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Abstract 

Background/Aims     A single best endpoint for evaluating treatments of severe influenza 

requiring hospitalization has not been identified. A novel 6-category ordinal endpoint of 

patient status is being used in a randomized controlled trial (FLU-IVIG) of intravenous 

immunoglobulin (IVIG). We systematically examine four factors regarding the use of this 

ordinal endpoint that may affect power from fitting a proportional odds model: 1) 

deviations from the proportional odds assumption which result in the same overall 

treatment effect as specified in the FLU-IVIG protocol and which result in a diminished 

overall treatment effect; 2) deviations from the distribution of the placebo group  

assumed in the FLU-IVIG design; 3) the effect of patient misclassification among the 6 

categories; and 4) the number of categories of the ordinal endpoint. We also consider 

interactions between the treatment effect (i.e., Factor 1) and each other factor.  

Methods     We conducted a Monte Carlo simulation study to assess the effect of each 

factor. To study factor 1, we developed an algorithm for deriving distributions of the 

ordinal endpoint in the two treatment groups that deviated from proportional odds while 

maintaining the same overall treatment effect. For factor 2, we considered placebo group 

distributions which were more or less skewed than the one specified in the FLU-IVIG 

protocol by adding or subtracting a constant from the cumulative log odds. To assess 

factor 3, we added misclassification between adjacent pairs of categories that depend on 

subjective patient/clinician assessments. For factor 4, we collapsed some categories into 

single categories. 

Results     Deviations from proportional odds reduced power at most from 80% to 77% 

given the same overall treatment effect as specified in the FLU-IVIG protocol. 

Misclassification and collapsing categories can reduce power by over 40 and 10 

percentage points, respectively, when they affect categories with many patients and a 

discernible treatment effect. But, collapsing categories that contain no treatment effect 

can raise power by over 20 percentage points. Differences in the distribution of the 

placebo group can raise power by over 20 percentage points or reduce power by over 40 

percentage points depending on how patients are shifted to portions of the ordinal 

endpoint with a large treatment effect. 

Conclusions     Provided that the overall treatment effect is maintained, deviations from 

proportional odds marginally reduce power. However, deviations from proportional odds 

can modify the effect of misclassification, the number of categories, and the distribution 

of the placebo group on power. In general, adjacent pairs of categories with many 

patients should be kept separate to help ensure that power is maintained at the pre-

specified level. 

Keywords:     clinical trials, endpoints, proportional odds model, misspecified model, 

statistical power  
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Introduction 

Influenza causes 226,000 excess hospitalizations and more than 500,000 deaths 

worldwide.1 In spite of the large disease burden, no study has definitively demonstrated 

substantial clinical efficacy of an antiviral drug in hospitalized influenza patients.2 For 

this subpopulation, the proportion of patients dying is small, increasing the challenge to 

demonstrate treatment effects with all-cause mortality as the sole endpoint. Therefore, the 

United States Food and Drug Administration (FDA) recommends that the primary 

endpoint of randomized controlled trials evaluating new treatments include any of the 

following measures: clinical signs and symptoms, duration of hospitalization, time to 

normalization of vital signs and oxygenation, requirements for supplemental oxygen or 

assisted ventilation, and mortality. FDA guidance further states that no single best 

endpoint has been identified for studying treatments in patients hospitalized by 

influenza.2  

Primary endpoints in randomized trials of treatments for hospitalized influenza patients 

have included continuous measures of virologic activity, time to event outcomes (e.g., 

time to clinical stability) and binary outcomes (e.g., proportion of patients returning to 

premorbid status).3–7 Following the successful completion of a pilot study of intravenous 

hyperimmune immunoglobulin (IVIG),8 the International Network for Strategic 

Initiatives in Global HIV Trials (INSIGHT) initiated a trial of IVIG (FLU-IVIG) to 

evaluate its efficacy in patients hospitalized with influenza (NCTO2287467).9 To conduct 

a study with a feasible sample size and to improve the likelihood of demonstrating benefit 

relative to a binary outcome, a novel ordinal outcome of patient status serves as the 

primary endpoint of FLU-IVIG. The ordinal endpoint constructs categories of various 
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outcome assessments ranked in order of patient status (e.g., from death to resumption of 

normal activities). To our knowledge, an ordinal endpoint of clinical outcomes has not 

been used in influenza trials.  

To calculate the sample size for a trial with an ordinal endpoint, researchers must make a 

number of design decisions and assumptions. The purpose of this paper is to describe the 

ordinal endpoint used in the FLU-IVIG study and to consider the impact of four factors 

on power: 1) deviations from the proportional odds assumption which result in the same 

overall treatment effect as specified in the FLU-IVIG protocol and which result in a 

diminished overall treatment effect; 2) deviations from the distribution of the placebo 

group that researchers expect to observe in the FLU-IVIG protocol; 3) the effect of 

patient misclassification among the 6 categories; and 4) the number of categories of the 

ordinal endpoint. In addition to examining these factors separately, we also consider the 

effect of interactions between the treatment effect (i.e., factor 1) and each of the other 

factors. 

Methods 

The FLU-IVIG study was designed and is being conducted by the INSIGHT Group at 

sites in the northern and southern hemisphere. FLU-IVIG is a multicenter, double-blind, 

randomized trial comparing treatment with IVIG versus placebo in hospitalized patients 

with locally confirmed influenza A or B who have a National Early Warning Score 

(NEWS) of two or higher.10 For patients in both groups, the randomized treatment is 

administered in addition to standard of care treatment which includes anti-viral treatment. 
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The primary objective is to compare outcomes of patients in the IVIG and placebo groups 

at 7 days after randomization using an ordinal endpoint constructed with the following 6 

mutually exclusive categories: 

1)  death;  

2)  intensive care unit hospitalization (In ICU);   

3)  non-ICU hospitalization, requiring supplemental oxygen;  

4)  non-ICU hospitalization, not requiring supplemental oxygen;  

5)  discharged from the hospital, but unable to resume normal activities;  

6)  discharged from the hospital with resumption of normal activities.  

The categories were defined to delineate clear improvement and worsening in patient 

status and to yield a sufficient spread of the data for showing benefit due to IVIG. Day 7 

was chosen as the time point for comparison of ordinal endpoints because pilot data had 

established that differences between treatment groups in influenza antibody titer levels 

were greatest compared to placebo in the first few days after treatment with IVIG.8 

To estimate the sample size, we used data from a cohort study of patients hospitalized 

with influenza at many of the same sites participating in the FLU-IVIG trial to predict the 

distribution of the ordinal endpoint in the placebo group for FLU-IVIG.11–12 The 

distribution of the ordinal endpoint at day 7 for patients in the cohort study who met the 
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FLU-IVIG trial inclusion/exclusion criteria is given in Table 1. Because the cohort study 

is still in progress, we derived a more recent placebo group distribution (updated as of 

September 1st, 2015) relative to the FLU-IVIG protocol. Therefore, the category 

percentages used in our investigation differ slightly from the FLU-IVIG protocol (for the 

category percentages of the placebo group specified in the FLU-IVIG protocol, see the 

second footnote of Table 1). We refer to these category percentages as the FLU-IVIG 

design estimates. The FLU-IVIG protocol specifies that a proportional odds model will 

be used to evaluate the effect of IVIG. Under the proportional odds assumption of the 

model, the treatment effect is constant across categories between randomized groups. 

That is, the model assumes that the ratio of the odds of any better versus worse division 

of the ordinal endpoint (e.g., alive versus dead, discharged versus hospitalized or dead) 

between IVIG and placebo is constant. In FLU-IVIG, a treatment effect corresponding to 

a log odds ratio of 0.57 was deemed of interest and attainable. A log odds ratio greater 

than 0 indicates benefit due to IVIG. Under the proportional odds model, the percentage 

of subjects in each ordered category for the IVIG group is shown in Table 1 assuming a 

log odds ratio of 0.57.  

