)

+ ρ1

M∑
k=1

qk
pbje

−β·d(xj ,yk)∑N
i=1 p

b
ie

−β·d(xi,yk)
+
ε1
N
,

q̇l = − σ2ql − φ2ql + φ2

M∑
k=1

qk
qal e

−α·d(yl,yk)∑M
l′=1 q

a
l′e

−α·d(yl′ ,yk)

+ ρ2

N∑
i=1

pi
qbl e

−β·d(xi,yl)∑M
k=1 q

b
ke

−β·d(xi,yk)
+
ε2
M
,

(3)

where σ1, σ2, ρ1, ρ2, ε1 and ε2 are the same parameters as in the non-spatial
model (1), and a, b, α, β, φ1 and φ2 are new parameters. We use d to
denote a metric, defined on M ×M, for the distance between locations;
since the locations of each adversary are distinct, it is reasonable to assume
that d(xj, xj) = 0 for all j, and that d(xj, xi) > 0 if j 6= i. Similarly,
d(yl, yl) = 0 for all l and d(yl, yk) > 0 if k 6= l.

As in the original Richardson formulation, the model includes a term de-
scribing the reaction of each adversary to military spending by the other.
Unlike in the aggregated form, however, this is modelled at each location:
each site reacts independently to the threat it experiences. In order to do
this, it is necessary to estimate how the total threat emanating from re-
sources deployed at any given location is divided across the locations of the
adversary. This is done using an entropy–maximising method, described
in Ref. [13], which estimates the most likely flow of threat between loca-
tions. This encapsulates two key principles: the flow of threat towards larger
sites (parameterised by b), and an impedance effect proportional to the dis-
tance between locations (parameterised by β). These appear in the model
as action–reaction terms, with strength parameterised by ρ1 and ρ2: again,
these are assumed to be positive, corresponding to antagonistic behaviour.

The model also includes a term which represents within-adversary inter-
action across locations. This is not present in earlier models, but is included
here to reflect the ability of each adversary to coordinate activity across the
locations at which its resources are present. Most immediately, this behaviour
corresponds to the notion of ‘support’: the reallocation of resources from one
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site to another according to strategic need. In the real-world, this would typ-
ically be achieved through the transport of military personnel or hardware,
both of which have some associated cost. We model this using an additional
interaction term, derived according to similar principles to those used for the
antagonistic behaviour. Again, the key issue is how the resources from one
site are to be reallocated and distributed over the same adversary’s other
locations. This is done according to entropy–maximising principles, with a
function incorporating: (i) the existing level of resource at the destination
(parameterised by a), and (ii) the distance between source and destination
(parameterised by α). In particular, if φ1 is the diffusion rate for adversary
P , then the level of resource allocated to pj from pi is given by

φ1pi
paje

−α·d(xj ,xi)∑N
j′=1 p

a
j′e

−α·d(xj′ ,xi)
,

where a ≥ 0. Equivalent behaviour is also defined for adversary Q. The
subtraction of the terms φ1pj and φ2ql ensures that the total level of resource
is conserved for each adversary.

The diagram in Figure 1 summarises the structure of the model, showing
both within- and between-adversary effects. The internal flows represent
the re-allocation of resources, varying according to distance and magnitude,
while the external flows show how the threat emanating from a particular
location is distributed. The flows shown are purely illustrative, and would
depend on the parameter settings and spatial distribution in any realisation.

In addition to this, we provide a summary of notation in Table A.1 of
Appendix A. It can be shown in a few steps that our spatially-explicit model
(3) is a disaggregation of the original Richardson model (1). By defining
p :=

∑N
j=1 pj and q :=

∑M
l=1 ql as the total hostility of each adversary, we

prove in Appendix A that these total values satisfy the same relations as the
original form.

2.1. The within-adversary interaction term

The inclusion of intra-adversarial effects—representing the reallocation
of resources between the locations of an adversary—is one of the primary
innovations of this model. It provides a mechanism by which ‘support’ can be
provided from one location to another, thereby reflecting real-world strategic
behaviour. For the entity P at location xj, this is represented in the model
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by the term

Π(pj) := −φ1pj + φ1

N∑
i=1

pi
paje

−α·d(xj ,xi)∑N
j′=1 p

a
j′e

−α·d(xj′ ,xi)
.

The parameter α accounts for the effect of distance in impeding the reallo-
cation of resources: larger values imply that movement is more costly, and
that reallocation will therefore be biased towards shorter spatial ranges.

The parameter a, on the other hand, determines the effect of existing
resource levels on reallocation behaviour. It can be interpreted in terms of
return-to-scale: its value describes the extent to which allocation flows will
be attracted towards locations which already have higher levels of resource.
Here we distinguish two scenarios, representing distinct forms of behaviour:

(I) a = 0, α > 0: ‘balancing’ effect
The within-adversary action term simplifies to

Π0(pj) = −φ1pj + φ1

N∑
i=1

pi
e−α·d(xj ,xi)∑N
j′=1 e

−α·d(xj′ ,xi)
,

that is, resources at location xj are re-distributed over the various lo-
cations of P according to their distance from xj. The inclusion of such
term in the differential system has a balancing effect on the dynam-
ics. This can be demonstrated for the case where N = 2: noting that
d(xi, xi) = 0 for i = 1, 2 and using the notation d12 = d(x1, x2) =
d(x2, x1), the computations

Π0(p1) = −φ1p1 + φ1

(
p1

1

1 + e−α·d12
+ p2

e−α·d12

e−α·d12 + 1

)
=

φ1e
−α·d12

1 + e−α·d12
(p2 − p1)

show that Π0(p1) is positive if p1 < p2 and negative if p1 > p2. We can
also verify by numerical simulations that the system exhibits a similar
‘balancing’ effect for three or more locations per adversary; that is, the
system

ṗj = Π0(pj) j = 1, 2, 3, . . . , N

converges to an equilibrium (p∗j , j = 1, . . . , N) that satisfies |p∗j −p∗i | ≤
|pj(0)− pi(0)| for all i, j ∈ {1, . . . , N}, i 6= j.

8



(II) a > 0, α > 0: ‘rich-get-richer’ effect
For simplicity we take a = 1 to give the within-adversary action term

Π1(pj) = −φ1pj + φ1

N∑
i=1

pi
pje

−α·d(xj ,xi)∑N
j′=1 pj′e

−α·d(xj′ ,xi)

at location xj of adversary P . The impact of this bilinear term on the
dynamics is quite different from that of the linear term Π0 given above;
resources are allocated proportionately to each location’s existing re-
source level, resulting in a ‘rich-get-richer’ effect. For the N = 2 case,
again noting that d(xi, xi) = 0 for i = 1, 2 and using d12 to denote
d(x1, x2) = d(x2, x1) > 0, we find that

Π1(p1) = − φ1p1 + φ1

(
p1

p1
p1 + p2e−α·d12

+ p2
p1e

−α·d12

p1e−α·d12 + p2

)
=

φ1p1
(p1 + p2e−α·d12)(p1e−α·d12 + p2)

(
p2e

−α·d12(1− e−α·d12)(p1 − p2)
)
.

