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	23	

Abstract	24	

Human	placentation	 involves	the	 invasion	of	 the	conceptus	 into	the	wall	of	 the	uterus,	25	

and	establishment	of	a	blood	supply	from	the	maternal	spiral	arteries.	The	placenta	has	26	

therefore	 been	 likened	 to	 a	 malignant	 tumour,	 albeit	 a	 highly	 regulated	 one.	 Oxygen	27	

plays	 an	 important	 role	 in	 controlling	 both	 placental	 development	 and	 tumour	28	

behaviour.	In	the	placenta,	early	development	takes	place	in	a	physiological	low	oxygen	29	

environment,	 which	 undergoes	 a	 transition	 with	 onset	 of	 the	 full	 maternal	 arterial	30	

circulation	 towards	 the	 end	of	 the	 first	 trimester.	 By	 comparison,	 in	 tumours	 there	 is	31	

often	a	progressive	hypoxia	as	the	mass	outgrows	its	blood	supply.	Both	early	placental	32	

tissues	 and	 tumour	 cells	 show	high	 rates	 of	 proliferation,	 and	 the	 energy	 required	 to	33	

support	 these	 comes	 principally	 from	 glycolysis.	 Glycolysis	 is	maintained	 in	 placental	34	

tissues	by	reoxidation	of	pyridine	nucleotides	through	the	polyol	pathways,	whereas	in	35	

tumours	 there	 is	 fermentation	 to	 lactate,	 Warburg	 metabolism.	 In	 both	 cases,	 the	36	

reliance	on	glycolysis	rather	than	oxidative	phosphorylation	preserves	carbon	skeletons	37	

that	can	be	utilised	in	the	synthesis	of	nucleotides,	cell	membranes	and	organelles,	and	38	

that	would	otherwise	be	excreted	as	carbon	dioxide.	 	In	the	placenta,	this	reliance	may	39	

also	 protect	 the	 embryo	 from	 free	 radical-mediated	 teratogenesis.	 Local	 oxygen	40	

gradients	within	both	sets	of	tissues	may	influence	the	cell	behaviour.	In	particular,	they	41	

may	 induce	 an	 epithelial-mesenchymal	 transition,	 promoting	 extravillous	 trophoblast	42	

invasion	in	the	placenta	and	metastasis	in	a	tumour.	Further	investigations	into	the	two	43	

scenarios	may	provide	new	insights	of	benefit	to	these	contrasting,	but	similar,	fields	of	44	

cellular	biology.	45	

	46	

	47	



	 3	

48	



	 4	

	49	
Introduction	50	

Placental	development	displays	many	of	the	same	growth	characteristics	as	are	seen	in	51	

malignant	tumour	progression,	such	as	a	high	proliferative	rate,	 invasion	 into	the	host	52	

tissue,	 and	 immunological	 modulation	 (1).	 There	 are	 parallels	 too	 in	 terms	 of	53	

oxygenation	 and	 tissue	metabolism,	 but	 also	 significant	 divergences.	 Here,	we	 review	54	

the	major	similarities	and	differences.		55	

	56	

	57	

The	first	trimester	placental	environment	58	

Fertilization	 and	 early	 development	 of	 the	 conceptus	 occur	 in	 the	 Fallopian	 tube,	59	

supported	by	the	oviductal	secretions.	 In	the	human,	measurements	performed	during	60	

the	non-pregnant	cycle	indicate	an	oxygen	tension	of	15-19	mmHg	(2,	3),	and	it	is	likely	61	

that	similar	conditions	prevail	during	early	pregnancy.	Data	from	the	mouse	show	that	62	

oxygen	consumption	by	the	early	conceptus	is	low,	at	approximately	4	µl/mg	dry	weight	63	

per	hour,	prior	 to	 implantation,	 although	 it	peaks	 transiently	at	 the	 time	of	blastocyst	64	

formation	due	to	the	higher	energy	demands	associated	with	ionic	pumping	and	protein	65	

synthesis	(4).	This	low	level	of	oxygen	consumption	has	been	coined		‘quiet	metabolism’	66	

