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Abstract

This thesis studies two different problems regarding financial companies’ capital, which is a buffer

used to cover unexpected losses. The first problem is related to understanding the capital, in a

process called allocation and the second is connected to its management.

For the capital allocation problem we follow the Euler principle and develop simulation-

based algorithms to efficiently compute the contribution of individual names to the portfolio’s

overall capital. Although the algorithms proposed in this thesis are general enough to be ap-

plied to any portfolio, we focus on the allocation of operational risk and insurance capital. In

both cases the algorithms proposed in this thesis are based on Sequential Monte Carlo (SMC)

methods. In the context of operational risk we assume annual losses in the business lines are

jointly modelled through a copula, and no parameter uncertainty is involved. In this case we are

able to use the copula dependence structure to devise efficient algorithms. For the allocation of

the one-year reserve risk and the one-year premium risk of insurance companies we develop a

novel and fully Bayesian claims reserving model, and discuss how to perform allocations under

parameter uncertainty.

Further to understanding the company’s capital we develop a class of financial instruments

to facilitate the transference of operational risks, which would naturally lead to capital reduc-

tions. As the annual amount due to operational losses can be extremely large “full insurance

coverage” is very expensive, preventing some companies from accessing the insurance market.

To circumvent this problem we propose a class of insurance products that last for T years but

the policyholder is only allowed to make claims for insurance coverage in k ≤ T years. For some

combinations of annual coverage and loss distribution we are able to derive the optimal usage

strategy for these products in closed form and for general cases we present an approximation

scheme based on density series expansion.
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Chapter 1

Introduction to financial risk

management

The importance of financial risk management has been progressively increasing for all corpo-

rations in the last few decades, notably in financial institutions. The first question one should

pose is, then, what exactly is a financial risk? Although dictionaries would define risk as “the

possibility of something bad happening” or “a situation involving exposure to danger”, in the

context of financial risks the definition provided in [McNeil et al., 2010] is perhaps the most

adequate one:

Financial risk is the quantifiable likelihood of loss or less-than-expected returns.

In a quantitative framework, the notion of risk is invariably related to uncertainty and,

therefore, to randomness. The last concept has been formally defined in the first decades of the

twentieth century with the axiomatization of the probability theory by A. N. Kolmogorov. As

this thesis focuses on a quantitative approach to risk management we rely on the theories of

probability and statistics.

Within the context of finance and insurance, three main risk classes can be characterized:

market risk, credit risk and operational risk. The first risk, undoubtedly the one for which

most of the attention has been drawn on the twentieth century, is related to “losses in positions

arising from movements in market prices”, [BCBS, 2003b]. Credit risk, in turn, is the risk of

not receiving agreed payments due to a default of the borrower or, more formally “the risk

that a counterparty will not settle an obligation at its agreed full value, either when due or at

any time thereafter”, [BCBS, 2003b]. Although market and credit losses are not desired, due

to the nature of banking/insurance business, they can be seen as expected. On the other hand

operational losses, are comprised of a combination of both expected and unexpected losses and

and comprise all the losses resulting from “inadequate or failed internal processes, people and

systems, or from external events”, [BCBS, 2006]. From a quantitative point of view, another

important notion that is universal in any quantification of risk management is that now known

as model risk, which is associated with using an inappropriate model to measure risk. For

example, one would be underestimating the risk of large losses if modelling the loss distribution
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with lighter tails than the true (unobservable) distribution.

The definition of risk itself may already indicate why companies invest in measuring and

understanding risk and loss processes but it is important to note that “earnings stability and

the survival of the company are important managerial objectives”, [Hull, 2012]. Apart from the

managerial objectives, risk management in financial institutions is also a regulatory requirement,

as discussed in the next section.

1.1 Regulatory issues: Basel and Solvency accords
Unlike many other sectors of the economy, the financial sector, throughout the world, is heavily

(and increasingly) regulated. Governments and their regulatory agencies want the sector to be

as stable as possible, both locally (in their own countries) and globally, in an attempt to avoid

repeated cycles of financial crisis and recessions/depressions of economies, which usually end up

with expensive governmental bailouts (see [Reinhart and Rogoff, 2009] for a historical account

on financial crisis). To ensure companies are going to be solvent in a finite horizon (of usually

one year), regulators require them to set aside some capital, which should be seen as a buffer to

cover for unexpected losses.

As per [McNeil et al., 2015], “the main aim of modern prudential regulation has been to

ensure that financial institutions have enough capital to withstand financial shocks and remain

solvent. Robert Jenkins, a member of the Financial Policy Committee of the Bank of England,

was quoted in the Independent on 27 April 2012 as saying: Capital is there to absorb losses from

risks we understand and risks we may not understand. Evidence suggests that neither risk-takers

nor their regulators fully understand the risks that banks sometimes take. That’s why banks need

an appropriate level of loss absorbing equity.”

In this section we provide an overview of how regulation in financial/insurance market has

evolved since the 1970’s. The reader is referred to [BCBS, 2003a] for the history of the Basel

Committee and to [Tarullo, 2008] for further details.

1.1.1 Banking regulation and the Basel Accords

The first modern attempt to design international regulatory standards in the banking industry

dates back to 1974, when, in a cross-jurisdictional event, West Germany’s Federal Banking

Supervisory Office forced the liquidation of the Bank Herstatt on the 26th of June. This event

was followed by the bankruptcy of the Franklin National Bank of New York, in October and

both are related to the breakdown (in the early 1970’s) of the Bretton Woods system of managed

exchange rates.

As a response to these incidents, the Group of Ten (see Table 1.1) established, late in 1974,

the Committee on Banking Regulations and Supervisory Practices – to be later renamed to its

current name, the Basel Committee on Banking Supervision (BCBS). Since 2009 the Committee

is composed of 27 international bodies (see [BCBS, 2003a, Appendix A]).

As stated in [BCBS, 2003a], the Committee’s aim was and is to enhance financial stability
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Belgium Netherlands

Canada Sweden

France Switzerland∗

Germany United Kingdom

Italy United States

Japan

Table 1.1: Composition of the Group of Ten (G-10) in 1974: original members (since inception,

in 1962) and Switzerland (joined in 1964).

by improving supervisory knowhow and the quality of banking supervision worldwide. Even

though the Committee does not possess any formal supranational authority, its supervisory

standards are expected to be followed by the national supervisory authorities, with any necessary

adjustments to the local jurisdiction. From a legal point of view, local authorities, e.g., Central

Banks, are responsible for legally enforcing compliance with the guidelines set by the Committee.

1.1.1.1 Basel I: the Basel Capital Accord
Differently from the 1974 events whose origins trace back to European market risk events, in

the 1980’s the world would see a credit risk crisis in Latin America. The “lost decade” of 1980

in Latin America was preceded by boom years in the 1960’s and 1970’s, when local military

dictatorships increased sovereign debts.

The Latin American debt crisis led the BCBS to develop the Basel Accord of 1988 (Basel

I), whose main emphasis was on credit risk. This accord took an important step towards an

international minimum capital standard, where the capital requirement is to be understood as

the amount of capital a financial institution is required to hold by it local regulator.

The 1988 Accord introduced a notion of simple risk weights, where different classes of assets

have different risk weights, ranging from 0% (for low risk assets) to 100% (for high risk assets).

It is important to stress that the weights are defined by the local regulator but government

bonds as well as cash, for example, usually have 0% weight while mortgages have 50% weight.

Other types of loans to customers, in general, are assumed to have 100% weight. The sum of

all assets weighted by its risk weight leads to the so-called Risk Weighted Assets (RWA). An

example of the risk-weighting process (from [Cruz et al., 2015]) can be seen in Table 1.2

Another concept introduced in the first Basel accord was the classification of the capital

into Tier 1 and Tier 2, as described in [BCBS, 1988, Annex 1]:

• Tier 1 (core capital)

(a) Paid-up share capital/common stock;

(b) Disclosed reserves.

• Tier 2 (supplementary capital):
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Risk weight (%) Asset Amount ($) RWA ($)

0 Cash 10 0

Treasury bills 50 0

Long-term treasury securities 100 0

20 Municipal bonds 20 4

Items in collection 20 4

50 Residential mortgages 300 150

100 AA+ rated loan 20 20

Commercial loans, AAA- rated 55 55

Commercial loans, BB- rated 200 200

Sovereign loans B- rated 200 200

Fixed assets 50 50

Not rated Reserve for loan losses (10) (10)

Total 1015 673

Table 1.2: Example of risk weighted assets calculation under Basel I (from [Cruz et al., 2015]).

(a) Undisclosed reserves;

(b) Asset revaluation reserves;

(c) General provisions/general loan-loss reserves;

(d) Hybrid (debt/equity) capital instruments;

(e) Subordinated debt.

The main requirement of the Basel I accord (implemented by the end of 1992) was that the

Capital Adequacy Ratio (CAR) should be at least 8%, where the CAR (also known as Cooke

ratio) is defined as the percentage of the institution’s eligible capital (sum of Tier 1 and Tier 2

capital) to its RWA. In other words,

CAR = Eligible capital
RWA ≥ 8%. (1.1)

Remark 1.1.1. As mentioned in Paul Embrecht’s presentation [Embrechts, 2008] the calcula-

tion of the capital ratio in (1.1) can be divided between “us” and “them”. The denominator,

which involves the risk weighted positions, is calculated by “us”, the ‘quants’, while “they”, the

accountants, the management and the board are responsible by the numerator.

1.1.1.2 Basel II: the New Capital Framework
One of the significant weaknesses of the 1988 Accord was that the credit rating of the borrower

was not taken into consideration when calculating the risk weight of its debt.

To correct for this discrepancy and to include other features, in 1999, a decade after the

release of the first Basel Accord the BCBS started the process to replace the 1988 Accord. The
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result was the Revised Capital Framework or the Basel II, released in June 2004. This document

comprised three pillars, namely,

1. Pillar 1 - Minimum capital requirements;

2. Pillar 2 - Supervisory review;

3. Pillar 3 - Market discipline.

In the first Pillar, the total capital did not change and banks were still required to hold

at least 8% of the RWA, but the credit worthiness of the counterparts started to be reflected.

While the original Basel I Accord only dealt with credit risk (with the 1996 Amendment including

market risk) the Basel II Accord created a capital charge also for operational risk.

As noticed by [Hull, 2012], due to Pillar 2 “supervisors were required to do far more than

just ensuring that the minimum capital required under Basel II is held”. Some of the new

attribution of the local regulators were, for example, to encourage banks to develop new risk

management techniques and also to help financial institutions to evaluate risks not covered in

Pillar 1.

The third Pillar required banks to publicly disclose the risk measures and any other infor-

mation relevant to risk management, including how they allocate their capital. The allocation of

capital is one of the main themes of this thesis, being discussed in Chapters 4 and 6. It has also

been decided that the capital should be calculate as the Value at Risk (VaR) with a one-year

time horizon and a 99.9% confidence level for operational risk.

To overcome banks’ criticism about the coarseness of the risk weights from Basel I, in the

new Accord banks were allowed to choose from three different approaches for handling credit

risk:

1. The Standardized Approach;

2. The Foundation Internal Ratings Based (IRB) Approach;

3. The Advanced IRB Approach.

Even the most basic alternative (the Standardized Approach) already included some measures

for better differentiation of risks through credit ratings, although the ratings themselves are not

calculated internally when the bank chooses this approach. Larger and more complex banks

were allowed to use Internal Ratings Based (IRB) approaches. In these cases the assessment of

the riskiness of the credit portfolio could be done by the bank itself.

As mentioned in [McNeil et al., 2015], “a basic premise of Basel II was that the overall size

of regulatory capital through the industry should stay unchanged under the new rules. Since

the new rules for credit risk were likely to reduce the credit risk charge, this opened the door

for operational risk”. For the operational risk capital three approaches were introduced:

1. The Basic Indicator Approach (BIA);
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Accord Year Key points

Basel I 1988 Introduces minimal capital requirements for the banking book.

Introduces tier concept for capital requirement.

Incorporates trading book into the framework later on through the

Market Risk Amendment (MRA).

Basel II 2004 Allows usage of internal models and inputs in risk management.

Introduces operational risk.

Basel II/III 2010 Increases capital requirement for trading book, with significant increase

for correlation trading and securitization.

Basel III 2010 Motivated by the financial crisis of 2008, increases capital

requirements, introduces leverage constraints and minimum liquidity

and funding requirements.

Table 1.3: General summary of the Basel Accords (from [Cruz et al., 2015]).

2. The Standard Approach (SA);

3. The Advanced Measurement Approach (AMA).

As with the credit risk, the use of these approaches depend on the level of sophistication of the

bank. Under the BIA the operational risk capital is set as the bank’s average annual gross income

over the last three years multiplied by 0.15. Under the SA approach there are different factors

to be applied to the gross income from different business lines, this been the only difference

from the BIA. In the AMA the bank is allowed to use its own internal models to calculate the

operational risk capital. Another advantage of this approach is that the regulator can recognize

the risk mitigation impact of insurance contracts (see Chapter 7).

1.1.1.3 Basel III
After an European trigger (1974) and a Latin American one (1980’s) the 2000’s witnessed an

American born crisis (named by some as “The Crisis” [Das et al., 2013]), which, as usual, led

to more regulation: this time the Basel III Accord. A summary of the key tekaways (compiled

in [Cruz et al., 2015]) of the Basel Accords is found in Table 1.3.

The first proposals of the Basel III document were published in December 2009 but the

final version was only available a year later, see [BCBS, 2010b] and [BCBS, 2010a] and its

implementation will occur gradually between 2013 and 2019. As discussed in [Hull, 2012], there

are six parts to this regulatory document:

1. Capital Definition and Requirements;

2. Capital Conservation Buffer;

3. Contercyclical Buffer;
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4. Leverage Ratio;

5. Liquidity Risk;

6. Counterparty Credit Risk.

At the moment these lines are being written the supervisors at the BCBS are consulting

the operational risk community on the possibility of scrapping the Advanced Measurement

Approach (AMA), in a movement that started in October 2014. By that time the BCBS

released the consultation document [BCBS, 2014] proposing a Revised Standardized Approach

(RSA) for operational risk and in March 2016 the BCBS published the consultative document

[BCBS, 2016b] which suggests the replacement of the AMA by a new non-model-based method,

named Standardized Measurement Approach (SMA). The SMA is based on the combination

of a simple standardized measure of operational risk, based on a fixed percentage of operating

revenues, and bank-specific operational loss data (based on the arithmetic average of losses

over the past 10 years). As this proposal discards the knowledge on operation risk modelling

accumulated both by practitioners and academics it has been followed by a heated debate (see,

e.g., [Peters et al., 2016a] and [Wills, 2016]).

1.1.2 Insurance regulation: Solvency I/II and the Swiss Solvency Test
Notwithstanding that banks have supranational regulatory standards, insurance companies, up

to date, do not have any formal international regulation. In the United States insurance com-

panies are regulated at the state level, with the national support of the National Association

of Insurance Commissioners (NAIC). In Europe the European Union is in charge of the reg-

ulatory role, through the European Insurance and Occupational Pensions Authority (EIOPA,

formerly known as CEIOPS: the Committee of European Insurance and Occupational Pensions

Supervisors). On the other hand, since the 1st of January 2011, Switzerland has been using the

Swiss Solvency Test (SST) for capital calculation, over-sighted by the Swiss Financial Markets

Supervisory Authority (FINMA), a government body created in 2007 as a merge of the Fed-

eral Office of Private Insurance (FOPI), the Swiss Federal Banking Commission (EBK) and the

Anti-Money Laundering Control Authority.

The recently replaced European regulatory framework, known as Solvency I, came to force

in 2004 and was replaced by Solvency II (often called “Basel for insurers”) on the 1st of January

2016. While Solvency I calculated capital only for underwriting risks, the new directive has a

much wider scope, considering, for example, operational risk capital. The informal name of the

Solvency II directive is mainly due to the similarities it holds with Basel II. For example, under

Solvency II there are also be three pillars, exactly as in Basel II.

Pillar 1 of Solvency II introduces two capital requirements, the Solvency Capital Require-

ment (SCR, discussed in Section 5.2.3) and the Minimum Capital Requirement (MCR). The

SCR can be calculated using either a standard formula given by the regulators or an internal

model developed by the insurance company. This is the capital required to ensure the company
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Business line

1 Corporate finance

2 Trading and sales

3 Retail banking

4 Commercial banking

5 Payment and settlement

6 Agency services

7 Asset management

8 Retail brokerage

Event type

1 Internal fraud

2 External fraud

3 Employment practices and workplace safety

4 Clients, products and business practices

5 Damage to physical assets

6 Business disruption and system failures

7 Execution, delivery and process management

Table 1.4: Basel II business lines (left) and event types (right) – see [BCBS, 2006], Annexes 8

and 9.

will be able to meet its obligations over the next 12 months and if the capital falls bellow the

SCR level the company should, at least, deliver a plan to the supervisor to restore its capital.

Differently from Basel II, in the Solvency II regulation the capital involves the calculation of a

Value at Risk (VaR) with 99.5% confidence (less than Basel II’s 99.9% for OpRisk, for example),

while the SST prescribes the calculation of the 99% Expected Shortfall (ES).

The MCR, which is intended to correspond to the VaR85% (and is bounded between 25%

and 45% of the SCR), can be regarded as a “hard” capital floor (while the SCR is a “soft”

floor), a control level that, if breached, would trigger “ultimate supervisory action”. In this case

the “the insurer’s liabilities will be transferred to another insurer and the license of the insurer

will be withdrawn or the insurer will be closed to new business and its in-force business will be

liquidated” (as stated in the European Commission MEMO/07/286).

1.2 Research questions and outline of the thesis
This thesis studies two different problems related to financial companies’ capital. The first one

is related to understanding the capital, in a process called allocation. In this regard we develop

Sequential Monte Carlo (SMC) algorithms to compute the capital and also to break it down into

the company’s different constituents. The second problem is related to the capital management,

where we develop insurance products to facilitate the transference of specific risks.

These problems are studied in two different contexts. The capital allocation problem is

first presented as a way to understand the drivers of the capital related to operational risk, for

example, distributing the capital amongst the combination of business lines and event types, as in

Table 1.4. An idealized version of this problem is discussed in Chapter 4, when we first introduce

a Sequential Monte Carlo algorithm to calculate, via simulation, the capital contributions. In

this first instance we assume all the model parameters are perfectly known and focus solely on

the allocation problem, which can be rewritten as an expectation conditional to a rare event.

These results were published in [Targino et al., 2015].

Chapters 5 and 6 deal with the same allocation problem, in an actuarial context. Moti-

vated by the short term view of the recent solvency regulations (such as the Swiss Solvency
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Test and Solvency II), Chapter 5 is devoted to developing statistical models for the one-year

reserve risk and the one-year premium risk. The later is constructed based on the Swiss Sol-

vency Test directives and no parameter uncertainty is involved. For the former we extend the

Bayesian gamma-gamma chain ladder model of [Gisler, 2006] and [Gisler and Wüthrich, 2008]

and provide two distinct approximations to it, resulting in what we call the marginalized and

conditional models. Both strategies approximate the Bayesian gamma-gamma model through

log-normal distributions and matching of the first two moments, the difference being at which

stage the approximation is performed. For the marginalized version we match the moments of a

distribution where the unknown parameters have been integrated out, while in the conditional

model we approximate the conditional distribution of the Bayesian gamma-gamma model by a

log-normal.

In Chapter 6 we make use of the framework developed in Chapter 5 and present algorithms

to solve the allocation problem under the marginalized and conditional approximations. As in

the marginalized approach no parameter uncertainty is present (it is integrated out before the

allocation process) the algorithm is mostly based on the one provided in Chapter 4. Allocations

for the conditional model present an additional layer of complexity, as one needs to calculate

conditional expectations with respect to a model whose density is not known in closed form. To

overcome this difficulty we develop a pseudo-marginal SMC sampler.

Technical findings related to the extension of the Bayesian gamma-gamma chain ladder

model are presented in [Peters et al., 2017] and its use in the capital allocation problem is

detailed in [Peters et al., 2016b].

Chapter 7 returns the focus to operational risk modelling, and the aim is not to understand

the capital anymore, but to construct instruments for the transference of risk, which would lead

to capital reductions. In particular, we study a class of insurance products where the policy

holder (say, a bank) has the option to insure k of its annual operational risk losses in a horizon

of T years. This involves a choice of k out of T years in which to apply the insurance policy

coverage by making claims against losses in the given year. Although this class of products

can be used for mitigation of any risk, is particularly relevant for operational risk, due to the

sheer scale of operational losses – which leads to expensive insurance products. As the buyer

is only covered for k years (and not T ) this type of product can substantially reduce insurance

premiums, making it affordable to a larger proportion of companies.

The insurance product structure presented in Chapter 7 can accommodate any kind of

annual mitigation, but we present two basic generic insurance policy structures that can be

combined to create more complex types of coverage. Following the Loss Distributional Approach

(LDA) with Poisson distributed annual loss frequencies and Inverse-Gaussian loss severities we

are able to derive analytical expressions for the multiple optimal decision strategy that minimizes

the expected operational risk loss over the next T years. For the cases where the combination

of insurance policies and LDA model does not lead to closed form expressions for the multiple



22 Chapter 1. Introduction to financial risk management

optimal decision rules, we also develop a principled class of closed form approximations to

the optimal decision rule. These approximations are developed based on a class of orthogonal

Askey polynomial series basis expansion representations of the annual loss compound process

distribution and functions of this annual loss. The results from this chapter are published in

[Targino et al., 2016].
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Chapter 2

Copulas and risk allocation

This chapter present some background material in the theory of copulas and the mathematical

formulation of the capital allocation problem. In particular, we describe the classes of copulas

that are used throughout the thesis, as well as some of their properties, with special focus

on measures of dependence. In this regard, Section 2.1.3.1 provides a complete picture of the

bounds on correlations under a multivariate model described by a Gaussian copula and log-

normal marginals. The formulation of the capital allocation problem is provided in Section

2.2. In this section we also discuss how to “coherently” perform the allocation process in a

hierarchical structure.

2.1 Copulas and Sklar’s theorem
Although the concept of “copula” can be traced back to the seminal work of Abe Sklar

[Sklar, 1959], where the mathematical term was introduced, (see [Sklar, 1996]) or even the

earlier works of Wassily Hoeffding and Maurice Fréchet, its importance in Finance / Ac-

tuarial Science was only realized in the late 1980’s / early 1990’s. The reader is referred

to [Dall’Aglio et al., 1991] for a discussion on the early contributions to the field of copulas;

[Frees and Valdez, 1998] and [Embrechts et al., 2002] for some of the publications that boosted

the actuarial and financial applications; and [Joe, 1997], [Cherubini et al., 2004], [Nelsen, 2007]

and [Joe, 2014] for book-length introductions to the topic.

As with any scientific field, though, copulas were not a unanimity amongst all the re-

searchers and the field saw some interesting academic debate in the past decade, including the

one sparked by [Mikosch, 2006] and followed up by academic responses and a rejoinder in the

same journal. Unfortunately we also witnessed some shallow non-academic discussion after

the 2006+ financial crisis, led by the (in)famous 2009’s Wired magazine article [Salmon, 2009]

where the author blames the Gaussian copula (see Section 2.1.2 below) model of [Li, 2000] for

the financial meltdown in 2006+. Some academic responses to this discussion can be found in

[Donnelly and Embrechts, 2010] and, more recently, in Paul Embrechts’ interview published as

[Durante et al., 2015], while a non-technical defense was provided in The EconomistâĂŹs article

[Anonymous, 2009].
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At this point we pose the same question asked and promptly answered in [Nelsen, 2007]:

What are copulas? From one point a view, copulas are functions that join or “couple” multi-

variate distribution functions to their one dimensional marginal distribution functions. Alter-

natively, copulas are multivariate distribution functions whose one-dimensional marginals are

uniform on the interval (0,1). The latter definition is formalized below.

Definition 2.1.1 (Copula). A d-dimensional copula is a distribution function on [0, 1]d with

uniform marginal distributions.

From a modelling point of view, the importance of copulas is summarized by the following

elegant and fundamental theorem, which shows that a copula can be extracted from every

multivariate distribution function and also that the combination of a copula and univariate

distributions leads to a well defined multivariate distribution. For a proof see, for example,

[McNeil et al., 2010, Theorem 5.3].

Theorem 2.1.2 (Sklar). Let FX be a joint distributions with marginals F1, . . . , Fd and denote

R = R ∪ {−∞, +∞}. Then there exists a copula C : [0, 1]d → [0, 1] such that

FX(x) = C
(
F1(x1), . . . , Fd(xd)

)
, ∀x = (x1, . . . , xd) ∈ R

d
. (2.1)

If the marginals are continuous then C is unique, and given by

C(u1, . . . , ud) = FX(F−1
1 (u1), . . . , F−1

d (ud)).