Even if the proportional odds assumption is not reasonable, the estimated log odds ratio 

from erroneously assuming a proportional odds model is still a valid measure of 

treatment efficacy. In particular, the log odds ratio can be interpreted as the average shift 

over the 6 ordered categories caused by IVIG and the score test of the log odds ratio is 

equivalent to the well-known nonparametric Wilcoxon rank-sum test.13 
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In order to detect a log odds ratio of 0.57 assuming proportional odds with 80% power at 

the 0.05 (2-sided) level of significance, a sample size of 320 patients is required.14 For 

reference, Supplemental Table 1 gives the power for detecting different log odds ratios 

with a sample size of 320 patients. Supplemental Table 2 gives the power for detecting a 

significant treatment effect under each possible way of dividing the ordinal endpoint into 

a binary endpoint. The power from each binary endpoint is substantially less than the 

power from the ordinal endpoint.  

Simulation Study Design 

We first derived different distributions of the ordinal endpoint in the placebo and IVIG 

groups under different scenarios of each factor which we describe below. For each 

scenario, we ran 10,000 simulations of the clinical trial assuming that 320 patients were 

sampled from the corresponding placebo and IVIG group distributions. For each 

simulated trial, we analyzed the data assuming a proportional odds cumulative logistic 

model and computed a Wald test statistic for the treatment effect. The empirical power is 

the proportion of the 10,000 simulations for which the Wald test statistic was significant. 

With this approach, estimates of power do not require any large sample approximations. 

The reference level of the factors in our simulation experiment corresponds to the 

assumptions used in the sample size calculation for the FLU-IVIG design; that is, the 

proportional odds assumption holds, the distribution of the placebo group is determined 

from the cohort study, no misclassification of patients among the categories of the ordinal 

endpoint occurs, and the full 6-level ordinal endpoint is used.  
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Factor 1: Treatment Effect 

We first sought to derive distributions of the IVIG group that deviated from proportional 

odds while maintaining the same overall treatment effect as specified in the FLU-IVIG 

protocol. By overall treatment effect, we mean the average (across repeated 

experimentation) estimated log odds ratio for the effect of IVIG relative to placebo from 

fitting the proportional odds model to the data. We refer to this as the average log odds 

ratio but note that this is not the arithmetic mean of the log odds ratio for every possible 

binary division of the ordinal endpoint and is a nonlinear function of the probabilities of 

each category in the ordinal endpoint in the placebo and IVIG groups.  

For large samples, the average log odds ratio of a misspecified proportional odds model 

is the value for which the expected score function equals zero. Therefore, we can 

constrain the distribution of the IVIG group such that the average log odds ratio is 

maintained across deviations from proportional odds (see the Appendix for a derivation). 

We created a novel algorithm which, given the desired average log odds ratio, the 

distribution of the ordinal endpoint in the placebo group and the proportions of 

observations in all but two categories of the treatment group, returns the proportions in 

the final two categories of the treatment group to maintain the desired average log odds 

ratio. Code to implement our algorithm in the programming language R is available as a 

GitHub repository (https://github.com/RPeterson4/Supplementary-Code-for-Evaluating-

the-Ordinal-Endpoint-for-FLU-IVIG).  
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We considered three treatment effect scenarios (T1–T3 below) that deviate from 

proportional odds while maintaining an average log odds ratio of 0.57 assuming the other 

three factors are not altered. The deviation from proportional odds is strong enough in 

each of these scenarios to yield, on average, a significant p-value for the test of the 

proportional odds assumption (at the 0.05 level) across the samples. We also considered 

two treatment effect scenarios (T4 and T5) with a log odds ratio of 0.57 across a subset of 

all possible binary divisions of the categories of the ordinal endpoint but zero elsewhere. 

In these scenarios, the overall treatment effect is diminished. The six treatment effect 

scenarios are: 

 T0: Proportional odds is satisfied and the average log odds ratio is 0.57 (FLU-IVIG 

design assumption). 

 T1: The treatment effect constantly weakens across the ordinal endpoint. The log 

odds ratio is 2.6 between the binary outcome of alive and dead patients, and then 

constantly decreases by 0.6 with each successive binary division of the ordinal 

endpoint (e.g., the log odds ratio is 2.0 for Hospitalized, not in ICU, on oxygen or 

better versus death or in ICU). 

 T2: The treatment effect is constant and positive across the most severe categories of 

the ordinal endpoint. Specifically, the log odds ratio of 1.16 for the first four binary 

divisions of the ordinal endpoint (ordering the scale from most severe outcome to 

least severe). There is no treatment effect for the last binary division (Discharged, 

back to normal activities or worse versus Discharged, not back to normal activities). 

 T3: The treatment only benefits patients in the discharged categories. That is, the log 

odds ratio is 1.16 for the last binary division and 0 for all other binary divisions.  
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 T4: The log odds ratio is 0.57 for the first four binary divisions and 0 for the last 

binary division.  

 T5: The log odds ratio is 0.57 for the last binary division and 0 for the first four 

binary divisions. 

Factor 2: Distribution of the Placebo Group 

To systematically alter the distribution of the placebo group, note that the cumulative log 

odds of being in a more versus less severe category for each possible binary split of the 

ordinal endpoint (see Supplemental Table 3) uniquely determines the placebo group 

distribution. To derive different distributions of the placebo group, we added or 

subtracted a constant from each of the cumulative log odds of being in a more versus less 

severe category from the placebo group design estimate (see the Appendix for a 

derivation). Adding (subtracting) a constant increases the proportion of patients with 

more (less) severe outcomes of the ordinal endpoint. Note that 62.9% of subjects are in 

the discharged categories of the ordinal endpoint for the placebo group design estimate. 

Therefore, having more (fewer) patients in more severe categories will yield a less (more) 

skewed distribution. The five distributions of the placebo group are: 

 P0: The placebo group distribution for the FLU-IVIG design. 

 P1: Add 0.5 to the cumulative log odds of P0 (less skewed distribution). 

 P2: Add 1 to the cumulative log odds of P0 (less skewed distribution). 

 P3: Subtract 0.5 from the cumulative log odds of P0 (more skewed distribution). 

 P4: Subtract 1 from the cumulative log odds of P0 (more skewed distribution). 
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Factor 3: Misclassification 

For our purposes, we studied misclassification among adjacent pairs of categories that 

may be difficult to distinguish between for significant numbers of patients. This 

misclassification may result from a combination of the subjective nature of the 

categories, inconsistent clinician judgment, and patients’ memory of their recovery. To 

study the effect of misclassification, we considered scenarios investigated by Whitehead 

who supposed 20% misclassification between two pairs of categories.14 Whitehead 

represented misclassification by exchanging certain percentages of patients between 

categories that could be misclassified (see the Appendix for an example). 

Here, we assumed that 20% and 40% of patients in the non-ICU hospitalized categories 

and the discharged categories could be misclassified. We chose the non-ICU hospitalized 

categories because use of oxygen during the day can be variable, and the discharged 

categories for depending on the patient’s memory of when they resumed normal 

activities. We assumed the misclassification rate to be constant across both randomized 

groups because the study is double-blind (i.e., nondifferential misclassification). We also 

considered scenarios in which 20% misclassification affected either the non-ICU 

hospitalized categories or the discharged categories but not the other. The type I error rate 

does not change under the nondifferential misclassification we assumed. The five levels 

of misclassification are: 

 M0: No misclassification (FLU-IVIG design assumption). 
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 M1: 20% misclassification between the non-ICU hospitalized categories and the 

discharged categories. 

 M2: 40% misclassification between the non-ICU hospitalized categories and the 

discharged categories. 

 M3: 20% misclassification between the non-ICU hospitalized categories. 

 M4: 20% misclassification between the discharged categories 

Factor 4: Number of Categories 

Misclassification between adjacent pairs of categories can be eliminated by collapsing 

each into a single category. Thus, we examined collapsing the non-ICU hospitalized 

categories and the discharged categories. Furthermore, the discharged categories contain 

the largest percentage of patients in each scenario on average, implying that collapsing 

them may have an outsize effect on power. Conversely, we collapsed the four most 

severe categories because they contain the smallest percentage of patients. We also 

collapsed the ordinal endpoint into a binary hospitalized or dead versus discharged 

endpoint, which is a clinically relevant cut-point. The six levels of collapsing categories 

are: 

 C0: The full 6-category ordinal endpoint (FLU-IVIG design assumption). 

 C1: Collapse the non-ICU hospitalized categories and the discharged categories. 