(5),	and	is	considered	to	be	beneficial	as	it	limits	the	production	of	potentially	harmful	67	

reactive	oxygen	species.		These	species,	and	their	non-radical	intermediates,	may	cause	68	

damage	to	diverse	biomolecules,	including	lipid	peroxidation,	protein	carbonylation	and	69	

DNA	 strand	 breaks.	 Indeed,	 more	 active	 ‘noisy’	 metabolism	 is	 associated	with	 higher	70	

levels	of	DNA	damage,	and	with	poorer	outcomes	in	assisted	reproductive	technologies	71	

(6).	72	

	73	
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Early	placental	development	can	be	seen	as	a	continuation	of	this	‘quiet	metabolism’,	for	74	

the	 oxygen	 concentration	 within	 the	 intervillous	 space	 and	 the	 embryonic	75	

compartments	remains	at	approximately	20	mmHg	during	most	of	the	first	trimester	(7,	76	

8).		Following	implantation,	the	conceptus	lies	within	the	superficial	endometrium,	and	77	

as	 the	 trophoblast	mantle	expands	 it	erodes	 into	neighbouring	capillaries	and	 into	 the	78	

endometrial	glands.	Maternal	arterial	 inflow	into	the	placenta	only	occurs	towards	the	79	

end	of	the	first	trimester,	as	initially	the	endovascular	trophoblast	invasion	that	occurs	80	

as	 part	 of	 remodelling	 of	 the	 spiral	 arteries	 is	 sufficiently	 voluminous	 to	 occlude	 the	81	

mouths	of	most	of	 the	vessels	 (9,	10).	A	network	of	narrow	 intercellular	 spaces	exists	82	

between	the	endovascular	trophoblast	cells,	however,	enabling	maternal	plasma	to	pass	83	

into	 the	 placenta	 at	 a	 slow	 rate.	 Consequently,	 there	 is	 a	 continual	 supply	 of	 oxygen,	84	

albeit	at	a	low	partial	pressure	and	content	as	it	is	carried	principally	in	solution	in	the	85	

absence	of	maternal	erythrocytes.		86	

	87	

The	distribution	of	 this	 oxygen	 to	 the	deeper	placental	 and	 fetal	 tissues	must	 initially	88	

occur	by	simple	diffusion,	for	the	fetal	heart	does	not	start	beating	until	the	5th	week	of	89	

pregnancy,	 and	 an	 effective	 circulation	 through	 the	 placental	 villi	 is	 only	 achieved	90	

towards	 the	end	of	 the	 first	 trimester.	Diffusion	 is	 facilitated	by	 the	 large	surface	area	91	

provided	by	the	villous	morphology	of	the	placenta,	and	presence	of	fluid-filled	stromal	92	

channels	within	the	villi	 that	communicate	with	the	extra-embryonic	coelom	(11).	The	93	

oxygen	within	the	exocoelomic	fluid	is	able	reach	the	deeper	tissues	within	the	embryo	94	

as	 the	 intra-	 and	 extra-embryonic	 coeloms	 are	 in	 free	 communication	 before	 the	95	

anterior	body	 folds	 fuse	at	around	6	weeks	post-fertilisation.	When	 the	 fetal-placental	96	

circulation	is	established,	oxygen	transport	is	achieved	during	the	first	three	months	of	97	

pregnancy	by	high-affinity	embryonic	haemoglobin	(Hb)	 located	inside	red	cells	which	98	