Conversely, if C is a copula and F1, . . . , Fd are univariate distributions, then the distribution

FX defined in (2.1) is a joint distribution function with marginals F1, . . . , Fd.

Moreover, if we assume that F1, . . . , Fd are differentiable, then the joint density function of

X can be written as

fX(x) = c
(
F1(x1), . . . , Fd(xd)

) d∏
i=1

fi(xi),

where

c(u1, . . . , ud) = ∂dC(u1, . . . , ud)
∂u1 . . . ∂ud

and fi is the density of Xi.

Another important result in the theory of copulas is the so-called Fréchet-Hoeffding bounds

Theorem, stated below.

Theorem 2.1.3 (Fréchet-Hoeffding bounds Theorem). For any d-dimensional copula C the

following bounds hold:

max
{

d∑
i=1

ui + 1− 1, 0
}
≤ C(u) ≤ min{u1, . . . , ud}.

The lower and upper Fréchet-Hoeffding bounds are usually denoted, respectively W (u) and

M(u).

In the sequel we branch into two distinct ways of creating copula functions. First, we

explicitly define the functional form of the copula and later we extract the copula of known

multivariate random variables, generating, respectively, explicit and implicit copulas.
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2.1.1 Explicit copulas and Archimedean copulas
Before discussing the class of Archimedean copulas we first introduce three fundamental copulas:

the independence, comonotonicity and countermonotonicity.

Definition 2.1.4. The d-dimensional independence and comonotonicity copulas are defined,

respectively, as

Π(u) =
d∏
i=1

ui, and M(u) = min{u1, . . . , ud}.

The countermonotonicity copula is the two-dimensional copula defined as

W (u) = max{u1 + u2 − 1, 0}.

It can be seen from Sklar’s Theorem that continuous random variables are independent if,

and only if, its copula is the independence copula from Definition 2.1.4.

The comonotonicity copula from Definition 2.1.4 is precisely the Fréchet-Hoeffding upper

bound, while the countermonotonicity copula is the two-dimensional Fréchet-Hoeffding lower

bound (see [McNeil et al., 2010, Example 5.21] for a proof that for d > 2 the Fréchet-Hoeffding

lower bound is not a copula).

Based on the comonotonic and countermonotonic copulas we now define two important

concepts of dependence: comonotonicity and countermonotonicity.

Definition 2.1.5 (Comonotonicity / Countermonotonicity). The random variables X1, . . . , Xd

are said to be comonotonic if they admit the Fréchet-Hoeffding upper bound as copula.

The random variables X1 and X2 are said to be countermonotonic if they admit the Fréchet-

Hoeffding lower bound as copula.

The following two properties give some insight on the precise meaning of the comonotonicity

/ countermonotonicity concepts. The proofs can be found in [McNeil et al., 2010, Proposition

5.6 and Proposition 5.19].

Proposition 2.1.6. The random variables (X1, . . . , Xd) are comonotonic if, and only if,

(X1, . . . , Xd)
d= (v1(Z), . . . , vd(Z)),

for some random variable Z and increasing functions v1, . . . , vd.

The random variables X1 and X2 are countermonotonic if, and only if,

(X1, X2) d= (t1(Z), t2(Z)),

for some random variable Z with t1 increasing and t2 decreasing or vice-versa.

In order to introduce a class of copulas called Archimedean copulas we first define the

concept of the generator of a copula, which is a function of a parameter θ. Some commonly

used Archimedean generators are presented in Table 2.1.
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Definition 2.1.7 (Archimedean generator). An Archimedean generator is a continuous, de-

creasing function ψθ : [0,∞] → [0, 1] that satisfies ψθ(0) = 1, limt→∞ψθ(t) = 0 and is strictly

decreasing on [0, inf{t : ψθ(t) = 0}].

Definition 2.1.8 (Archimedean copulas). A d-dimensional copula is called Archimedean if it

is of the form

C(u; ψθ) = ψθ(ψ−1
θ (u1) + . . .+ ψ−1

θ (ud)), u = (u1, . . . , ud) ∈ [0, 1]d, (2.2)

where ψθ is the Archimedean generator.

Remark 2.1.9. The name Archimedean in the context of copulas come, as discussed in

[Nelsen, 2007, Section 4.3], from the Archimedean “axiom” from abstract algebra. The “ax-

iom” is indeed a property held by some algebraic structures, but the name was coined by the

Austrian mathematician Otto Stolz, as it appears in Archimedes’ “On the sphere and cylinder”

work as Axiom V.

Family Parameter Generator ψθ(t)

Clayton θ ∈ (0,∞) (1 + t)−1/θ

Gumbel θ ∈ [1,∞) exp{−t1/θ}

Table 2.1: Commonly used Archimedean generators

Although Archimedean copulas may be sufficiently flexible for low (2 to 5) dimensions, it

becomes very restrictive as the dimensionality increases, as there is typically a single parameter

driving all the dependence structure. Another drawback of Archimedean copulas is the fact that

the dependency is symmetric with respect to permutation of variables.

Several alternative classes of copulas have been proposed in the literature lately, in-

cluding pair copulas (see [Aas et al., 2009]), factor copulas (see [Oh and Patton, 2013] and

[Krupskii and Joe, 2013]) and Hierarchical Archimedean Copulas (HAC), also known as nested

Archimedean copulas (see, for example, [Embrechts et al., 2003, Section 6.5] and [Hofert, 2010]).

We briefly describe the latter in the sequel, based on [Okhrin and Ristig, 2014].

HAC considers the composition of simple Archimedean copulas (as the ones described

in Table 2.1) as follows. A d-dimensional HAC is denoted by C(u1, . . . , ud; s, θ), where θ

denotes the vector of feasible dependency parameters (see discussion below). The parameter

s = (. . . (igik)il . . .) denotes the structure of the entire HAC, where im ∈ {1, . . . , d : g 6= k 6= l}

is a reordering of the indexes of the variables with m = 1, . . . , d and g, k, l ∈ {1, . . . , d : g 6=

k 6= l}. Structures of subcolulas are denoted by sj with s = sd−1. An example, taken from

[Okhrin and Ristig, 2014] is presented in Figure 2.1.

Generators for HAC may come from different families of Archimedean copulas, but care

should be taken, as the resulting structure may not be a copula (see [McNeil, 2008, Theorem

4.4]). For generators within the same family, a sufficient condition for the HAC to be a proper
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●

u1 u2

u3

u4θ((u1.u2).u3) = 3

θ(u1.u2) = 4

θ(((u1.u2).u3).u4) = 2
●

u4 u3 u1 u2

θ(u4.u3) = 3 θ(u1.u2) = 4

θ((u4.u3).(u1.u2)) = 2

Figure 1: Fully and partially nested Archimedean copulae of dimension d = 4 with structures
s = (((12)3)4) on the left and s = ((43)(12)) on the right.

copulae. The function φ(·) is called the generator of the copula and commonly depends on a
single parameter θ. For example, the Gumbel generator is given by φθ(x) = exp(−x1/θ) for
0 ≤ x < ∞, 1 ≤ θ < ∞. Detailed reviews of the properties of Archimedean copulae can be
found in McNeil and Nešlehová (2009) and in Joe (1997).

A disadvantage of Archimedean copulae is the fact that the multivariate dependency structure
is very restricted, since it typically depends on a single parameter of the generator function
φ(·). Moreover, the rendered dependency is symmetric with respect to the permutation of
variables, i.e., the distribution is exchangeable. HAC (also called nested Archimedean copulae)
overcome this problem by considering the compositions of simple Archimedean copulae. For
example, the special case of four-dimensional fully nested HAC can be given by

C(u1, u2, u3, u4) = C3{C2(u1, u2, u3), u4} (2)

= φ3{φ−13 ◦ C2(u1, u2, u3) + φ−13 (u4)},

where Cj(u1, . . . , uj+1) = φj [φ
−1
j {Cj−1(u1, . . . , uj)}+ φ−1j (uj+1)], j = 2, . . . , d− 1, and C1 =

φ1{φ−11 (u1) + φ−11 (u2)}. The functional form of Cj(·) indicates that the composition can be
applied recursively. A different segmentation of the variables leads naturally to more complex
HAC. In the following, let d-dimensional HAC be denoted by C(u1, . . . , ud; s,θθθ), where θθθ
denotes the vector of feasible dependency parameters and s = (. . . (igik)i` . . .) the structure
of the entire HAC, where im ∈ {1, . . . , d} is a reordering of the indices of the variables with
m = 1 . . . , d, and g, k, ` ∈ {1, . . . , d : g 6= k 6= `}. Structures of subcopulae are denoted
by sj with s = sd−1. For instance, the structure according to Equation 2 is s = (s2)4 with
sj = (sj−1(j+1)), j = 2, 3, for the sucopulae and s1 = (12). A clear definition of the structure
is essential, as s is in fact a parameter to estimate. Thus, Equation 2 can be rewritten as

C(u1, u2, u3, u4; s = (((12)3)4), θθθ) = C{u1, u2, u3, u4; (s24), (θ1, θ2, θ3)
>}

= φθ3(φ−1θ3 ◦ C2{u1, u2, u3; (s1(3)), (θ1, θ2)
>}+ φ−1θ3 (u4)).

Figure 1 presents the four-dimensional fully and partially nested Archimedean copula.

HAC can adopt arbitrarily complex structures s. This makes it a very flexible and simul-
taneously parsimonious distribution model. The generators φθj (·) within a single nested

Figure 2.1: Fully (left) and partially (right) nested Archimedean copulas of dimension d = 4 with

s = (((12)3)4) and s = ((43)(12)), respectively. Figure taken from [Okhrin and Ristig, 2014].

copula is to have decreasing parameters from the highest to the lowest level (see, for example,

[Hofert, 2010]).

2.1.2 Implicit copulas and the Gaussian copula

In order to characterize the well known Gaussian copula we first discuss the meaning of implicit

copulas, extracted from known multivariate distributions.

Definition 2.1.10. (Copula of F) If Y has joint distribution function FY with continuous

marginal distributions FY1 , . . . , FYd , then the copula of F (also called the copula of Y) is defined

as the distribution function of
(
FY1(Y1), . . . , FYd(Yd)

)
, i.e.,

CY(u) = P[FY1(Y1) ≤ u1, . . . , FYd(Yd) ≤ ud]

= P[Y1 ≤ F−1
Y1

(u1), . . . , Yd ≤ F−1
Yd

(ud)]

= FY
(
F−1
Y1

(u1), . . . , F−1
Yd

(ud)
)
.

Given this definition of the implicit copula of F , we can now derive the density of this

copula, namely

c(u1, . . . , ud) = ∂dC(u1, . . . , ud)
∂u1 . . . ∂ud

=
fY
(
F−1
Y1

(u1), . . . , F−1
Yd

(ud)
)

fY1(F−1
Y1

(u1))× · · · × fYd(F−1
Yd

(ud))
.

The next proposition (see [McNeil et al., 2010, Proposition 5.6] for a proof) states an im-

portant result related to transformations of marginals.

Proposition 2.1.11 (Invariance). Let (Y1, . . . , Yd) be a random vector with continu-

ous marginals and copula C and let T1, . . . , Td be strictly increasing functions. Then(
T1(Y1), . . . , Td(Yd)

)
also has copula C.

Using Sklar’s Theorem we can now define the so-called Gaussian copula, which is part of

the class of implicit copulas (those extracted from known multivariate distributions).
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Definition 2.1.12. (Gaussian copula) If Y ∼ N(µ,Σ) denotes a multivariate gaussian random

variable with mean vector µ and covariance matrix Σ, then its copula is called the Gaussian

copula.

Note that if we define P = ρ(Σ) as the correlation matrix of Y then Proposition 2.1.11

ensures that the copula for Y is the same as the copula of X ∼ N(0, P ). Therefore, from

Definition 2.1.10 the Gaussian copula is given by

CGaΣ (u) = P[Φ(X1) ≤ u1, . . . ,Φ(Xd) ≤ ud]

= Φ0,P
(
Φ−1(u1), . . . ,Φ−1(ud)

)
,

with density

cGaΣ (u) =
φ0,P

(
Φ−1(u1), . . . ,Φ−1(ud)

)
φ(Φ−1(u1))× · · · × φ(Φ−1(ud))

where Φµ,Σ(·) and φµ,Σ(·) denotes, respectively, a (multivariate) normal distribution and density

functions with mean µ and covariance matrix Σ. Without explicit mention to µ and Σ, Φ(·) and

φ(·) denote, respectively, the standard univariate normal distribution and density. If we define

q = (q1, . . . , qd) as the normal scores, i.e., qi = Φ−1(ui) then the density of the Gaussian copula

can be simplified to

cGaΣ (u) =
(2π)−d/2|P |−1/2 exp

{
− 1

2qTP−1q
}∏d

i=1(2π)−1/2 exp
{
− 1

2q
2
i

}
= |P |−1/2 exp

{
−1

2qT (P−1 − I)q
}
,

where |P | = det(P ). Note that the Gaussian copula is parametrized by the d(d−1)/2 parameters

of the correlation matrix.

In summary, if we want a multivariate random variable X = (X1, . . . , Xd) to have arbitrary

marginals FX1 , . . . , FXd and the dependence structure to be given by a Gaussian copula with

correlation matrix P , then its distribution and density functions should be, respectively,

FX(x) = Φ0,P
(
Φ−1(FX1(x1)), . . . ,Φ−1(FXd(xd))

)
;

fX(x) = |P |−1/2 exp
{
−1

2qT (P−1 − I)q
} d∏
i=1

fXi(xi),

where here the normal scores are defined as qi = Φ−1(FXi(xi)).
Alternatively, let us now assume we have a r.v. X ∼ N(0,Σ), with (Σ)i,i = σ2

i and

(Σ)i,j = 0 if i 6= j. In other words, Xi ∼ N(0, σ2
i ) and Xi is independent of Xj ∀j 6= i. Given

this model for X, we want to find the correlation matrix P of the Gaussian copula that couples

the marginals Xi ∼ N(0, σ2
i ) and return us a joint distribution X ∼ N(0,Σ).

First note that if Xi ∼ N(0, σ2
i ) then its distribution and density functions can be written

in terms of standard normal’s c.d.f. and p.d.f. as follows:

Fi(xi) = Φ(xi/σi), fi(xi) = φ(xi/σi)σ−1
i .
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Therefore the joint p.d.f. of X can be written as

fX(x) = cGaP
(
F1(x1), . . . , Fd(xd)

) d∏
i=1

fi(xi)

= |P |−1/2 exp
{
−1

2qT (P−1 − I)q
} d∏
i=1

φ(xi/σi)σ−1
i ,

where qi = Φ−1(Fi(xi)) = Φ−1(Φ(xi/σi)
)

= xi/σi.

From the above formula, however, it is not clear what should be the choice for P in order

to have X ∼ N(0,Σ). To overcome this difficulty, let W be such that Wi = Xi
σi

, for i = 1, . . . , d.

It then implies that Xi = σiWi and that

∣∣∣∣ ∂x
∂w

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∂x1
∂w1

. . . ∂x1
∂wd

... . . . ...
∂xd
∂w1

. . . ∂xd
∂wd

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
σ1 . . . 0
... . . . ...

0 . . . σd

∣∣∣∣∣∣∣∣∣ =
d∏
i=1

σi

Therefore, the p.d.f. of the transformed random variable is given by

fW(w) = fX(σ1w1, . . . , σdwd)
d∏
i=1

σi

= |P |−1/2 exp
{
−1

2wTP−1w
}

exp
{
−1

2wTw
} d∏
i=1

φ(wi)

= (2π)−d/2|P |−1/2 exp
{
−1

2wTP−1w
}
.

From this relationship we can deduce that W ∼ N(0, P ) thus we can see that X ∼ N(0,Σ)

with

Σi,i = V ar(σiWi) = σ2
i V ar(Wi), Σi,j = Cov(Xi, Xj) = σiσjCov(Wi, Wj).

Since the variance-covariance matrix of W, namely P , is a correlation matrix we have that

Pi,i = 1 and Pi,j = Σi,j/(σiσj).

2.1.3 Dependence measures

As we saw in Sklar’s Theorem, the copula function encompasses the whole dependence structure

of a multivariate random variable. Therefore, it is natural to develop scalar dependence measures

that explain, in some sense, the strength of the dependence. In the sequel we discuss three

different types of dependence measures: (1) linear correlation; (2) rank correlation; and (3)

coefficients of tail dependence (and its extension to the multivariate case).

2.1.3.1 Linear correlation
Linear correlation is certainly one of the most well known concepts in Statistics and some

misconceptions around it are discussed in length in [Embrechts et al., 2002]. In this section we

focus on one particular point, related to the attainability of prescribed correlations on a specific

model, as it is an important regulatory requirement (as discussed in Chapter 6).
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As discussed, for example in [Embrechts et al., 2002, Fallacy 2], for given marginal distri-

butions not all linear correlations between -1 and 1 can be achieved. This can also be seen in

the following Lemma (see [Denuit and Dhaene, 2003, Section 2]).

Lemma 2.1.13 (Correlation bounds). Let (X1, X2) be a bivariate random variable with

marginal distributions F1 and F2. Then the correlation between X1 and X2 is bounded by

Cov(F−1
1 (U), F−1

2 (1− U))√
Var(X1)Var(X2)

≤ Corr(X1, X2) ≤ Cov(F−1
1 (U), F−1

2 (U))√
Var(X1)Var(X2)

for U uniformly distributed in [0, 1].

Although theoretically interesting, Lemma 2.1.13 may provide bounds that are too wide and

in some cases just state that the correlation lies between −1 and 1. In the sequel we show that

in the particular case of a random vector with Log-Normal marginals and dependence structure

Gaussian copula it is possible to calculate precisely the intended correlation and numerically

check its limits.

Let us assume a random vector X = (X1, . . . , Xd) is normally distributed with X ∼

N(m, V ), where a general term of the covariance matrix V is given by (V )i,j = Vi,j and Vi,i =

V 2
i . Moreover, we denote by Ω = Corr(X) the correlation matrix of the random vector X, i.e.,

V = diag(V1, . . . , Vd) Ω diag(V1, . . . , Vd),

with (Ω)i,j = (Ω)j,i = ωi,j .

If we define Zi = eXi , for i = 1, . . . , d then Zi ∼ LN(mi, Vi) with

E[Zi] = exp
{
mi + V 2

i

2

}
Var(Zi) = (E[Zi])2

(
eV

2
i − 1

)
. (2.3)

On the other hand, since Xi +Xj ∼ N(mi +mj , V
2
i + V 2

j + 2Viωi,jVj) we have that

E[ZiZj ] = E[eXi+Xj ] = exp
{
mi +mj +

V 2
i + V 2

j + 2Viωi,jVj
2

}
. (2.4)

Therefore, using (2.3) and (2.4) the correlation between Zi and Zj can be written as

Corr(Zi, Zj) = exp{Viωi,jVj} − 1[
(eV 2

i − 1)(eV 2
j − 1)

]1/2 . (2.5)

Since exp(·) is a strictly increasing function and the marginal distributions of (X1, . . . , Xd) are

continuous, from Proposition 2.1.11 we can conclude that (Z1, . . . , Zd) has the same copula as

(X1, . . . , Xd): a Gaussian copula with correlation matrix Ω.

From equation (2.5) it is easy to see the correlation between Zi and Zj is a monotone

function of ωi,j which implies that Corr(Zi, Zj) will be minimal when ωi,j = −1 and maximal

when ωi,j = 1. Hence, for a given pair of standard deviations it is possible to compute the

interval of admissible correlations for the pair (Zi, Zj). On Figure 2.2 the lower (left plot) and

upper (right plot) bounds for the correlations are presented.
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Attainable correlations in the Gaussian copula − Log−Normal model
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Figure 2.2: Lower (left) and upper (right) bound for correlations in a Gaussian-copula model

with Log-Normal marginal distributions, as a function of the scale parameters σ1 and σ2.

Figure 2.2 shows that even when the copula correlation is set to -1, if at least one of the

standard deviation parameters is “large”, then the minimum possible correlation between the

log-normal variables is close to zero. For example, if σ1 = σ2 = 2 then the lower bound for

the correlation between these variables is approximately −2%. As actuarial risks are usually

positively correlated this may not be a problem from the modelling point of view. In contrast to

the lower limit, the upper limit for the correlations have a different behaviour. If both standard

deviations are the same, then the range of attainable correlations is upper bounded by 1, meaning

that any positive correlation can be achieved. Problems arise when the standard deviations are

sufficiently different from each other. If σ1 = 1, then the correlation is upper bounded by 66%

if σ2 = 2, 16% if σ2 = 3 and about 1% if σ2 = 4. From the actuarial example discussed in

Chapters 5 and 6 (see Table 6.5) we have that the largest difference between standard deviations

is for σ1 ≈ 0.020 and σ2 ≈ 0.20 and, in this case, the range of attainable correlations is given

by [−0.997, 0.991] which safely spans all practically relevant values.

In [Devroye and Letac, 2015] the authors discuss a similar problem. Let us denote by Rn
the set of all n × n, symmetric, positive semi-definite matrices with diagonal terms equal to

1; and by R(C) = Corr(U) the correlation matrix of a random vector U ∼ C, with elements

Ui ∼ [0, 1]. The question asked in [Devroye and Letac, 2015] is: given R ∈ Rn, does there exist

a copula C such that R(C) = R? The answer is yes, if n ≤ 9 and the authors postulate that for

n ≥ 10 there exists R ∈ Rn such that there is no copula C such that R(C) = R.

2.1.3.2 Rank correlation

As the linear correlation coefficient, the rank correlation is also a scalar measure of dependence

of two random variables. The main difference between these two measures is that the quantity
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being introduced in this section only depends on the copula, instead of the joint distribution

(i.e., the copula and the marginals).

Before discussing the two main forms of rank correlation, namely Kendall’s τ and Spear-

man’s ρ, we notice that rank correlations, as the name implies, are statistics that depend only

on the ranks (i.e., the order) of the data and not on its specific values.

Definition 2.1.14 (Concordant/discordant points). Two points x = (x1, x2), x̃ = (x̃1, x̃t) ∈ R2

are said to be concordant if (x1 − x̃1)(x2 − x̃2) > 0 and discordant if (x1 − x̃1)(x2 − x̃2) < 0.

If X̃ = (X̃1, X̃2) is an independent copy of X = (X1, X2) then the Kendall’s τ is defined as

the difference between the probability of concordance and the probability of discordance, which

can also be written as an expectation.

Definition 2.1.15 (Kendall’s τ). The Kendall’s τ of a bivariate random variable (X1, X2) is

defined as

τ(X) = P[(X1 − X̃1)(X2 − X̃2) > 0]− P[(X1 − X̃1)(X2 − X̃2) < 0]

= E[sign
(
(X1 − X̃1)(X2 − X̃2)

)
],

where X̃ = (X̃1, X̃2) is an independent copy of X.

More generally, for X ∈ Rd,

τ(X) = Cov(sign(X− X̃)).

For the Spearman’s ρ we follow [McNeil et al., 2010, Definition 5.28], where it is defined as

the linear correlation coefficient of the probability-transformed random variables.

Definition 2.1.16 (Spearman’s ρ). For continuous random variables X1 and X2 with marginal

cdfs FX1 and FX2 the Spearman’s ρ is given by

ρ(X) = Corr(FX1(X1), FX2(X2)).

From the discussion above it can be seen that all three quantities presented (linear cor-

relation, Kendall’s τ and Spearman’s ρ) are symmetric, defined in the range [−1, 1] and give

value of zero for independent random variables. Also, as in the well known case of linear

correlation, a rank correlation of zero does not imply independence. Moreover, as shown in

[Embrechts et al., 2002] the rank correlation take the value of 1 when X1 and X2 are comono-

tonic and −1 when they are countermonotonic.

As previously stated, the next result shows that both the Kendall’s τ and the Spearman’s

ρ only depend on the copula function. For a proof see [McNeil et al., 2010, Proposition 5.29].

Proposition 2.1.17. Assume X1 and X2 have continuous marginal distributions. Then the

rank correlations are given by

τ(X1, X2) = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1,

ρ(X1, X2) = 12
∫ 1

0

∫ 1

0
(C(u1, u2)− u1u2)du1du2.
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An interesting on the comparison of Spearman’s ρ and Kendall’s τ is found in

[Capéraà and Genest, 1993], where the authors prove that Spearman’s ρ is larger than Kendall’s

τ whenever X2 is right-tail increasing in X1 and X2 is left-tail decreasing in X1 (or reversed roles

of X1, X2), where X2 is right-tail increasing in X1 if P[X2 > x − 2|X1 > x1] is nondecreasing

in x1 for all x2. The concept of left-tail decreasing is defined analogously. Other comparative

results have been proved in the literature, see, for example [Fredricks and Nelsen, 2007] in

references therein. Apart from proving that ρ(X1, X2)/τ(X1, X2) converges to 3/2 as the joint

distribution approaches that of two independent random variables, a simpler proof of the result

in [Capéraà and Genest, 1993] is also given.