 C2: Collapse the non-ICU hospitalized categories. 

 C3: Collapse the discharged categories. 

 C4: Collapse the hospitalization or death categories. 
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 C5: Collapse the hospitalization or death categories and the discharged categories to 

make for a binary endpoint. 

Interactions 

As detection of the treatment effect is of primary interest for the FLU-IVIG trial, we 

explored the effect on power if the treatment effect (factor 1) and the placebo group 

distribution, misclassification, or number of categories also deviated from the levels 

assumed in the design of FLU-IVIG. This yielded three groups of two-way interactions: 

1) treatment effect scenarios and distributions of the placebo group; 2) treatment effect 

scenarios and levels of misclassification; and 3) treatment effect scenarios and number of 

categories. Due to the interacting factors, the overall treatment effect may differ from the 

0.57 log odds ratio specified in the FLU-IVIG protocol. 

Results 

Main Effects 

Provided that the average log odds ratio was maintained, treatment effect scenarios that 

violated proportional odds only marginally reduced power (see Table 1). For example, 

under treatment effect scenario T2 in which the treatment benefit is only evident over the 

most severe categories of the ordinal endpoint (hospitalization or death categories), 

power declined from 80% to 77.3%. However, both scenarios in which the log odds ratio 

was 0.57 for some binary divisions but 0 for the rest greatly reduced power, mainly due 
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to the decline in the average log odds ratio from 0.57 (0.31 and 0.25 under T4 and T5, 

respectively).  

Changes in the distribution of the placebo group from the FLU-IVIG design led to 

moderate differences in power. Less skewed placebo group distributions yielded slightly 

higher power, from 80% to 80.9% and 81.9% in scenarios P1 and P2, respectively (see 

Table 1). Conversely, distributions of the placebo group which were more skewed led to 

modest declines in power, with the most skewed distribution returning the largest loss of 

power from 80% to 73.8%. 

Table 2 shows that misclassification among the categories always reduced power by 

lowering the average log odds ratio. Scenarios in which there was greater 

misclassification, the misclassification involved more categories, or the misclassification 

was between categories containing many patients decreased power the most. For 

example, limiting the misclassification to the discharged categories, which comprise 

62.9% of patients in the distribution of the placebo group, reduced power from 80% to 

70.1%. Expanding the 20% misclassification to include the non-ICU hospitalized 

categories, which together contain 30.6% of patients, only additionally reduced power 

from 70.1% to 69.7%. 

Reducing the number of categories always lowered power (see Table 3). Generally, 

power declined more when multiple categories or categories with many patients were 

combined. For example, collapsing the discharged categories reduced power from 80% to 

65.6%, while having a binary hospitalized or dead versus discharged endpoint reduced 
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power from 80% to 63.9%. Collapsing the non-ICU hospitalized categories or the four 

most severe categories did not substantially reduce power, mainly due to the small 

percentage of patients in those categories. 

Interactions 

The power for all possible combinations of the interacting factors for the three groups of 

two-way interactions considered is given in Supplemental Tables 4-6. From these, we 

selected a subset from each group of interactions for further investigation based on their 

effect on power and clinical relevance. We present our findings in Tables 4-6.  

Many of the interactions between the treatment effect and each of the other factors were 

qualitative, that is the direction of the main effect on power changed when an additional 

factor was altered. For example, Table 4 demonstrates that the effect of deviations from 

proportional odds on power may change with different placebo group distributions. 

Power substantially increased (decreased) when treatment effect scenarios were paired 

with distributions of the placebo group that had more (fewer) patients in categories 

influenced by the treatment. For example, under treatment effect scenario T2 in which the 

treatment benefit is only evident for the hospitalization or death categories, having a less 

skewed placebo group distribution (i.e., more hospitalized or dead patients) raised power 

from 77.3% to 99.7% (see Tables 1 and 4). On the other hand, having a more skewed 

placebo group distribution reduced power from 77.3% to 16.8%. 

Similarly, Table 5 shows that misclassification may not reduce power when coupled with 

deviations from proportional odds. In some cases, it may even raise power. Under 
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treatment effect scenario T2, 20% and 40% misclassification between the non-ICU 

hospitalized categories and the discharged categories raised power from 77.3% to 86.2% 

and 92.7%, respectively (see Tables 1 and 5). This is likely because without 

misclassification the scenario assumes no treatment effect for patients discharged from 

the hospital. Misclassification, though, evens the proportions between patients who have 

and have not resumed normal activities, creating the illusion that the treatment has shifted 

patients into resuming normal activities. Consequently, the log odds ratio for Not Normal 

or worse versus Normal increased from 0 to raise the average log odds ratio and power. 

Additionally, Table 6 demonstrates that for scenarios in which the treatment effect was 

absent across a range of the ordinal endpoint, collapsing the corresponding categories 

raised power by increasing the average log odds ratio. Under treatment effect scenarios 

T1, T2, and T4 (scenarios in which the intervention primarily shows benefit for the 

hospitalization or death categories), collapsing the discharged categories increased power 

from 79.1% to 95.8%, 77.3% to 99.5%, and 33.1% to 65.6%, respectively (see Tables 1 

and 6). Conversely, collapsing categories over ranges of the ordinal endpoint with a 

discernible treatment effect reduced power. For example, under treatment effect scenarios 

T1, T2, and T4, collapsing the four most severe categories reduced power from 79.1% to 

67.0%, 77.3% to 76.0%, and 33.1% to 32.0%, respectively. 

Comparing Tables 2 and 3, collapsing the non-ICU hospitalized categories and the 

discharged categories to eliminate potential misclassification yielded greater power than 

using the 6-level ordinal endpoint when misclassification between both pairs of 

categories was 40% (65.1% versus 57.7%). When misclassification was limited to the 
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non-ICU hospitalized categories at the 20% level, collapsing those categories yielded 

approximately equal power compared to using the 6-level ordinal endpoint. Limiting 20% 

misclassification to the discharged categories generated greater power for the 6-level 

endpoint relative to collapsing those categories (70.1% versus 65.6%). 

Discussion 

To our knowledge, the FLU-IVIG study is the first randomized trial to use an ordinal 

endpoint to evaluate a novel influenza treatment. Thus, we considered it necessary to 

thoroughly examine the ordinal endpoint with respect to factors that may affect its 

statistical power for the trial. Our evaluation has found that the ordinal endpoint yields 

higher power relative to any collapse of the ordinal endpoint into a binary endpoint. 

Further, the decisions about the number of categories and assumptions made about the 

treatment effect, distribution of the placebo group, and the amount of misclassification 

can have substantial consequences for power. Provided that the overall treatment effect is 

maintained and other factors are held constant, deviations from proportional odds 

marginally reduce power. We also found that, holding other factors constant, more 

skewed placebo group distributions, misclassification of patients among the ordinal 

categories, and considering fewer ordinal categories decreased power consistent with 

previous research.14–16 

However, our analysis has shown that these general conclusions must be qualified as the 

effect of each of these factors may be reversed when another factor is varied 

simultaneously. To increase power, if the proportional odds assumption does not hold, 
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categories in which the treatment is presumed to be effective should be divided as evenly 

as possible; conversely, categories where the treatment is presumed to be less effective 

should be collapsed. For IVIG, the treatment may be more beneficial for severe cases. 

Therefore, we considered an ordinal endpoint which was granular for these patients to 

attain sufficient power. 

In contrast to previous research, 14–16 we explored deviations from proportional odds 

while holding the overall treatment effect constant. In addition, we studied the joint effect 

of multiple factors related to design decisions and assumptions about the ordinal 

endpoint. Previous research has primarily examined the effect of a single factor at a time. 

Though our results were derived with respect to FLU-IVIG, our novel algorithm and 

simulation code, which are available for download from GitHub, can be used to evaluate 

other ordinal endpoints for influenza trials. Other direct measures of patient status, such 

as those that include complications of influenza (e.g., development of pneumonia while 

on therapy) and patient-reported outcomes of influenza (e.g., the FLU-PRO instrument),17 

could be used to construct new ordinal endpoints for influenza treatments. 