	 6	

are	mainly	nucleated.	The	oxygen	binding	characteristics	of	embryonic	Hb	and	the	high	99	

viscosity	 of	 circulating	 blood	 containing	 a	 high	 proportion	 of	 nucleated	 red	 cells	100	

contribute	to	limiting	oxygen	transfer	to	the	fetal	tissues	(12-14).		101	

 102	

By	comparison,	although	the	oxygen	tension	in	many	tumours	is	low,	and	indeed	lower	103	

than	 that	 inside	 the	 early	 placenta,	 the	 situation	 has	 a	 very	 different	 ontology.	 The	104	

pattern	 in	 tumour	masses	 is	 one	 of	 increasing	 hypoxia,	 compared	 to	 the	 steady	 state	105	

seen	 within	 the	 early	 placenta.	 In	 tumours,	 the	 initiating	 growth	 normally	 occurs	 at	106	

ordinary	 tissue	 oxygen	 levels,	 but	 with	 expansion	 the	 tumour	 gradually	 outstrips	 its	107	

blood	supply.	 In	solid	 tumours	 the	opportunity	 for	diffusion	 is	 limited,	and	as	a	 result	108	

the	central	core	becomes	increasingly	hypoxic	(15).	Although	angiogenesis	is	stimulated	109	

through	the	release	of	VEGF,	the	degree	of	hypoxia	may	be	sufficient	to	induce	necrosis	110	

in	 the	 core,	 an	 event	 never	 seen	 in	 first	 trimester	 placental	 tissues	 or	 in	 fetal	111	

development.	 In	 fact,	variation	 in	blood	 flow	distribution	 to	 the	periphery	of	 the	early	112	

placenta	leads	to	a	high	level	of	oxygen	exposure	inducing	apoptosis	and	degeneration	113	

of	two-thirds	of	the	original	placental	mass,	a	process	which	is	pivotal	for	the	formation	114	

of	the	membranes.	115	

	116	

Early	placental	metabolism	117	

Early	placental	tissues	display	a	high	proliferative	rate,	as	do	tumour	cells,	although	the	118	

drivers	 are	 different.	 In	 the	 placenta,	 proliferation	 is	 thought	 to	 be	 stimulated	119	

exogenously	 by	 mitogens	 secreted	 by	 the	 endometrial	 glands	 (16).	 Both	 epidermal	120	

growth	 factor	 and	 the	 insulin-like	 growth	 factors	 promote	 proliferation	 of	 the	121	

cytotrophoblast	 cells	 when	 applied	 to	 first	 trimester	 villous	 explants	 (17,	 18).	 These	122	

mitogens	 are	 presumably	 transported	 through	 the	 syncytiotrophoblast	 by	 the	 same	123	
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endocytotic/exocytotic	pathways	that	lead	to	the	accumulation	of	other	gland	products,	124	

such	as	glycodelin,	in	the	amniotic	fluid	(19).		By	contrast,	in	tumour	cells	the	drive	for	125	

proliferation	 arises	 as	 the	 result	 of	 endogenous	 mutations	 within	 growth	 promoting	126	

pathways.	 However,	 unlike	 in	 a	 tumour,	 the	 placental	 tissues	 display	 no	 evidence	 of	127	

hypoxic	stress.	Hypoxia	cannot	be	defined	simply	by	the	prevailing	partial	pressure	that	128	

cells	are	exposed	to,	but	rather	by	whether	the	oxygen	supply	 is	sufficient	to	meet	the	129	

metabolic	 requirements	 of	 the	 cells.	 Hence,	 it	 is	 notable	 that	 the	 ATP/ADP	 ratio	 in	130	

placental	 tissues	 is	 the	 same	 during	 the	 first	 trimester	 as	 it	 is	 later	 in	 the	 second	131	

trimester	 and	 at	 term	 (20).	 Furthermore,	 there	 is	 no	 stabilisation	 of	 either	 hypoxia	132	

inducible	 factors	 (HIF-1	 and	 HIF-2)	 in	 villi	 removed	 by	 a	 chorionic	 villous	 sampling	133	