2.1.3.3 Coefficient of tail dependence
As the rank correlation, the coefficients of tail dependence are measures of dependence that

depend only on the copula of a pair of random variables and not on its marginals.

Informally, the tail dependence is a measure of strength of the dependence in the joint

lower or upper tails of a multivariate distribution. The upper tail dependence is defined as the

limit of the probability of a random variable X2 exceeds its α-quantile given that X1 exceeds

its own α-quantile, where the limit is taken when α grows towards 1. A similar definition is also

provided for the lower tail dependence, as seen below.

Definition 2.1.18 (Coefficients of tail dependence). For X1 and X2 continuous random vari-

ables with distributions F1 and F2 the coefficients of upper and lower tail dependence are defined,

respectively, as

λu(X1, X2) = lim
α→1−

P[X1 > F−1
1 (α) |X2 > F−1

2 (α)]

λl(X1, X2) = lim
α→0+

P[X1 ≤ F−1
1 (α) |X2 ≤ F−1

2 (α)],

provided these limits exist.

When λu(X1, X2) ∈ (0, 1] we say the two variables have upper tail dependence and when

λu(X1, X2) = 0 we say they are asymptotically independent in the upper tail. Analogous

nomenclatures are used for the lower tail dependence.

Rearranging the coefficients in terms of the copula of (X1, X2) we see that

λu(X1, X2) = lim
α→1−

P[X1 > F−1
1 (α), X2 > F−1

2 (α)]
P[X2 > F−1

2 (α)]
= lim
α→1−

C(1− α, 1− α)
α

λl(X1, X2) = lim
α→0+

P[X1 ≤ F−1
1 (α), X2 ≤ F−1

2 (α)]
P[X2 ≤ F−1

2 (α)]
= lim
α→0+

C(α, α)
α

.

As an extension of these concepts we follow [De Luca and Rivieccio, 2012] and the define

the multivariate coefficients of tail dependence as follows.

Definition 2.1.19 (Multivariate coefficients of tail dependence). For X1, . . . , Xd continuous

random variables with distributions F1, . . . , Fd the multivariate coefficients of upper and lower
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tail dependence are defined, respectively, as

λu = λu(X1, . . . , Xd) = lim
α→1−

P[X1 > F−1
1 (α) |X2 > F−1

2 (α), . . . , Xd > F−1
d (α)]

λl = λl(X1, . . . , Xd) = lim
α→0+

P[X1 ≤ F−1
1 (α) |X2 ≤ F−1

2 (α), . . . , Xd ≤ F−1
d (α)],

provided these limits exist.

For the Archimedean copulas defined in Table 2.1 the multivariate coefficients of upper and

lower tail dependence were shown in [De Luca and Rivieccio, 2012] to be as follows.

Proposition 2.1.20. For the Archimedean copulas defined in Table 2.1 the coefficients of mul-

tivariate tail dependence are given by

λu = lim
t→0+

∑d
i=1
(
n
n−i
)
i(−1)iψ′(it)∑n−1

i=1
(
n−1
n−1−i

)
i(−1)iψ′(it)

λl = d

d− 1 lim
t→∞

ψ′(dt)
ψ′
(
(d− 1)t

) .
For completeness in Table 2.2 we present the dependence measures which are only a function

of the copula, for the Gaussian, Gumbel and Clayton copulas. Dashed cells denote dependence

measures which are not known in closed form (see [Kruskal, 1958] and [McNeil et al., 2010,

Table 5.5]).

Copula ρ(X1, X2) τ(X1, X2) λl(X1, X2) λu(X1, X2)

Gaussian 6
π
arcsin

(
Corr(X1, X2)

2

)
2
π
arcsin

(
Corr(X1, X2)

)
0 0

Gumbel —— 1− 1/θ 0 2− 21/θ

Clayton —— θ/(θ + 2)
2−1/θ, θ > 0

0
0, θ ≤ 0

Table 2.2: Dependence measures (Spearman’s ρ, Kendall’s τ , lower and upper tail dependence)

for Gaussian, Gumbel and Clayton copulas.

2.2 Risk contributions and capital allocations
In this section we characterize mathematically some of the concepts discussed in Chapter 1. In

particular, we discuss the concept of risk reviewing the concept of coherent risk measures and

discuss how to allocate risks to different components of a portfolio.

First, let us assume X1, . . . , Xd are positive random variables representing the aggregated

losses, in a fixed time horizon, of d different assets in a portfolio. In the case of OpRisk modelling

(see Chapter 4), this notation corresponds to operational losses from d different business unit

and risk type combinations within divisions of a banking or insurance institution. For the

actuarial application of Chapter 6 these variables denote claims payment for different lines of

business. In both cases the time horizon is defined as one year, all the random variables are
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defined in a common probability space (Ω,F ,P) and X is assumed to be the set of all possible

financial positions (i.e., random variables such as Xi).

If the weights of these positions in a portfolio are given by λ = (λ1, . . . , λd) ∈ Λ ⊂ Rd \{0},

then we denote the portfolio-wide loss by

S(λ) =
d∑
i=1

λiXi. (2.6)

In particular, if λ = (1, . . . , 1) we write S = S(λ). In the case of OpRisk modelling this

aggregate loss amount given by
∑d
i=1 λiXi represents the institution-wide total annual loss and

typically the weights would be equal to one.

In this context a risk measure is a functional ρ : X → R, which assigns a real value for

each financial position X. Given a specific risk measure ρ, the function rρ : Λ → R such that

rρ(λ) = ρ(S(λ)) is called a risk-measure function. Three of the most popular risk measures

amongst practiotioners, regulators and academics are given in Definition 2.2.1.

Definition 2.2.1 (Particular choices of risk measures). If X1, . . . , Xd are continuous random

variables, and S =
∑d
i=1Xi is also continuous, three of the most popular choices of risk measures

are given by

1. Standard deviation: ρ(S) =
√
V ar(S);

2. Value at Risk: ρ(S) = VaRα(S) := inf{s ∈ R : FS(s) = α};

3. Expected Shortfall: ρ(S) = ESα(S) := E[S |S ≥ VaRα(S)].

Although reasonable at a first glance, the risk measures from Definition 2.2.1 were proposed

in the financial risk management community in a rather ad-hoc manner. In the seminal paper

[Artzner et al., 1999] the authors take a step back and discuss four properties a “good” risk

measure should have: monotonicity, translation invariance, subadditivity and positive homo-

geneity. Before presenting these properties we recall the definition of a homogeneous function,

closely related to the positive homogeneity of [Artzner et al., 1999].

Definition 2.2.2 (Homogeneous function). A function f : U ⊂ Rd → R is said to be homoge-

neous of degree τ if, for all h > 0 and u ∈ U with hu ∈ U the following equation holds:

f(hu) = hτf(u).

For any two random variables X and Y defined in X , the four properties from

[Artzner et al., 1999] are described below.

1. Monotonicity: If X ≥ Y P–almost surely, then ρ(X) ≥ ρ(Y );

2. Translation invariance: If m ∈ R, then ρ(X −m) = ρ(X)−m;

3. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );
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4. Positive homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X).

These properties can be interpreted as follows. Monotonicity implies that if a position

leads (almost surely) larger losses than another one, then it should be considered riskier. Trans-

lation invariance requires that adding (subtracting) a deterministic amount of capital to a

position should increase (decrease) the risk measure by the same amount. Subadditivity,

which is perhaps the most debatable axiom, requires that the addition of two positions does

not create extra risk, reflecting diversification benefits. Positive homogeneity requires the

risk of a position to increase linearly with its size. Note that it provides, as a consequence, a

normalization property: ρ(0) = 0.

In [Artzner et al., 1999] the authors take the four properties above as axioms to define the

coherence of a risk measure, as formalized below.

Definition 2.2.3 (Coherent risk measure). A risk measure ρ satisfying the monotonicity, trans-

lation invariance, subadditivity and positive homogeneity properties is called a coherent risk

measure.

For the risk measures from Definition 2.2.1 only the Expected Shortfall is guaranteed to be

coherent, since the standard deviation can break the monotonicity axiom and the Value at Risk

the subadditivity, as we see below.

A simple example of the lack of monotonicity of the standard deviation is as follows. Let

X, Y ∈ X be positive random variables such that their standard deviations are, respectively,

σX = 1 and σY = 1 and their covariance (which is also their correlation) is σX,Y = −0.75. For

Z = X + Y we have that σZ =
√
σ2
X + σ2

Y + 2σX,Y . Therefore, in this example Z ≥ X but

σZ =
√

1 + 1− 2× 0.75 =
√

0.5 < 1 = σX .

Several authors discussed the lack of subadditivity of the VaR, including [Artzner et al., 1999].

Next we present an example from [Dańıelsson et al., 2013] of the violation of the subadditivity

property. For i ∈ {1, 2}, let Xi = εi + ηi, with

εi ∼ N(0, 1) and ηi =

 0, with probability 0.991,

10, with probability 0.009

Assuming that all combinations of εi and ηj are independent for i, j ∈ {1, 2} we have that

0.99 = P[X1 ≤ VaR99%(X1)]

= P[ε1 ≤ VaR99%(X1)− η1]

= P[ε1 ≤ VaR99%(X1)]× 0.991 + P[ε1 ≤ VaR99%(X1)− 10]× 0.009. (2.7)

Denoting E = ε1 + ε2 and N = η1 + η2, we have that

E ∼ N(0,
√

2) and N =


0, with probability 0.9912,

10, with probability 2× 0.009× 0.991,

20, with probability 0.0092
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Then,

0.99 = P[X1 +X2 ≤ VaR99%(X1 +X2)]

= P[E ≤ VaR99%(X1 +X2)−N ]

= P[E ≤ VaR99%(X1 +X2)]× 0.9912

+ P[E ≤ VaR99%(X1 +X2)− 10]× 2× 0.991× 0.009 (2.8)

+ P[E ≤ VaR99%(X1 +X2)− 20]× 0.0092.

Numerically solving (2.7) for VaR99%(X1) and (2.8) for VaR99%(X1 +X2) we find that

VaR99%(X1 +X2) = 9.80 > 6.17 = VaR99%(X1) + VaR99%(X2),

which shows the lack of subadditivity of the VaR in this example.

For different proofs of the subadditivity of the ES the reader is referred to [Embrechts et al., 2015].

It also worth mentioning the Expected Shortfall has been proposed independently by several

authors, under different names, such as Tail VaR (TVaR), Tail Conditional Expectation (TCE)

and Conditional VaR (CVaR). For an overview of these definitions we refer the reader to

[Acerbi and Tasche, 2002].

Discussions on the usage of the VaR or ES as a risk measure date as far back as the

introduction of the latter. At the moment Solvency II requires the Solvency Capital Requirement

(SCR) to be calculated based on the one year 99.5% VaR (see [EIOPS, 2010, SCR.1.9]); the

SCR in the Swiss Solvency Test (SST) is based on the one year 99% Expected Shortfall (see

[FINMA, 2007, Section 2]); for operational risk capital Basel II calculates the one year 99.9%

VaR (see [BCBS, 2006, § 667]), but it is on the process of revising the operational risk framework

(see [BCBS, 2016b] and Section 1.1.1.3); and for market risk the new Basel requirements have

just been agreed to change from 99% VaR to 97.5% ES (see [BCBS, 2016a, § 181]).

The battle between VaR and ES became even more pronounced when [Gneiting, 2011]

revealed an issue with direct backtesting of ES estimates, as this risk measure is not elicitable

(while the VaR is). As a response [Acerbi and Székely, 2014] and [Emmer et al., 2015] discussed

different ways to backtest ES, and the latter also discusses the elicitability and other desirable

properties (such as the coherence axioms) of VaR, ES and expectiles.

On a different direction, [Cont et al., 2010] the authors proposed a robust risk measure, the

so-called Range-Value-at-Risk (RVaR), defined as

RVaRα,β(S) =

 1
1−β

∫ α
α+β−1 VaRγ(S)dγ, if β < 1

VaRα(S), if β = 1
,

which can be seen as an interpolation between the VaR (for β = 1) and ES (for α = 1). In fact,

in [Cont et al., 2010] it has been proved that for α < 1 and α + β < 1, RVaRα,β is continuous

with respect to the convergence in distribution.

Several other classes of risk measures have been proposed in the literature, such as distor-

tion risk measures ([Denneberg, 1994] and [Wang et al., 1997]); spectral risk measures, which is



38 Chapter 2. Copulas and risk allocation

the sub-class of distortion risk measures which are also coherent ([Acerbi, 2002]); and convex

risk measures ([Föllmer and Schied, 2002] and [Frittelli and Gianin, 2002]). An introduction to

these measures can be found, for example, in [Bignozzi, 2012, Chapter 1].

For the objectives of this work, we step aside from the discussion about different risk

measures and mostly focus on ES. If we now assume the risk measure ρ has been chosen and

that ρ(S(λ)), the risk (capital) of the portfolio (institution) has already been calculated we now

focus our attention to the process of capital (risk) allocation. But before we state the theorem

that gives name to the allocation principle to be discussed.

Theorem 2.2.4 (Euler’s homogeneous function theorem). Let U ⊂ Rn be an open set and

f : U → R be a continuously differentiable function. Then f is homogeneous of degree τ if, and

only if, it satisfies the following equation:

τf(u) =
n∑
i=1

ui
∂f

∂ui
, u = (u1, . . . , un) ∈ U, h > 0.

The allocation process consists of understanding how much of the risk (capital) is due to

each of the constituents of a portfolio. In the case of OpRisk, this involves understanding what

each division’s total capital requirement would be across all the Basel III risk types (see Table

1.4), based on a “fair’ allocation of the institution’s total capital requirement. For the actuarial

application discussed in Chapter 6 our interest is on allocating the capital to lines of business

and “old” and “new” risks (in a concept to be make precise in Chapter 5).

One of the reasons for performing the allocation exercise (which is not required by regula-

tors) is to utilize the results for a risk-reward management tool. The amount of capital (or risk)

allocated to each line of business, for example, may assist the central management’s decision

to further invest in or discontinue a business line and even to remunerate line managers. We

return to the topic of performance measurement in Section 2.2.3, where we discuss the concept

of Return On Risk-Adjusted Capital (RORAC).

In contrast to quantitative risk (capital) assessment, where there is an unanimous view

(shared by regulators world-wide, as seen in Chapter 1) that it should be performed through

the use of risk measures, such as the VaR or ES, there is no consensus on how to perform

capital allocation. In this work we follow the so-called Euler allocation principle (see, e.g.,

[Tasche, 1999] and [McNeil et al., 2010, Section 6.3]), which is discussed below. For different

allocation principles the reader is referred to [Dhaene et al., 2012].

To introduce the allocation principle used throughout this thesis, let us denote by Aρi (λ)

the capital allocated to one unit of Xi when the portfolio’s loss is given by S(λ). For the sake

of simplicity, to derive the Euler allocation we accept the following set of assumptions.

Assumptions 2.2.5. If the individual and portfolio losses are given, respectively by X1, . . . , Xd

and Equation (2.6), then we assume that

(i) the capital allocated to the position λiXi is given by λiAρi (λ);
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(ii) the overall risk capital rρ(λ) is fully allocated to the individual positions in the portfolio:

d∑
i=1

λiAρi (λ) = rρ(λ). (2.9)

The interpretation of the first assumption is that we require proportional positions to have

proportional capital shares and the second one ensures the total capital is allocated to the

individual positions. As a result of these assumptions, we only need to calculate Aρi (λ), for

i = 1, . . . , d.

Following the nomenclature in [McNeil et al., 2010], we say Aρi : Λ → Rd is a per-unit

capital allocation principle if (2.9) is satisfied for all λ ∈ Λ.

So far we have not imposed or assumed any specific requirement on the risk measure used

as a base for the allocation principle, but to introduce the popular Euler allocation principle

we need to restrict ourselves to the class of positive homogeneous risk measures. Note that

even though the Value at Risk is not coherent in the sense of [Artzner et al., 1999] it is positive

homogeneous.

For positive homogeneous risk measures it is trivial to show that the associated risk measure

function rρ satisfies rρ(tλ) = trρ(λ). Therefore, applying Euler’s homogeneous function theorem

(see Theorem 2.2.4) on rρ, we have that

rρ(λ) =
d∑
i=1

λi
∂rρ
∂λi

(λ) (2.10)

The combination of (2.9) and (2.10) leads to the so-called Euler allocation principle (some-

times referred as allocation by the gradient), where the capital allocated to the i-th component

of the portfolio is given by the partial derivatives, with Aρi (λ) := ∂rρ
∂λi

(λ).

The Euler allocation principle arises in different contexts in the literature. For example, in

[Denault, 2001] and [Kalkbrener, 2005] the Euler principle is motivated by two (different) sets

of axioms, leading to coherent allocation principles (for a relationship between coherent risk

measures and coherent capital allocations see [Buch and Dorfleitner, 2008]).

Assuming that X1, . . . , Xd are continuous random variables at the point at which the risk

measure is evaluated, we now present some explicit forms of the Euler contributions, based on

the different risk measures presented in Definition 2.2.1. A proof based on the original arguments

of [Tasche, 1999] can be found in [McNeil et al., 2010, Section 6.3] while [Emmer et al., 2015]

suggests a new approach, based on [Delbaen, 2000], which can also derive expectiles allocations.

Proposition 2.2.6. If S =
∑d
i=1Xi and X = (X1, . . . , Xd) has a joint continuous density,

then the Euler allocation takes the following form

1. Standard deviation: ρ(S) =
√
V ar(S) =⇒ Aσi (Xi) = Cov(Xi, S)√

V ar(S)
;

2. Value at Risk: ρ(S) = VaRα(S) =⇒ AVaR
i (Xi) = E[Xi |S = VaRα(S)];

3. Expected Shortfall: ρ(S) = ESα(S) =⇒ AESi (Xi) = E[Xi |S ≥ VaRα(S)].
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Remark 2.2.7. Proposition 2.2.6 is still valid even if the distribution of X is not continuous but

other technical conditions should be satisfied (see [Tasche, 1999] and [Gouriéroux et al., 2000]).

2.2.1 Euler allocation for multivariate normal risks

If we assume the vector of risks follows a multivariate normal distribution, i.e., X =

(X1, . . . , Xd) ∼ N(0,Σ) then, from Definition 2.2.1, we have that

1. Standard deviation: ρ(S(λ)) =
√
λTΣλ;

2. Value at Risk: ρ(S(λ)) = Φ−1(α)
√
λTΣλ;

3. Expected Shortfall: ρ(S(λ)) = φ(Φ−1(α))
1− α

√
λTΣλ,

where φ( · ) and Φ−1( · ) denote, respectively, the density and the inverse c.d.f. of univariate

normal random variable. The importance of these results is the fact that in the multivariate

Gaussian model all the three risk measures presented are proportional to the portfolio volatility

and also simple to be calculated in closed form. This result was first discussed in the context of

insurance risk management in [Panjer, 2001].

2.2.2 Euler allocation in a hierarchical structure

In this section we briefly extend the concept of Euler allocations to a bank structure divided, for

example, in Business Units and Event types as suggested in the Basel II agreement for OpRisk

(see Table 1.4).

Let us assume a bank has a structure given as in Figure 2.3, comprising of K Business Units

(B.U.’s) and dl Event Types (E.T’s) in each of its B.U.’s (l = 1, . . . ,K). In this context we define

d =
∑K
l=1 dl as the total number of cells for which capital should be allocated, S =

∑d
i=1Xi the

bank loss and X[l] =
∑m
il=1Xil for l = 1, . . . ,K the loss in the l-th B.U..

Bank

B.L.2

E.T.1 E.T.2E.T.1

B.L.1

E.T.2 E.T.3

B.L.k

E.T.2 E.T.3E.T.1 E.T.4

b b b

Figure 2.3: Hierarchical bank structure, with k B.U.’s.

Assuming the bank capital is given by ESα(S) (as in Definition 2.2.1) then the Euler

principle states that the capital at the B.U. level should be given by E[X[l] |S ≥ VaRα(S)] for
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each B.U. l = 1, . . . ,K. To allocate the capital calculated for the l-th unit to its E.T.’s we can

assume this capital is a (homogeneous) risk measure defined as

ρ(X[l]) = E[X[l] |S ≥ VaRα(S)].

Then, following the Euler principle it is easy to check the allocation for the m-th E.T. in the

l-th B.U. is given by

E[Xm |S ≥ VaRα(S)].

The reader should note that the same allocations could have been derived “heuristically” in the

following way. First the total capital ESα(S) is allocated directly to each of the d E.T.’s. Then

for the l-th B.U. the capital is computed as the sum of the allocations at the dl E.T.’s in this

unit. Although the result would be the same, we emphasize the first method, as it is a direct

application of the Euler principle (twice).

2.2.3 The relationship between Euler allocation and RORAC
To complete this section on capital allocation we also mention the relationship between the

Euler allocation principle and other performance measures. For instance in [Tasche, 1999] and

[Tasche, 2008], the Euler allocation principle is shown to be the only allocation principle that

will also be Return On Risk-Adjusted Capital (RORAC) compatible, in a sense to be defined

shortly.

If µi = E[Xi] denotes the expected return of the i-th component of a portfolio then the

portfolio’s Return On Risk-Adjusted Capital (RORAC) is defined as

RORAC(S) = E[S]
ρ(S) =

∑d
i=1 µi
ρ(S) . (2.11)

Similarly, the portfolio-related RORAC of the i-th asset in the portfolio is defined as

RORAC(Xi |S) = µi
Aρi

, (2.12)

where Aρi denotes the capital allocated (via a generic allocation principle) to the i-th asset based

on a risk measure ρ.

Definition 2.2.8 (RORAC compatibility). Risk contributions are said to be RORAC compat-

ible if there exist εi > 0, i = 1, . . . , d such that ∀h ∈ (0, εi)

RORAC(Xi |S) > RORAC(S) =⇒ RORAC(S + hXi) > RORAC(S).

The importance of RORAC compatibility is that it provides us a way to create better

portfolios. If we have that the portfolio-related RORAC of the i-th instrument (2.12) is greater

than the total portfolio RORAC (2.11), then the portfolio RORAC can be improved by increasing

the i-th position by a factor h.

Using the notion of RORAC compatibility, [Tasche, 1999] (Theorem 4.4) proved that for a

given risk measure ρ the allocation principle will lead to RORAC compatibility if, and only if,

it is the Euler allocation principle.
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2.2.4 A critical view on the Euler allocation procedure in Insur-

ance/OpRisk
The presentation of the Euler allocation principle given in Section 2.2 is based on the assumption

that the portfolio for which the allocation process is being performed consists of a linear combi-

nation of random variables, see (2.6). When taking derivatives of the risk measure with respect

to the weights we implicitly assume one can change the weights in the portfolio. Although these

assumptions may not be appropriate in an insurance / OpRisk context (see [Mildenhall, 2004]

and [Mildenhall, 2006] for an insurance related discussion) [Boonen et al., 2016] recently provide

arguments to suport the use of the Euler principle, at least as an approximation to the “correct”

problem.

As mentioned above, the main criticism to the Euler principle in an insurance context (and

the same is also valid for OpRisk) is the “linearity assumption”. A good example is provided in

[Mildenhall, 2006], when studying two different “Motor Hull” portfolios: the first one contains

a single policy and the other is very large. In his words, “for the single policy the probability of

no claims in one year is around 90%. For the large portfolio the probability of no claims will be

very close to zero. Thus there cannot be a random variable X such that the single policy losses

have distribution x1X and the [large] portfolio has distribution x2X”.

To overcome the “linearity problem”, in contrast to (2.6), [Boonen et al., 2016] introduce

the following total loss process, defined in the filtered probability space (Ω,F ,P, {Ft}0≤t≤T )

with F = FT ,

S(λ) =
d∑
i=1

Xi(λi), for λi ∈ Λ = [0, T ]

with a current (base-line) exposure of λ = 1d = (1, . . . , 1). Losses in the i-th LoB are then

defined as

Xi(λi) = Yi(λi) + λiZi, (2.13)

where {Yi(λ)}0≤λ≤T are Fλ-adapted independent increasing Lévy processes and each of the Zi’s

is FT measurable, independent of Yi(λ). Under the representation in (2.13) the first term should

be viewed as the (non-linear) insurance risk component and the second as common shocks that

affect all the claims in the i-th LoB.