Using the fact that e−α·d12 < 1, we conclude that Π1(p1) is positive
if p1 > p2 and negative if p1 < p2 (note that this relation was just
the opposite in the a = 0 case). Our numerical simulations confirm
that, for N ≥ 3, escalation occurs at locations with the highest hos-
tility levels while other sites with lower expenditure levels can fur-
ther decrease; that is, there are i, j ∈ {1, . . . , N}, i 6= j such that
|p∗j − p∗i | ≥ |pj(0) − pi(0)|. In such as a situation, the reallocation
effect results in the agglomeration of resources at a small number of
locations.

3. Model analysis

Having introduced the model, we now present analysis of its dynamical
properties. The primary motivation for this is to offer insight into the un-
derlying social system; that is, findings that are interpretable in terms of
conflict evolution. Issues such as stability, for example, have implications
from the perspective of international relations: given that stability (i.e. the
non-escalation of conflict) is a policy goal, establishing the conditions under
which this occurs can offer real-world guidance. In addition to this, the nov-
elty of the model means that such analysis is also of interest in itself, and
may inform the application of the framework in other contexts.
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Since the model is not analytically tractable at higher dimensionality
(i.e. for large values ofN andM), we focus in this section on lower-dimensional
forms. These represent simplified cases, in terms of their spatial configura-
tion, and allow the effect of the disaggregation to be explored at an elemen-
tary level. The question of whether these findings are also evident for more
intricate configurations can subsequently be examined by numerical methods.

3.1. Disaggregation for one actor (N = 2, M = 1)

The simplest disaggregated case of the model is one in which one of the
adversaries (taken here as P ) is located at two sites (so that N = 2), while
the other is considered to be at only one location only (i.e. M = 1), as in the
aggregated form. This may correspond to a situation where one actor controls
two non-contiguous territories, or where one simply possesses two military
locations. Exploring this case allows us to isolate the effect of disaggregation
on a single adversary, and we again consider separately the cases where a is
either zero or strictly positive.

3.1.1. a = 0

We consider a simple spatial configuration in which d(x1, x2) = 1, d(x1, y) =
d1, and d(x2, y) = d2. We take the parameter values σ1 = σ2, a = 0 and
b = 1: substituting these and rescaling the system (3), we arrive at

ṗ1 = −p1 − φ1p1 + φ1
p1 + p2e

−α

1 + e−α
+ ρ1

qp1e
−βd1

p1e−βd1 + p2e−βd2
+
ε1
2
,

ṗ2 = −p2 − φ1p2 + φ1
p1e

−α + p2
1 + e−α

+ ρ1
qp2e

−βd2

p1e−βd1 + p2e−βd2
+
ε1
2
,

q̇ = ρ2(p1 + p2)− q − φ2q + φ2q + ε2.

We introduce a new variable r = p1 − p2 for the difference between hostility
levels of the two locations of P (in real world terms, this represents the
differential between an actor’s power at its primary sites). Using this, the
above system transforms into

ṗ = − p+ ρ1q + ε1,

q̇ = ρ2p− q + ε2,

ṙ = − r − φ1r + φ1r
(1− e−α)

(1 + e−α)
+ ρ1q

(1− e−β(d2−d1))p+ (1 + e−β(d2−d1))r

(1 + e−β(d2−d1))p+ (1− e−β(d2−d1))r
.

(4)
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The equations for ṗ and q̇ decouple and formulate the system (1), the dynam-
ics of which are well understood: all solutions converge to the equilibrium
(p̄, q̄) given in (2) if ρ1ρ2 < 1. Therefore for our analysis of system (4) we
assume that this condition holds, and consider only the last equation of (4)
under the constraint that p and q are at their equilibria. This way a single
limiting equation of the system (4) arises:

ṙ = − r1 + e−α + 2φ1e
−α

1 + e−α
+ ρ1q̄

(1− e−β(d2−d1))p̄+ (1 + e−β(d2−d1))r

(1 + e−β(d2−d1))p̄+ (1− e−β(d2−d1))r
.

We show in Appendix A that the system converges to a stable equilibrium
under the same conditions to those which apply for the original Richardson
model. For non-trivial spatial configurations, however, the resource levels
at equilibrium are unequal across the locations of the disaggregated actor:
higher volume is accumulated at the site that is closer to its adversary. This
occurs as a result of the action-reaction mechanism: more threat is experi-
enced at this site, and resources are therefore accumulated at a higher rate.

3.1.2. a > 0

The case where a > 0 involves the reallocation of resources in proportion
to existing resource levels. We set a = 1, and take other parameters as in
the previous section: σ1 = σ2, b = 1, d(x1, x2) = 1, d(x1, y) = d1, and
d(x2, y) = d2. Rescaling the system (3) and again considering the variable
r = p1 − p2, we arrive at

ṗ = − p+ ρ1q + ε1,

q̇ = ρ2p− q + ε2,

ṙ = − r − φ1r + ρ1q
(1− e−β(d2−d1))p+ (1 + e−β(d2−d1))r

(1 + e−β(d2−d1))p+ (1− e−β(d2−d1))r

+
φ1

2
(p+ r)

(1− e−α)p+ (1 + e−α)r

(1 + e−α)p+ (1− e−α)r
+
φ1

2
(p− r)(e−α − 1)p+ (1 + e−α)r

(1 + e−α)p+ (e−α − 1)r
.

(5)
As in the a = 0 case, the equations for ṗ and q̇ decouple and formulate the
system (1), for which all solutions converge to the equilibrium (p̄, q̄) given in
(2) if ρ1ρ2 < 1. Again, therefore, we assume that this last inequality holds,
and consider only the last equation of (5) under the constraint that p and
q are at their equilibria. A single limiting equation of the system (5) again
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arises in this case:

ṙ =− r − φ1r + ρ1q̄
(1− e−β(d2−d1))p̄+ (1 + e−β(d2−d1))r

(1 + e−β(d2−d1))p̄+ (1− e−β(d2−d1))r

+
φ1

2
(p̄+ r)

(1− e−α)p̄+ (1 + e−α)r

(1 + e−α)p̄+ (1− e−α)r
+
φ1

2
(p̄− r)(e−α − 1)p̄+ (1 + e−α)r

(1 + e−α)p̄+ (e−α − 1)r
.

Using numerical simulations, we can confirm that there is an equilibrium
of the limiting equation that attracts every solution in the feasible region
(|r(0)| ≤ p̄). This equilibrium has larger value than the globally stable
steady state r̄+ obtained for a = 0. This finding also highlights the differ-
ence between the characteristics of the two scenarios ‘a = 0’ and ‘a > 0’;
while the former represents a strategy by which an actor seeks to lessen the
differences between the levels of hostility at its various locations (a ‘balanc-
ing’ effect), the latter favours agglomeration and drives the system away
from such balanced state (‘rich-get-richer’ effect). Although the stability of
the aggregated system is unchanged, behaviour of this type leads to a more
spatially-concentrated distribution of arms, which could be interpreted as a
more precarious situation from the perspective of security.

An alternative perspective on these results concerns the behaviour of an
actor which is seeking to maintain a prescribed division of resources between
its locations. A feasible real-world policy, for example, might dictate that
levels at one location are maintained at a given percentage of the adversary’s
total: this behaviour is neither equalising nor agglomerative. In such cases,
parameters can be tuned in order to achieve this (given the other adversary’s
distribution), and the values required to do this can be interpreted in be-
havioural terms. The higher value of a required to achieve the prescribed
balance, for example, the more such a strategy requires active and positive
re-allocation, relative to a purely equitable strategy.