technique,	which	avoids	any	confounding	stress	induced	by	exposure	to	maternal	blood	134	

as	occurs	during	curettage	(20).	These	differences	with	the	tumour	situation	most	likely	135	

reflect	 the	 replenishment	of	oxygen	 through	 the	perfusion	of	 the	 intervillous	chamber	136	

with	maternal	plasma,	and	also	 the	different	ontological	progressions.	 In	addition,	 the	137	

placental	 tissues	 are	 provided	 with	 a	 rich	 source	 of	 glucose	 for	 glycolysis	 by	 the	138	

endometrial	glands,	along	with	lipid	and	proteinaceous	substrates	(21).	139	

	140	

The	 exocoelomic	 fluid	 is	 in	 free	 communication	 with	 the	 placenta	 tissues,	 and	 so	 its	141	

metabolic	 profile	 predominantly	 reflects	 placental	 metabolism.	 	 Analysis	 of	 the	 fluid	142	

indicates	evidence	of	 limited	anaerobic	metabolism,	 in	 that	 the	pH	of	 the	 fluid	at	7-10	143	

weeks	of	gestation	 is	approximately	7.17,	with	a	base	excess	of	 -8.9	mmol/l	 (22).	The	144	

concentration	of	lactate	is,	however,	not	excessively	high	(0.6	mmol/l).	In	part,	this	may	145	

be	 due	 to	 metabolism	 of	 lactate	 by	 the	 fetus,	 but	 it	 also	 reflects	 the	 reliance	 of	 the	146	

placenta	 on	 phylogenetically	 old	 carbohydrate	 metabolic	 pathways	 involving	 the	147	

formation	of	polyols	(23).		148	
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	149	

The	importance	of	glycolysis	150	

One	 of	 the	most	 striking	 similarities	 between	 the	 early	 placenta	 and	 tumours	 is	 their	151	

reliance	on	glycolysis	for	energy	production,	although	the	pathways	involved	in	enabling	152	

this	are	quite	different.	In	the	case	of	the	placenta,	glycolysis	is	closely	interlinked	with	153	

the	 polyol	 and	 pentose-phosphate	 pathways.	 Conversion	 of	 glucose	 to	 pyruvate	154	

generates	 two	 molecules	 of	 ATP,	 and	 requires	 a	 supply	 of	 NAD+.	 Under	 full	 aerobic	155	

conditions	 that	 NAD+	 is	 normally	 regenerated	 via	 the	 tricarboxylic	 acid	 (TCA)	 cycle,	156	

whereas	 in	 adult	 tissues	 under	 anaerobic	 conditions	 NAD+	 is	 regenerated	 by	157	

fermentation	 of	 pyruvate	 to	 lactate	 (Figure	 1).	 The	 polyol	 pathways	 provide	 an	158	

alternative	 mechanism	 for	 maintaining	 the	 oxidation-reduction	 balance	 of	 pyridine	159	

nucleotides.	 	 Conversion	 of	 ribose	 5-phosphate	 created	 from	 glucose	 in	 the	 pentose-160	

phosphate	 pathway	 to	 ribitol	 regenerates	NAD+.	 Similarly,	 formation	 of	 erythritol	 and	161	

sorbitol	regenerates	NADP+.	The	concentrations	of	these	polyols	are	much	higher	in	the	162	

coelomic	fluid	than	in	maternal	serum	during	early	pregnancy	(23).	163	

	164	

By	contrast,	 in	tumours	fermentation	to	lactate	appears	to	be	the	principal	method	for	165	

regeneration	of	NAD+,	even	under	conditions	of	adequate	oxygenation.	This	process	 is	166	

therefore	 referred	 to	 as	 aerobic	 glycolysis,	 or	 eponymously	 as	 the	Warburg	 effect.	 In	167	

hypoxic	cells	and	tissues,	such	as	the	tumour,	glycolysis	is	directly	stimulated	following	168	