Using the nomenclature from [Boonen et al., 2016] we call any function g : Λ→ R a fuzzy

game. Note that the risk measure function rρ(λ) : Λ → R is a fuzzy game, but the latter may

not be defined through a risk measure. Moreover, a vector d ∈ Rd is called an allocation of the

fuzzy game if
∑d
i=1 di = g(1d). Another important concept is the core of a fuzzy game, which

is defined as

C(g) =
{

d ∈ Rd : d is an allocation of g and
d∑
i=1

λidi ≤ g(λ), ∀λ ∈ [0, 1]d
}
.

The core of the game should be seen as the set of allocations that do not give an incentive

to split the portfolio, as the risk contribution of any sub-portfolio is less than its stand-alone
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capital. In [Aubin, 2007] it has been proved that if g is subadditive then the Euler allocation is

the unique element of the core, an argument explored by [Denault, 2001] to justify its use.

Given a risk measure ρ and the structure in (2.13) the overall capital to be held, as a

function of the exposures λ is given by the following fuzzy game:

rρ(λ) = ρ

(
d∑
i=1

Xi(λi)
)
, for λi ∈ Λ = [0, T ],

and in this case rρ is not necessarily positive homogeneous and, therefore, the Euler principle

is not directly applicable.

To circumvent this problem, [Boonen et al., 2016] introduce a “linearized version” of the

fuzzy game rρ, defined as

r̃ρ(λ) = ρ

(
d∑
i=1

λiXi(1)
)

and then prove (see Corollary 3.8 of the original paper) that the Euler allocation for the fuzzy

game r̃ρ belongs to the core of rρ. Note that, as previously discussed, r̃ρ is the unique element in

the core of r̃ρ, but in [Boonen et al., 2016, Section 3.3] it is shown that C(rρ) is not necessarily

single-valued.

Therefore, paraphrasing [Boonen et al., 2016], “allocations used in practice [i.e., using the

Euler principle and linearity assumptions] are based on the ‘wrong game’ r̃ρ, rather than the

‘game actually played’, rρ. But our results show that this is actually not a serious problem,

since via the Euler allocation of r̃ρ, we end up with an element of the core of rρ”.
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Monte Carlo methods

In the previous chapter we saw that, under the Euler principle, for both the value at risk (VaR)

and the expected shortfall (ES) marginal risk allocations are given by conditional expectations.

For a generic risk model, i.e., a combination of marginal distributions and a copula, these

conditional expectations cannot be calculated in closed form, so numerical approximations have

to be used.

Some exceptions do exist, though. Models where allocations can be explicitly calculated in-

clude, for example, the multivariate Gaussian model from Section 2.2.1 (extended to the case of

multivariate elliptical distributions in [Landsman and Valdez, 2003] and [Dhaene et al., 2008]),

the multivariate gamma model of [Furman and Landsman, 2005], the combination of the

Farlie-Gumbel-Morgenstern (FGM) copula and (mixtures of) exponential marginals from

[Bargès et al., 2009] or (mixtures of) Erlang marginals [Cossette et al., 2013], the multivariate

Pareto-II from [Asimit et al., 2013].

In this chapter we present some background on Monte Carlo (MC) methods and set up

the framework for the novel simulation based algorithms for capital allocation developed in

Chapters 4 and 6. In particular, we review the recent class of pseudo-marginal Markov Chain

Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) algorithms, the latter being the basis

of the algorithms proposed.

Throughout the chapter we assume the marginal loss processes X1, . . . , Xd are continuous

random variables, implying that all marginal inverse c.d.f.’s (quantile functions) F−1
i are well

defined and also continuous. Moreover, from Sklar’s theorem we have that the joint c.d.f. and

p.d.f. of the vector X are, respectively,

FX(x) = P[X1 ≤ x1, . . . , Xd ≤ xd] = C(F1(x1), . . . , Fd(xd)) and

fX(x) = c
(
F1(x1), . . . , Fd(xd)

) d∏
i=1

fi(xi),

where C and c are the copula and copula density, respectively.

From Proposition 2.2.6 we see both the allocation based on VaR and on ES take the form

of a conditional expectation, such as

Aρi (Xi) = E[h(X) | g(X) ∈ A], (3.1)
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for the following choices of h, g and A:

1. For ρ = VaR: h(X) = Xi, g(X) =
∑d
i=1Xi, A =

[
VaRα(

∑d
i=1Xi), VaRα(

∑d
i=1Xi)

]
;

2. For ρ = ES: h(X) = Xi, g(X) =
∑d
i=1Xi, A =

[
VaRα(

∑d
i=1Xi), +∞

)
.

Therefore, if we are able to generate values from

π(x) = fX(x | g(X) ∈ A) (3.2)

then these samples can be used to approximate (3.1). In the MC literature the density defined in

(3.2) is usually referred to as the target density, while the samples are sometimes called particles.

3.1 Simple Monte Carlo and rejection sampling
The idea behind a simple (or naive or crude) Monte Carlo simulation scheme is to generate a set

of independent and identically distributed (i.i.d.) samples from the target distribution, which

can then be used to approximate the required expectations.

When a set of i.i.d. samples {x(j)}Nj=1 from the target distribution π is available, the MC

estimator of Eπ[ϕ(X)], the expectation under π of a generic test function ϕ, is given by

ϕ̂NMC = 1
N

N∑
j=1

ϕ(x(j)).

Provided that Eπ[ϕ(X)] is finite, the strong law of large numbers (SLLN) for i.i.d. variables

(see, e.g. [Shiryaev, 1996, Chapter III]) ensures that

lim
N→+∞

ϕ̂NMC
a.s.−→ Eπ[ϕ(X)]. (3.3)

In other words, as long as the test function have finite expectation under π the MC method is

guaranteed to converge almost surely to the correct quantity.

Moreover, if the variance of the test function under the target distribution is finite then a

central limit theorem (CLT) holds (see [Shiryaev, 1996, Chapter III]), ensuring the distribution

of the estimator approaches the true quantity when the sample size goes to infinity:

lim
N→+∞

√
N(ϕ̂NMC − Eπ[ϕ(X)]) d−→ N(0,Varπ(ϕ(X))),

where d−→ denotes convergence in distribution.

Remark 3.1.1 (Inversion method). Whenever the target density π is defined over the real

numbers and its c.d.f. F is invertible in closed form, one can use the fact that

U ∼ Unif [0, 1]⇒ X = F−1(U) ∼ π

to generate i.i.d. samples from π.
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3.1.1 Rejection sampling
If samples cannot be generated directly from the target distribution one possibility is to use

rejection sampling. In short, this simple method makes use of an auxiliary distribution which

can be easily sampled from and then accepts (or reject, hence the name) the samples with a

specific probability.

As before, let us assume our interest is to generate samples from the target distribution π but

now we assume we have access to another density, µ such that π(x) ≤Mµ(x) for 1 < M < +∞,

for all x. In simple words, in order to draw samples from π we can sample x from µ and accept

it as a sample from the target distribution with probability π(x)
Mµ(x) . This procedure is formalized

in Algorithm 1.

Lemma 3.1.2. The rejection sampling algorithm (Algorithm 1) produces a variable Y dis-

tributed as π.

Proof. The proof presented below is based on [Robert and Casella, 2004, Lemma 2.3.1].

The cdf of Y is given by

P[Y ≤ y] = P

[
X ≤ y |U ≤ π(X)

Mµ(X)

]
=
P
[
X ≤ y, U ≤ π(X)

Mµ(X)

]
P
[
U ≤ π(X)

Mµ(X)

] .

To show the above cdf is the same as the cdf ofX, note the denominator is the unconditional

acceptance probability of the rejection method, which is the proportion of proposed samples that

are accepted:

P

[
U ≤ π(X)

Mµ(X)

]
= E

[
P

[
U ≤ π(X)

Mµ(X)

∣∣∣X = x
]]

= Eµ

[
π(x)
Mµ(x)

]
=
∫

π(x)
Mµ(x)µ(x)dx

= 1
M

∫
π(x)dx

= 1
M
.

Similarly, for the numerator we have that

P

[
X ≤ y, U ≤ π(X)

Mµ(X)

]
= 1
M
P[X ≤ y].

Remark 3.1.3. When the target distribution is the truncated version of another distribution,

i.e., π(x) = µ(x | g(x) ∈ A) =
µ(x)1{g(x)∈A}

P[g(X) ∈ A] we have that M = 1
P[g(X)∈A] . From the above

results, the expected number of iterations needed in order to generate one sample from π is

inversely proportional to the probability of the event, which can be prohibitive if the probability

is “too small”.
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Algorithm 1: Rejection sampling algorithm.

Inputs: Auxiliary density µ such that µ(x) ≥ π(x)
M ;

Sample X ∼ µ ;

Sample U ∼ U [0, 1] ;

if U ≤ π(x)
Mµ(x) then

Accept Y = X as a sample from π.

else
Reject the sample and go to step 1.

end

Result: Y a sample from π.

3.2 Importance Sampling
If a “good” auxiliary distribution cannot be designed, for example, the target distribution is

defined in a high dimensional space or in a constrained region, the rejection sampling scheme of

the previous section can be extremely inefficient, as many samples would be rejected. Importance

sampling (IS) tries to overcome this problem using all the samples simulated from the auxiliary

distribution (also known as the importance distribution) each of which with an importance

weight.

For a generic measurable function ϕ(x) the cornerstone identity for IS is

Eπ[ϕ(X)] =
∫
ϕ(x)π(x)dx =

∫
ϕ(x)π(x)

µ(x)µ(x)dx =
∫
ϕ(x)w(x)µ(x)dx = Eµ[ϕ(x)w(x)],

(3.4)

which is valid for any importance density µ such that its support is larger than π’s, i.e., supp(µ) ⊃

supp(π).

Given a set of samples {x(j)}Nj=1 from µ we construct the IS estimate as

ϕ̂NIS = 1
N

N∑
j=1

w(x(j))ϕ(x(j))

which, analogously to (3.3) converges to Eµ[ϕ(x)w(x)] when N −→ +∞. Therefore, from (3.4),

lim
N−→+∞

ϕ̂NIS = Eπ[ϕ(X)]

and a similar CLT result is also available.

In many cases, including the ones discussed in this work, the target distribution π cannot

be evaluated due to an intractable normalizing constant. In this context we have

π(x) = Z−1γ(x) ∝ γ(x),

where Z is unknown. Therefore, the IS weights can only be computed in its self-normalized

form, defined as

W (x(j)) = w(x(j))∑N
k=1 w(x(k))

,
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for w(x) = π(x)
µ(x) , as in (3.4).

As shown in [Geweke, 1989], the estimator

ϕ̂NIS,sn =
N∑
j=1

W (x(j))ϕ(x(j)),

based on the self-normalized IS weights is also consistent and satisfies a CLT result, but as

the next result shows there is a price to be paid: the self-normalized IS estimator is biased for

finite samples, but the bias, in practice, in usually very small. Also, the estimator is asymptot-

ically unbiased. For a proof the reader is referred to, for example, [Johansen and Evers, 2007,

Proposition 3.2.1].

Proposition 3.2.1. The bias and variance of the two IS estimators are given by

(a) Eµ[ϕ̂NIS(X)] = Eπ [ϕ(X)]

(b) Varµ(ϕ̂NIS(X)) =
Varµ(w(X)ϕ(X))

N

(c) Eµ[ϕ̂NIS,sn(X)] = Eπ [ϕ(X)] +
Eπ [ϕ(X)]Varµ(w(X))− Covµ(w(X), w(X)ϕ(X))

N
+O(N−2)

(d) Varµ(ϕ̂NIS,sn(X)) =
Varµ(w(X)ϕ(X))− 2Eπ [ϕ(X)]Covµ(w(X), w(X)ϕ(X)) + Eπ [ϕ(X)]2Varµ(w(X))

N
+

O(N−2)

Remark 3.2.2. Although the self-normalized estimator ϕ̂NIS,sn is asymptotically biased, its vari-

ance can be lower than the unbiased estimator, ϕ̂NIS.

3.3 Markov Chain Monte Carlo (MCMC) methods
The aim of this section is to provide a brief overview of Markov Chain Monte Carlo al-

gorithms, which are an alternative method to generate samples from a complex distribu-

tion. There is a vast literature on MCMC methods in Statistics and we refer the reader to

[Gamerman and Lopes, 2006] and [Robert and Casella, 2004] for an in-depth introduction to

the topic.

3.3.1 Metropolis Hastings

In order to generate samples from a target distribution denoted by π(x) ∝ γ(x), the

Metropolis-Hastings (MH) algorithm (first proposed in [Metropolis et al., 1953] and generalized

in [Hastings, 1970]) simulates a Markov chain with stationary distribution equals to π. Given

the unnormalized target distribution γ, an initial state x0 and a proposal function q(x′ |x), after

a sufficiently large number of iterations, MH generates a sequence of states x1, . . . ,xT from a

sequence of distributions that converges to π. The pseudo-code is presented in Algorithm 2.

Note that, differently from IS, the MH has a rejection step, implying that not all simulated

values will be part of the Markov chain. Another difference is the fact that the samples generated



3.3. Markov Chain Monte Carlo (MCMC) methods 49

through MH are dependent (the method, indeed, creates a Markov Chain).

Algorithm 2: Generic Metropolis Hastings (MH) algorithm.
Inputs: Unnormalized target distribution γ(x), initial state x0, proposal density

q(x′ |x) and total number of iterations T ;

for t = 1, . . . , T do

Propose x′ ∼ q(x′ |xt−1) ;

Calculate a = γ(x′)q(xt−1 |x′)
γ(xt−1)q(x′ |xt−1) ;

Set xt = x′ with probability min{1, a}, i.e., ;

1. Draw r ∼ Unif [0, 1];

2. Set xt = x′ if r < a.

end

Result: Samples {xt}Tt=0 from a Markov chain with invariant distribution π(x) ∝ γ(x).

3.3.2 Gibbs sampler

The Gibbs sampling algorithm [Geman and Geman, 1984] resamples each coordinate

of the vector x from their full conditional distributions π(xi |x−i), where x−i =

(x1, . . . , xi−1, xi+1, . . . , xd). Alternatively, we can write the Gibbs sampling updates as the

following MH proposal

q(x′ |x) = γ(x′i |x−i)1{x′−i=x−i},

where 1{x′−i=x−i} denotes an indicator function ensuring all components of x are fixed, apart

from xi. As the acceptance probability for this proposal is always one, the Gibbs sampler does

not suffer from the inefficiency of rejecting simulated values. The algorithm is summarized in

Algorithm 3, where we use the notation xt = (xt,1, . . . , xt,d).

Algorithm 3: Generic Gibbs sampler algorithm.
Inputs: Full conditional p.d.f.’s π(xi |x−i), for i = 1, . . . , d, initial state x0 and total

number of iterations T ;

for t = 1, . . . , T do

for i = 1, . . . , d do

Sample xt,i ∼ π(xt,i |xt−1,−i) ;

end

end

Result: Samples {xt}Tt=0 from a Markov chain with invariant distribution π(x) ∝ γ(x).

One of the main benefits of the Gibbs sampling algorithm is the fact that there are not free

parameters, so no tuning is needed and the algorithm can be applied in an automatic fashion –

as long as it is possible to sample from the full conditionals.

Remark 3.3.1. As with MH, Gibbs samplers generate a Markov chain whose samples approx-

imate the target distribution only in the limit and care should be taken in order to assess the
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convergence of these chains in practice. For a discussion on convergence diagnostics of MCMC

methods the reader is referred to [Gamerman and Lopes, 2006, Section 5.4].

3.3.3 Slice sampling

The last algorithm discussed in this section, the slice sampler of [Neal, 2003] is, as the rejection

sampling algorithm, based on the simulation of an auxiliary variable. Similarly to the Gibbs

sampler it has the advantage of no rejections.

For a univariate distribution π(x) ∝ γ(x) the slice sampling algorithm is described in

Algorithm 4.

Algorithm 4: Generic slice sampling algorithm.

Inputs: Unnormalized target density γ(x) and initial state x0;

Sample y ∼ Unif [0, γ(x0)] ;

Define the interval I = {x : γ(x) > y} ;

Sample x ∼ Unif(I) ;

Result: One sample x from π(x) ∝ γ(x).

Remark 3.3.2. Another prominent member of the class of Monte Carlo algorithms based in

auxiliary variables is the HMC (where the acronym stands for either Hamiltonian Monte Carlo

or Hybrid Monte Carlo, depending on the authors!), which is not discussed here. The interested

reader is referred to [Duane et al., 1987] and [Neal, 2011].

3.3.4 Pseudo-marginal MCMC

Although the MH algorithm is an extremely versatile method to sample from a target density π,

if this density is not known in closed form (or if it is computationally too expensive to calculate)

then MH in its original form cannot be directly applied. One example of such scenario arises

in Section 6.2.2, when the target density is defined conditional to a nuisance parameter. The

problem of intractable target distributions also appears when studying state-space models, where

the likelihood is defined through a high-dimensional integral (see, e.g., [Andrieu et al., 2010]).

Over the past decades promising research has been developed towards algorithms

that can circumvent the calculation of the exact MH acceptance probability. The idea

of using unbiased estimators within MH algorithms was first suggested in the Physics

literature by [Kennedy and Kuti, 1985] and further explored in [Lin et al., 2000]. These

ideas were then introduced to the Bayesian statistics community in [Beaumont, 2003] and

[Andrieu and Roberts, 2009] where it was given the pseudo-marginal name. Since then

many theoretical results have been obtained for these algorithms, including qualitative

ones in [Andrieu and Roberts, 2009] and [Andrieu and Vihola, 2015] and quantitative ones in

[Pitt et al., 2012], [Sherlock et al., 2015], [Doucet et al., 2015] and [Deligiannidis et al., 2015].

The idea of replacing an unknown density by a positive and unbiased estimate is

in the core of many recently proposed algorithms, such as the Particle Markov Chain



3.3. Markov Chain Monte Carlo (MCMC) methods 51

Monte Carlo (PMCMC) of [Andrieu et al., 2010], the Sequential Monte Carlo Squared

(SMC2) of [Chopin et al., 2013] and [Fulop and Li, 2013] (see also the island particle filter

of [Vergé et al., 2015]) and the Importance Sampling Squared (IS2) of [Tran et al., 2014]. In

the context of Sequential Monte Carlo algorithms this argument first appeared as a brief note

in Rousset and Doucet’s comments of [Beskos et al., 2006], where it reads that “(...) a straight-

forward argument shows that it is not necessary to know wk(X(i)
t0:tk) [the weights] exactly. Only

an unbiased positive estimate ŵk(X(i)
t0:tk) of wk(X(i)

t0:tk) is necessary to obtain asymptotically

consistent SMC estimates under weak assumptions”.

Let us denote by γ̂(x) an estimate of the unnormalized target density γ. As we are assuming

γ cannot be directly evaluated, one strategy to use the MH is simply to substitute γ by γ̂ in the

acceptance ratio, i.e., to calculate something like

â = γ̂(x′)q(xt−1 |x′)
γ̂(xt−1)q(x′ |xt−1) .

To prove that this is actually a valid MH we need to provide some details on how the

estimator γ̂ is calculated and some of its necessary properties. Let us assume the estimator γ̂ is

calculated using a random vector u ∼ p(u), i.e., we approximate γ(x) by γ̂(x |u). Furthermore,

we also assume that the estimator is non-negative, γ̂(x |u) ≥ 0, ∀(x, u), and unbiased, in the

following sense

γ(x) = EU[γ̂(x |U)]. (3.5)

As the slice sampler, the pseudo-marginal MH operates in an extended space, in this case

the space of (x, u), where the target density is defined as

γ(x, u) = γ̂(x |u)p(u).

Note that, due to the unbiasedness assumption (3.5), γ(x, u) has γ(x) as marginal. Taking the

proposal density in the extended space as

q(x′, u′ |xt−1, ut−1) = q(x′ |ut−1, xt−1)q(u′ |xt−1, ut−1)

= q(x′ |xt−1)p(u′)

the MH acceptance ratio becomes

a = γ(x′, u′)q(xt−1, ut−1 |x′, u′)
γ(xt−1, ut−1)q(x′, u′ |xt−1, ut−1)

= γ̂(x′ |u′)q(xt−1 |x′)
γ̂(xt−1 |ut−1)q(x′ |xt−1) ,

which does not depend on the unknown density γ. Therefore, the above acceptance ratio can be

used in an MH algorithm (marginally) targeting γ. This algorithm, named the pseudo-marginal

MH, is outlined in Algorithm 5.

3.3.5 Some comments
As MCMC algorithms can be used to construct Markov chains with a pre-specified target dis-

tribution it can, in theory, be used to generate samples from the highly constrained target
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Algorithm 5: Generic pseudo-marginal Metropolis Hastings (MH) algorithm.
Inputs: Positive and unbiased estimate for the unnormalized target γ̂(x |u), initial

state x0, proposal density q(x′ |x) and total number of iterations T ;

for t = 1, . . . , T do

Sample u′ ∼ p(u′) ;

Propose x′ ∼ q(x′ |xt−1) ;

Calculate a = γ̂(x′ |u′)q(xt−1 |x′)
γ̂(xt−1 |ut−1)q(x′ |xt−1)

;

Set (xt, ut) = (x′, u′) with probability min{1, a}, i.e., ;

1. Draw r ∼ Unif [0, 1];

2. Set (xt, ut) = (x′, u′) if r < a.

end

Result: Samples {xt}Tt=0 from a Markov chain with invariant distribution π(x) ∝ γ(x).

distribution defined in (3.2). Each one of the algorithms discussed above present different chal-

lenges.

As presented in Section 3.3.3 the slice sampling algorithm is only applicable to unidimen-

sional distributions, which may be known up to a proportionality constant. For the target

distributions defined in (3.2) the marginals (which are, indeed, the distributions to be used in

the allocation problem) take the following form:

π(xi) =
∫
π(x)dx−i

=
∫
f(x | g(x) ∈ A)dx−i

= 1
1− α

∫
f(xi)f(x−i |xi)1{g(x)∈A}dx−i,

which cannot, in general, be calculated in close form. A similar problem arises when one

tries a simple implementation of the Gibbs sampling algorithm of Section 3.3.2, since the full

conditionals π(xi |x−i) = π(x)
π(x−i) cannot be calculated either.

Due to its wide applicability the MH algorithm is, in theory, suitable for sampling from the

target distributions in (3.2) but, in practice, in order to avoid too many rejections, the proposal

distribution should be such that most of its mass is concentrated in the rare set {g(x) ∈ A},

which is a non trivial task. Note that this is the same issue that arises when one tries to, naively,

use IS to sample from π, as most of the samples could end up having zero weight.

Next we present a class of algorithms that extends IS solutions to sequential settings,

known in the statistics literature as Sequential Monte Carlo (SMC) methods, making a clear

distinction between SMC and SMC sampler algorithms. Although based on IS techniques, SMC

methods also make use of MCMC algorithms but differently from the above discussion the

MCMC kernels in SMC are applied to samples that are already in the stationary distribution

(i.e., the constrained region), as discussed in Section 3.4.1.
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3.4 Sequential Monte Carlo methods (SMC)
In this section we introduce the general class of algorithms known as Sequential Monte Carlo

(SMC) and an important variant for rare-event simulation, the SMC Samplers classes of meth-

ods. This family of Monte Carlo algorithms has been developed to approximate sequences of

integrals constructed from a sequence of probability density functions. Of course, adjustments

are possible when the interest lies only in one distribution, such as the terminal distribution in

a sequence of increasingly rare events, an idea explored in Chapter 4 (see also Section 3.6).

Historically SMC methods emerged out of the fields of engineering, probability and statistics

and variants of the methods sometimes appear under the names of particle filtering or interacting

particle systems e.g. [Ristic et al., 2004], [Doucet et al., 2001], [Del Moral, 2004]. Their theo-

retical properties have been extensively studied in [Crisan and Doucet, 2002], [Del Moral, 2004],

[Chopin, 2004], [Künsch, 2005].

For a recent survey in the topic, with focus on economics, finance and insurance applications

the reader is referred to [Creal, 2012] and [Del Moral et al., 2013]. One of the most successful

applications of SMC methods in finance is in the field of option pricing: American options are

discussed in [Rambharat and Brockwell, 2010], Asian options in [Jasra and Del Moral, 2011],

Barrier options in [Shevchenko and Del Moral, 2015] and, more recently, [Sen et al., 2016] re-

visit the pricing of barrier options and also introduce algorithms for Target Accumulation Re-

demption Notes (TARNs). In the context of credit portfolio losses [Carmona et al., 2009] and

[Carmona and Crépey, 2010] discuss the use of SMC algorithms to estimate small default prob-

abilities.