More broadly, ordinal endpoints have been considered for trials studying treatments of 

vascular disease, streptococcus pneumoniae, and traumatic brain injury.18–21 In these 

trials, relative to FLU-IVIG, different parameter values (e.g., treatment effect size) may 

modify the magnitude of the effect of the four factors evaluated in this paper on power. 

Furthermore, other statistical methods like the sliding dichotomy, win ratio, and global 

rank tests may yield different power for detecting a treatment effect along an ordinal 

endpoint. 22–24 However, we anticipate that our general conclusions will hold when using 
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the proportional odds model to detect differences in the distribution of an ordinal 

endpoint across different randomized treatment groups. Moreover, our general approach 

can be used by future researchers to address concerns about the specification and 

statistical analysis of ordinal endpoints. In our study, we used the proportional odds 

model because it remains a standard tool for analyzing ordinal endpoints and will be used 

in the primary analysis for FLU-IVIG.  

Clearly, researchers must consider several factors when designing a clinical trial based on 

an ordinal endpoint including the number of categories, whether patients can be reliably 

distinguished between those categories, the anticipated treatment effect, and the 

distribution of the ordinal endpoint in the placebo group. Simulation studies allow 

researchers to explore how sensitive power is to decisions and assumptions about these 

factors. To that end, our general approach for evaluating the FLU-IVIG ordinal endpoint 

may be useful for examining other ordinal endpoints for influenza trials and other 

diseases.
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Table 1. Main effects of the treatment effect (factor 1) and placebo group distribution (factor 2) on power.  

Scenario Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

Factor 1: Treatment Effect 

T0: Proportional odds holds 

(FLU-IVIG design 

assumption) 

% Placeboa 

% IVIGb 

logORc 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

16.2 

10.5 

0.57 

14.4 

10.8 

0.57 

36.4 

36.0 

0.57 

26.5 

39.0 

 

Power (%)d 

 

Avg. logORe 

80.0 

 

0.57 

T1: Treatment effect 

constantly weakens 

% Placebo 

% IVIG 

logOR 

1.2 

0.1 

2.60 

5.3 

0.8 

2.00 

16.2 

5.8 

1.40 

14.4 

14.2 

0.80 

36.4 

48.5 

0.20 

26.5 

30.5 

 

Power (%) 

 

Avg. logOR 

79.1 

 

0.57 

T2: Treatment effect limited 

to the hospitalization or 

death categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.4 

1.16 

5.3 

1.7 

1.16 

16.2 

6.3 

1.16 

14.4 

7.2 

1.16 

36.4 

57.9 

0 

26.5 

26.5 

 

Power (%) 

 

Avg. logOR 

77.3 

 

0.57 

T3: Treatment effect limited 

to the discharged categories 

% Placebo 

% IVIG 

logOR 

1.2 

1.2 

0 

5.3 

5.3 

0 

16.2 

16.2 

0 

14.4 

14.4 

0 

36.4 

9.3 

1.16 

26.5 

53.6 

 

Power (%) 

 

Avg. logOR 

78.7 

 

0.57 

T4: Smaller treatment effect 

limited to the hospitalization 

or death categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

16.2 

10.5 

0.57 

14.4 

10.8 

0.57 

36.4 

48.5 

0 

26.5 

26.5 

Power (%) 

 

Avg. logOR 

33.1 

 

0.31 

T5: Smaller treatment effect 

limited to the discharged 

categories 

% Placebo 

% IVIG 

logOR 

1.2 

1.2 

0 

5.3 

5.3 

0 

16.2 

16.2 

0 

14.4 

14.4 

0 

36.4 

23.9 

0.57 

26.5 

39.0 

Power (%) 

 

Avg. logOR 

23.9 

 

0.25 

Factor 2: Distribution of the Placebo Group 

P1: Less skewed placebo 

group distribution 

% Placebo 

% IVIG 

logOR 

2.0 

1.1 

0.57 

8.3 

5.0 

0.57 

22.4 

15.4 

0.57 

16.6 

13.9 

0.57 

32.7 

36.6 

0.57 

18.0 

27.9 

Power (%) 

 

Avg. logOR 

80.9 

 

0.57 

P2: Even less skewed 

placebo group distribution 

% Placebo 

% IVIG 

logOR 

3.2 

1.8 

0.57 

12.7 

7.8 

0.57 

28.5 

21.5 

0.57 

17.1 

16.4 

0.57 

26.7 

33.4 

0.57 

11.7 

19.0 

Power (%) 

 

Avg. logOR 

81.9 

 

0.57 

P3: More skewed placebo 

group distribution 

% Placebo 

% IVIG 

logOR 

0.7 

0.4 

0.57 

3.3 

1.9 

0.57 

11.1 

6.8 

0.57 

11.2 

7.7 

0.57 

36.3 

31.9 

0.57 

37.3 

51.3 

Power (%) 

 

Avg. logOR 

78.6 

 

0.57 

P4: Even more skewed 

placebo group distribution 

% Placebo 

% IVIG 

logOR 

0.4 

0.3 

0.57 

2.0 

1.2 

0.57 

7.3 

4.3 

0.57 

8.1 

5.2 

0.57 

32.6 

25.6 

0.57 

49.5 

63.5 

Power (%) 

 

Avg. logOR 

73.8 

 

0.57 

Under factor 1, the treatment effect deviates from proportional odds. Under factor 2, the placebo group distribution deviates from that specified in the 

FLU-IVIG design. All scenarios assume no misclassification and that the full 6-level ordinal outcome is used. 
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The placebo group distribution specified in the FLU-IVIG design has been updated from the FLU-IVIG protocol using data from the cohort study. For 

reference, the category percentages in the FLU-IVIG protocol are 1.8, 3.6, 15.6, 14.1, 39.0, and 25.8% for Death through Discharged, back to normal 

activities categories, respectively. 
a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
b% IVIG: percentage of patients in the IVIG group for the given ordinal endpoint category. 
clogOR: (natural) logarithm of the odds ratio of the given ordinal endpoint category or more severe versus less severe between the IVIG and placebo 

groups. 
dPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
eAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Table 2. Main effect of misclassification on power (factor 3).  

Scenario Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

M1: 20% misclassification 

between the non-ICU 

hospitalized categories and 

discharged categories 

% Placeboa 

% IVIGb 

logORc 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

15.8 

10.6 

0.54 

14.8 

10.7 

0.57 

34.4 

36.6 

0.45 

28.5 

38.4 

Power (%)d 

 

Avg. logORe 

69.7 

 

0.50 

M2: 40% misclassification 

between the non-ICU 

hospitalized categories and 

discharged categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

15.5 

10.6 

0.52 

15.1 

10.7 

0.57 

32.4 

37.2 

0.33 

30.5 

37.8 

 

Power (%) 

 

Avg. logOR 

57.7 

 

0.44 

M3: 20% misclassification 

between the non-ICU 

hospitalized categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

15.8 

10.6 

0.54 

14.8 

10.7 

0.57 

36.4 

36.0 

0.57 

26.5 

39.0 

Power (%) 

 

Avg. logOR 

79.6 

 

0.57 

M4: 20% misclassification 

between the discharged 

categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

16.2 

10.5 

0.57 

14.4 

10.8 

0.57 

34.4 

36.6 

0.45 

28.5 

38.4 

Power (%) 

 

Avg. logOR 

70.1 

 

0.51 

Under factor 3, patients are misclassified between the non-ICU hospitalized categories and the discharged categories assuming the treatment effect 

(without misclassification) follows proportional odds, the distribution of the placebo group is as specified in the FLU-IVIG design, and the full 6-level 

ordinal endpoint is used.  
a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
b% IVIG: percentage of patients in the IVIG group for the given ordinal endpoint category. 
clogOR: (natural) logarithm of the odds ratio of the given ordinal endpoint category or more severe versus less severe between the IVIG and placebo 

groups. 
dPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
eAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Table 3. Main effect of the number of categories on power (factor 4). 