HIF-1	 stabilisation,	 with	 the	 upregulation	 of	 most,	 if	 not	 all,	 glycolytic	 enzymes	 (24).	169	

Notably,	 aerobic	 glycolysis	 is	 also	 specifically	 promoted,	 and	 mitochondrial	 pyruvate	170	

oxidation	bypassed,	via	inhibition	of	pyruvate	dehydrogenase	(PDH)	activity	(Figure	1).	171	

HIF-1	 dependent	 upregulation	 of	 PDH	 kinase	 1	 (PDK-1)	 (25,	 26)	 leads	 to	 the	172	

phosphorylation	of	the	E1	subunit	of	PDH,	and	thus	its	inhibition.	Under	such	conditions,	173	
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pyruvate	is	therefore	not	converted	into	acetyl-CoA,	and	the	TCA	cycle	cannot	be	fuelled,	174	

leading	to	a	fall	in	mitochondrial	oxygen	consumption	(26),	which	promotes	survival	in	175	

the	 face	 of	 hypoxia.	 Hypoxic	 cells	 instead	 accumulate	 pyruvate,	 some	 of	 which	 is	176	

converted	 to	 lactate	 under	 the	 action	 of	 lactate	 dehydrogenase	 (LDH),	 another	 HIF-1	177	

regulated	enzyme	(24),	and	lactate	is	in	turn	transported	out	of	the	cell	(27).	The	build-178	

up	 of	 pyruvate	 also	 favours	 transformation	 of	 fructose-6-phosphate	 to	 D-ribose-5-179	

phosphate,	promoting	the	synthesis	of	nucleic	acids	to	support	cell	proliferation	(Figure	180	

1).	 	At	present	it	is	unclear	whether	glycolysis	is	promoted	by	mitochondrial	inhibition	181	

in	a	similar	fashion	in	the	case	of	the	placenta,	though	in	the	apparent	absence	of	HIF-1	182	

stabilisation	 this	 would	 seem	 unlikely.	 Instead,	 placental	 glycolysis	 may	 possibly	 be	183	

promoted	early	in	pregnancy	as	a	necessary	means	of	supporting	ATP-synthesis	 in	the	184	

absence	 of	 significant	mitochondrial	 activity.	 The	 time-course	 of	 changes	 in	 placental	185	

mitochondrial	density	has	not	yet	been	established;	however,	the	initiation	of	significant	186	

mitochondrial	 biogenesis	may	 only	 coincide	with	 the	 rise	 in	 oxygenation	 towards	 the	187	

end	of	the	first	trimester.		188	

	189	

It	 might	 be	 supposed	 that	 in	 both	 situations	 metabolism	 is	 relatively	 inefficient,	 and	190	

does	not	take	advantage	of	the	higher	yield	of	ATP	that	can	be	gained	through	oxidative	191	

phosphorylation.	 However,	 unlike	 differentiated	 cells	 in	 adult	 tissues	 the	 rapidly	192	

proliferating	cells	of	the	placenta	and	a	tumour	have	additional	requirements.	There	is	a	193	

need	 for	 carbon	 skeletons	 that	 can	be	 incorporated	 into	nucleotides,	 amino	 acids	 and	194	

sterols	 that	 support	 synthesis	 of	 DNA,	 cell	 and	 organelle	 membranes,	 and	 proteins.	195	

Instead	of	breaking	glucose	down	completely	and	excreting	the	carbon	atoms	as	carbon	196	

dioxide,	maintaining	the	carbon	skeletons	as	 lactate	or	through	the	pentose-phosphate	197	

pathways	allows	them	to	be	incorporated	into	the	biomass	(28).		198	
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	199	