The general context of a standard SMC method is that one wants to approximate a (often

naturally occurring) sequence of probability density functions (p.d.f.’s)
{
π̃t
}
t≥1 such that the

support of every function in this sequence is defined as supp
(
π̃t
)

= Et and the dimension of Et
forms an increasing sequence, i.e., dim

(
Et−1

)
< dim

(
Et
)
. For example, the reader can think of

E1 = Rd, . . . , Et = Rd×t, which will be precisely the sequence to be used throughout this work.

We may also assume that π̃t is only known up to a normalizing constant,

π̃t(x1:t) = Z−1
t γ̃t(x1:t),

where x1:t = (x1, . . . ,xt) ∈ Et = Rd×t. As in Section 3.5, the approximation for π̃t is given by

a weighted sum of random samples (also known as “particles”).

Procedurally, we initialize the algorithm sampling a set of N particles from the distribution

π̃1 and set the normalized weights to W (j)
1 = 1/N , for all j = 1, . . . , N . If it is not possible to

sample directly from π̃1, one should sample from an importance distribution q̃1 and calculate its

weights accordingly (see Algorithm 6). Then the particles are sequentially propagated thorough

each distribution π̃t in the sequence, via three main processes: mutation, correction (incremental

importance weighting) and resampling. In the first step (mutation) we propagate particles from

time t− 1 to time t and in the second one (correction) we calculate the new importance weights

of the particles.
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Algorithm 6: Standard SMC algorithm.

Inputs: IS density q̃1, (forward) mutation kernels
{
Kt(xt−1,xt)

}T
t=1;

for j = 1, . . . , N do

Sample x(j)
1 from X1 ∼ q̃1( · ) (Mutation step);

Calculate the weights w(j)
1 = γ̃1(x(j)

1 )
q̃1(x(j)

1 )
;

end

Calculate the normalized weights W (j)
1 = w

(j)
1∑N

j=1
w

(j)
1

(Correction step);

for t = 2, . . . , T do

for j = 1, . . . , N do

Sample x(j)
t from Xt

∣∣Xt−1 = x(j)
t−1 ∼ Kt(x(j)

t−1, · ) (Mutation step);

Create the vector x(j)
1:t = (x(j)

1:(t−1), x(j)
t ) ;

Calculate the weights w(j)
t = γ̃t(x(j)

1:t )
q̃t(x(j)

1:t )
= w

(j)
t−1

γ̃t(x(j)
1:t )

γ̃t−1(x(j)
1:t−1)Kt(x(j)

t−1,x
(j)
t )︸ ︷︷ ︸

incremental weight: α̃(x(j)
1:t)

;

end

Calculate the normalized weights W (j)
t = w

(j)
t∑N

j=1
w

(j)
t

(Correction step).

end

Result: Weighted random samples
{
x(j)

1:t , W
(j)
t

}N
j=1 approximating π̃t, for all

t = 1, . . . , T ;

This method can be seen as a sequence of IS steps, where the target distribution at each

step t is γ̃t(x1:t) (the unnormalized version of π̃t) and the importance distribution is given by

q̃t(x1:t) = q̃1(x1)
t∏

j=2
Kj(xj−1,xj), (3.6)

where Kj(xj−1, · ) is the mechanism used to propagate particles from time t− 1 to t, known as

the mutation stage. The algorithm works in the following way:

If
{
x(j)

1:t , W
(j)
t

}N
j=1 is a set of weighted particles returned by the SMC algorithm then

N∑
j=1

W
(j)
t ϕ(x(j)

1:t ) −→ E
π̃t

[ϕ(X1:t)] =
∫
Et
ϕ(x1:t)π̃t(x1:t)dx1:t, (3.7)

π̃t–almost surely as N → +∞, for any test function ϕ such that the expectation of ϕ under π̃t
exists.

Remark 3.4.1. The reader should note that the knowledge of π̃t up to a normalizing constant

is sufficient for the implementation of a generic SMC algorithm, since the normalized version

of the weights would be the same for both π̃t and γ̃t, as also discussed in 3.2.

The optimal selection of the mutation kernel (SMC importance distribution) for SMC meth-

ods is widely studied and a good tutorial review on the optimal choice minimizing the variance
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of the incremental importance sampling weights is overviewed in [Doucet and Johansen, 2009].

There are also a range of known probabilistic properties of the SMC algorithm available in the

literature, for a tutorial in the insurance context on these properties see [Del Moral et al., 2013].

This includes details on central limit theorem results for SMC algorithms along with asymptotic

variance expressions, finite sample bias decompositions and propagation of chaos as well as finite

sample concentration inequality bounds. There are also tutorials available on SMC algorithms in

general such as [Doucet and Johansen, 2009] and the book length coverage of [Del Moral, 2004].

3.4.1 Resampling and moving particles
In practice the generic algorithm presented in the previous section will eventually (as t increases)

be based only in a few distinct particles, in the sense that almost all the other particles will

have negligible weights, in a phenomenon is known as particle degeneracy.

To overcome this problem, when the system is too degenerate one can resample all the

particles x1:t after the correction step, choosing the j-th one with probability proportional to

W
(j)
t . In [Liu and Chen, 1998] it was suggested using the Effective Sample Size (ESS) to measure

the sample degeneracy, where its value at time t is defined as

ESSt =

 N∑
j=1

(W (j)
t )2

−1

and resample steps should be performed only when ESSt < M – as a rule of thumb we can

set M = N/2. It is important to note that after this step we need to set W (j)
t = 1/N for all

particles, since they are all identically distributed.

Although the resample step alleviates the degeneracy problem, its successive reapplication,

at each stage of the sampler, produces the so-called sample impoverishment, where the number of

distinct particles is extremely small. In order to regenerate the system [Gilks and Berzuini, 2001]

proposed to add a move with any kernel such that the target distribution is invariant with respect

to it to rejuvenate the system. This kernel may be, for example, a Markov Chain kernel, which

would begin with equally weighted samples from the target distribution and then perturb them

under a single step of a Metropolis Hastings accept-reject mechanism. This would preserve the

target distribution and add diversity to the particle cloud.

More precisely, we can apply any kernel M(x1:t, x∗1:t) that leaves π̃t invariant to move

particle x1:t to x∗1:t (the star will denote particles after the “move” step), i.e.,

π̃t(x∗1:t) =
∫
M(x1:t, x∗1:t)π̃t(x1:t)dx1:t.

Two of the simplest ways to construct such a kernel M are to use a Gibbs sampler or a

Metropolis-Hastings (MH) algorithm (see Section 3.3). To use a Gibbs sampler algorithm, the

full conditional distributions

π̃t(x1:t,i |x1:t,1, . . . ,x1:t,i−1,x1:t,i+1, . . . ,x1:t,d), for i = 1, . . . , d, must be known up to propor-

tionality, while for the MH they are not necessary. On the other hand, in the M-H algorithm

one needs to design a proposal density Q(x1:t,x∗1:t) that moves the particle x1:t to x∗1:t or some
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component of it such as xt to x∗t . In the present context, the Gibbs sampler is described in

Algorithm 7.

Algorithm 7: Gibbs Sampler algorithm.
Inputs: Full conditional p.d.f.’s:

π̃t(x1:t,1 |x1:t,2, . . . ,x1:t,d), . . . , π̃t(x1:t,d |x1:t,1, . . . ,x1:t,d); Sample from π̃t:

x1:t = (x1:t,1, . . . ,x1:t,d) ;

Sample x∗1:t,1 ∼ π̃t(x1:t,1 |x1:t,2, . . . ,x1:t,d) ;

Sample x∗1:t,2 ∼ π̃t(x1:t,2 |x∗1:t,1,x1:t,3, . . . ,x1:t,d) ;
...

Sample x∗1:t,d ∼ π̃t(x1:t,d |x∗1:t,1, . . . ,x∗1:t,d−1) ;

Result: New sample from π̃t: x∗1:t = (x∗1:t,1, . . . ,x∗1:t,d) ;

Including both the resampling and the “move” steps into the generic SMC algorithm leads to

the “Resample-Move” algorithm, first presented in [Gilks and Berzuini, 2001] and subsequently

widely used in the SMC literature.

The generic class of SMC algorithms whilst widely used in practice cannot be directly

applied to the problems addressed in this work, since all the distributions in the sequence (4.1)

are defined over the same support, i.e., Et = E and not Et = E × . . . × E as required by

the SMC algorithms just described. To overcome this problem a specialized variation of this

method, named SMC Samplers is introduced in the next section but before we briefly revise

some techniques used to estimate the normalizing constant using SMC methods.

3.4.2 Estimating the normalizing constant
In some situations the interest is not only to sample from the distribution π̃t, but also to compute

its normalization constant Zt, which can be, for example, the model evidence (used to calculate

Bayes factors) or the probability of a rare event.

At the t-th iteration of the SMC algorithm the normalizing constant Zt can be written as

Zt =
∫
Et
γ̃t(x1:t)dx1:t

=
∫
Et

γ̃t(x1:t)
q̃t(x1:t)

q̃t(x1:t)dx1:t

=
∫
Et
wtq̃t(x1:t)dx1:t

which, using the set of unnormalized samples
{
x(j)

1:t , w
(j)
t

}N
j=1 can be approximated as

Zt =
∫
Et
wtq̃t(x1:t)dx1:t ≈

1
N

N∑
j=1

w
(j)
t = Ẑt.

Defining w0 = 1 the estimator shown above can be rewritten as

Ẑt = 1
N

N∑
j=1

w
(j)
t = 1

N

N∑
j=1

w
(j)
t−1α̃

(j)
t = 1

N

N∑
j=1

t∏
k=1

α̃
(j)
t , (3.8)

where α̃(j)
t is the incremental weight defined in Algorithm 6.
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Moreover, defining Ẑ0 = 1 we find the often presented form for the estimator of the nor-

malizing constant, namely

Ẑt = Ẑ1

Ẑ0
. . .
Ẑd
Ẑd−1

=
t∏

k=1

Ẑk
Ẑk−1

=
t∏

k=1

∑N
j=1 w

(j)
k∑N

i=1 w
(i)
k−1

=
t∏

k=1

N∑
j=1

w
(j)
k−1∑N

i=1 w
(i)
k−1

w
(j)
k

w
(j)
k−1

=
t∏

k=1

N∑
j=1

W
(j)
k−1α̃

(j)
k

= Ẑt−1

N∑
j=1

W
(j)
t−1α̃

(j)
t ,

where W (j)
k−1 is the normalized weight defined in Algorithm 6.

Remark 3.4.2. The estimator defined in (3.8) can be proved to be unbiased and asymptotically

normally distributed when the number of particles N → +∞ (see [Del Moral, 2004, Propositions

7.4.1 and 9.4.1] and [Pitt et al., 2012] for a proof in the special case of state-space models).

Other estimators for (ratios of) normalizing constants have been proposed in the IS/SMC

literature, such as the path sampling of [Gelman and Meng, 1998] used in a SMC for rare event

set up in [Johansen et al., 2006]. This estimator is defined for a continuous path of distributions

denote as

πθ(t)(x) = Z−1γθ(t)(x),

with t ∈ [0, 1], θ(0) = 0 and θ(1) = 1. The estimator is, then, based on the following (path

sampling) identity

log
(
Z1
Z′

)
=
∫ 1

0

dθ(t)
dt

∫
d log(γθ(t)(x))

dt
πθ(t)(x)dxdt.

For the algorithms proposed to compute risk allocations the path sampling approach is

not applicable, as the estimator relies on derivatives of the schedule (i.e., θ(t)) with respect

to t which, in our framework, are not readily available. Instead, we discuss a problem-specific

algorithm in Section 6.4.1.

3.4.3 SMC samplers
Having presented the SMC class of algorithms, we now present in contrast to these the class

of SMC Sampler algorithms which involve the same mechanism as the SMC algorithm also

using a mutation, correction and resampling stage at each iteration. However, the class of SMC

Sampler algorithm is importantly different in the space that the sequence of distributions being

sampled from are defined upon. Differently from Section 3.4, our interest now is to approximate
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a generic sequence of probability distributions {πt}Tt=1 such that supp(πt) = supp(πt−1) = E

for all t = 1, . . . , T (once again one may think of E = Rd). Here we may also assume our target

distribution is only known up to a normalizing constant, i.e., π(x) = Z−1γ(x).

Remark 3.4.3. For notational clarity, functions in the enlarged space will be denoted with a

upper tilde, as γ̃t : Et −→ R.

The idea presented on [Peters, 2005] and [Del Moral et al., 2006] is to transform this prob-

lem into one resembling the usual SMC formulation, where the sequence of target distributions

{γ̃t}Tt=1 is defined on the product space, i.e., supp(γ̃t) = E × E × . . .× E = Et.

The construction of γ̃t (the density in the path space) is carried out as:

π̃t(x1:t) ∝ γ̃t(x1:t) = γt(xt)γ̃t(x1:t−1|xt), for t = 2, . . . , T (3.9)

where γ̃t(x1:t−1|xt) is a probability distribution on the space Et−1, for all xt ∈ E. Similarly to

(3.6) we can carry out the construction of the importance distribution at time t.

As noticed in [Peters, 2005] and [Del Moral et al., 2006], a wise choice for γ̃t(x1:t−1|xt) is

given by

γ̃t(x1:t−1|xt) =
t−1∏
s=1

Ls(xs+1,xs),

where the each Ls is the density of an (artificial) backward Markov kernel. It is important to

note that, by construction, γ̃t(x1:t) admits γt(xt) as a marginal, since∫
γ̃t(x1:t)dx1:t−1 = γt(xt)

∫ t−1∏
s=1

Ls(xs+1,xs)dx1:t−1 = γt(xt), ∀t > 1.

Moreover, provided that γ̃t admits γt as a marginal, the normalizing constant of the enlarged

density will be the same as the original density:∫
γ̃t(x1:t)dx1:t =

∫ ∫
γ̃t(x1:t)dx1:t−1dxt =

∫
γt(xt)dxt = Zt.

Now that we are back to the SMC framework from last section, we can easily write the

SMC Sampler algorithm (Algorithm 8). Moreover, the Resample-Move strategy from Section

3.4.1 can still be utilized.

3.4.3.1 Backward kernels selection
The introduction of the sequence of kernels {Lt−1}Tt=2 creates a new degree of freedom in SMC

samplers when compared with usual SMC algorithms, where only the forward mutation kernels

{Kt}Tt=1 should be designed. In this section we will discuss how to, given the kernels {Kt}Tt=1,

optimize the choice of backward kernels {Lt−1}Tt=2.

Denote by qt(xt) the marginal importance distribution at time t, which is given by

qt(xt) =
∫
q̃t(x1:t)dx1:t−1 =

∫
q1(x1)

t∏
j=2

Kj(xj−1,xj)dx1:t−1. (3.10)

In the case in which we know how to calculate qt in exact form we can simply approximate

the target distribution γt by a weighted sample {x(j)
t ,W

(j)
t }, where xt ∼ qt and Wt is the
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Algorithm 8: SMC Sampler algorithm.
Inputs: IS density q1, (forward) mutation kernels

{
Kt(xt−1,xt)

}T
t=1, (artificial)

backward kernels
{
Lt−1(xt,xt−1)

}T
t=1, move kernel Mt(x̂t, xt);

for j = 1, . . . , N do

Sample x(j)
1 from X1 ∼ q̃1( · ) (Mutation step);

Calculate the weights w(j)
1 = γ̃1(x(j)

1 )
q̃1(x(j)

1 )
;

end

Calculate the normalized weights W (j)
1 = w

(j)
1∑N

j=1
w

(j)
1

(Correction step);

for t = 2, . . . , T do

for j = 1, . . . , N do

Sample x(j)
t from Xt

∣∣Xt−1 = x(j)
t−1 ∼ Kt(x(j)

t−1, · ) (Mutation step);

Using (3.9) and (3.6), calculate the weights

w
(j)
t = γ̃t(x(j)

1:t )
q̃t(x(j)

1:t )
= w

(j)
t−1

γt(x(j)
t )Lt−1(x(j)

t ,x(j)
t−1)

γt−1(x(j)
t−1)Kt(x(j)

t−1,x
(j)
t )︸ ︷︷ ︸

incremental weight: α(x(j)
t−1,x

(j)
t )

;

end

Calculate the normalized weights W (j)
t = w

(j)
t∑N

j=1
w

(j)
t

(Correction step). ;

if ESSt < N/2 then

for j = 1, . . . , N do

Resample x̂(j)
t = x(k)

t with prob. W (k)
t (Resample step) ;

Sample x(j)
t ∼Mt(x̂(j)

t , · ) (Move step);

Set W (j)
t = 1/N ;

end

end

end

Result: Weighted random samples
{
x(j)
t , W

(j)
t

}N
j=1 approximating πt, for all

t = 1, . . . , T ;
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normalized version of wt = γt(xt)
qt(xt) . From the definition of qt we can see that sampling from qt

is simple if it is easy to sample from q1 and from all the kernels Kt. On the other hand, the

density of qt will only be tractable if we are able to solve the marginalization integral (in t− 1

dimensions) – which, in practice will hardly ever be the case.

The introduction of backward kernels {Lt−1}Tt=2 helps us (in most of the practical cases)

to avoid the computation of qt. On the other hand, since γ̃t and q̃t admits, respectively, γt and

qt as marginals, Lemma 3.4.4 tells us the price we need to pay: an increase in the variance

of the importance weights. Fortunately, the same Lemma provides us some insights on how to

optimally choose the backward kernels.

Lemma 3.4.4. Let f(x1,x2) and g(x1,x2) be two probability densities with supp(f) ⊂ supp(g).

Then

Varg
(
f(X1,X2)
g(X1,X2)

)
≥ Varg

(
γ1(X1)
g1(X1)

)
,

where f1(x1) =
∫
f(x1,x2)dx2 and g1(x1) =

∫
g(x1,x2)dx2.

Proof. From the variance decomposition, we have that

Varg
(
f(X1,X2)
g(X1,X2)

)
= Varg

(
Eg

[
f(X1,X2)
g(X1,X2)

∣∣∣X1 = x1

])
+ Eg

[
Varg

(
f(X1,X2)
g(X1,X2)

∣∣∣X1 = x1

)]
≥ Varg

(
Eg

[
f(X1,X2)
g(X1,X2)

∣∣∣X1 = x1

])
,

since f, g ≥ 0 (they are densities).

The result follows from the fact that the ratio of marginal densities can be rewritten as the

following conditional expectation:

f1(x1)
g1(x1) =

∫
f(x1,x2)

g1(x1)g2|1(x2|x1)g2|1(x2|x1)dx2

= Eg

(
f(X1,X2)
g(X1,X2)

∣∣∣X1 = x1

)
.

As mentioned previously, Proposition 3.4.5 shows how to design the backward kernels

{Lt−1}Tt=2 in order to minimize the variance of the importance weights.

Proposition 3.4.5 (Optimal backward kernel). The kernel

Loptt (xt+1,xt) = qt(xt)Kt+1(xt,xt+1)
qt+1(xt+1) is optimal in the sense that Var

q̃t
(woptt (X1:t)) ≤

Var
q̃t

(wt(X1:t)), where woptt (x1:t) = γt(xt)
qt(xt)

.
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Proof. If we substitute the optimal kernel into the definition of importance weights we have that

woptt (x1:t) = γ̃t(x1:t)
q̃t(x1:t)

= γt(xt)
∏t−1
s=1 L

opt
s (xs+1,xs)

q1(x1)
∏t
j=2Kj(xj−1,xj)

=
γt(xt)

∏t−1
s=1

qt(xt)Kt+1(xt,xt+1)
qt+1(xt+1)

q1(x1)
∏t
j=2Kj(xj−1,xj)

= γt(xt)
qt(xt)

.

The result, then, follows from Lemma 3.4.4.

From Proposition 3.4.5 we can see that if we know how to sample from qt(xt) then the SMC

sampler algorithm reduces to a sequence of IS steps, where at each time t we sample particles

from qt(xt) and correct the bias through the weights wt(xt) = γt(xt)
qt(xt) .

Independent kernel One situation where we know how to calculate qt(xt) is when Kt(xt−1,xt)

does not depend on xt−1, making the mutation step completely memory-less. As an abuse of

notation, let Kt(xt) = Kt(xt−1,xt). This choice is not always recommended to be used in

practice due to difficulties in designing an appropriate kernel, but in this case it is easy to see

that it is possible to perform a sequence of IS steps, since

qt(xt) =
∫
q1(x1)

t∏
j=2

Kj(xj−1,xj)dx1:t−1

=
∫
q1(x1)

t∏
j=2

Kj(xj)dx1:t−1

=
(∫

q1(x1)dx1

)t−1∏
j=2

∫
Kj(xj)dx1:t−1

(∫ Kt(xt)dxt
)

= Kt(xt).

Approximations of the optimal kernel Various approximations of the optimal backward

kernel have been proposed in the literature (see, for example [Del Moral et al., 2006, Section

3.3.3]) but here we will discuss only one of them.

If we rewrite the optimal backward kernel from Proposition 3.4.5 as

Loptt (xt+1,xt) = qt(xt)Kt+1(xt,xt+1)∫
qt(xt)Kt+1(xt,xt+1)dxt

it suggests that a sensible approximation for this kernel is to use πt instead of qt. In this case,

Loptt (xt+1,xt) ≈
γt(xt)Kt+1(xt,xt+1)∫
γt(xt)Kt+1(xt,xt+1)dxt

, (3.11)

since the normalizing constants of π cancel out.

Although the integral in the denominator of (3.11) is usually not analytically tractable we

can use the weighted sample {x(j)
1:t , w

(j)
t }Nj=1 from πt generated by the SMC sampler procedure
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to approximate Loptt by

Lt(xt+1,xt) = γt(xt)Kt+1(xt,xt+1)
1
N

∑N
j=1 w

(j)
t Kt+1(x(j)

t ,xt+1)
, (3.12)

which leads to incremental weights

α(xt−1,xt) = γt(xt)
1
N

∑N
j=1 w

(j)
t−1Kt(x(j)

t−1,xt)
. (3.13)

3.4.3.2 Forward kernels selection
So far we have discussed how to design backward kernels Lt that are optimal for specific choices

of forward kernels Kt. We now present possible choices of Kt in order to have simple forms of

importance weights when used with the optimal choice of backward kernel.

In this sense, one convenient choice for the forward kernels Kt is to assume they are such

that Kt(xt−1,xt) has πt as invariant density, i.e.,

πt(xt+1) =
∫
Kt+1(xt,xt+1)πt+1(xt)dxt.

Proceeding this way, we can choose the backward kernel as follows,

Lt(xt+1,xt) = πt+1(xt)Kt+1(xt,xt+1)
πt+1(xt+1) , (3.14)

which is a reasonable approximation for the optimal backward kernel from Proposition 3.4.5. It

also worth noticing the kernel defined on (3.14) is the reversal Markov kernel associated with

Kt+1.

For theoretical purposes, we may also assume the forward kernel mixes perfectly, i.e.,

Kt+1(xt,xt+1) = πt+1(xt+1). This choice of kernels is obviously not feasible in practice, since

πt+1(xt+1) is precisely the density we are trying to sample from, but it can provide interesting

insights. In this case, the incremental weights of the SMC sampler algorithm (see Algorithm 8)

are given by

α(xt−1,xt) = γt(xt)Lt−1(xt,xt−1)
γt−1(xt−1)Kt(xt−1,xt)

∝ πt(xt−1)
πt−1(xt−1) ,

which makes the weights at time t independent of the particles sampled at time t.

3.5 Simulation methods in the copula space
In this section we introduce the idea of transforming the original risk/capital allocation problem

from sampling a Rd-valued constrained random variable to sampling from a constrained copula,

in an algorithm to be made precise in Chapter 4.

As seen in equation (3.1), in order to calculate risk/capital allocations we need to compute

expectations of the form E[h(X) | g(X) ∈ A]. From the discussion in the previous sections,

this expectation can be approximated via a Monte Carlo simulation through the use of a set of

N weighted samples {x(j), W (j)}Nj=1 from the conditional distribution fX(x | g(x) ∈ A), where∑N
j=1W

(j) = 1. The approximation is, then, given by

E[h(X) | g(X) ∈ A] ≈
N∑
j=1

W (j)h(x(j)).
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For example, if we can directly sample i.i.d. realizations from the distribution of X | g(X) ∈

A (e.g., using a rejection scheme) we would have W (j) = 1/N . In general, though, samples from

the above conditional distribution are not readily available and we need to use an importance

sampling distribution (coupled with a rejection step), calculating the weights accordingly to

remove bias. However, if done naively this would result in very large rejection rates that would

behave poorly as the conditioning event becomes rarer. In the sequel we discuss a natural trans-

formation of multivariate random variables, which allows us to perform the sampling procedure

in the d-dimensional unit cube [0, 1]d.