Scenario Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

C1: Collapse the non-ICU 

hospitalized categories and 

discharged categories 

% Placeboa 

% IVIGb 

logORc 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

30.6 

21.2 

0.57 

62.9 

75.0 

Power (%)d 

 

Avg. logORe 

65.1 

 

0.57 

C2: Collapse the non-ICU 

hospitalized categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

30.6 

21.2 

0.57 

36.4 

36.0 

0.57 

26.5 

39.0 

Power (%) 

 

Avg. logOR 

79.7 

 

0.57 

C3: Collapse the discharged 

categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

16.2 

10.5 

0.57 

14.4 

10.8 

0.57 

62.9 

75.0 

Power (%) 

 

Avg. logOR 

65.6 

 

0.57 

C4: Collapse the four most 

severe categories 

% Placebo 

% IVIG 

logOR 

37.1 

25.0 

0.57 

36.4 

36.0 

0.57 

26.5 

39.0 

Power (%) 

 

Avg. logOR 

78.8 

 

0.57 

C5: Collapse the four most 

severe categories and 

discharged categories  

(binary endpoint) 

% Placebo 

% IVIG 

logOR 

37.1 

25.0 

0.57 

62.9 

75.0 

Power (%) 

 

Avg. logOR 

63.9 

 

0.57 

Under factor 4, categories of the ordinal endpoint are collapsed assuming that the treatment effect follows proportional odds, the distribution of the 

placebo group is as specified in the FLU-IVIG design, and no misclassification. 
a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
b% IVIG: percentage of patients in the IVIG group for the given ordinal endpoint category. 
clogOR: (natural) logarithm of the odds ratio of the given ordinal endpoint category or more severe versus less severe between the IVIG and placebo 

groups. 
dPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
eAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Table 4. Effect of interacting the treatment effect (factor 1) and placebo group distribution (factor 2) on power. 

Scenario Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

T1: Treatment effect 

constantly weakens 

P2: Even less skewed 

placebo group distribution 

% Placeboa 

% IVIGb 

logORc 

3.2 

0.2 

2.60 

12.7 

2.3 

2.00 

28.5 

14.0 

1.40 

17.1 

25.4 

0.80 

26.7 

44.1 

0.20 

11.7 

13.9 

Power (%)d 

 

Avg. logORe 

99.6 

 

0.94 

T2: Treatment effect limited 

to the hospitalization or 

death categories 

P2: Even less skewed 

placebo group distribution 

% Placebo 

% IVIG 

logOR 

3.2 

1.0 

1.16 

12.7 

4.6 

1.16 

28.5 

14.4 

1.16 

17.1 

13.4 

1.16 

26.7 

54.9 

0 

11.7 

11.7 

Power (%) 

 

Avg. logOR 

99.7 

 

0.96 

T3: Treatment effect limited 

to the discharged categories  

P2: Even less skewed 

placebo group distribution 

% Placebo 

% IVIG 

logOR 

3.2 

3.2 

0 

12.7 

12.7 

0 

28.5 

28.5 

0 

17.1 

17.1 

0 

26.7 

8.6 

1.16 

11.7 

29.8 

Power (%) 

 

Avg. logOR 

19.6 

 

0.22 

T1: Treatment effect 

constantly weakens 

P4: Even more skewed 

placebo group distribution 

% Placebo 

% IVIG 

logOR 

0.4 

0.0 

2.60 

2.0 

0.3 

2.00 

7.3 

2.3 

1.40 

8.1 

6.3 

0.80 

32.6 

36.7 

0.20 

49.5 

54.4 

Power (%) 

 

Avg. logOR 

33.1 

 

0.33 

T2: Treatment effect limited 

to the hospitalization or 

death categories 

P4: Even more skewed 

placebo group distribution 

% Placebo 

% IVIG 

logOR 

0.4 

0.1 

1.16 

2.0 

0.7 

1.16 

7.3 

2.5 

1.16 

8.1 

3.1 

1.16 

32.6 

44.1 

0 

49.5 

49.5 

Power (%) 

 

Avg. logOR 

16.8 

 

0.21 

T3: Treatment effect limited 

to the discharged categories 

P4: Even more skewed 

placebo group distribution 

% Placebo 

% IVIG 

logOR 

0.4 

0.4 

0 

2.0 

2.0 

0 

7.3 

7.3 

0 

8.1 

8.1 

0 

32.6 

6.3 

1.16 

49.5 

75.9 

Power (%) 

 

Avg. logOR 

97.4 

 

0.91 

Under factors 1 and 2, the treatment effect deviates from proportional odds and the distribution of the placebo group deviates from that specified in the 

FLU-IVIG design assuming no misclassification and the full 6-level ordinal endpoint is used. The treatment effects were paired with placebo group 

distributions that had more or fewer patients in categories affected by the treatment. 
a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
b% IVIG: percentage of patients in the IVIG group for the given ordinal endpoint category. 
clogOR: (natural) logarithm of the odds ratio of the given ordinal endpoint category or more severe versus less severe between the IVIG and placebo 

groups. 
dPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
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eAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Table 5. Effect of interacting the treatment effect (factor 1) and misclassification (factor 3) on power.  

Scenario Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

T1: Treatment effect 

constantly weakens 

M1: 20% misclassification 

between the non-ICU 

hospitalized categories and 

discharged categories 

% Placeboa 

% IVIGb 

logORc 

1.2 

0.1 

2.60 

5.3 

0.8 

2.00 

16.2 

7.5 

1.14 

14.4 

12.6 

0.80 

36.4 

44.9 

0.26 

26.5 

34.1 

 

Power (%)d 

 

Avg. logORe 

79.1 

 

0.57 

T1: Treatment effect 

constantly weakens 

M2: 40% misclassification 

between the non-ICU 

hospitalized categories and 

discharged categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.1 

2.60 

5.3 

0.8 

2.00 

15.5 

9.2 

0.92 

15.1 

10.9 

0.80 

32.4 

41.3 

0.32 

30.5 

37.7 

Power (%) 

 

Avg. logOR 

79.6 

 

0.57 

T2: Treatment effect limited 

to the hospitalization or 

death categories 

M1: 20% misclassification 

between the non-ICU 

hospitalized categories and 

discharged categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.4 

1.16 

5.3 

1.7 

1.16 

16.2 

6.5 

1.12 

14.4 

7.0 

1.16 

36.4 

51.7 

0.20 

26.5 

32.8 

 

Power (%) 

 

Avg. logOR 

86.2 

 

0.64 

T2: Treatment effect limited 

to the hospitalization or 

death categories 

M2: 40% misclassification 

between the non-ICU 

hospitalized categories and 

discharged categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.4 

1.16 

5.3 

1.7 

1.16 

15.5 

6.6 

1.08 

15.1 

6.8 

1.16 

32.4 

45.4 

0.38 

30.5 

39.1 

Power (%) 

 

Avg. logOR 

92.7 

 

0.71 

T3: Treatment effect limited 

to the discharged categories 

M1: 20% misclassification 

between the non-ICU 

hospitalized categories and 

discharged categories 

% Placebo 

% IVIG 

logOR 

1.2 

1.2 

0 

5.3 

5.3 

0 

15.8 

15.8 

0 

14.8 

14.8 

0 

36.4 

18.2 

0.71 

26.5 

44.7 

Power (%) 

 

Avg. logOR 

38.0 

 

0.33 

T3: Treatment effect limited 

to the discharged categories 

M2: 40% misclassification 

% Placebo 

% IVIG 

logOR 

1.2 

1.2 

0 

5.3 

5.3 

0 

15.5 

15.5 

0 

15.1 

15.1 

0 

32.4 

27.0 

0.24 

30.5 

35.9 

Power (%) 

 

Avg. logOR 

7.5 

 

0.24 
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between the non-ICU 

hospitalized categories and 

discharged categories 

Under factors 1 and 3, the treatment effect deviates from proportional odds and patients are misclassified between the non-ICU hospitalized categories 

and the discharged categories. We assume the distribution of the placebo group is as specified in the FLU-IVIG design and the full 6-level ordinal 

endpoint is used. 
a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
b% IVIG: percentage of patients in the IVIG group for the given ordinal endpoint category. 
clogOR: (natural) logarithm of the odds ratio of the given ordinal endpoint category or more severe versus less severe between the IVIG and placebo 

groups. 
dPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
eAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Table 6. Effect of interacting the treatment effect (factor 1) and number of categories (factor 4) on power.  