There	are	other	potential	benefits	 for	 the	 fetal-placental	unit	derived	 through	reliance	200	

on	 the	polyol	pathways.	Firstly,	 conversion	of	glucose	 to	 ribose	5-phosphate	produces	201	

two	 molecules	 of	 NADPH.	 NADPH	 is	 required	 for	 the	 regeneration	 of	 reduced	202	

glutathione	from	its	oxidised	form,	and	hence	is	key	to	the	antioxidant	defences	of	a	cell.	203	

Developing	systems	are	highly	prone	to	perturbation	by	oxidative	stress,	which	can	lead	204	

to	 severe	 congenital	 abnormalities	 (29,	 30).	 Adequate	 antioxidant	 defences	 are	205	

therefore	 crucial.	 Secondly,	 polyols	 such	 as	 sorbitol	 are	 incapable	 of	 crossing	 cell	206	

membranes	and	so	act	as	powerful	osmolytes.	Sorbitol	is	produced	from	glucose	by	the	207	

action	 of	 aldose	 reductase,	 one	 of	 the	 first	 enzymes	 to	 be	 expressed	 in	 the	 sheep	208	

conceptus.	In	this	species	there	is	a	rapid	expansion	of	the	embryonic	sac	into	a	thread-209	

like	structure,	and	sorbitol	may	assist	 in	driving	 this	process	by	drawing	water	across	210	

the	trophoblast	epithelium.	In	the	human	there	is	a	similar,	though	less	extensive,	need	211	

to	expand	the	extra-embryonic	coelom.	212	

	213	

The	benefits	of	a	low	oxygen	environment	for	fetal-placental	development	214	

Although	 at	 first	 sight	 the	 reliance	 on	 glycolysis	 for	 energy	 production	 in	 the	 early	215	

placenta	and	tumours	may	appear	to	be	inefficient,	there	is	no	reason	to	assume	that	it	216	

cannot	meet	 the	 cells’	 requirements	 as	 long	 as	 there	 is	 a	 sufficient	 supply	 of	 glucose	217	

(31).	In	the	case	of	the	placenta	there	is	a	plentiful	supply	in	the	secretions	derived	from	218	

the	 endometrial	 glands,	 and	 accumulation	 of	 glycogen	 within	 the	 syncytioplasm	 is	 a	219	

conspicuous	feature	during	early	pregnancy	(21,	32).	220	

	221	

Thus,	 these	 metabolic	 pathways	 enable	 a	 high	 rate	 of	 proliferation	 to	 be	 maintained	222	

under	 a	 relatively	 low	 oxygen	 concentration.	 The	 rise	 in	 oxygen	 concentration	within	223	
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the	placenta	and	the	embryonic	compartments	at	the	end	of	the	first	trimester	notably	224	

coincides	with	the	completion	of	organogenesis.	At	this	stage	of	development	the	risk	of	225	

teratogenesis	 falls	 sharply,	as	differentiation	of	 the	major	organ	systems	 is	completed.	226	

The	 risks	 from	 oxygen	 free	 radicals	 therefore	 falls	 somewhat,	 and	 so	 the	 metabolic	227	

balance	may	tip	in	favour	of	oxidative	phosphorylation.	Evidence	for	such	a	shift	comes	228	

from	 the	 rapid	 fall	 in	placental	glycogen	content	at	 the	end	of	 the	 first	 trimester	 (33),	229	

and	it	may	explain	the	rise	in	growth	rate	of	the	embryo	seen	at	this	stage	(34).	230	

	231	

Increasing	 evidence	 from	 the	 field	 of	 stem	 cell	 biology	 indicates	 that	 adult	 stem	 cell	232	

niches	are	located	in	low	oxygen	environments,	roughly	equivalent	to	the	intraplacental	233	

oxygen	concentration	during	the	first	trimester	(35).	Consistent	with	this,	studies	have	234	

revealed	 that	 culture	 of	 primary	 cytotrophoblast	 cells	 under	 low	 oxygen	 conditions	235	

favours	 proliferation,	 whereas	 higher	 concentrations	 promote	 differentiation	 and	236	