For the expectations we are interested in, the conditioning event can be defined as [X ∈ GX] ,

where

GX := {x ∈ Rd : g(x) ∈ A}, (3.15)

since g(X) ∈ A⇐⇒ X ∈ GX. Given that our multivariate loss model is uniquely characterized

by a copula (either explicitly or implicitly, through a parametric joint distribution) the region

GX in Rd holds a close relationship with some region in [0, 1]d. Formally, if we define

GU :=
{
u ∈ [0, 1]d :

(
F−1

1 (u1), . . . , F−1
d (ud)

)
∈ GX

}
(3.16)

then it holds that

x ∈ GX ⇐⇒ u ∈ GU.

Therefore, similarly to the simulation of an unconditional multivariate distribution, to

sample x = (x1, . . . , xd) from the distribution of
(
X | g(X) ∈ A

)
we can

1. Produce a weighted sample {u(j), W (j)}Nj=1 from C such that u(j) = (u(j)
1 , . . . , u

(j)
d ) ∈ GU

for all j = 1, . . . , N ;

2. Return the weighted sample {x(j), W (j)}Nj=1 where x
(j)
i = F−1

i (u(j)
i ), for i = 1, . . . , d,

j = 1, . . . , N .

Note that one can calculate conditional expectations with respect to X as follows

E[h(X) | g(X) ∈ A] = E
[
h
(
F

(−1)
1 (U1), . . . , F (−1)

d (Ud)
)
|U ∈ GU

]
(3.17)

≈
N∑
j=1

W (j)h
(
F

(−1)
1 (U (j)

1 ), . . . , F (−1)
d (U (j)

d )
)
. (3.18)

Clearly, if all the marginal quantile functions F−1
i are known, then the difficulty of the

proposed approach is to sample from the constrained copula. The idea of performing the sam-

pling procedure in the constrained copula space has been independently developed by Arbenz,

Cambou and Hofert in [Arbenz et al., 2014] (see an overview of their algorithm in Section 3.6.1),

where an importance sampling distribution is designed to target the distribution of u |u ∈ GU.

In the algorithm developed in Chapter 4, instead of targeting the rare region u ∈ GU we

propose to sequentially target less rare regions, in a specially designed SMC Sampler procedure

that is made precise in Sections 4.1 and 3.4.
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Before presenting these specialized algorithms, it is informative to briefly comment on

alternative Importance Sampling (IS) based approaches in the actuarial literature. At this stage

we observe that there are many different types of rare-event simulation algorithms available, and

the choice of a particular type will depend principally on how one defines the notion of a “rare-

event” in the sample space. Although the following brief discussions on alternative IS based

solutions are not directly targeting the same type of multivariate rare-event problems as faced

in the case of capital allocation, they are informative to discuss especially with regard to the

concept of relative error.

3.6 Related simulation approaches for rare events
Differently from the problem we consider, where the interest lies on calculating expectations con-

ditional to a rare event, most of the literature on rare event simulation focus on the computation

of the probability of a rare event, a quantity that is perfectly known in our framework. Nonethe-

less, some of these methods hold a strong relationship with our proposed SMC algorithm, in

particular the class of splitting methods.

In the context of rare event estimation one of the most widespread methodology re-

lates to the broad field of splitting algorithms, which dates as far back as the 1950’s (see

[Kahn and Harris, 1951]). In order to calculate the probability of a stochastic process reaching a

rare event the authors propose to simulate many trajectories and duplicate those that approach

the event of interest, splitting the probability of interest in the product of easier to compute

terms.

This idea was rediscovered several years later in [Villén-Altamirano and Villén-Altamirano, 1991]

and named RESTART (REpetitive Simulation Trials After Reaching Thresholds) and since

then it has been considerably studied and improved, see, for example, [Glasserman et al., 1996],

[Glasserman et al., 1999], [Garvels, 2000], [Au and Beck, 2001] (under the name of subset sim-

ulation) and [L’Ecuyer et al., 2006].

These algorithms were linked with SMC methods and rigorously studied in [Cérou et al., 2005],

[Cérou et al., 2006], [Cérou and Guyader, 2007] and, more recently, [Cérou et al., 2012].

The idea of introducing intermediate steps in order to estimate the probability of rare

events has also been recently discussed in the new MCMC-based split sampling algorithm of

[Birge et al., 2012], related to the nested sampling algorithm of [Skilling, 2006].

Other simulation based algorithms for rare event simulation include the Esscher transform,

introduced in the actuarial literature in [Escher, 1932] and used, for example, in [McLeish, 2010];

and the cross entropy method (see [Kroese et al., 2013]).

Related to the allocation problem studied here, [Glasserman, 2005] presents, in the par-

ticular case of Gaussian copulas, an IS scheme to approximate conditional expectations. Also,

for the same family of models, [Siller, 2013] more recently proposed a method based on Fourier

transforms to compute marginal risk contributions.

We also note that there are classes of asymptotic approximation results available for ap-
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proximation of capital allocations. For instance, in order to estimate expectations of the form

(3.1) in a bivariate set-up, [Cai et al., 2015] assume that large values of g(X) correspond to high

values of h(X) (in their case h(X) = Xi). Under these constraints, the authors use results from

Extreme Value Theory (EVT) to derive an estimator of (3.1) and study some of its properties.

We refer the interested reader to references in [Cai et al., 2015] for further background on such

asymptotic approximations and instead we continue to focus upon sampling based solutions.

The closest class of IS based solution to our proposed SMC Sampler solution has been de-

veloped recently by [Arbenz et al., 2014]. We present this briefly before detailing our approach.

3.6.1 Arbenz-Cambou-Hofert algorithm
In common with the sampling method proposed in Chapter 4, the approach recently developed in

[Arbenz et al., 2014] involves sampling from a target distribution given by a constrained copula.

This is particularly relevant as it leads to convenient bounded state spaces for sampling, since

the support of the copula when unconstrained is [0, 1]d and consequently the constrained copula

will be on a sub-space of this hypercube.

Unlike our proposed solution, the approach of [Arbenz et al., 2014] involves developing an

Importance Sampling (IS) scheme targeting the constrained copula distribution. However, in

contrast to our approach their method does not involve any intermediate sequence of constrained

regions leading smoothly up to the rare-event constraint. Instead, they try to directly approxi-

mate the optimal importance sampling proposal. This is in general a very challenging task and

they have some interesting insight. For this reason we briefly present their methodology below

as it will form a direct comparison with the approach we develop.

In [Arbenz et al., 2014] the aim of their work is to generate a sample from the unconditional

copula with most of the particles satisfying a condition such as (3.16). In order to generate these

samples, an importance sampling distribution FV is designed as a mixture of conditional copulas.

More formally, the IS distribution is defined as

FV(u) =
∫ 1

0
C [λ](u)dFΛ(λ), (3.19)

where C [λ] is the distribution of U conditional on the event that at least one of its components

exceeds λ, i.e.,

C [λ](u) = P[U1 ≤ u1, . . . , Ud ≤ ud | max{U1, . . . , Ud} > λ].

In the main algorithm presented in [Arbenz et al., 2014], samples from the importance

distribution are generated by rejection, but a “conditional sampling algorithm” is also presented.

Overall, an appealing aspect of their proposed method is that it does not make use of the

copula density explicitly. This can be advantageous in settings in which the copula density

is computationally expensive to be calculated or even unknown. However, as with all Monte

Carlo methods, there are also drawbacks to the proposed approach that we will argue can be

overcome through development not of an IS solution but instead via a SMC Sampler solution

in the constrained copula space.
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Under simplifying assumptions on the joint behaviour of U, an optimal distribution for FΛ

is presented, but in general the only restriction on the choice of the mixing distribution FΛ is

that P[Λ = 0] > 0. To sample from X |X > B one of the algorithms proposed is given as

follows.
Algorithm 9: IS-ACH algorithm from [Arbenz et al., 2014].

Inputs: N: desired sample size for FV; FΛ: mixing distribution (as in (3.19)) ;

for j = 1, . . . N do

Sample Λ(j) ∼ FΛ ;

Sample u(j) ∼ C until max{u(j)
1 , . . . , u

(j)
d } > Λ(j) ;

Define x(j)
i = F−1

i

(
u

(j)
i

)
for i = 1, . . . , d ;

Compute the importance weight w(j) := w(u(j)) as in [Arbenz et al., 2014], Section 5 ;

Compute the normalized importance weight W (j) = w(j)∑N

j=1
w(j)

;

Define {ũ(jk)}Ñk=1 as the sub-set of {u(j)}Nj=1 such that
∑d

i=1 x̃
(jk)
i > B;

end

Result: Weighted random samples (of random sample size Ñ):
{

u(j), W (j)}Ñ
j=1

;

Some points need to be stressed about Algorithm 9. First, let E[NV] denote the expected

number of draws from C in order to have a sample satisfying max{u1, . . . , ud} > Λ. It can be

easily shown that (see [Arbenz et al., 2014], Lemma 4.2)

E[NV] =
∫ 1

0

1
1− C(λ1)dFΛ(λ),

where 1 = (1, . . . , 1) ∈ Rd. Therefore, to generate a sample of fixed size N from FV it is

necessary to sample (on average) N × E[NV] times from C.

Another important aspect of this algorithm pertains to an understanding of the number

of “particles” (samples) which are obtained with non-zero weight. Since p0 = P[Λ = 0] is

necessarily positive, we can ensure some of the N samples from FV will be actually from the

unconditional copula C, meaning that p0×0.99×100% of the particles are expected not to satisfy

the condition
∑d
i=1Xi > VaR0.99(

∑d
i=1Xi). For λ > 0 the same behaviour is expected, leading,

in practice, to Ñ (as defined in the last step of Algorithm 9) being smaller than N , and in cases

of relevance to capital allocation, this difference can be significant, with Ñ << N . In capital

allocation problems such cases can prove to be a serious problem in terms of computational cost

and efficiency for this IS based approach as will be discussed in Section 4.3.

3.7 Final remarks
Note that in any practical scenario the quantile level α in the allocation problem will be cho-

sen to be close to one and both conditioning events will have very small probabilities, i.e.,

P[g(X) ∈ A] ≈ 0. More precisely, the event will have probability 1 − α for the ES case and

probability zero (regardless of the choice of α) in the VaR case, since the set A is a single

point. Therefore in practice, in the VaR case one would work instead with an ε approxima-

tion by setting the conditioning event as the ε-ball of A given by Bε(A) specified according
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to Bε(A) =
[
VaRα(

∑d
i=1Xi)− ε, VaRα(

∑d
i=1Xi) + ε

]
for some small positive ε in the neigh-

bourhood of zero. This type of approach was advocated in [Glasserman, 2005] and also in

[Del Moral et al., 2013].

From a risk management perspective, many other choices of h and g can be of interest. For

example, if one is interested in measuring the impact of marginal tail events in the portfolio,

one could calculate expectations of the form E[
∑d
i=1Xi |Xk > VaRα(Xk)], where the choices

of h, g and A are trivial.



Chapter 4

Capital allocation for copula-dependent

risk models

In this chapter we propose to approach the problem of sampling from a (highly) constrained

multivariate distribution by (1) making explicit use of its copula and (2) sequentially approaching

the target distribution through a sequence of less constrained densities. The usage of the copula

structure in the sampling procedure has being independently developed in [Arbenz et al., 2014]

(see also the discussion in Section 3.6.1) while the sequential approach was studied in several

papers, such as [Johansen et al., 2006] and [Cérou and Guyader, 2007]. The main contribution

of this chapter is to merge these two ideas and propose an algorithm which is flexible enough

to solve the problem of capital allocation for generic risk distributions. Moreover we provide

numerical evidence of its efficiency when compared to a simple Monte Carlo scheme or the state

of the art algorithms.

Parts of this chapter were published in [Targino et al., 2015].

4.1 Reaching rare-events through sequences of intermedi-

ate sets
The idea of using intermediate sets to approximate the conditional density fX|g(X)∈A(x) is

to start sampling from the unconditional distribution fX(x) and move the weighted particles

towards the rare conditioning set through “not so rare” sets, as in the splitting algorithms

discussed in Section 3.6

Using the notation from the previous section, for a fixed function g and set A, let {At}Tt=1

be a sequence of nested sets shrinking to A, i.e., At ⊂ At−1 and At ↓ A, when t → T . This

sequence of sets defines a sequence of regions (as before):

GXt
:= {xt ∈ Rd : g(xt) ∈ At},

GUt
:=
{
ut ∈ [0, 1]d :

(
F−1

1 (ut,1), . . . , F−1
d (ut,d)

)
∈ GXt

}
.

Although it is true that

xt ∈ GXt
⇐⇒ ut ∈ GUt

,
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with ut = (ut,1, . . . , ut,d) :=
(
F1(xt,1), . . . , Fd(xt,d)

)
we will see in the sequel that working in the

bounded space [0, 1]d will have some advantages in the design of the algorithm. In this set-up

our goal will be ultimately to have (weighted) samples
{

u(j)
T , W

(j)
T

}N
j=1

from the conditional

copula c(uT |uT ∈ GUT
) which would be then transformed through the marginal inverse c.d.f.’s

in order to get a weighted sample from fX(x |x ∈ GXT
).

Following the notation used in Section 3.4.3 we define our target distribution at each time

step (level) t = 1, . . . , T as

πt(ut) :=
c(ut)1{ut∈GUt}(ut)

P[Ut ∈ GUt ]
. (4.1)

4.1.1 Copula constrained geometry

Before we formalize the algorithm to sample from the constrained copula, we study some prop-

erties of the restricted region in the copula space, defined in (3.15) and (3.16), for the particular

case where g(X) =
∑d
i=1Xi and A = [B,+∞). The idea is that the knowledge of the restricted

region can help us to design more efficient sampling schemes. Similar analyses can be performed

for different restrictions.

For the particular choices of g(·) and A given above, our interest, in Rd, is to study

points such that
∑d
i=1 xi = B which turn out to be equivalent to points in [0, 1]d such that∑d

i=1 F
−1
i (ui) = B. It is easy to see that each of these curves (in Rd or in [0, 1]d) lie in a d− 1

dimensional space. Formally, these curves are defined through the following mappings

G̃X :=
{

(x1, . . . , xd−1) ∈ Rd−1 : (x1, . . . , xd−1, B −
d−1∑
i=1

xi)
}
,

G̃U :=
{
u−d := (u1, . . . , ud−1) ∈ [0, 1]d−1 :

(
u1, . . . , ud−1, r(u−d)

)}
, (4.2)

where r(u−d) := Fd

(
B −

∑d−1
i=1 F

−1
i (ui)

)
.

First of all, note that if g is a generic continuous function and all the marginal c.d.f.’s

F1, . . . , Fd are continuous, then the curve G̃U (defined similarly to (4.2)) will be continuous.

Moreover, the region GU in (3.16) will not be the union of disjoint set, but only one continuous

region. Some other properties of these regions may be derived in particular cases. For example,

we know that in the linear case, i.e., g(X) =
∑d
i=1Xi, the curve in [0, 1]d passes through the

points
(
F1(B), 0, . . . , 0

)
,
(
0, F2(B), 0, . . . , 0

)
, . . . ,

(
0, . . . , 0, Fd(B)

)
.

Another interesting information about the curve G̃U is given by its curvature, as seen in

the next Proposition.

Proposition 4.1.1. The curve G̃U defined in (4.2) is convex at (u1, .., ud−1, r(u−d)) if

〈u−d, ∇2r(u−d)u−d〉 > 0, ∀u−d ∈ Rd−1,

where 〈x,y〉 is the inner product of x and y and ∇2f is the Hessian matrix of f .
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Figure 4.1: Frank copula with parameter 2, Log-Normal marginal c.d.f.’s, both with same µ = 3,

and σ1 = 0.4, σ2 = 0.6. (Top row) Constraint in the original space, for B = 0, 23, 46 (Bottom row)

Constraint in the Copula space, [0, 1]2, for equivalent levels.

In the particular case where r(u−d) := Fd

(
B −

∑d−1
i=1 F

−1
i (ui)

)
the general terms of the

Hessian matrix are given by

∂2r

∂uj∂uk
(u−d) =

f ′d

(
B −

∑d−1
i=1 xi

)
fj(xj)fk(xk) , ∀j 6= k, j, k = 1, . . . , d− 1

∂2r

∂u2
j

(u−d) =
f ′d

(
B −

∑d−1
i=1 xi

)
fj(xj) + fd

(
B −

∑d−1
i=1 xi

)
f ′j(xj)

[fj(xj)]3
,

∀j = k, j = 1, . . . , d− 1

where, once again, we use the notation xi = F−1
i (ui) to make the above formulas more appealing.

From Proposition 4.1.1, in the very particular case where d = 2 and X1, X2 ≥ 0 (represent-

ing losses, for example) the concavity of G̃U is determined only by the sign of

f ′2 (B − x1) f1(x1) + f2 (B − x1) f ′1(x1).

This is due to the fact that the denominator is the power of a density function (non-negative)

and that x1 is non-negative.

On Figure 4.1 we can see that for different constraint levels the curve in [0, 1]2 presents

different shapes, continuously varying from a convex to a concave region.

4.2 Design of a SMC sampler with linear constraints for

capital allocation
In this section we return to the problem of sampling from the distribution of

(X
∣∣ ∑d

i=1Xi > B) producing samples from U ∈ GU, as explained in section 3.5. To use the

algorithm specified in Section 3.4.3 we still need to design: (1) the forward kernels Kt(ut−1, ut),
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(2) the backward kernels Lt−1(ut, ut−1) and (3) a Markov Chain move kernel M (in the spirit of

Section 3.4.1). For the backward kernel we use the approximation to the optimal one presented

in Section 3.4.3.1; the forward kernel and the “move” kernel are presented, respectively, in

sections 4.2.1 and 4.2.2

4.2.1 Forward kernel

For the forward kernel Kt(ut−1,ut), if we can guarantee that any move from ut−1 to ut will

already be in GUt then we will not loose any particle in the mutation step, improving the

efficiency of the algorithm. Since we are developing the sampling procedure in [0, 1]d then,

under the assumption that we can precisely characterize the constraint region GUt
(i.e., we can

calculate F−1
i for all i = 1, . . . , d) then we can propose a “slice-sampling” procedure for Kt, as

described below.

The idea of this type of kernel is that we can first sample d− 1 coordinates of the vector ut
(chosen randomly) and then, conditional on these values, sample the last component constrained

to an interval that will ensure that
∑d
i=1 xi > Bt. In general these kernels will look like

Kt(ut−1, ut) =
d∑

m=1

[
K

(−m)
t (ut−1,−m,ut,−m)K(m)

t (ut−1,m, ut,m)
]
pm, (4.3)

where pm is the probability of the m-th coordinate being the last one to be chosen,

ut,−m = (ut,1, . . . , ut,m−1, ut,m+1, . . . , ut,d) is the vector ut without its m-th coordinate and

K
(−m)
t is the kernel that moves the d − 1 dimensions of ut−1,−m to time t. Similarly, K(m)

t

denotes the kernel that moves ut−1,m to ut,m ensuring that
∑d
i=1 xt,i > Bt.

To guarantee the condition is satisfied, K(m)
t needs to be defined over [But (m), 1], where

But (m) := F−1
m (Bxt (m)) (4.4)

with

Bxt (m) := max
{

0, Bt −
d∑
i=1
i 6=m

Fi(ut,i)
}
. (4.5)

For simplicity, we can choose the last move to be uniformly distributed in [But (m), 1], leading

to

K
(m)
t (ut−1,m, ut,m) = ut,m

1−But (m)1{ut,m∈[But (m),1]}(ut,m).

For the sake of simplicity, we only discuss the case where K(−m)
t consists of independent

moves in each dimension, i.e.,

K
(−m)
t (ut−1,ut) =

d∏
i=1
i6=m

K
(−m,i)
t (ut−1,i, ut,i). (4.6)

Moreover, we also assume that pm = 1/d, for all m = 1, . . . , d, giving equal probabilities to all

elements being the last one to be chosen.
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Uniform moves in GU The first (näıve) idea is to define the move in each component of

u as uniform, leading to a marginal kernels K(−m,i)
t (ut−1,i, ut,i) = ut,i1{ut,i∈[0,1]}(ut,i) and,

consequently,

Kt(ut−1,ut) = 1
d

d∑
m=1

 d∏
i=1
i 6=m

ut,i1{ut,i∈[0,1]}(ut,i)

( ut,m
1−But (m)1{ut,m∈[But (m),1]}(ut,m)

)
.

As we can see from the construction of this kernel, it is clearly independent of ut−1 and the

comments by the end of Section 3.4.3.1 apply, meaning that the problem reduces to a series of

Importance Sampling problems.

Global adaptive Beta moves in [0, 1]d−1 One strategy to use the information contained in

ut−1 in the mutation step is to use the whole set of weighted particles at t− 1 to estimate the

parameters of the mutation kernel (subject to some restriction).
Since our kernels are defined in [0, 1], a reasonable idea is to use a global Beta kernel, in

the sense that all particles at time t − 1 are mutated through the same kernel. To select the
parameters of the Beta distribution we match the first two moments of the Beta distributions
with its sample moments at time t − 1. Formally, let us denote {u(j)

t−1, W
(j)
t−1}Nj=1 the set of N

weighted particles at time t− 1 and K(−m,i)
t (ut−1,i, ut,i) = Beta(ut,i; αt−1,i, βt−1,i), where the

right hand side term denotes the density of a random variable Yt−1,i which is Beta distributed
with parameters αt−1,i and βt−1,i, evaluated at ut,i. Then, matching the first two moments we
have

E[Yt−1,i] = αt−1,i

αt−1,i + βt−1,i
=

N∑
j=1

W
(j)
t−1u

(j)
t−1,i =: µ̂t−1,i,

Var(Yt−1,i) = αt−1,iβt−1,i

(αt−1,i + βt−1,i)2(αt−1,i + βt−1,i + 1) = µ̂2
t−1,i −

N∑
j=1

Wt−1

(
u

(j)
t−1,i

)2
:= σ̂2

t−1,i

and after some algebra we find

α̂t−1,i = (1− µ̂t−1,i)
σ̂2
t−1,i

µ̂2
t−1,i

β̂t−1,i = α̂t−1,i

(
1

µ̂t−1,i
− 1
)
.

Therefore, an approximation for the mutation kernel at time t and dimension i – as in (4.6)

– is given by

K
(−m,i)
t (ut−1,i, ut,i) = Beta(ut,i; α̂t−1,i, β̂t−1,i). (4.7)

Remark 4.2.1. It is important to emphasize the kernel in (4.7), when plugged into (4.6) and

(4.3), does not require any tuning and is not independent of ut−1,i, as the parameters of the

Beta distribution depend on these values.

Figure 4.2 exemplifies the mutation of one particle ut−1 = (0.2, 0.7) (which is in the (t−1)-

th level set) to ut = (0.6, 0.9) (which is in the t-th level set). The mutation starts moving the

first coordinate of ut−1 through a Beta distribution and then the second coordinate is moved

following a uniform distribution defined in the appropriate region.
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Figure 4.2: Example of the Global Beta kernel for a Gumbel(1.5) copula with Log-Normal marginals:

(µ1 = 0.6, σ1 = 1.4), (µ2 = 0.4, σ2 = 1). The boundaries are such that F−1
1 (u1) + F−1

2 (u2) >

2.25 and 3.57.

4.2.2 Markov Chain move kernel
Since the forward kernels designed in Section 4.2.1 ensure the new particles will satisfy the

condition at level t one possibility is to use the same kernel as a proposal in a M-H algorithm.

The drawback would be that in higher dimensions the acceptance rate of the M-H would be

extremely small. Instead, here we propose the use of a Gibbs sampling algorithm, that should

be always preferred when the full conditional densities are known.

Suppressing the dependence in t in the vector u and denoting v∗(m) := (u∗1, . . . , u∗m,

um+1, . . . , ud) we have that the full conditional for a generic coordinate m = 1, . . . , d can be

written as

πt(u∗m |u∗1, . . . , u∗m−1, um+1, . . . , ud) = πt(u∗1, . . . , u∗m, um+1, . . . , ud)
πt(u1, . . . , um−1, um+1, . . . , ud)

∝ πt(v∗(m))

∝ c(v∗(m))1{v∗(m)∈GUt}(v
∗(m)).

Note that the full conditional distribution for the m-th coordinate of u is a probability distri-

bution for u∗m. On the other hand, since u∗1, . . . , u∗m−1, um+1, . . . , ud are fixed, we can rewrite

the condition [v∗(m) ∈ GUt ] as u∗m ∈ [Bu(m), 1], with Bu(m) as in (4.4).