3.2. Disaggregation for both actors (N = 2, M = 2)

A more complex version of the model involves the disaggregation of both
actors: both P and Q are assumed to be located at two sites. This is the
simplest version of the model for which internal spatial dynamics are present
for both actors. This scenario can again be interpreted as representing two
actors which both have presence in two unconnected territories, or simply
that both possess two resource locations (which might be military bases, for
example).
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3.2.1. a = 0

To consider the effect of balancing behaviour in this case, we consider
a simplified spatial configuration. In particular, we consider a scenario in
which d(x1, x2) = d(y1, y2) = 1, d(x1, y1) = d(x2, y2) = 0, and d(x1, y2) =
d(x2, y1) = 1: the system contains only two locations, one unit apart, at
which both adversaries are located. Taking these values, setting a = 0, b = 1
and σ1 = σ2, and rescaling the system (3), we arrive at

ṗ1 = −p1 − φ1p1 + φ1
p1 + p2e

−α

1 + e−α
+ ρ1

(
q1p1

p1 + p2e−β
+

q2p1e
−β

p1e−β + p2

)
+
ε1
2
,

ṗ2 = −p2 − φ1p2 + φ1
p1e

−α + p2
1 + e−α

+ ρ1

(
q1p2e

−β

p1 + p2e−β
+

q2p2
p1e−β + p2

)
+
ε1
2
,

q̇1 = ρ2

(
p1q1

q1 + q2e−β
+

p2q1e
−β

q1e−β + q2

)
− q1 − φ2q1 + φ2

q1 + q2e
−α

1 + e−α
+
ε2
2
,

q̇2 = ρ2

(
p1q2e

−β

q1 + q2e−β
+

p2q2
q1e−β + q2

)
− q2 − φ2q2 + φ2

q1e
−α + q2

1 + e−α
+
ε2
2
.

We introduce new variables p = p1 + p2, r = p1− p2, q = q1 + q2, s = q1− q2,
and transform the above system into

ṗ = − p+ ρ1q + ε1,

q̇ = ρ2p− q + ε2,

ṙ = − r − φ1r + φ1r
(1− e−α)

(1 + e−α)
+
ρ1
2

(q + s)
(1− e−β)p+ (1 + e−β)r

(1 + e−β)p+ (1− e−β)r

+
ρ1
2

(q − s)(e−β − 1)p+ (1 + e−β)r

(1 + e−β)p+ (e−β − 1)r
,

ṡ = − s− φ2s+ φ2s
(1− e−α)

(1 + e−α)
+
ρ2
2

(p+ r)
(1− e−β)q + (1 + e−β)s

(1 + e−β)q + (1− e−β)s

+
ρ2
2

(p− r)(e−β − 1)q + (1 + e−β)s

(1 + e−β)q + (e−β − 1)s
.

(6)

As in the cases shown in Section 3.1, the equations for ṗ and q̇ decouple
and reduce to the original Richardson system (1). Since it is known that all
solutions converge to the equilibrium (p̄, q̄) if ρ1ρ2 < 1, we therefore assume
that this inequality holds, and consider only the last two equations of (6)
under the constraint that p and q are at their equilibria. In this way, we find
a limiting system of (6) that consists of two equations only.
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We investigate the stability of the trivial equilibrium (0, 0) in the lim-
iting system by linearising around (0, 0). At this equilibrium, hostility is
evenly distributed over the locations of an adversary hence we can say the
system is at a balanced state and we find (p̄1, p̄2, q̄1, q̄2) = (p̄/2, p̄/2, q̄/2, q̄/2).
Linearisation yields (

ṙ
ṡ

)
= J1

(
r
s

)
,

where J1 denotes the Jacobian,

J1 =

(
−1− φ1 + φ1ω + ρ1(1− η2) ρ1η

ρ2η −1− φ2 + φ2ω + ρ2(1− η2)

)
,

with

ω =
1− e−α

1 + e−α
, η =

1− e−β

1 + e−β
.

We observe that ω is monotonically increasing in α, with ω = 0 at α = 0 and
ω → 1 as α → ∞. Similarly, η is monotonically increasing in β, with η = 0
at β = 0 and η → 1 as β →∞. Thus for non-negative α and β it holds that
0 ≤ ω, η < 1.

We examine by mathematical analysis the dependence of stability on
various model parameters, with an emphasis on the support parameters φ1

and φ2. The main result of this section is stated below, while its proof is
presented in Appendix A.

Theorem 1. If ρ2(1−η2) ≥ 1+φ2(1−ω) then the trivial equilibrium (r̄, s̄) =
(0, 0) is unstable for all values of φ1 and ρ1. If ρ2(1 − η2) < 1 + φ2(1 − ω)
then stability depends on the value of φ1 and ρ1, more precisely there is a
threshold quantity

T1 =
1

1 + φ1(1− ω)

(
ρ1(1− η2) +

ρ1ρ2η
2

1 + φ2(1− ω)− ρ2(1− η2)

)
such that the trivial equilibrium (r̄, s̄) = (0, 0) is unstable if T1 > 1 and stable
if T1 < 1. A critical value for stability, φ̃1, is defined as

φ̃1 =

(
ρ1(1− η2) +

ρ1ρ2η
2

1 + φ2(1− ω)− ρ2(1− η2)
− 1

)
(1− ω)−1,

and the trivial solution is unstable if φ1 < φ̃1, but stabilises as φ1 exceeds φ̃1.
Similar relations can be obtained in terms of φ2.
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This result can also be interpreted in terms of real-world behaviour. While
the conditions for stability in an aggregated sense are identical to those for
the original model, interesting behaviour arises with respect to the spatial
distribution of resources. The equilibrium (r̄, s̄) = (0, 0) that we investigated
corresponds to the equitable distribution of resources between the two loca-
tions. Our analysis reveals a stability condition involving ρ1, ρ2, φ1 and φ2

implying that resource reallocation has a material effect on the tendency of
the system to concentrate at one location. In particular, it is shown that
increasing φ1 and φ2 (that is, increasing the reallocation effect) expands the
stability region (see Figure 2a). This effect therefore acts as a counterweight
to the tendency of the system to evolve towards a potentially insecure situ-
ation in which resources are concentrated in one location.

3.2.2. a > 0

We also investigate the form of the model incorporating positive feedback
in resource allocation. We do this for the same spatial configuration as in
the previous section: d(x1, x2) = d(y1, y2) = 1, d(x1, y1) = d(x2, y2) = 0, and
d(x1, y2) = d(x2, y1) = 1. With a = b = 1, σ1 = σ2, and variables p = p1 +p2,
r = p1 − p2, q = q1 + q2, s = q1 − q2 the rescaled system (3) becomes

ṗ = − p+ ρ1q + ε1,

q̇ = ρ2p− q + ε2,

ṙ = − r − φ1r +
φ1

2
(p+ r)

(1− e−α)p+ (1 + e−α)r

(1 + e−α)p+ (1− e−α)r

+
φ1

2
(p− r)(e−α − 1)p+ (1 + e−α)r

(1 + e−α)p+ (e−α − 1)r
+
ρ1
2

(q + s)
(1− e−β)p+ (1 + e−β)r

(1 + e−β)p+ (1− e−β)r

+
ρ1
2

(q − s)(e−β − 1)p+ (1 + e−β)r

(1 + e−β)p+ (e−β − 1)r
,

ṡ = − s− φ2s+
φ2

2
(q + s)

(1− e−α)q + (1 + e−α)s

(1 + e−α)q + (1− e−α)s

+
φ2

2
(q − s)(e−α − 1)q + (1 + e−α)s

(1 + e−α)q + (e−α − 1)s
+
ρ2
2

(p+ r)
(1− e−β)q + (1 + e−β)s

(1 + e−β)q + (1− e−β)s

+
ρ2
2

(p− r)(e−β − 1)q + (1 + e−β)s

(1 + e−β)q + (e−β − 1)s
.