Scenario Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

T1: Treatment effect 

constantly weakens 

C3: Collapse the discharged 

categories 

% Placeboa 

% IVIGb 

logORc 

1.2 

0.1 

2.60 

5.3 

0.8 

2.00 

16.2 

5.8 

1.40 

14.4 

14.2 

0.80 

62.9 

79.0 

Power (%)d 

 

Avg. logORe 

95.8 

 

0.89 

T1: Treatment effect 

constantly weakens 

C4: Collapse the four most 

severe categories 

% Placebo 

% IVIG 

logOR 

37.1 

21.0 

0.80 

36.4 

48.5 

0.20 

26.5 

30.5 

 

Power (%) 

 

Avg. logOR 

67.0 

 

0.50 

T2: Treatment effect limited 

to the hospitalization or 

death categories 

C3: Collapse the discharged 

categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.4 

1.16 

5.3 

1.7 

1.16 

16.2 

6.3 

1.16 

14.4 

7.2 

1.16 

62.9 

84.4 

Power (%) 

 

Avg. logOR 

99.5 

 

1.16 

T2: Treatment effect limited 

to the hospitalization or 

death categories 

C4: Collapse the four most 

severe categories 

% Placebo 

% IVIG 

logOR 

37.1 

15.6 

1.16 

36.4 

57.9 

0 

26.5 

26.5 

Power (%) 

 

Avg. logOR 

76.0 

 

0.56 

T3: Treatment effect limited 

to the discharged categories 

C4: Collapse the four most 

severe categories 

% Placebo 

% IVIG 

logOR 

37.1 

37.1 

0 

36.4 

9.3 

1.16 

26.5 

53.6 

Power (%) 

 

Avg. logOR 

80.5 

 

0.60 

T4: Smaller treatment effect 

limited to the hospitalization 

or death categories 

C3: Collapse the discharged 

categories 

% Placebo 

% IVIG 

logOR 

1.2 

0.7 

0.57 

5.3 

3.1 

0.57 

16.2 

10.5 

0.57 

14.4 

10.8 

0.57 

62.9 

75.0 

Power (%) 

 

Avg. logOR 

65.6 

 

0.57 

T4: Smaller treatment effect 

limited to the hospitalization 

or death categories 

C4: Collapse the four most 

severe categories 

% Placebo 

% IVIG 

logOR 

37.1 

25.0 

0.57 

36.4 

48.5 

0 

26.5 

26.5 

Power (%) 

 

Avg. logOR 

32.0 

 

0.31 

T5: Smaller treatment effect 

limited to the discharged 

categories 

% Placebo 

% IVIG 

logOR 

37.1 

37.1 

0 

36.4 

23.9 

0.57 

26.5 

39.0 

Power (%) 

 

Avg. logOR 

25.7 

 

0.27 
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C4: Collapse the four most 

severe categories 

Under factors 1 and 4, the treatment effect deviates from proportional odds and categories of the ordinal endpoint are collapsed assuming the 

distribution of the placebo group is as specified in the FLU-IVIG design and no misclassification. Categories were collapsed according to whether or not 

they contained the treatment effect. 
a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
b% IVIG: percentage of patients in the IVIG group for the given ordinal endpoint category. 
clogOR: (natural) logarithm of the odds ratio of the given ordinal endpoint category or more severe versus less severe between the IVIG and placebo 

groups. 
dPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
eAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Appendix 

Supplemental Table 1. Power to detect a significant treatment effect. 

logORa 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Power (%)b 2.5 7.2 16.6 31.8 50.8 69.7 84.4 93.4 97.7 99.4 99.9 

Power is computed at the 0.05 (2-sided) level with a sample size of 320 as a function of the log odds ratio assuming the treatment effect follows 

proportion odds, the distribution of the placebo group is as specified in the FLU-IVIG design, no misclassification, and the full 6-level ordinal endpoint 

is used. 
alogOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model 

assuming that proportional odds holds. 
bPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 

 

Supplemental Table 2. Power for detecting a significant treatment effect for all possible ways of dividing the ordinal endpoint into a binary endpoint. 

Category Death 

versus In 

ICU or 

better 

In ICU or worse 

versus 

Hospitalized, not 

in ICU, on oxygen 

Hospitalized, not in ICU, on 

oxygen or worse versus 

Hospitalized, not in ICU, 

not on oxygen or better 

Hospitalized, not in ICU, 

not on oxygen or worse 

versus Discharged, not back 

to normal activities or better 

Discharged, not back to 

normal activities or worse 

versus Discharged, back 

to normal activities 

Power (%)a 0.59 12.8 48.9 63.9 66.2 

Power is computed at the 0.05 (2-sided) level with a log odds ratio of 0.57 and sample size of 320 assuming the treatment effect follows proportion 

odds, the distribution of the placebo group is as specified in the FLU-IVIG design, no misclassification, and the full 6-level ordinal endpoint is used. 
aPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level.
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Supplemental Table 3. Altering the distribution of the placebo group.  

Placebo Group Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

P0: The placebo group 

from the FLU-IVIG design 

% Placeboa 

Cumulative 

log oddsb 

1.2 

-4.41 

5.3 

-2.67 

16.2 

-1.23 

14.4 

-0.53 

36.4 

1.02 

26.5 

P1: Less skewed placebo 

group distribution 

% Placebo 

Cumulative 

log odds 

2.0 

-3.91 

8.3 

-2.17 

22.4 

-0.73 

16.6 

-0.03 

32.7 

1.52 

18.0 

P2: Even less skewed 

placebo group distribution 

% Placebo 

Cumulative 

log odds 

3.2 

-3.41 

12.7 

-1.67 

28.5 

-0.23 

17.1 

0.47 

26.7 

2.02 

11.7 

P3: More skewed placebo 

group distribution 

% Placebo 

Cumulative 

log odds 

0.7 

-4.91 

3.3 

-3.17 

11.1 

-1.73 

11.2 

-1.03 

36.3 

0.52 

37.3 

P4: Even more skewed 

placebo group distribution 

% Placebo 

Cumulative 

log odds 

0.4 

-5.41 

2.0 

-3.67 

7.3 

-2.23 

8.1 

-1.53 

32.6 

0.02 

49.5 

 

Altering the distribution of the placebo group specified in the FLU-IVIG design to be more or less skewed by changing its cumulative log odds. The 

derivation of the cumulative log odds to the probabilities in each category is given in the section below. 
a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
bCumulative log odds: (natural) logarithm of the odds of the given category or more severe versus less severe.  

Derivation of the cumulative log odds for the distribution of the placebo group 

For an ordinal endpoint 𝑌, the cumulative log odds 𝐶𝑗 for level 𝑗 out of 𝐽 total levels in the distribution of the placebo group is: 

log (
𝑃(𝑌 ≤ 𝑗)

𝑃(𝑌 > 𝑗)
) = 𝐶𝑗  𝑓𝑜𝑟 𝑗 = 1,2, … 𝐽 − 1 

To return to the cumulative probability, that is, 𝑃(𝑌 ≤ 𝑗), use the expit function on 𝐶𝑗: 

𝑒𝐶𝑗

1 +  𝑒𝐶𝑗
∗ 100 = 𝑃(𝑌 ≤ 𝑗) 

The probability that 𝑌 assumes level 𝑗, that is 𝑃(𝑌 = 𝑗), is then derived as: 
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𝑃(𝑌 = 𝑗) = 𝑃(𝑌 ≤ 𝑗) − 𝑃(𝑌 ≤ 𝑗 − 1) 

A demonstration using patients in Death or ICU for P0: 

log (
1.2 + 5.3

100 − (1.2 + 5.3)
) = − 2.67 

𝑒−2.67

1 +  𝑒−2.67
∗ 100 =  6.5 = 1.2 + 5.3 
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Supplemental Table 4. Effect of all possible interactions of the treatment effects and placebo group distributions on power. 