invasion	(36,	37).	With	respect	to	this	finding,	it	is	notable	that	levels	of	CDX2	and	ELF5,	237	

two	 transcription	 factors	 that	 act	 as	 gate-keepers	 of	 the	 trophoblast	 lineage,	 drop	238	

sharply	 at	 the	 end	 of	 the	 first	 trimester	 (38).	 This	 suggests	 a	 reduction	 in	 the	239	

proliferative	potential	of	 the	placenta,	but	whether	 this	 is	due	 to	 the	 three-fold	rise	 in	240	

intra-placental	oxygen	concentration	that	occurs	at	the	start	of	the	second	trimester	(8),	241	

or	 the	 loss	 of	 growth	 factors	 from	 the	 endometrial	 glands	 with	 the	 switch	 from	242	

histotrophic	to	haemotrophic	nutrition	has	not	yet	been	clarified.	243	

	244	

Oxygen	and	cell	differentiation	245	

Within	the	placenta,	a	sub-population	of	trophoblast	cells,	the	extravillous	trophoblast,	246	

undergo	a	partial	epithelial-mesenchymal	transition	and	migrate	from	the	outer	surface	247	

of	 the	 cytotrophoblastic	 shell	 into	 the	 endometrium	 (39).	 In	 doing	 so	 they	 adopt	 a	248	
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pleiotrophic	phenotype	and	move	 into	an	area	of	higher	oxygen	concentration,	 for	 the	249	

decidua	is	always	better	oxygenated	than	the	placenta	(8).	In	many	ways	this	resembles	250	

the	process	of	metastasis,	albeit	a	highly	regulated	one,	but	the	influence	of	oxygen	on	251	

the	 transition	 is	 still	 unclear.	 Experimental	 studies	 of	 first	 trimester	 explant	 cultures	252	

have	demonstrated	that	oxygen	may	be	a	significant	factor,	for	culture	under	low	oxygen	253	

conditions	(3%	v	21%)	inhibits	invasion.	This	effect	is	mediated	through	the	HIF-1	and	254	

transforming	 growth	 factor	 beta	 (TGFß)	 pathways,	 and	 is	 associated	with	 changes	 in	255	

matrix	metalloproteinase	activity	(40).		256	

	257	

Local	 oxygen	 concentrations	 also	 appear	 to	 play	 a	 role	 in	 remodelling	 of	 the	 early	258	

placenta	 into	 its	 definitive	 form.	 Villi	 initially	 form	 over	 the	 entire	 surface	 of	 the	259	

chorionic	sac,	but	later	regress	to	leave	the	discoid	placenta	at	the	deep	pole	in	contact	260	

with	 the	 endometrium,	 and	 the	 smooth	membranes.	 This	 remodelling	 coincides	 with	261	

onset	of	the	maternal	arterial	circulation	to	the	placenta,	which	starts	preferentially	 in	262	

the	 periphery	 and	 then	 extends	 centripetally,	 reflecting	 the	 degree	 of	 trophoblast	263	

invasion	 and	 arterial	 plugging	 across	 the	 placental	 bed	 (41).	 Villi	 sampled	 from	 the	264	

peripheral	region	display	higher	levels	of	oxidative	stress	and	activation	of	the	apoptotic	265	

cascade	than	their	counterparts	from	the	central	region,	and	it	has	been	proposed	that	266	

these	effects	mediate	the	regression.	Excessive	regression	at	this	stage	of	development	267	

may	lead	to	placentas	with	eccentric	insertions	of	the	umbilical	cord	and	more	irregular	268	

margins	(42,	43).	269	

	270	

Even	 within	 the	 definitive	 placenta	 there	 will	 be	 oxygen	 gradients	 that	 reflect	 the	271	

pattern	of	maternal	arterial	blood	flow.	The	placental	villi	are	not	arranged	at	random,	272	

but	form	30-40	lobules,	each	centred	over	the	opening	of	a	maternal	spiral	artery.	The	273	
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arteries	 deliver	 their	 blood	 into	 the	 relatively	 villus-free	 central	 cavities	 of	 a	 lobule.	274	