(7)
The equations for ṗ and q̇ decouple as before, and so we assume that ρ1ρ2 < 1
and consider only the last two equations of (7) under the constraint that p
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Figure 2: Illustration of stability boundaries in the models (6) (Figure 2a) and (7) (Figure
2b) for different values of φ1 and φ2. Figure 2a: For each curve, the trivial solution
(r̄, s̄) = (0, 0) is stable for all values of (ρ1, ρ2) below the curve. In this case, increasing
φ1 and φ2 expands the stability region. Figure 2b: For each curve, the trivial solution
(r̄, s̄) = (0, 0) is unstable for all values of (ρ1, ρ2) below the curve. Increasing φ1 and φ2
reduces the stability region. The other parameters are: ε1 = ε2 = 0.1, β = 1, α = 1. The
dashed grey line marks ρ1ρ2 = 1.

and q are at their equilibria, (p̄, q̄). Using this approach, we find a limiting
system of (7) that consists of two equations only.

We are interested in the stability of the trivial equilibrium (r̄, s̄) = (0, 0)
in the limiting system. Recalling that r = p1 − p2 and s = q1 − q2, the
steady state at each location is given as (p̄1, p̄2, q̄1, q̄2) = (p̄/2, p̄/2, q̄/2, q̄/2).
By linearising the limiting system around (0, 0), we derive(

ṙ
ṡ

)
= J2

(
r
s

)
,

where the Jacobian is given as

J2 =

(
−1 + φ1ω(1− ω) + ρ1(1− η2) ρ1η

ρ2η −1 + φ2ω(1− ω) + ρ2(1− η2)

)
.

The following theorem summarises stability properties in system (7), and its
proof is given in Appendix A.
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Figure 3: Solution curves in the models (6) (Figure 3a) and (7) (Figure 3b) when φ1 = 1,
φ2 = 0.5. The difference between the two scenarios ‘a = 0’ (Figure (a)) and ‘a = 1’
(Figure (b)) in the stability of the balanced equilibrium (r̄, s̄) = (0, 0) ⇔ p̄1 = p̄2, q̄1 = q̄2
is demonstrated. The other parameters are: ε1 = ε2 = 0.4, β = 1, α = 1, and ρ1 = 1.3,
ρ2 = 0.6 therefore ρ1ρ2 < 1.

Theorem 2. If φ2ω(1 − ω) + ρ2(1 − η2) > 1 then the trivial equilibrium
(r̄, s̄) = (0, 0) is unstable for all values of φ1 and ρ1. If φ2ω(1− ω) + ρ2(1−
η2) < 1 then stability depends on the value of φ1 and ρ1. More precisely,
there is a threshold quantity

T2 = φ1ω(1− ω) + ρ1(1− η2) +
ρ1ρ2η

2

1− φ2ω(1− ω)− ρ2(1− η2)

such that the trivial equilibrium (r̄, s̄) = (0, 0) is unstable if T2 > 1 and locally
asymptotically stable if T2 < 1. A critical value φ̆1 for stability is defined as

φ̆1 =

(
1− ρ1(1− η2)−

ρ1ρ2η
2

1− φ2ω(1− ω)− ρ2(1− η2)

)
ω−1(1− ω)−1,

and the trivial solution is locally asymptotically stable for φ1 < φ̆1, but it loses
its stability as φ1 increases through φ̆1. Similar relations can be obtained in
terms of φ2.

In this case, therefore, the reallocation mechanism has the opposite effect
to that when it was purely distance-based (see Figure 2b, increasing real-
location effect decreases the stability region). When a > 0, this encodes a
‘rich-get-richer’ effect, which merely magnifies the effect of inter-adversary
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hostility (the action–reaction term) in concentrating activity in one location.
The reallocation follows the growth stimulated by antagonism (with resources
being bolstered at the locations where threat is experienced) and therefore
reinforces the agglomeration in these locations. If it is assumed that such
sites represent potential conflict flashpoints, then this positive feedback effect
results in increased risk. Analytical results of this and the previous sections
are illustrated in Figures 2 and 3, which also highlight the difference between
the two scenarios ‘a = 0’: balancing effect and ‘a = 0’: ‘rich-get-richer’ effect.

In the remainder of our analysis we investigate whether the two support
parameters φ1 and φ2 can jointly control stability.

Theorem 3. It is possible to obtain a threshold quantity T3 such that the
trivial equilibrium is locally asymptotically stable if T3 < 1, and unstable if
T3 > 1. We define

φ∗
1 =

φ1

T3
+
ρ1(1− η2)
ω(1− ω)

(
1

T3
− 1

)
, φ∗

2 =
φ2

T3
+
ρ2(1− η2)
ω(1− ω)

(
1

T3
− 1

)
.

If T3 < 1 then increasing φ1 to φ∗
1 and φ2 to φ∗

2 destabilises the trivial
equilibrium. If T3 > 1 then stabilising the trivial equilibrium is possible if
T3 ≤ 1 +φ1ω(1−ω)/(ρ1(1− η2)) and T3 ≤ 1 +φ2ω(1−ω)/(ρ2(1− η2)) hold,
by decreasing φ1 to φ∗

1 and φ2 to φ∗
2. Otherwise it is not possible to stabilise

the trivial equilibrium by changing only φ1 and φ2.

The proof of this theorem has been moved to Appendix A. From the
perspective of real-world conflict, this result can be interpreted in terms of
conflict prevention. Manipulations of φ1 and φ2 represent feasible policy
interventions that may be applied: either restrictions on the movement of re-
sources, or the encouragement of movement towards under-resourced areas.
The analysis above indicates that such changes can, in certain circumstances,
control the stability of the system, thereby suggesting that they represent a
meaningful policy intervention. It is also true, however, that such changes
will not be effective in all circumstances, which implies that other inter-
ventions (corresponding to the other parameters in the model) may also be
necessary in such cases.

4. A numerical example

For reasons of tractability, our mathematical analysis has been restricted
to low-dimensional forms of the model. We have established a number of
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properties in these basic scenarios: in particular, the influence that the real-
location term has in affecting the spatial distribution of resources at equilib-
rium. These simplified examples were intended to isolate the effects of disag-
gregation (and allow them to be investigated analytically), which we would
expect to be manifested in more complex, higher-dimensional scenarios. In
this section, we carry out a number of numerical simulations to examine the
behaviour of the model in such scenarios, and in particular to verify that the
results of our analytical work remain valid in these configurations.

In terms of its real-world relevance, the model is intended to represent sit-
uations in which two actors (most immediately nation-states) are in conflict
in some large spatial territory. The locations over which their resources are
distributed are intended to represent areas with significant military value,
such as bases or large cities. A realistic simulation, therefore, will typically
involve both adversaries having numbers of locations of the order of tens,
and it is such situations that we examine here.