T1: Treatment 

effect constantly 

weakens 

T2: Treatment effect 

limited to the 

hospitalization or 

death categories 

T3: Treatment 

effect limited to the 

discharged 

categories 

T4: Smaller treatment 

effect limited to the 

hospitalization or 

death categories 

T5: Smaller treatment 

effect limited to the 

discharged categories 

P1: Less skewed placebo 

group distribution 

Power (%)a 

Avg. logORb 

95.8 

0.76 

96.7 

79.2 

47.2 

0.38 

52.8 

0.42 

12.4 

0.16 

P2: Even less skewed 

placebo group distribution 

Power (%) 

Avg. logOR 
99.6 

0.94 

99.7 

0.96 

19.6 

0.22 

67.6 

0.48 

6.5 

0.09 

P3: More skewed placebo 

group distribution 

Power (%) 

Avg. logOR 

54.5 

0.43 

40.8 

0.37 

93.9 

0.77 

16.8 

0.21 

39.9 

0.35 

P4: Even more skewed 

placebo group distribution 

Power (%) 

Avg. logOR 
33.1 

0.33 

16.8 

0.21 

97.4 

0.91 

8.4 

0.13 

51.2 

0.44 

Bolded interactions were chosen for mention in the text of the paper. 
aPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
bAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Supplemental Table 5. Effect of all possible interactions of the treatment effects and misclassification on power. 

T1: Treatment 

effect constantly 

weakens 

T2: Treatment effect 

limited to the 

hospitalization or 

death categories 

T3: Treatment 

effect limited to the 

discharged 

categories 

T4: Smaller treatment 

effect limited to the 

hospitalization or 

death categories 

T5: Smaller treatment 

effect limited to the 

discharged categories 

M1: 20% 

misclassification between 

the non-ICU hospitalized 

categories and discharged 

categories 

Power (%)a 

Avg. logORb 
79.1 

0.57 

86.2 

0.64 

38.0 

0.33 

40.4 

0.35 

11.3 

0.15 

M2: 40% 

misclassification between 

the non-ICU hospitalized 

categories and discharged 

categories 

Power (%) 

Avg. logOR 
79.6 

0.57 

92.7 

0.71 

7.5 

0.24 

48.0 

0.39 

4.4 

0.49 

M3: 20% 

misclassification between 

the non-ICU hospitalized 

categories 

Power (%) 

Avg. logOR 

76.2 

0.56 

76.9 

0.57 

79.1 

0.58 

33.1 

0.31 

23.6 

0.25 

M4: 20% 

misclassification between 

the discharged categories 

Power (%) 

Avg. logOR 

82.4 

0.60 

86.8 

0.64 

38.0 

0.34 

40.9 

0.36 

11.2 

0.15 

Bolded interactions were chosen for mention in the text of the paper. 
aPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
bAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Supplemental Table 6. Effect of all possible interactions of the treatment effects and number of categories on power. 

T1: Treatment 

effect constantly 

weakens 

T2: Treatment effect 

limited to the 

hospitalization or 

death categories 

T3: Treatment 

effect limited to the 

discharged 

categories 

T4: Smaller treatment 

effect limited to the 

hospitalization or 

death categories 

T5: Smaller treatment 

effect limited to the 

discharged categories 

C1: Collapse the non-ICU 

hospitalized categories 

and discharged categories 

Power (%)a 

Avg. logORb 

92.3 

0.85 

99.4 

1.18 

0.05 

0 

65.4 

0.57 

0.05 

0 

C2: Collapse the non-ICU 

hospitalized categories 

Power (%) 

Avg. logOR 

72.4 

0.53 

76.4 

0.57 

80.0 

0.59 

32.4 

0.31 

24.2 

0.26 

C3: Collapse the 

discharged categories 

Power (%) 

Avg. logOR 
95.8 

0.89 

99.5 

1.16 

0.05 

0 
65.6 

0.57 

0.05 

0 

C4: Collapse the four 

most severe categories 

Power (%) 

Avg. logOR 
67.0 

0.50 

76.0 

0.56 

80.5 

0.60 

32.0 

0.31 

25.7 

0.27 

C5: Collapse the four 

most severe categories 

and discharged categories 

(binary endpoint) 

Power (%) 

Avg. logOR 

88.9 

0.81 

99.4 

1.18 

0.05 

0 

64.5 

0.57 

0.05 

0 

Bolded interactions were chosen for mention in the text of the paper. 
aPower (%): percentage of the 10,000 simulated datasets in which the Wald test statistic for the treatment effect was significant at the two-sided 0.05 

level. 
bAvg. logOR: average of the estimated log odds ratio across the 10,000 simulated datasets from fitting a proportional odds cumulative logistic model. 
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Deviations from proportional odds while maintaining the same overall treatment effect 

For the ith patient, assume that we have a 3-level ordinal endpoint 𝑌𝑖 and define: 

 𝑝1, 𝑝2, 𝑝3 are the true probabilities in the first, second, and third levels of the 

ordinal endpoint for the placebo group, respectively. 

 𝑞1, 𝑞2, 𝑞3 are the corresponding true probabilities in the treatment group. 

 𝐴𝑖 is an indicator variable for whether or not the ith patient is randomized to the 

treatment group. 

 𝑍𝑖 , 𝑉𝑖 are indicator variables for whether or not 𝑌𝑖 = 1 and 𝑌𝑖 = 2, respectively, 

for the ith patient. 

 

Note that 𝑝3 = 1 − 𝑝1 − 𝑝2 and 𝑞3 = 1 − 𝑞1 − 𝑞2; therefore, the distribution of the ordinal 

endpoint in the placebo and treatment groups is uniquely determined by the four parameters 𝑝1,
𝑝2, 𝑞1, and 𝑞2. If we assume a proportional odds model, we can express 𝑝1, 𝑝2, 𝑞1,  and 𝑞2 in 

terms of three model parameters. Let 𝛼1 and 𝛼2 represent the log odds of being in level 1 and in 

level 1 or level 2, respectively, for subjects randomized to the placebo group and let 𝛽 represent 

the log odds ratio of the treatment group to the control group. Assuming proportional odds, 𝛼1 =

log (
𝑝1

1− 𝑝1
), 𝛼2 = log (

𝑝1+𝑝2

1− 𝑝1−𝑝2
), and 𝛽 = log (

𝑞1∗(1−𝑝1)

𝑝1∗(1− 𝑞1)
) = log (

(𝑞1+𝑞2)∗(1−𝑝1−𝑝2)

(𝑝1+𝑝2)∗(1− 𝑞1−𝑞2)
). 

Under this model, the log likelihood for 𝛼1, 𝛼2, 𝛽 is given by:  

log(𝐿(𝛼1, 𝛼2, 𝛽))  

= ∑{(1 −  𝐴𝑖)[

𝑛

𝑖=1

𝑍𝑖log (
𝑒𝛼1

𝑒𝛼1 + 1
) +  𝑉𝑖log (

𝑒𝛼2 − 𝑒𝛼1

(𝑒𝛼1 + 1)(𝑒𝛼2 + 1)
) 

+(1 −  𝑍𝑖 − 𝑉𝑖)log (
𝑒𝛼1 + 1

(𝑒𝛼1 + 1)(𝑒𝛼2 + 1)
)]} 

 + ∑{𝐴𝑖[

𝑛

𝑖=1

𝑍𝑖log (
𝑒𝛼1+𝛽

𝑒𝛼1+𝛽 + 1
) +  𝑉𝑖log (

𝑒𝛼2 − 𝑒𝛼1

(𝑒𝛼1+𝛽 + 1)(𝑒𝛼2 + 𝑒−𝛽)
) 

+ (1 −  𝑍𝑖 − 𝑉𝑖)log (
𝑒𝛼1 + 𝑒−𝛽

(𝑒𝛼1+𝛽 + 1)(𝑒𝛼2 + 𝑒−𝛽)
)]} 

Regardless of whether or not the proportional odds model is correctly specified, we can obtain 

maximum likelihood estimates for 𝛼1,  𝛼2, and 𝛽 (i.e., 𝛼1̂, 𝛼2̂, 𝛽̂, the values of 𝛼1,  𝛼2,  and 𝛽 

which maximize the log likelihood above).  If the proportional odds assumption is not correct, 𝛽̂ 

is still an estimate of the treatment effect across all levels of the ordinal endpoint but cannot be 

interpreted as the constant log odds ratio of the treatment group to the placebo group across all 

binary divisions of the ordinal scale.  