From	there,	the	blood	percolates	through	the	network	of	intervillous	clefts,	exchanging	275	

oxygen	with	the	fetal	circulation	as	it	does	so,	before	draining	into	the	openings	of	the	276	

uterine	 veins.	 Each	 lobule	 thus	 represents	 an	 individual	maternal-fetal	 exchange	 unit,	277	

and	the	pattern	of	the	circulation	suggests	an	oxygen	gradient	from	the	arterial	centre	to	278	

the	more	venous	periphery.	This	concept	is	supported	by	differences	in	the	expression	279	

and	activity	of	the	principal	antioxidant	enzymes	(44).	These	differences	in	oxygenation	280	

may	 explain	 regional	 variations	 in	 villous	 morphology	 and	 enzyme	 activities	 (45).	281	

Oxygen	gradients	similarly	occur	within	tumours	due	to	the	limitations	of	diffusion	(15),	282	

and	 again	 may	 mediate	 cell	 behaviours,	 such	 as	 resistance	 to	 radiotherapy,	 or	283	

predisposition	to	metastasis	(46).	284	

	285	

Conclusion	286	

Early	 placental	 development	 occurs	 in	 a	 low	 oxygen	 environment,	 and	 as	 a	 rapidly	287	

proliferating	 tissue	 it	 shares	 many	 of	 the	 same	 metabolic	 requirements	 as	 tumours.	288	

However,	 in	 the	 placenta	 there	 is	 continual	 replenishment	 of	 oxygen	 due	 to	 plasma	289	

flowing	 at	 a	 slow	 rate	 through	 the	 intervillous	 space,	 and	 so	 the	 tissues	 do	 not	290	

experience	 the	 increasing	 drive	 towards	 hypoxia	 that	 typifies	 the	 central	 regions	 of	291	

tumours.	Nonetheless,	oxygen	appears	to	be	a	major	regulator	of	cell	behaviour	in	both	292	

the	 placenta	 and	 tumours.	 A	 better	 understanding	 of	 the	 similarities	 and	 differences	293	

between	the	two	may	lead	to	new	insights	that	are	beneficial	to	these	contrasting	fields	294	

of	biology.	295	
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Figure	1.	Schematic	representation	of	the	interconnections	between	glycolysis	and	some	429	

of	the	polyol	pathways.	Polyols	that	are	at	high	concentrations	in	the	first	trimester	430	

placenta	are	shown	in	green,	and	their	synthesis	enables	the	regeneration	of	NAD+	and	431	

NADP+	under	low	oxygen	conditions	independent	of	the	TCA	acid	cycle.	NAD+	is	required	432	

to	maintain	glycolysis	and	production	of	ATP,	whereas	NADP+	is	important	for	the	433	

generation	of	reduced	glutathione.	By	contrast,	in	tumours	NAD+	is	regenerated	434	

principally	through	fermentation	of	pyruvate	to	lactate	under	the	action	of	lactate	435	

dehydrogenase	(LDH).	Pathways	activated	in	tumours	are	shown	in	red,	and	include	436	

stabilisation	of	HIF	through	increasing	hypoxia.	HIF	promotes	glycolysis	and	LDH,	but	437	

inhibits	pyruvate	dehydrogenase	(PDH)	and	so	blocks	the	conversion	of	pyruvate	to	438	

acetyl-CoA.	Consequently,	there	is	a	build-up	of	intermediates	in	the	glycolytic	pathway,	439	

favouring	the	diversion	of	carbon	skeletons	for	synthesis	of	nucleic	acids.	Some	440	

oncogenes	promote	cell	proliferation	through	similar	effects.	PEP;	441	

phosphoenolpyruvate.	442	
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