Figure 4 depicts four scenarios that are derived by varying the support
parameters φ and a. The spatial configuration of the two adversaries is the
same in all cases, and the two sides are distinguished by colour, so that the
blue points are adversaries to the green.

The spatial configuration is derived as follows: a set of 50 points in the
unit square, given byM = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, are uniformly ran-
domly generated. We suppose that each adversary has an associated terri-
tory and so points with x ≤ 0.5 are initially allocated to the green group
and points with x > 0.5 are initially allocated to the blue group. However,
in order to examine the role that support might play in conflict scenarios,
we then reallocate some of the points within each territory to the oppos-
ing side. This enables us to examine the way in which locations that are
surrounded by enemy territory can be supported by the other locations of
the same adversary. Specifically, we let those points lying in the region
{(x, y)|0.2 ≤ x ≤ 0.4, 0.4 ≤ y ≤ 0.6} convert to blue and let those points ly-
ing in the region {(x, y)|0.6 ≤ x ≤ 0.8, 0.4 ≤ y ≤ 0.6} convert to green. This
produces two opposing ‘islands’ within the main territories dominated by
each side: the subfigures in Figure 4 show the spatial configuration that
resulted from one such realisation of this process.

For each parameter configuration, the model in equation (3) is numerically
solved using the 4th order Runge-Kutta procedure, using step sizes of δt =
0.1. An equilibrium is detected when |pj(t + δt) − pj(t)|/|pj(t)| < 10−5 and
|ql(t+ δt)− ql(t)|/|ql(t)| < 10−5 for all j = 1, 2, ..., N and l = 1, 2, ...,M .
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(a) φ = 0 (b) φ = 0.5, a = 0

(c) φ = 0.5, a = 1
(d) φ = 0.5, a = 0 for green, a = 1 for
blue

Figure 4: Equilibrium values for a range of conflict scenarios in which two adversaries
(green and blue) are distributed over a two-dimensional square. Each panel represents a
run of the model for given values of φ and a, with the other parameters held constant as
follows: σ1 = σ2 = 1, ε1 = ε2 = 0.1, β = 1, α = 1, ρ1 = ρ2 = 0.8. In each case, the size of
the point indicates the level of resources (i.e. pj and ql) at equilibrium.
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In Figure 4a, no support dynamics are included (as indicated by φ = 0).
Using the size of each point to represent the value of the resulting equilibrium,
we see that those locations in enemy territory are typically those that are
subject to the greatest threat and therefore have the largest resource levels.
This is particularly the case for the green adversary, which possesses just one
location in enemy territory.

In Figure 4b, the support term is included in the model with a = 0.
The resulting equilibrium is more evenly distributed than in Figure 4a, as
resources can now be re-distributed between the locations of an adversary.
In particular, in this scenario, the resource levels of those locations in enemy
territory are distributed more evenly across the adversary’s other locations.
Those locations on the outer boundary of the space ‘support’ those in the
middle, reducing the total amount of hostility at that location and serving
to dampen the system as a whole.

In Figure 4c, the support term is included with a = 1. In this case, we
see a more uneven distribution of equilibrium values in comparison to both
Figure 4b and, to a lesser extent, Figure 4a. This supports the findings in
Sections 3, which found that a > 0 leads to a phenomenon by which locations
with little threat upon them will share their resources within their group by
sending them towards those locations that need them most. In Figure 4c, we
also observe an important distinction from Figure 4a: it is not the location
within enemy territory that results in the largest hostility; but, instead, a
location within green territory, which is closer to the majority of other green
locations. We posit that this difference results from the ease with which
the green side can share resources within its own territory. In essence, the
green location furthest to the right and in blue territory is so far into enemy
territory that it cannot receive support.

In Figure 4d, we again take φ = 0.5, but in this case each adversary
is assigned a different value of a: we will use ab to denote the value used
for blue’s behaviour, and ag for green. Here we take ag = 0 and ab =
1: for such a scenario, we observe that the green locations, which are re-
allocating resources all their locations, have hostility levels that are more
evenly distributed than the blue locations, which are sending resources to
those locations within enemy territory. The value of a in real world conflict
scenarios is likely to require a strategic decision by actors in the system. An
adversary may choose to either distribute its resources more evenly among
its different locations or may instead choose to send resources where they are
needed most.
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(a) φ = 0.1 (b) φ = 0.2

Figure 5: Two different equilibria attained by the system when a = 0 as φ1 is increased.

Our analysis in a lower dimensional setting in Section 3.2 identified the
loss of stability of the trivial equilibrium as the support parameters are varied.
This loss of stability is a bifurcation, which is likely to manifest as a sudden
change in the resulting long-term behaviour of the system. For nonlinear
systems, the behaviour of the system on one side of the bifurcation can be
dramatically different from its behaviour on the other. That is, a small
change in parameters can have a disproportionate effect on the resulting
dynamics. We now determine whether a bifurcation can also be detected in
the present high dimensional scenario.

In an effort to detect a bifurcation, we consider the case where a = 0.
Taking σ1 = σ2 = 1, ε1 = ε2 = 0.1, b = 1, β = 3, α = 1, ρ1 = ρ2 = 0.95
and φ2 = 0.01, leads to φ̃1 ≈ 0.11, where φ̃1 is given in Theorem 1. Taking
uniform initial conditions, whereby the value of hostility is initially set to be
equal to one at all locations for each side, we plot the resulting equilibrium
as obtained via numerical simulation for two different values of φ1 in Figure
51. In subfigure 5a, φ1 = 0.1 and the conflict is overwhelmingly centered on

1Since ρ1 and ρ2 are large in comparison to the examples in Figure 4, the absolute
size of the points in the figure have been rescaled. The size of the points across these
two figures cannot be taken as a relative increase or decrease in hostility in comparison to
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two points towards the left of the unit square, in green territory. In subfigure
5b, φ1 = 0.2 and, in this case, the conflict is overwhelmingly centered on two
points to the right of centre, this time in blue territory. This result echoes
our finding from the lower dimensional setting that a bifurcation occurs as φ1

is increased through φ̃1 when a = 0. A small change in the value of φ1 results
in two different equilibria, in which the majority of the resulting hostility at
equilibrium is found at two very different locations on M. The value of the
support parameter can therefore have a material effect on where the conflict
is likely to escalate2.

We have demonstrated that features of the model which were identified
analytically in low dimensional settings in Sections 3 can also be observed
in a numerical example with a randomly generated spatial configuration.
Scenarios with different parameters behave as expected when using this con-
figuration. When the support mechanism is included in the model, we see
different results from the model with no support. The dependence of the
resulting equilibrium on the parameter a has been explored, with the equi-
librium for a = 0 appearing more evenly distributed due to the support term.
When a = 1, we see concentration of hostility among those locations that are
more accessible to the rest of their group. In addition, we present evidence
that a bifurcation occurs as φ1 is increased in a location predicted by analysis
of the model in low dimensional settings.