To sample u∗m from its full conditional distribution one can use a univariate slice sampler

algorithm (see [Neal, 2003] and Section 3.3.3, above), which only requires the full conditional

target up to a normalizing constant. In Figure 4.3 we present an example of such a Markov

Chain move. On the leftmost plot, the initial point is (u1, u2) = (0.9, 0.3). First, the support

of the full conditional distribution is calculated, i.e. Bu(1) = 0.6, and plotted as a cross on the

second figure. Then, a value u∗1 = 0.8 is sampled from π(u1 |u2 = 0.3) (a square in the second

plot). On top of the second plot we present the full conditional distribution (truncated on the

left at Bu(1) = 0.6). For this value we find that Bu(2) = 0 and the support of the next full

conditional distribution is [0, 1] (the actual density is plotted vertically). The second coordinate

u∗2 = 0.7 is then sampled from π(u2 |u∗1 = 0.8). In the last plot we have the final move, from

(u1, u2) = (0.9, 0.3) to (u∗1, u∗2) = (0.8, 0.6).
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Figure 4.3: Example of the move kernel for a Gumbel(1.5) copula with Log-Normal marginals: (µ1 =

0.6, σ1 = 1.4), (µ2 = 0.4, σ2 = 1). The boundary is such that F−1
1 (u1) + F−1

2 (u2) > 3.57.

4.3 Case studies
In this section we present some simulation examples of the performance of the proposed Copula-

Constrained SMC Sampler algorithm. For all the simulations and density calculations we made

extensive use of the R-package copula [Hofert et al., 2014].

For S =
∑d
i=1Xi, the aim of all methods presented here is to calculate conditional expec-

tations of the form

Ai = E [Xi |S > VaRα(S)] , for i = 1, . . . , d (4.8)

where the α quantile (VaRα) is assumed to be perfectly known (see comments below) and

α ∈ (0.1, 0.2, . . . , 0.9, 0.95, 0.99, 0.995, 0.999, 0.9995, 0.9999, 0.99995). Moreover, as in

[Arbenz et al., 2014], we assume the marginal distributions of X are Log-Normal with

Xi ∼ LN(10− 0.1i, 1 + 0.2i), i = 1, . . . , d.

For all the examples presented here, since we are not able to express the VaRα of the

aggregated process in a closed form, the first step is to to calculate a reliable approximation of

this quantity, for each level α of interest. This is done through a Monte Carlo simulation of

the loss vector X = (X1, . . . , Xd) – from which we can compute the aggregate loss S – of fixed

size Nq = 10, 000, 000. Given a particular sample of size Nq, all the quantiles of the aggregate

loss can be calculated. This process is, then, repeated for Nrep = 500 times, and the α-quantile

is set as the average of the α-quantiles over all the 500 runs. The reader should note that the

estimate of extreme quantiles (for example α = 0.9999) will be less precise than the estimate of

lower quantiles (such as α = 0.3), but for the purpose of comparing the proposed algorithm with

competing strategies this is irrelevant, as long as the quantile used in the conditioning argument

of (4.8) is the same for all methods.

After calculating the quantiles for all levels α (which are, from now on, assumed to be

exact) the baseline comparison values for the expectations in (4.8) are calculated as follows. For

each level α we sample as many loss vectors X as necessary in order to have a sample of size

NMC = 1, 000 satisfying the condition S > VaRα(S). At this point we note that this naive

Monte Carlo sampling strategy is very inefficient and would never be utilized in practice, due
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to the huge computational cost, but it provides us reference comparison to our more efficient

SMC Sampler. To perform these simulations we required the usage of hundreds of cores from

UCL Legion High Performance Computing Facility.

The expectations in (4.8) are, then, estimated as

Âi,MC = 1
NMC

NMC∑
j=1

X
(j)
i ,

where X(j), j = 1, . . . , NMC are the samples satisfying the condition S > VaRα(S). This

procedure is repeated Nrep = 500 and the Monte Carlo estimate Âi,MC is taken as the average

over these Nrep repetitions, as follows

Âi,MC = 1
Nrep

Nrep∑
k=1
Â(k)
i,MC ,

where Â(k)
i,MC stands for the estimate (using NMC particles) of Ai,MC from the k-th run (out of

Nrep). Analogously we can also define the variance of the MC estimator, Var(Âi,MC). Likewise,

we denote by NSMC the number of particles used in the SMC algorithm, and by Var(Âi,SMC)

the variance of its estimate, also calculated using Nrep runs.

One may observe that the expected number of samples in the Monte Carlo scheme in order

to have NMC samples satisfying the α condition is equal to MMC = NMC/(1 − α), which can

be prohibitive if α is very close to 1.

For all the examples, the efficiency of the algorithms is measured with respect to the Vari-

ance Reduction when compared with a simple Monte Carlo scheme (properly normalized). More

formally, if the SMC algorithm uses T levels to approximate (4.8) then we denote by Variance

Reduction the ratio:

Variance Reduction = MMC ×Var(Âi,MC)
/
T ×NSMC ×Var(Âi,SMC). (4.9)

We note this is a conservative measure of the Variance Reduction, as typically practitioners

may only use in the denominator NSMC×Var(ϕ̂SMC). In addition, the Variance Reduction must

be analysed in conjunction with the estimation bias. For this purpose we study the Relative

Bias, defined as the relative difference from the SMC estimate to the MC estimate (assumed to

be the truth, due to the very large sample sizes taken):

Relative Bias = Âi,SMC − Âi,MC

Âi,MC

If the level of interest of the expectations in (4.8) is, for example, α = 0.999

then, the SMC algorithm designed here will use as intermediate levels the quantiles

α = 0.1, 0.2, . . . , 0.9, 0.95, 0.99, 0.995. Although expectations conditional on quantiles at lower

levels, such as 0.1, . . . , 0.9 are not of direct interest for risk managers, as a by-product of the

SMC algorithm, weighted samples from all the intermediate levels are created and all the

conditional expectations can be estimated.
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Figure 4.4: Coefficient of multivariate lower tail dependence for a 5-dimensional Clayton copula.

4.3.1 Clayton copula dependence between risk cells
In this first study we suppose we have a simple business unit and risk cell structure in which

it is assumed that the dependence is on the annual losses and given simply by a Clayton cop-

ula (see Definition 2.1.8). We first study a representative simple case, with dimension d = 5

and investigate the behaviour of the proposed algorithm for different parameters values with

fixed number of particles NSMC = 250. To choose the parameters of interest we set the mul-

tivariate coefficient of (lower) tail dependence λl (see [De Luca and Rivieccio, 2012] or Propo-

sition 2.1.20 and Figure 4.4) to be approximately equals to 0.25, 0.5, 0.75 and 0.9, which led

to θ = 0.16, 0.33, 0.78 and 2.12 (see Figure 4.4). To compare with the results presented in

[Arbenz et al., 2014], the parameter value θ = 1 is also considered.

On Figure 4.5, we present the Relative Bias (top row) and Variance Reduction (bottom row)

for the entire range of different copula parameters and quantile levels. For ease of presentation,

only three expectations are shown, namely the first marginal (i = 1), the last marginal (i = 5)

and the sum of all marginal expectations (which is precisely the Expected Shortfall for the

aggregated loss). From the Relative Bias analysis one can see that, regardless of the copula

parameter and quantile levels, the estimation error is always smaller than 4% (in absolute

value).

Since the estimates are unbiased, it makes sense to look at the Variance Reduction set of

plots (bottom row of Figure 4.5). In the vertical axis of the plot the log10(Variance Reduction)

is presented, meaning that, for example, the variance of the SMC algorithm is 101.17 ≈ 15 times

smaller than the MC scheme when θ = 2.12 and α = 0.999. The horizontal line at 0 defines

the threshold where the SMC method outperforms a simple Monte Carlo: when the Variance

Reduction is bellow the line the MC variance is smaller. As one should expect, for lower quantile

levels a simple MC scheme should be preferred over the SMC method, since the condition in
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(4.8) can be easily satisfied with a reasonably small sample size. On the other hand, as soon as

the conditioning event becomes rarer, the variance of the simple Monte Carlo scheme starts to

increase polynomially fast when compared with the variance of the proposed SMC algorithm.

The rarer the conditioning event the more computationally efficient it becomes to use

the SMC Sampler method proposed. As previously mentioned, when α ≈ 1 the number of

Monte Carlo samples required in order to generate one sample satisfying the conditioning event

increases like 1/(1−α). On the contrary, the SMC sampler is constrained to always use a fixed

number of particles, independently of the rareness of the event. This is a significant advantage

of such an approach.

For the ACH Importance Sampling algorithm of [Arbenz et al., 2014], discussed in Section

3.6.1, we follow the suggestion proposed in the original work involving the use of a discrete version

of the optimal mixing distribution FΛ (see (3.19)) with mass concentrated on the following 20

points: xk = 1−0.5k, k = 1, . . . , 20. For a fixed quantile level α and parameter θ, the calibration

of FΛ follows the procedure proposed in [Arbenz et al., 2014, Section 6.1] which uses the stop-

loss as the objective function

Ψ̃(u) = max
{

d∑
i=1

F−1
i (ui)−VaRα

(
d∑
i=1

F−1
i (ui)

)
, 0
}
.

Whilst the SMC algorithm is only asymptotically unbiased (although it can be seen from

Figure 4.5 the finite sample bias can be negligible) the IS–ACH is unbiased for any finite sample

size NIS <∞. Therefore it is not necessary to analyse the Relative Bias of the method.

On the other hand, following the notation on Section 3.6.1, for a fixed parameter θ a new

efficiency measure can be studied as a function of α. We denote by PIS(α) the “percentage of

particles with non-zero weight” for the α quantile. Formally this quantity is defined as

PIS(α) = E[Ñ ]
E[NV]NIS

, (4.10)

where NIS is the desired sample size of the algorithm and Ñ and E[NV] are, respectively, the

number of particles with non-zero weight and the number of draws in the rejection algorithm

in order to have one sample from FV (see Section 3.6.1). Intuitively we should expect some

Variance Reduction if, and only if, the quantity PIS(α) is larger than 1− α.

As in the analysis made for the SMC algorithm, for the IS–ACH we also look at the

(rescaled) Variance Reduction. To take into account the rejection steps in the algorithm we

work with the following Variance Reduction formula

Variance Reduction = NMC × V̂ar(Âi,MC)
/
E[NV]×NIS × V̂ar(Âi,IS). (4.11)

From Figure 4.6 (top) we can see that the percentage of particles with non-zero weight,

PIS(α), is always smaller than the 1−α, indicating an inefficiency of the IS–ACH algorithm. This

inefficiency is verified in the bottom of the same figure, where the scaled Variance Reduction

(as of 4.11) is presented. As in the SMC case, the Variance Reduction factor increases as a
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Figure 4.5: Relative Bias (top) and Variance Reduction (bottom) for the 5-dimensional Clayton copula using the SMC algorithm. Using the notation from

(4.8), • Marginal for i = 1, • Marginal for i = 5, • Sum of all the marginal conditional expectations (Expected Shortfall).
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Figure 4.6: Ratio between the percentage of particles with non-zero weight and 1 − α (top) and Variance Reduction (bottom) for the 5-dimensional Clayton

copula using the IS–ACH algorithm. Using the notation from (4.8), •Marginal for i = 1, •Marginal for i = 5, • Sum of all the marginal conditional expectations

(Expected Shortfall).
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Figure 4.7: Coefficient of multivariate upper tail dependence for a Gumbel(1.25) copula.

function of α, but in the IS–ACH case it is always smaller than 1. Although this is the case, we

can expect the method to be efficient (in the Variance Reduction sense) as we get even closer

to α = 1.

4.3.2 Gumbel copula dependence between risk cells

In the second example we analyse the impact of the dimension in the estimation of conditional

expectations when the copula is assumed to be from the Gumbel family (see Definition 2.1.8).

In this case we have chosen one parameter value (θ = 1.25) in order to have values for the

coefficient of multivariate upper tail dependence (see Proposition 2.1.20) ranging from very mild

dependence (λu ≈ 0.25) up to very strong dependence (λu ≈ 0.9) in a highly constrained copula

density, i.e., a single Gumbel copula in up to 7 dimensions. The coefficients of multivariate

upper tail dependence are presented in Figure 4.7.

The SMC algorithm was studied for examples including dimensions d = 2, 3, . . . , 7 with

NSMC = 250 particles and the results are presented on Figure 4.9. From the top row we can

see the Relative Bias of the conditional expectations for low dimensional copulas (e.g., d = 2

or d = 3) is well behaved, being at most 5% of the true (Monte Carlo) value when d = 2

for all quantiles. When the dimensionality of the problem increases, though, a larger bias is

observed. This is expected, as a single Gumbel copula in 7 dimensions, for instance, is highly

constrained and its mass is mostly concentrated in a small area of the upper right quadrant of

the 7-dimensional hypercube [0, 1]7. In the worst case, for the first marginal of a d dimensional

copula, the Relative Bias reaches more than 40% of the true value. To reduce this bias, one must

increase the number of particles in the SMC Sampler. Here we have selected a very conservative

set of NSMC = 250 particles. Next we studied the bias reduction as the number of particles

increases, verifying the asymptotic unbiasedness of the SMC Sampler when NSMC →∞.
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Figure 4.8: Relative Bias (top) and Variance Reduction (bottom) for the Gumbel(1.25) copula

using the SMC algorithm with NSMC = 250, 500 and 1, 000 particles. Using the notation from

(4.8), α = 0.999, •Marginal for i = 1, •Marginal for i = d, • Sum of all the marginal conditional

expectations (Expected Shortfall).

From the bottom row of Figure 4.9 we can see that in all dimensions presented the SMC

method is highly effective regarding decreasing the variance of the estimates when the quantile

is larger than 0.999 but, as in the Clayton case, it is less efficient than a simple MC when the

quantile is low.

Even though the bias involved in the SMC procedure is large for dimensions larger than

d = 3, Figure 4.8 shows that one can decrease the absolute bias by increasing the sample size

used in the SMC algorithm. For example, for the first marginal in 6 dimensions the Relative

Bias goes from −35% to −30% when the number of particles increases from NSMC = 250 to

NSMC = 1, 000. The drawback of the increase in the sample size is that the method gets

less effective in the Variance Reduction sense, although even in the case where d = 6 and

NSMC = 1, 000 we still observe some humble improvement in the variance.

It is important to note that the estimation of expectations of the form (4.8) in the Gumbel

model is extremely challenging, specially due to the fact that, differently from the Clayton

copula, the Gumbel copula possess an intricate dependence structure near the upper right

corner of the unit cube. In this case the exploration of the [0, 1]d needs to be done in an even

more careful way, in order to avoid regions with low probability density. In practice, it is also

important to consider the design of the mutation kernel in the SMC Sampler algorithm, if higher

dimensions are considered.
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Figure 4.9: Relative Bias (top) and Variance Reduction (bottom) for the Gumbel(1.25) copula using the SMC algorithm. Using the notation from (4.8), •

Marginal for i = 1, • Marginal for i = d, • Sum of all the marginal conditional expectations (Expected Shortfall).
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Figure 4.10: Hierarchical Clayton Copula.

4.3.3 Hierarchical Clayton copula dependence between business units

and event types
As a final example we show the utilization of the SMC Sampler method in a hierarchical alloca-

tion process (as in Section 2.2.2). As a toy model, we assume a bank is divided in two different

Business Units (B.U.). For the first one it is assumed that Operational Losses are due to three

different Event Types (E.T.), while for B.U.2 losses may come from four different E.T.. For

the simulation and also density calculation, in this example we made use the R-package HAC

[Okhrin and Ristig, 2014].

This bank structure can be conveniently modelled with the help of a Hierar-

chical Archimedean Copula (HAC), also known as Nested Archimedean Copula (see

[Okhrin and Ristig, 2014] and Section 2.1.1). For this example we have chosen a Hierarchi-

cal Archimedian Copula as in Figure 4.10. The dependence of the three E.T.’s on B.U.1 is

given by a Clayton copula with parameter θ1 = 0.75, while within the 4 E.T.’s in B.U.2 the

dependence is modelled through a Clayton copula with parameter θ2 = 1. Moreover, any loss

on B.U.1 is related to losses in B.U.2 through a Clayton copula with parameter θ0 = 0.5. The

copula for this model is given by

C(u) = C0(C1(u1; θ1), C2(u2; θ2); θ0),

where C( · ; θ) denotes a Clayton copula with parameter θ and u = (u1, . . . , u7), u1 =

(u1, u2, u3), u2 = (u4, u5, u6, u7). The reader should note that C0( · ; θ0) is not a copula be-

tween aggregated losses. It is also important to stress the fact that this choice of parameters

will ensure the Hierarchical Copula is a well defined copula, since all the members are from the

same family and the parameters are decreasing from the highest to the lowest level (see, for

example, [Hofert, 2010]).

As in the non-nested Clayton case, from Figure 4.11 we can see the SMC Sampler procedure



84 Chapter 4. Capital allocation for copula-dependent risk models

● ●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

R
ea

lti
ve

 b
ia

s

●
●

● ●

●

● ●
●

●
●

●

●
●

●

●

●

● ● ●
●

● ●

●

●

●
●

●

●
●

●

●

●
−

4 
%

0 
%

3 
%

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

●
●

● ● ● ● ● ●
●

●

●
●

●
●

●
●

lo
g 1

0(
V

ar
ia

nc
e 

re
du

ct
io

n)

●
●

● ● ●
● ● ●

●
●

●

●

● ●

●
●

● ●
● ● ● ●

● ● ●
●

●
●

●

●

●
●

−
1

0
1

2
3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
99

0.
99

5

0.
99

9

0.
99

95

0.
99

99

0.
99

99
5

Figure 4.11: Relative Bias (top) and Variance Reduction (bottom) for the Hierarchical Clayton

copula from Figure 4.10 using the SMC algorithm with NSMC = 250 particles. Using the

notation from (4.8), • Marginal for i = 1, • Marginal for i = 7, • Sum of all the marginal

conditional expectations (Expected Shortfall).

is unbiased for NSMC = 250, with Relative Bias smaller than 5% in absolute terms. The method

also decreases the variance of the estimates when the quantile level in the conditional event is

larger than α = 0.99, from where we can state its effectiveness.

4.4 Conclusions and final remarks
With focus on the capital allocation problem for copula-dependent risks, we presented a Se-

quential Monte Carlo (SMC) Sampler algorithm to calculate conditional expectations where the

conditioning event is rare. We exploit the copula structure to design a SMC algorithm whose

efficiency is analysed through the Variance Reduction (see Equation 4.9) when compared to a

simple Monte Carlo scheme.

If, in addition to the Variance Reduction, the computational time is to be computed, one

should be extremely careful, as it will be strongly dependent the programming language used,

the hardware and also the actual implementation of the algorithms. For example, in R most

of the basic functions (including sampling from simple distributions) can be used in a vectorial

form, meaning that applying the function to a vector will be much faster than calculating the

function values serially, i.e., inside a for loop. For the sake of simplicity, both in the simple MC

and in the SMC schemes we sampled one value at a time and did not make use of any vectorial

form.

Due to the nature of the allocation problem, there is no need for the algorithm presented to

be run online. In most of the cases it will be used once a month or even once a year. Nevertheless,

if the performance of the SMC algorithm needs to be improved, specialized libraries such as the
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LibBi (see [Murray, 2013]) can be used.

Although the code used in this chapter has not been thoroughly optimised, some computa-

tional analysis can still be done. For the Clayton example from Section 4.3.1 (with parameter

θ = 1), for each quantile level, Table 4.4 presents (1) the time (in minutes) necessary to run the

SMC algorithm; (2) how many times the SMC algorithm is slower than the simple Monte Carlo;

(3) the Variance Reduction factor (as of (4.9)) for the quantities in (4.8), where ES denotes the

sum of the expectations (Expected Shortfall).

Variance Reduction

Quantile SMC time
SMC time
MC time

i = 1 i = 5 ES

0.1 0.32 53.83 0.34 1.95 0.46

0.2 0.64 68.97 0.27 1.16 0.29

0.3 0.97 73.94 0.11 0.14 0.37

0.4 1.30 75.04 0.07 1.89 0.19

0.5 1.63 73.09 0.19 0.16 0.18

0.6 1.97 68.15 0.35 0.03 0.28

0.7 2.31 61.41 0.42 0.21 0.78

0.8 2.65 52.55 0.30 0.38 0.21

0.9 3.00 39.28 0.44 2.94 1.83

0.95 3.35 26.34 0.29 0.33 4.10

0.99 3.70 9.64 2.79 5.36 3.54

0.995 4.04 4.56 2.98 6.54 21.87

0.999 4.39 1.28 16.56 7.20 71.37

0.9995 4.74 0.56 94.74 88.12 172.51

0.9999 5.08 0.15 224.82 154.54 272.74

0.99995 5.42 0.06 1891.81 205.48 593.32

Table 4.1: Computational time (in minutes) and Variance Reduction for the SMC algorithm

when compared to a simple Monte Carlo scheme.

On this particular implementation of the algorithm, for low quantiles we can see that the

MC scheme is considerably faster for the same accuracy of the SMC method. For example,

when α = 0.4 the MC method is 75 times faster than the SMC and the Variance Reduction on

the first marginal expectation is 0.07, meaning that the MC variance is around 14 times smaller

than the SMC variance.

On the other hand, for higher quantiles, in particular after α = 0.99, the SMC method

starts to become more appealing, since the Variance Reduction gets larger than the difference in

time. It’s worth noticing the proposed SMC method has been designed to be used on extreme

quantiles where lower quantiles are only used as intermediate steps.

The computing times presented on Table 4.4 were measured using R 3.1.0 in a Intel Xeon

E5-1650, 3.20GHz and 16GB RAM. For each quantile level the algorithms were run 10 times

and the values presented are an average over these 10 runs.



Chapter 5

A fully Bayesian risk model for the

Swiss Solvency Test

As discussed in [Wüthrich, 2015], in the context of non-life insurance claims can not usually be

settled immediately at the occurrence. Neither the number of claims at the current accounting

year nor its amount are observable at the end of the year. The former due to claims that

were incurred but not yet reported and the latter due to settlement delays. In order to be

able to settle all its claims the insurance company needs to put aside sufficient provisions from

the premium payments, in a process named claims reserving. The changes in these reserves

over a one year period, called the claims development result (CDR), are one of the major risk

drivers in the annual profit and loss statement of a non-life insurance company and, as such,

play an important role in the recent solvency regulations, such as Solvency II and the Swiss

Solvency Test. In order to study the impact of different lines of businesses and risk drivers in

the company’s solvency capital requirement (see Chapter 6) in this chapter we introduce a novel

fully Bayesian model for claims reserving and discuss how to perform inference on it. On top of

analyzing the one-year reserve risk, we also discuss the modelling of the one-year premium risk,

as prescribed by the Swiss Solvency Test. As some of the parameters involved in these models

are unknown we proposed two different approaches: a conditional and a marginalized one. In

the first, most commonly encountered in the literature, we calculate quantities conditional on

the unknown parameters, while under the marginalized model we integrate out the parameter

uncertainty. For both models, capital allocation algorithms are proposed in Chapter 6.

Parts of this chapter are based on the working paper [Peters et al., 2016b].

5.1 The claims reserving problem
As previously mentioned, non-life insurance claims are not settled immediately at their occur-

rence. There is usually a reporting delay and also a settlement delay and both can vary from a

couple of days to years, for more complex claims. The first type of delay may be due to admin-

istrative reasons within the company or caused (purposely or not) by the policyholder, while

the latter may be due to legal investigations or the await for external information, for example.
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Insurance payments start after the reporting of the claim and verification of contractual clauses

and as the settlement process can take up to several decades, there is clearly an important issue

with cash-flow uncertainty in this process, which is in the heart of the insurance business.

The statistical study of this uncertainty is usually performed at an aggregate level, for

example, at the line of business (LoB) level, which is the approach taken in this work. Within

LoBs claims are separated by their accident year, as claims that occur at the same year

“are triggered by similar external factors, like weather conditions, economic environment, etc.”

[Wüthrich and Merz, 2015]. These claims, when put together, generate a cash-flow every year

until their settlement. In the claims reserving literature these years are called development years

which are usually capped at J (when we assume all the claims are settled and closed).

We assume there are L LoBs, and for each one of them we denote their (aggregated)

incremental payments for claims with accident year i = 1, . . . , I and development year j =

1, . . . , J by X
(`)
i,j and their cumulative payments by C

(`)
i,j =

∑j
k=0Xi,k, where the ` = 1, . . . , L

denotes the LoB index. Note that the incremental payments Xi,j are made in accounting year

t = i+ j.