CASE STUDY OF AN ORDINAL ENDPOINT FOR INFLUENZA                                       39 

 

As noted in the main text, we sought to derive distributions of the treatment group that deviated 

from proportional odds while maintaining the same overall treatment effect specified in the 

design of FLU-IVIG. By overall treatment effect, we mean the average (across repeated 

experimentation) estimated log odds ratio for the effect of the intervention relative to placebo 

from fitting a proportional odds cumulative logistic regression model to the data (i.e., 𝐸(𝛽̂)).  

Let 𝛼10 = 𝐸(𝛼1̂),  𝛼20 = 𝐸(𝛼2̂), and 𝛽0 = 𝐸(𝛽̂) represent the average estimated cumulative log 

odds and log odds ratio. Asymptotically, 𝛼10, 𝛼20,  and 𝛽0 are the values of  𝛼1,  𝛼2, and 𝛽 for 

which the expected score is equal to zero.25 That is for a fixed sample size, 𝛼10, 𝛼20,  and 𝛽0 are 

(approximately) the values which solve the following system of equations (1) 

𝐸 [
𝑑

𝑑𝛼1
log(𝐿(𝛼1, 𝛼2, 𝛽))]] = 0; (2) 𝐸[

𝑑

𝑑𝛼2
log(𝐿(𝛼1, 𝛼2, 𝛽))] = 0; and (3) 

𝐸[
𝑑

𝑑𝛽
log(𝐿(𝛼1, 𝛼2, 𝛽))] = 0. Note that: 

𝐸[
𝑑

𝑑𝛽
log(𝐿(𝛼1, 𝛼2, 𝛽))] 

= 𝐸{𝐴𝑖[𝑍𝑖

𝑒𝛼1+𝛼2+2𝛽 + 2𝑒𝛼2+𝛽 + 1

(𝑒𝛼1+𝛽 + 1)(𝑒𝛼2+𝛽 + 1)
+ 𝑉𝑖

1

𝑒𝛼1+𝛽 + 1
−

𝑒𝛼2+𝛽

𝑒𝛼2+𝛽 + 1
]} 

= 𝐸[𝐸{𝐴𝑖[𝑍𝑖

𝑒𝛼1+𝛼2+2𝛽 + 2𝑒𝛼2+𝛽 + 1

(𝑒𝛼1+𝛽 + 1)(𝑒𝛼2+𝛽 + 1)
+ 𝑉𝑖

1

𝑒𝛼1+𝛽 + 1
−

𝑒𝛼2+𝛽

𝑒𝛼2+𝛽 + 1
]}|𝐴𝑖] 

= 𝐸{𝐴𝑖[𝐸(𝑍𝑖|𝐴𝑖)
𝑒𝛼1+𝛼2+2𝛽 + 2𝑒𝛼2+𝛽 + 1

(𝑒𝛼1+𝛽 + 1)(𝑒𝛼2+𝛽 + 1)
+ 𝐸(𝑉𝑖|𝐴𝑖)

1

𝑒𝛼1+𝛽 + 1
−

𝑒𝛼2+𝛽

𝑒𝛼2+𝛽 + 1
]} 

Note that 𝐸(𝑍𝑖|𝐴𝑖) = 𝐴𝑖𝑞1 + (1 − 𝐴𝑖)𝑝1 and 𝐸(𝑉𝑖|𝐴𝑖) =  𝐴𝑖𝑞2 + (1 − 𝐴𝑖)𝑝2. We then have:  

𝐸[
𝑑

𝑑𝛽
log(𝐿(𝛼1, 𝛼2, 𝛽))] 

=  𝐸{𝐴𝑖𝑞1

𝑒𝛼1+𝛼2+2𝛽 + 2𝑒𝛼2+𝛽 + 1

(𝑒𝛼1+𝛽 + 1)(𝑒𝛼2+𝛽 + 1)
+ 𝐴𝑖𝑞2

1

𝑒𝛼1+𝛽 + 1
− 𝐴𝑖

𝑒𝛼2+𝛽

𝑒𝛼2+𝛽 + 1
} 

Because 𝐴𝑖 is the only random variable in the above equation with 𝐸(𝐴𝑖) = 0.5 (due to the 1:1 

allocation ratio between the randomized groups), we have: 

= 𝑞1

𝑒𝛼1+𝛼2+2𝛽 + 2𝑒𝛼2+𝛽 + 1

(𝑒𝛼1+𝛽 + 1)(𝑒𝛼2+𝛽 + 1)
+ 𝑞2

1

𝑒𝛼1+𝛽 + 1
−

𝑒𝛼2+𝛽

𝑒𝛼2+𝛽 + 1
= 0 

A similar analysis can be used to simplify 𝐸[
𝑑

𝑑𝛼1
log(𝐿(𝛼1, 𝛼2, 𝛽))]] and 

 𝐸[
𝑑

𝑑𝛼2
log(𝐿(𝛼1, 𝛼2, 𝛽))] which will be functions of 𝛼1, 𝛼2, 𝛽, and the true probabilities in each 

level of the treatment (𝑞1 and 𝑞2) and control group (𝑝1 and 𝑝2). 
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To derive distributions of the treatment group that deviated from proportional odds while 

maintaining the same overall treatment effect, we can fix 𝛽 (the overall treatment effect), 𝑝1 and 

𝑝2 (the probabilities in the first two categories of the control group), and 𝑞1 (the probability in 

the first category of the treatment group) to solve the system of three (nonlinear) equations for 

𝑞2, 𝛼1 and 𝛼2. This approach generalizes to ordinal endpoints with any number of outcome 

levels. 

Code to implement this algorithm in the programming language R is available as a GitHub 

repository (https://github.com/RPeterson4/Supplementary-Code-for-Evaluating-the-Ordinal-

Endpoint-for-FLU-IVIG). 
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Misclassification among the categories of the ordinal endpoint 

Scenario Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

M0: No Misclassification % Placeboa 

% IVIGb 

1.2 

0.7 

5.3 

3.1 

16.2 

10.5 

14.4 

10.8 

36.4 

36.0 

 

26.5 

39.0 

a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
b% IVIG: percentage of patients in the IVIG group for the given ordinal endpoint category. 

 

Misclassification is added between the oxygen and discharged categories by exchanging fixed percentages of patients between 

the respective categories for each pair for both randomized groups. An example for M1, which adds 20% misclassification 

between the non-ICU hospitalized categories and the discharged categories. 

 

M1 Placebo Hospitalized, not in ICU, on oxygen = 16.2 * 0.8 + 14.4 * 0.2 = 15.8 

M1 Placebo Hospitalized, not in ICU, not on oxygen = 16.2 * 0.2 + 14.4 * 0.8 = 14.8 

M1 Placebo Discharged, not back to normal activities = 36.4 * 0.8 + 26.5 * 0.2 = 34.4 

M1 Placebo Discharged, back to normal activities = 36.4 * 0.2 + 26.5 * 0.8 = 28.5 

 

M1 IVIG Hospitalized, not in ICU, on oxygen = 10.5 * 0.8 + 10.8 * 0.2 = 10.6 

M1 IVIG Hospitalized, not in ICU, not on oxygen = 10.5 * 0.2 + 10.8 * 0.8 = 10.7 

M1 IVIG Discharged, not back to normal activities = 36.0 * 0.8 + 39.0 * 0.2 = 36.6 

M1 IVIG Discharged, back to normal activities = 36.0 * 0.2 + 39.0 * 0.8 = 38.4 

 

This yields the placebo and IVIG group distributions for M1: 

 
Scenario Death In 

ICU 

Hospitalized, 

not in ICU, 

on oxygen 

Hospitalized, 

not in ICU, not 

on oxygen 

Discharged, not 

back to normal 

activities 

Discharged, 

back to normal 

activities 

M1: 20% misclassification 

between the non-ICU 

hospitalized categories and 

discharged categories 

% Placeboa 

% IVIGb 

1.2 

0.7 

5.3 

3.1 

15.8 

10.6 

14.8 

10.7 

34.4 

36.6 

 

28.5 

38.4 

a% Placebo: percentage of patients in the placebo group for the given ordinal endpoint category. 
b% IVIG: percentage of patients in the IVIG group for the given ordinal endpoint category. 