5. Discussion

In this paper, we have proposed a general spatial model of conflict esca-
lation which describes the accumulation and allocation of resources at the
locations occupied by adversaries engaged in hostile interaction. As well as
‘arms race’-type growth effects, the model also incorporates an additional im-

those points in Figure 4.
2We also considered the case where a = 1. Although our simulation was able to

replicate the loss of stability of the trival equilibrium in the case where N = M = 2, as
analysed in Section 3.2, it did not detect a similar bifurcation in the same location in
this higher dimensional scenario. There might be a number of reasons for this. Perhaps
the existence of the bifurcation identified in Section 3.2 relied upon the dimension and
distance metric specified in that section. Alternatively, perhaps the bifurcation point was
merely dependent on the distance metric and this higher dimensional scenario has forced
the point to move to a different location. This remains an interesting topic for further
enquiry.
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portant aspect of real-world conflict scenarios, which is the ability of actors
to coordinate activity across their various positions. By adding a mecha-
nism by which adversaries can reallocate their resources in response to need,
we have aligned the model more closely than existing approaches with the
integrated behaviour commonly observed in real-world conflict situations.

Our mathematical analysis investigates some low-dimensional cases for
the stability properties of the model. The sensitivity of the dynamics to the
interpretation of resource reallocation is illustrated; depending on the param-
eterisation of this within-adversary action term, two scenarios are identified
with opposite impact regarding the distribution of resources across various
positions of an adversary. In each scenario we describe the dependence of
stability conditions on the model parameters.

Our simulation results explore the behaviour of the model in a number
of settings which correspond to stylised conflict scenarios. When support
is allocated proportionately to existing levels of expenditure, we observe a
‘rich-get-richer’ effect, in which pronounced escalation occurs at a small num-
ber of locations, to an even greater extent than is observed in the absence
of support. This leads to the formation of clusters of hostility in particular
spatial regions, which can be interpreted as representing a high risk of con-
flict outbreak. This result suggests that agglomerative behaviour, in which
adversaries prioritise centralised accumulation of arms, ultimately promotes
the localised escalation of threat.

When support is distributed purely on the basis of distance, however,
simulation results suggest that the distribution of threat becomes much more
spatially homogeneous. This implies that such behaviour has a moderating
effect, dampening the tendency to focus escalation on a small number of
focal points. Whether this situation is preferable from the perspective of
international security is open to question (and, indeed, likely to vary with
circumstance), but it seems intuitive that catastrophic outbreaks are less
likely to occur when tension is spread more evenly across locations.

A number of possible directions for further work can be identified in this
area. From a mathematical perspective, a number of additional levels of
complexity can be investigated for the model. Formal analysis for higher-
dimensional scenarios than those considered here, for example, would offer
additional insight into these more realistic settings (and perhaps reveal fur-
ther dynamic effects). Furthermore, an additional challenge concerns the
treatment of uncertainty in the model. While our work here has assumed
that all values are known, this is unlikely to be the case in the real-world:
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both parameters and resource levels may only be estimated. Establishing a
means by which the robustness of the model to these issues can be investi-
gated is a further challenge for work on this topic.

In terms of the model itself, there remains a need to calibrate the model
against empirical data in order to understand which regimes are likely to
apply in real-world scenarios. Furthermore, future directions for work may
consider how this model can be refined (or re-interpreted) in such a way that
the outbreak of conflict itself can be identified. The model, in its current
form, describes escalation in tension and threat, but does not yet consider
the ultimate consequence of this: the transition from threat to hostile engage-
ment. To do this would require consideration of the decision processes taken
by adversarial actors, and may mandate a different modelling approach.

There may also be scope to adapt the model developed here - or elements
of it - for application in other contexts. While motivated here by the military
case, the notions of threat and resource-sharing which the model concerns
are general notions which could apply to other forms of conflict. Most im-
mediately, given that the original Richardson model was an adaptation of
an ecological model, the approach described here may have applications in
ecology, in particular in relation to species competition. The addition of
space in our model, together with the inclusion of within-species dynamics,
may afford greater insight in such cases. Alternatively, there are a number of
other human processes which may be suitable for this approach: non-military
forms of conflict, such as economic competition, are an example of this.

In summary, the work presented here extends work on the spatial dis-
aggregation of ecological models. We have introduced a general framework
for such dynamical systems which incorporates both inter- and intra- adver-
sary coupling across spatial locations. This can be applied to a number of
conflict scenarios in which a notion of ‘threat’ is exerted by one entity over
another: this may be military spending, as in the original Richardson model,
or another form of antagonistic behaviour. Furthermore, it has potential ap-
plication in other domains, including the ecological settings in which models
of competition between species are also applied. Our analysis demonstrates
that the model gives rise to complex dynamics, highlighting the significance
of spatial considerations in models of this type.
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Appendix A. Supporting analysis

P , Q adversaries
x1, . . . , xN locations of P
y1, . . . , yM locations of Q
pj hostility at location xj of adversary P
ql hostility at location yl of adversary Q
d metric for the distance between locations
σ1, σ2 decline rate of hostility of P and Q
ρ1, ρ2 response rate of P and Q to the acquisition of the other
ε1, ε2 external grievance of P and Q
φ1, φ2 within-adversary support rate of P and Q
b, β parameters related to between-adversary actions
a, α parameters related to within-adversary actions

Table A.1: Model variables and parameters.

Aggregation of the model (3)
We show now that our spatially-explicit model (3) is a disaggregation of
the original Richardson model (1). Let p :=

∑N
j=1 pj and q :=

∑M
l=1 ql

denote the total hostility of each adversary. First, we derive by the following
computations that the total volume of resource redistributed amongst the
locations of an adversary adds up to zero:

N∑
j=1

(
−φ1pj + φ1

N∑
i=1

pi
paje

−α·d(xj ,xi)∑N
j′=1 p

a
j′e

−α·d(xj′ ,xi)

)

= −
N∑
j=1

φ1pj + φ1

N∑
i=1

pi

∑N
j=1 p

a
je

−α·d(xj ,xi)∑N
j′=1 p

a
j′e

−α·d(xj′ ,xi)
= −φ1p+ φ1p = 0,
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with an equivalent relationship being satisfied for q. Second, the equalities

N∑
j=1

ε1
N

= ε1,
M∑
k=1

ε2
M

= ε2,

−
N∑
j=1

σ1pj = −σ1p, −
M∑
l=1

σ2ql = −σ2q,

N∑
j=1

ρ1

M∑
k=1

qk
pbje

−β·d(xj ,yk)∑N
i=1 p

b
ie

−β·d(xi,yk)
= ρ1q,

M∑
l=1

ρ2

N∑
i=1

pi
qbl e

−β·d(xi,yl)∑M
k=1 q

b
ke

−β·d(xi,yk)
= ρ2p

hold, thereby confirming that the aggregated volumes p and q are described
by the original Richardson model (1).

Global behaviour of system (4)
The equilibrium equation reads

Ar2 +Br + C = 0,

where, with x = 1+e−α+2φ1e−α

1+e−α
p̄, y = ρ1q̄,

A =
1 + e−α + 2φ1e

−α

1 + e−α
(1− e−β(d2−d1)) = (1− e−β(d2−d1))x/p̄,

B =
1 + e−α + 2φ1e

−α

1 + e−α
(1 + e−β(d2−d1))p̄− ρ1q̄(1 + e−β(d2−d1))

= (1 + e−β(d2−d1))(x− y),

C = −ρ1q̄(1− e−β(d2−d1))p̄ = −(1− e−β(d2−d1))p̄y.

We can assume without loss of generality that d2 ≥ d1. Therefore we note
that A ≥ 0, C ≥ 0, and B > 0 by the observation that x > y (which holds
since ρ1ρ2 < 1).

If d2 = d1, then the limiting equation reduces to

ṙ = − r1 + e−α + 2φ1e
−α

1 + e−α
+ ρ1r

q̄

p̄
.

Only one equilibrium r̄ = 0 exists for this equation, and this is globally
asymptotically stable. Indeed, stability follows from the condition 1+e−α+2φ1e−α

1+e−α
>
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ρ1q̄/p̄, which holds since 1+e−α+2φ1e−α

1+e−α
≥ 1 by φ ≥ 0 and 1 > ρ1q̄/p̄ by

ρ1ρ2 < 1.
If d2 > d1 then C/A < 0 holds, so there is a unique positive real root and

a unique negative real root, given by

(r̄)± =
1

2

(
−B ±

√
B2 − 4AC

)
=

1

2
(x− y)

(
−(1 + e−β(d2−d1))±

√
((1 + e−β(d2−d1))2 + 4e−β(d2−d1))

)
.

The right hand side of the limiting equation is valid for all r, it is zero if and
only if r = r̄+ or r = r̄−, and at r = 0 the right hand side is clearly positive.
This implies that ṙ is positive for all r such that r̄− < r < r̄+, and negative
for all r such that r > r̄+ or r < r̄−. Also, the right hand side is positive
at r = −p̄ and negative at r = p̄, so r̄− < −p̄ and r̄+ > p̄ hold. The initial
condition for the equations satisfies |r0| ≤ p̄, and therefore r̄+ is GAS.

Stability analysis of system (6)
First, we recall some definitions from [14]. We denote by Z the set of all
real square matrices whose off-diagonal entries are all non-positive. We say
that a square matrix A from the class Z is a non-singular M-matrix if there
exists a matrix C ≥ 0 and a number k > ρ(C) such that A = kI − C,
where I denotes the identity matrix of the same type as A, and ρ(C) is
the dominant eigenvalue of C. Theorem 5.1 in Ref. [14] establishes several
alternative definitions for non-singular M-matrices: for instance, a matrix
A from the class Z is a non-singular M-matrix if A−1 ≥ 0. We denote by
s(A) the maximum real part of all eigenvalues of A, and say that a matrix
is non-negative if all entries are non-negative. The following result is useful,
and can be proved by similar arguments to those in Theorem 2 of [15].

Proposition 1. For a square matrix J , consider a splitting J = F − V
where F is a non-negative matrix and V is a non-singular M-matrix. Then
it holds that s(J) < 0 if and only if ρ (F · V −1) < 1, s(J) = 0 if and only if
ρ (F · V −1) = 1, and s(J) > 0 if and only if ρ (F · V −1) > 1.

Next we review some results from Refs. [16] and [17] that we are going
to use several times in our proofs. Consider a nonnegative square matrix K,
and consider another square matrix KS of the same type, defined using K:

[KS]ij = [K]ij or 0 ∀i, j.
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If ρ(K −KS) < 1 then it is meaningful to define

T = ρ(KS(I −K +KS)−1).

The following result is given in Theorem 2.1 of Ref. [16]: if K is an irreducible
matrix then T < 1 if and only if ρ(K) < 1, T = 1 if and only if ρ(K) = 1,
and T > 1 if and only if ρ(K) > 1.

In the theory of continuous dynamical systems it is well known that the
stability of an equilibrium is determined by the eigenvalues of the Jacobian.
More precisely, for a Jacobian J the equilibrium is locally asymptotically
stable if and only if all eigenvalues of J have negative real part (s(J) < 0),
and it is unstable if there is an eigenvalue with positive real part (s(J) > 0).

We recall that J1 denotes the Jacobian of system (6). Let V1 = diag(1 +
φ1(1−ω), 1+φ2(1−ω)), which is a non-singular M-matrix, and let F1 = J1+
V1, which is non-negative. With these definitions we can obtain a splitting
of the Jacobian and calculate K1 = F1 · V −1

1 ,

K1 =

(
ρ1(1−η2)

1+φ1(1−ω)
ρ1η

1+φ2(1−ω)
ρ2η

1+φ1(1−ω)
ρ2(1−η2)

1+φ2(1−ω)

)
.

It follows by Proposition 1 that the trivial solution for the model is unstable
if and only if ρ(K1) > 1, and that it is locally asymptotically stable if and
only if ρ(K1) < 1. Moreover, ρ(K1) = 1 gives a threshold for stability. Since
ρ1ρ2 < 1 by assumption, it is impossible that ρ1(1−η2) ≥ 1 and ρ2(1−η2) ≥ 1
hold simultaneously, and we therefore assume without loss of generality that
ρ1(1−η2) < 1. With the following result the proof of Theorem 1 is complete.

Proposition 2. If ρ2(1−η2) ≥ 1+φ2(1−ω) then the trivial solution (r̄, s̄) =
(0, 0) is unstable. If ρ2(1 − η2) < 1 + φ2(1 − ω) then it is possible to give
stability conditions in terms of φ1.

Proof. We define

L1 =

(
0 ρ1η

1+φ2(1−ω)

0 ρ2(1−η2)
1+φ2(1−ω)

)
,

and find that ρ(L1) = (ρ2(1 − η2))/(1 + φ2(1 − ω)). For the non-negative
matrices K1 and L1 it holds that K1 ≥ L1 (with the relation interpreted
entry-wise), and it follows from Lemma 4.6 of Ref. [14] that ρ(K1) ≥ ρ(L1).
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Therefore if ρ2(1− η2) > 1 +φ2(1−ω) then ρ(K1) > 1 holds, and ρ(K1) ≥ 1
holds if ρ2(1− η2) = 1 + φ2(1− ω). In the latter case, however, it is easy to
check that 1 is not an eigenvalue of K1, and therefore ρ(K1) > 1 must hold.

If ρ2(1− η2) < 1 + φ2(1− ω) then ρ(L1) < 1 so it is meaningful to define

(I2 − L1)
−1 =

(
1 ρ1η

1+φ2(1−ω)−ρ2(1−η2)

0 1+φ2(1−ω)
1+φ2(1−ω)−ρ2(1−η2)

)
,

and we calculate T1 := ρ((K1 − L1)(I2 − L1)
−1), as

T1 =
1

1 + φ1(1− ω)

(
ρ1(1− η2) +

ρ1ηρ2η

1 + φ2(1− ω)− ρ2(1− η2)

)
.

By the irreducibility of K1 it holds by Theorem 2.1 of Ref. [16] that ρ(K1) > 1
if and only if T1 > 1, ρ(K1) = 1 if and only if T1 = 1, and ρ(K1) < 1 if and
only if T1 < 1. In particular, the surface in the parameter space that separates
the regions of stability and instability is described by

T1 = 1 ⇔ ρ1ρ2η
2 =

(
1 + φ1(1− ω)− ρ1(1− η2)

) (
1 + φ2(1− ω)− ρ2(1− η2)

)
,

and a stability threshold for φ1 is given as

φ̃1 :=

(
ρ1(1− η2) +

ρ1ηρ2η

1 + φ2(1− ω)− ρ2(1− η2)
− 1

)/
(1− ω),

that is, the trivial solution is locally asymptotically stable (T1 < 1) if and only
if φ1 > φ̃1. Note that depending on other parameters φ̃1 might be negative
in which case stability holds for all values of φ1 in the feasible parameter
space, however it is possible in any case to stabilise the trivial solution by
increasing φ1 through φ̃1.

Stability analysis of system (7)
Let F2 = J2 + I2 and V2 = I2, where I2 denotes the identity matrix of
order 2. By φ1ω(1 − ω) > 0 and φ2ω(1 − ω) > 0, we observe that F2 is a
non-negative matrix and V2 in a non-singular M-matrix. Furthermore, these
definitions allow J2 to be decomposed as F2− V2. Defining K2 = F2 · V −1

2 , it
follows by Proposition 1 that the trivial equilibrium (r̄, s̄) = (0, 0) is locally
asymptotically stable if ρ(K2) < 1, whereas it is unstable if ρ(K2) > 1.

K2 =

(
φ1ω(1− ω) + ρ1(1− η2) ρ1η

ρ2η φ2ω(1− ω) + ρ2(1− η2)

)
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Proposition 3. If either φ1ω(1−ω)+ρ1(1−η2) ≥ 1 or φ2ω(1−ω)+ρ2(1−
η2) ≥ 1 holds then the trivial equilibrium (r̄, s̄) = (0, 0) is unstable.

Proof. Assume that φ2ω(1− ω) + ρ2(1− η2) ≥ 1, and consider the matrix

L2 =

(
0 0
ρ2η φ2ω(1− ω) + ρ2(1− η2)

)
.

It holds that L2 is a nonnegative matrix and L2 ≤ K2, which implies by
Lemma 4.6 of Ref. [14] that ρ(L2) ≤ ρ(K2). Observing that ρ(L2) = φ2ω(1−
ω) + ρ2(1 − η2) ≥ 1 we conclude that ρ(K2) ≥ 1. Equality can hold if and
only if φ2ω(1 − ω) + ρ2(1 − η2) = 1, but in this case 1 is not an eigenvalue
of K2 and therefore ρ(K2) > 1 must hold. A similar conclusion is obtained
when φ1ω(1− ω) + ρ1(1− η2) ≥ 1 holds. The proof is complete.

Following the last result, we note that if φ2ω(1−ω) +ρ2(1−η2) ≥ 1 then
the trivial equilibrium (r̄, s̄) = (0, 0) is unstable for all values of φ1 and ρ1.
In particular, if φ2ω(1− ω) ≥ 1 then the trivial equilibrium (r̄, s̄) = (0, 0) is
unstable for all values of φ1, ρ1 and β.

The case when φ2ω(1 − ω) + ρ2(1 − η2) < 1 is not necessary unstable,
however. Next we establish conditions under which the within-adversary
interaction term, via φ1, is capable of stabilising the equilibrium in this case.
We use the fact that ρ(K2) = 1 establishes a boundary for stability. The
next result completes the proof of Theorem 2.

Proposition 4. If φ2ω(1 − ω) + ρ2(1 − η2) < 1 then it is possible to give
stability conditions in terms of φ1.

Proof. Assume that φ2ω(1 − ω) + ρ2(1 − η2) < 1. Then by ρ(L2) < 1 the
number

T2 = ρ
(
(K2 − L2) · (I2 − L2)

−1
)

is well-defined. Straightforward computations yield

T2 = φ1ω(1− ω) + ρ1(1− η2) +
ρ1ρ2η

2

1− φ2ω(1− ω)− ρ2(1− η2)
,

and we have by Ref. [16] that ρ(K2) > 1 if and only if T2 > 1, ρ(K2) = 1 if
and only if T2 = 1, and ρ(K2) < 1 if and only if T2 < 1. In particular, the
equation T2 = 1 defines the stability boundary(

φ1ω(1− ω) + ρ1(1− η2)− 1
)(
φ2ω(1− ω) + ρ2(1− η2)− 1

)
= ρ1ρ2η

2.
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In particular, if φ1 = φ2 = 0 then the curve separating the stable region from

the unstable region in the (ρ1, ρ2)–plane is given by ρ2 = ρ1(1−η2)−1
(ρ1(1−η2)−1)(1−η2)−ρ1η2 .

A stability threshold for φ1 arises from the condition T2 = 1; specifically,

φ̆1 =

(
1− ρ1(1− η2)−

ρ1ρ2η
2

1− φ2ω(1− ω)− ρ2(1− η2)

)/
(ω(1− ω)),

and the trivial solution is locally asymptotically stable if and only if φ1 < φ̆1.
Note that φ̆1 might be negative, in which case the trivial solution is unstable
for all φ1.

For the proof of Theorem 3, we define

L3 =

(
φ1ω(1− ω) + ρ1(1− η2) 0

0 φ2ω(1− ω) + ρ2(1− η2)

)
and note by ρ(K2 − L3) =

√
ρ1ρ2η2 < 1 that the matrix I2 − K2 + L3 is

invertible, so that it is meaningful to define

T3 = ρ
(
L3 · (I2 −K2 + L3)

−1
)
.

Unlike in the analysis for T1 and T2, no closed form expression can be derived
for T3; however its value can be computed numerically.

Proof of Theorem ??. By Theorem 2.1 of Ref. [16, 17], we have that
ρ(K2) > 1 if and only if T3 > 1 (instability), ρ(K2) = 1 if and only if T3 = 1
(stability boundary), and ρ(K2) < 1 if and only if T3 < 1 (local asymptotic
stability).

We define by K∗
2 the matrix obtained from K2 by replacing [K2]1,1 by

[K2]1,1/T3 and [K2]2,2 by [K2]2,2/T3. By Theorem 2.2 of Ref. [16], ρ(K∗
2) =

1. We observe that replacing φ1 by φ∗
1 in K2 makes [K2]1,1 transform into

[K2]1,1/T3 = [K∗
2 ]1,1; indeed,(

φ1

T3
+
ρ1(1− η2)
ω(1− ω)

(
1

T3
− 1

))
ω(1− ω) + ρ1(1− η2) =

φ1ω(1− ω) + ρ1(1− η2)
T3

.

It can be shown by similar computations that changing φ2 to φ∗
2 results in

[K2]2,2 changing to [K∗
2 ]2,2, and therefore we conclude that such transforma-

tions bring the matrix K2 to K∗
2 . It is easy to see that φ1 < φ∗

1 and φ2 < φ∗
2

if T3 < 1, and the inequalities are reversed if T3 > 1. Therefore if T3 < 1
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(equivalently, ρ(K2) < 1), then the transformations φ1 → φ∗
1 and φ2 → φ∗

2

increase the support parameters, and this leads to destabilisation since K2

transforms into K∗
2 and ρ(K∗

2) = 1. At the same time, if T3 > 1 (that
is, the trivial solution is unstable by ρ(K2) > 1), then the transformations
decrease the support parameters and the spectral radius, leading to stabili-
sation when ρ(K2) reaches 1 at K2 = K∗

2 . However, φ∗
1 ≥ 0 and φ∗

2 ≥ 0 must
hold in order for the transformations to be feasible, otherwise stabilisation
remains impossible by controlling φ1 and φ2 only. It is easy to see that non-
negativity of φ∗

1 and φ∗
2 is equivalent to T3 ≤ 1 +φ1ω(1−ω)/(ρ1(1− η2)) and

T3 ≤ 1 + φ2ω(1− ω)/(ρ2(1− η2)), respectively, and the proof is complete.
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