The information available at time t = 0, . . . , I + J for the `-th LoB is given by

D(`)(t) = {X(`)
i,j : 1 ≤ i ≤ I, 0 ≤ j ≤ J, i+ j ≤ t},

and, similarly, the total information available at time t is denoted as

D(t) =
⋃

1≤`≤L
D(`)(t). (5.1)

This information is usually presented in a graphical form, called claims triangles/trapezoids,

which may present the claims data in incremental or cumulated form. A triangle with I = 5

and J = 4 is presented in Table 5.1. The gray region (lower triangle) is called outstanding loss

liabilities, for which the company needs to set aside some provisions, named claims reserves.

One of key elements in the outstanding loss liabilities is the ultimate claim, Ci,J , which denotes

the total amount to be paid for claims that occurred at year i.

Historically, in order to predict the outstanding liabilities actuaries developed deterministic

algorithms, such as the chain-ladder (CL), which assumes that cumulative claims for all accident

years 1 ≤ i ≤ I satisfy (approximately) the following relationship

Ci,j+1 ≈ fjCi,j ,

for (CL or age-to-age) factors fj > 0 and j = 0, . . . , J − 1. To predict the ultimate claim based

on the information available at time t, D(t), the CL algorithm prescribes a very simple rule:

Ci,J ≈ Ci,t−i
J−1∏
j=t−i

fj .

As in practice the CL factors fj are unknown one needs to estimate them in order to

compute the ultimate claim predictor. At time t, the CL algorithm prescribes the following
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Development year
j = 0 j = 1 j = 2 j = 3 j = J

A
cc

id
en

t
ye

ar

i = 1 C1,0 C1,1 C1,2 C1,3 C1,J

i = 2 C2,0 C2,1 C2,2 C2,3

i = 3 C3,0 C3,1 C3,2

i = 4 C4,0 C4,1

i = I CI,0

Table 5.1: Claims triangle/trapezoid: The upper left triangle represents the information con-

tained in D(t) and the lower right triangle (in gray) represents the unknowns, i.e., Dc(t).

estimator for the CL factors:

f̂j(t) =
∑(t−j−1)∧I
k=1 Ck,j+1∑(t−j−1)∧I
k=1 Ck,j

, (5.2)

which leads the ultimate claim Ci,J to be predicted by

Ĉi,J(t) = Ci,t−i

J−1∏
j=t−i

f̂j(t). (5.3)

In the early 1990’s, by introducing randomness to the deterministic CL algorithm, the

seminal paper [Mack, 1993] changed the landscape of claims reserving methods. In order to

study stochastic versions of the CL algorithm we assume that Xi,j (and consequently Ci,j) are

random variables defined on the same probability space. By a slight abuse of notation we also

denote by D(`)(t) and D(t) the sigma-field generated by the corresponding sets. In this context

the distribution-free model proposed in [Mack, 1993] is define as follows.

Model Assumptions 5.1.1 (Distribution-free CL model). For the distribution-free CL model

we make the following assumptions.

1. Cumulative Ci,j of different accident years i are independent.

2. There exist factors f0, . . . , fJ−1 > 0 and variance parameters s2
0, . . . , s

2
J−1 such that for

all 1 ≤ i ≤ I and 1 ≤ j ≤ J we have

E[Ci,j |Ci,j−1] = fj−1Ci,j−1

Var(Ci,j |Ci,j−1) = s2
j−1Ci,j−1

Under Mack’s CL model the ultimate claim Ci,J is predicted by its expected value con-

ditional on the information available at the current time, i.e., E[Ci,J | D(t)] and from Model

Assumptions 5.1.1 we have that

E[Ci,J | D(t)] = Ĉi,J(t),
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where the right hand sizes is defined in (5.3), the estimator based on the deterministic CL algo-

rithm, with CL factors defined in (5.2). In [Mack, 1993] it was also proved that the estimators

f̂j(t) are unbiased for fj and uncorrelated for 0 ≤ j ≤ J − 1, even though f̂j−1(t) and f̂j(t)

depend on the same data C1,j , . . . , C1,(t−j)∧I .

Mack’s CL model also provides a measure of uncertainty of the ultimate claim, based on

its variance, but before presenting this measure we first discuss the estimator for the variance

parameters s2
j proposed in [Mack, 1993]. Based on the information available at time t = I Mack

derived the following unbiased estimator for s2
j :

ŝ2
j (t) = 1

t− j − 2

t−j−1∑
k=1

Ck,j

(
Ck,j+1
Ck,j

− f̂j(t)
)2

, ∀0 ≤ j ≤ (J − 1) ∧ (I − 3).

For j = J − 1 = I − 2 due to the lack of data in the triangle [Mack, 1993] empirically observed

the exponential decay of ŝ2
0(t), . . . , ŝ2

J−2(t) and proposed

ŝ2
J−1(t) = min{ŝ2

J−3(t), ŝ2
J−2(t), ŝ4

J−2(t)/ŝ2
J−3(t)} = min{ŝ2

J−3(t), ŝ4
J−2(t)/ŝ2

J−3(t)}. (5.4)

The uncertainty in the ultimate claim was, then, calculated as

Var(Ci,J | D(t)) =
(
Ĉi,J(t)

)2 J−1∑
j=t−i

ŝ2
j/f̂j(t)2

Ĉi,j(t)
. (5.5)

The variance formula described in (5.5) presents a long term view of the uncertainty involved

on claims reserving and does not address the short term view of modern solvency regulations,

such as the Swiss Solvency Test and Solvency II. Under these new regulatory frameworks sol-

vency is analyzed in a one year horizon and to this end different quantities need to be studied.

These quantities are described in the next sections under what we call the marginalized and the

conditional models, which are distinct ways to treat the parameter uncertainty involved in the

claims’ models.

5.2 Claims reserve and the Swiss solvency test
In this section we present the cornerstone of the models discussed in the remaining of Chapter 5

and all of Chapter 6: the approaches we named marginalized and conditional models for claims

data.

Although we postpone the construction of the specific claims payments model to Section

5.3 (where we introduce the Gamma-Gamma model) we now assume its behaviour is given by a

Bayesian model depending on two parameter vectors, φ and θ, for which prior distributions are

assigned. Probabilistic statements, such as the calculation of the risks allocated to each trigger,

have to be made based only on the available data, denoted as D(t) and formally defined in

Section 5.2. This requirement implies that the uncertainty on the parameter values needs to be

integrated out and, for the Bayesian model postulated in this work, that can be partially done

analytically. Under our model assumptions, the parameter vector φ can be handled analytically,

but the same is not possible for θ.
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Therefore, to calculate the risk allocations we approximate the stochastic behaviour of

functions of future observations, with the functions defined in Section 5.2. For the moment, let

us denote by Z a multivariate function of D(t+1) and θ denote, respectively, the future data and

the vector of model parameters. On the one hand, in the conditional model, we approximate the

distribution of the components of the vector Z |θ, D(t). On the other hand, in the marginalized

model, the approximation is performed after the parameter uncertainty has been integrated out

(i.e., marginalized). In this later framework, we approximate the distribution of the components

of Z | D(t), where the random vector Z is defined as Z = E[Z | D(t)], with expectation taken

with respect to θ | D(t). Note that, given D(t), Z is a random variable, as it depends on future

information, i.e., D(t + 1). Both in the conditional and in the marginalized models we use

moment matching (with the original moments calculated from the Gamma-Gamma model of

Section 5.3) and log-normal distributions for the approximations and couple the distributions

via a Gaussian copula.

Suppressing the dependence on the available information, D(t), these two models (marginal-

ized and conditional) are defined through their probability density functions (p.d.f.’s), fZ(z) and

fZ|θ(z |θ), respectively, which are both assumed to be combinations of log-normal distributions

and a gaussian copula. For the conditional model, as we work in a Bayesian framework, the

unknown parameter vector θ has a (posterior) distribution with p.d.f. fθ(θ). This is, then, com-

bined with the likelihood fZ|θ(z |θ) to construct fZ(z), the density used for inference under

the conditional model.

For the methodology discussed in this work, the important features of these two models are

that fZ(z) is known in closed form, whilst fZ(z) is not.

In summary, the two models presented in Sections 5.2 to 5.5 are defined as

Marginalized model: Z ∼ fZ(z); (5.6)

Conditional model: Z ∼ fZ(z) =
∫
fZ | θ(z |θ)fθ(θ)dθ. (5.7)

Remark 5.2.1. As the “original” model for claims payments (i.e., the Gamma-Gamma model of

Section 5.3) is a Bayesian model, we use the Bayesian nomenclature for both the marginalized

and the conditional model. For the former, the Bayesian structure of prior and likelihood is

hidden in equation (5.6), as the parameter θ has already been marginalized (with respect to its

posterior distribution). For the later, we explicitly make use of the posterior distribution of θ in

(5.7). Another strategy, followed in [Wüthrich, 2015], is to use an “empirical Bayes” approach,

fixing the value of the unknown parameter vector θ, for example at its maximum likelihood

estimator (MLE).

Although the original model for claims payments is only presented in Sections 5.3—5.5 as

the quantities of interest for the capital allocation problem are independent of the model itself,

they are introduced in current section.
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5.2.1 Conditional predictive model
As previously mentioned, the models for claims payments in a particular LoB ` will involve a

set of parameters, denoted as θ(`). For the ease of exposition, whenever a quantity is defined

conditional on θ(`) it is going to be denoted with a bar on top of it.

At time t ≥ I, LoB ` and accident year i > t−J predictors for the ultimate claim C
(`)
i,J and

the corresponding claims reserves are defined, respectively as

C
(`)
i,J(t) = E[C(`)

i,J |θ
(`), D(`)(t)] and R(`)

i (t) = C
(`)
i,J(t)− C(`)

i,t−i (5.8)

Under the modern solvency regulations, such as Solvency II and the Swiss Solvency Test

an important variable to be analysed is the claims development result (CDR), which is the

difference in the ultimate claim prediction at time t and t + 1. For accident year i = 1, . . . , I,

accounting year t+ 1 > I and LoB `, the CDR is defined as

CDR(`)
i (t+ 1) = R(`)

i (t)−
(
X

(`)
i,t−i+1 +R(`)

i (t+ 1)
)

= C
(`)
i,J(t)− C

(`)
i,J(t+ 1) (5.9)

and an application of the tower property of the expectation shows that

E[CDR(`)
i (t+ 1) |θ(`), D(`)(t)] = 0. (5.10)

Remark 5.2.2. It should be noted that the predictor defined in (5.8) might not be optimal, since

it only uses information related to the `-th LoB, D(`)(t), instead of all the information available,

D(t). We proceed with the definition in (5.8) in order to avoid intractability of the models to be

considered.

Equation (5.10) justifies the prediction of the CDR by zero and the uncertainty of this

prediction can be assessed by the conditional mean squared error of prediction (msep):

msepCDR(`)
i (t+1) | θ(`),D(`)(t)(0) = E[(CDR(`)

i (t+ 1)− 0)2 |θ(`), D(`)(t)] (5.11)

= Var
(
CDR(`)

i (t+ 1) |θ(`), D(`)(t)
)

= Var
(
C

(`)
i,J(t+ 1) |θ(`), D(`)(t)

)
. (5.12)

Moreover, we denote the aggregated (over accident years) CDR and the reserves, conditional

on the knowledge of the parameter θ(`), respectively, by

CDR(`)(t+ 1) =
I∑
i=1

CDR(`)
i (t+ 1) and R(`)(t) =

I∑
i=1
R(`)
i (t). (5.13)

Using this notation we also define the total prediction uncertainty incurred when predicting

CDR(`)(t+ 1) by zero as

msepCDR(`)(t+1) | θ(`),D(`)(t)(0) = Var
( I∑
i=1

C
(`)
i,J(t+ 1) |θ(`), D(`)(t)

)
.

Remark 5.2.3. It should be noticed that, in general, as the parameter vector θ(`) is unknown

none of the quantities presented in this section can be directly calculated unless an estimate for

the parameter is used.
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5.2.2 Marginalized predictive model
Even though the original cumulative claims model is defined conditional on unobserved pa-

rameter values, any quantity calculated based on this model should only depend on observable

quantities. As we follow the Bayesian paradigm, unknown quantities are modelled using a priori

probability distribution, which reflects prior beliefs about these parameters.

Analogously to Section 5.2.1 we define the marginalized (Bayesian) ultimate claim predictor

and its reserves, respectively, as

C
(`)
i,J (t) = E[C(`)

i,J | D
(`)(t)] = Eθ(`) [C (`)

i,J(t) | D(`)(t)] and R(`)
i (t) = C

(`)
i,J (t)− C(`)

i,t−i. (5.14)

We also define the marginalized CDR and notice, again using the tower property, that its

mean is equal to zero

CDR(`)
i (t+ 1) = C

(`)
i,J (t)− C

(`)
i,J (t+ 1) with E[CDR(`)

i (t+ 1) | D(`)(t)] = 0.

Furthermore, summing over all accident years i we follow (5.13) and denote by R(`)(t)

and CDR(`)(t + 1) the aggregated version of the marginalized reserves and CDR, where the

uncertainty in the latter is measured via

msepCDR(`)(t+1) | D(`)(t)(0) = Var
( I∑
i=1

C
(`)
i,J (t+ 1) | D(`)(t)

)
. (5.15)

5.2.3 Solvency capital requirement (SCR)
In this section we discuss how two important concepts in actuarial risk management, namely

the technical result (TR) and the solvency capital requirement (SCR), can be defined for both

the conditional and the marginalized models.

In this context, the TR is calculated netting all income and expenses arising from the LoBs,

while the SCR denotes the minimum capital required by the regulatory authorities in order to

cover the company’s business risks. More precisely, the SCR for year t+ 1 quantifies the risk of

having a substantially distressed financial result at time t+ 1, evaluated in light of the available

information at time t.

As an important shorthand notation, we introduce three sets of random variables, repre-

senting the total claim amounts of the current year (CY) and of prior year (PY), the latter for

both the conditional and marginalized models. These random variables are defined, respectively,

as

Z
(`)
CY = C

(`)
t+1,J(t+1), Z(`)

PY =
I∑
i=1

(
C

(`)
i,J(t+ 1)− C(`)

i,t−i

)
and Z

(`)
PY =

I∑
i=1

(
C

(`)
i,J (t+ 1)− C(`)

i,t−i

)
.

(5.16)

In the standard SST model, CY claims do not depend on any unknown parameters and

are split into L small claims, Z(`)
CY,s (also called attritional claims), and P claims caused due

to large claim events, Z(p)
CY,l. In this context the company can choose thresholds β(`) such that

claims larger than these amounts are classified as large claims in its respective LoBs.
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To further simplify the notation we group all the random variables related to the conditional

and the marginalized models in two random vectors, defined as follows

Z = (Z1, . . . , Z2L+P ) = (Z(1)
PY , . . . , Z

(L)
PY , Z

(1)
CY,s, . . . , Z

(L)
CY,s, Z

(1)
CY,l, . . . , Z

(P )
CY,l), (5.17)

Z = (Z1, . . . , Z2L+P ) = (Z(1)
PY , . . . , Z

(L)
PY , Z

(1)
CY,s, . . . , Z

(L)
CY,s, Z

(1)
CY,l, . . . , Z

(P )
CY,l). (5.18)

Next we give more details on how the TR and the SCR are calculated in the generic structure

of the conditional and the marginalized models.

5.2.3.1 SCR for the conditional model
At time t+ 1 the technical result (TR) of the `-th LoB in accounting year (t, t+ 1] based on the

conditional model is defined as the following D(`)(t+ 1)–measurable random variable:

TR(`)(t+ 1) = Π(`)(t+ 1)−K(`)(t+ 1)− C
(`)
t+1,J(t+ 1) + CDR(`)(t+ 1),

where Π(`)(t+ 1) and K(`)(t+ 1) are, respectively, the earned premium and the administrative

costs of accounting year (t, t + 1]. For simplicity, we assume that these two quantities are

known at time t. Having them random adds a small additional complexity that can also be

packed into the randomness of C
(`)
t+1,J(t+ 1). It should also be noticed that in this context D(t)

not only includes the information defined in (5.1), but it should rather be replaced by F(t), a

sigma-field generated by the inclusion of the information about Π(t + 1) and K(t + 1), as the

premium and administrative costs of accounting year (t, t+ 1] should be predictable and, hence,

F(t)-measurable.

Given the technical result for all the LoBs, the company’s overall TR based on the condi-

tional model, aggregated cost and premium are denoted, respectively, by

TR(t+ 1) =
L∑
`=1

TR(`)(t+ 1), Π(t+ 1) =
L∑
`=1

Π(`)(t+ 1) and K(t+ 1) =
L∑
`=1

K(`)(t+ 1).

In order to cover the company’s risks over an horizon of one year, the Swiss Solvency Test

is concerned with the 99% expected shortfall (in light of all the data up to time t):

SCR(t+ 1) = ES99%[−TR(t+ 1) | D(t)],

where SCR denotes the solvency capital requirement.

It is very important to notice that even though the expected shortfall operator is being ap-

plied to a “conditional random variable”, namely TR, the operator is not being taken conditional

on the knowledge of θ = (θ(1), . . . ,θ(L)), otherwise this quantity would not be computable (as

discussed in Remark 5.2.3). Instead, the SCR is calculated based on the marginalized version of

the conditional model, where the parameter uncertainty is integrated out. More precisely, the

expected shortfall is based on the following (usually intractable) distribution

fZ(z | D(t)) =
∫
fZ(z |θ, D(t))π(θ | D(t))dθ.
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In order to compute the SCR based on the conditional model we first discuss the measur-

ablity of the terms in the conditional TR, which can be rewritten as

TR(t+ 1) = K(t+ 1)−Π(t+ 1)−
L∑
`=1

I∑
i=1

(
C

(`)
i,t−i − C

(`)
i,J(t)

)
−

L∑
`=1

(
Z

(`)
PY + Z

(`)
CY

)
.

From the above equation we see the first two terms are, by assumption, D(t) measurable and

so are all the terms of the form C
(`)
i,t−i, while the last summation is D(t + 1) measurable and,

therefore, a random variable at time t. Due to the dependence on the unknown parameter θ,

the conditional ultimate claim predictor C
(`)
i,J(t) is usually not D(t) measurable. However, under

the models introduced in Section 5.3 we have that C
(`)
i,J(t) depends only on the claims data up

to time t and not on the unknown parameter vector, making it D(t) measurable. In this case

SCR(t+ 1) = K(t+ 1)−Π(t+ 1)−
L∑
`=1
R(`)(t) + ES99%

[
L∑
`=1

Z
(`)
PY + Z

(`)
CY

∣∣∣ D(t)
]
. (5.19)

5.2.3.2 SCR for the marginalized model
As the parameter uncertainty is dealt with in a previous step, the calculation of the SCR for

the marginalized model is simpler than its conditional counterpart.

Similarly to the conditional case, we define the TR for the marginalized model as

TR(`)(t+ 1) = Π(`)(t+ 1)−K(`)(t+ 1)− C
(`)
t+1,J(t+ 1) + CDR(`)(t+ 1),

and its aggregated version as

TR(t+ 1) =
L∑
`=1

TR(`)(t+ 1).

Furthermore, the SCR for the marginalized model is given by

SCR(t+ 1) = ES99%[−TR(t+ 1) | D(t)] (5.20)

= K(t+ 1)−Π(t+ 1)−
L∑
`=1
R(`)(t) + ES99%

[
L∑
`=1

Z
(`)
PY + Z

(`)
CY

∣∣∣ D(t)
]
, (5.21)

where in this case the expected shortfall is calculated with respect to the density fZ(z).

Remark 5.2.4. As we assume the cost of claims processing and assessment K(t + 1) and

premium Π(t+1) are known at time t they do not differ from the conditional to the marginalized

model.

5.3 Modelling of individual LoBs PY claims
For the modelling of the PY claims risk we need to model ZPY or ZPY as given in (5.16).

The uncertainty in these random variables will be assessed by the conditional and marginalized

mean square error of prediction (msep), introduced in (5.12) and (5.15). In order to calculate

the msep we must first expand our analysis to the study of the claims reserving uncertainty.

To do so, in this section we present a fully Bayesian version of the gamma-gamma chain-ladder

model, which has been studied in [Peters et al., 2017].
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Since in this section we present the model for individual LoBs, for notational simplicity we

omit the index (`) from all random variables and parameters.

Model Assumptions 5.3.1 (Gamma-Gamma Bayesian CL model). We make the following

assumptions:

(a) Conditionally, given φ = (φ0, . . . , φJ−1) and σ = (σ0, . . . , σJ−1), cumulative claims

(Ci,j)j=0,...,J are independent (in accident year i) Markov processes (in development year

j) with

Ci,j+1 | Ci,j , φj , σj ∼ Γ
(
Ci,jσ

−2
j , φjσ

−2
j

)
,

for all 1 ≤ i ≤ I and 0 ≤ j ≤ J − 1.

(b) The parameter vectors φ and σ are, a priori, independent.

(c) For given hyper-parameters fj > 0 the components of φ are independent such that

φj ∼ lim
γj→1

Γ
(
γj , fj(γj − 1)

)
,

for 0 ≤ j ≤ J − 1, where this limits infers that they are eventually distributed from an

improper uninfomative prior. This assumes we are taking a objective Bayesian view.

(d) The components σj of σ are independent and Fσj -distributed, having support in (0, dj) for

given constants 0 < dj <∞ for all 0 ≤ j ≤ J − 1.

(e) φ, σ and C1,0, . . . , CI,0 are independent and P[Ci,0 > 0] = 1.

From Model Assumptions 5.3.1 (a), conditional on a specific value of the parameter vectors

φ and σ, we have that
E[Ci,j+1 | Ci,j , φj , σj ] = φ−1

j Ci,j ,

Var(Ci,j+1 | Ci,j , φj , σj) = φ−2
j σ2

jCi,j ,
(5.22)

which provides a stochastic, fully Bayesian, formulation of the classical CL model of

[Mack, 1993].

In Model Assumptions 5.3.1 (c) the (improper) prior distribution for φ should be seen

as a non-informative limit when γ = (γ0, . . . , γJ−1) → 1 = (1, . . . , 1) of the (proper) prior

assumption

φj ∼ Γ
(
γj , fj(γj − 1)

)
.

Even though the prior is assumed improper and does not integrate to one, the conditional

posterior for φj |σj , D(t) is proper and, in addition, also gamma distributed, as seen in the

theorem below (see also [Merz and Wüthrich, 2015, Lemma 3.2]).

Theorem 5.3.2. Under Model Assumptions 5.3.1 the conditional posterior for φj |σj , D(t) is

given by

φj |σ, D(t) ∼ Γ(aj , bj) (5.23)



96 Chapter 5. A fully Bayesian risk model for the Swiss Solvency Test

with the following parameters

aj = 1 +
(t−j−1)∧I∑

i=1
Ci,jσ

−2
j and bj =

(t−j−1)∧I∑
i=1

Ci,j+1σ
−2
j . (5.24)

Proof. Under Model Assumptions 5.3.1 the posterior distribution of the parameter vectors φ

and σ, for t ≥ I, is given by

π(φ,σ | D(t)) ∝ g(D(t) |φ, σ)fφ(φ)fσ(σ)

=

g(C1,0, . . . , CI,0)
J−1∏
j=0

(I−j−1)∧I∏
i=1

(φjσ−2
j )Ci,jσ

−2
j

Γ(Ci,jσ−2
j )

C
Ci,jσ

−2
j
−1

i,j+1 exp
{
−φjσ−2

j Ci,j+1
}

×

J−1∏
j=0

lim
γj→1

(fj(γj − 1))γj
Γ(γj)

φ
γj−1
j exp {−φjfj(γj − 1)}

×
J−1∏
j=0

fσ2
j
(σ2
j )


∝

J−1∏
j=0

lim
γj→1

φ
γj−1+

∑(t−j−1)∧I
i=1

Ci,jσ
−2
j

j exp

−φj
fj(γj − 1) +

(t−j−1)∧I∑
i=1

Ci,j+1σ
−2
j




×

J−1∏
j=0

fσ2
j
(σ2
j )

(I−j−1)∧I∏
i=1

(Ci,j+1σ
−2
j )Ci,jσ

−2
j

Γ(Ci,jσ−2
j )


∝

J−1∏
j=0

φ

∑(t−j−1)∧I
i=1

Ci,jσ
−2
j

j exp

−φj
(t−j−1)∧I∑

i=1
Ci,j+1σ

−2
j




×

J−1∏
j=0

fσj (σj)
(I−j−1)∧I∏

i=1

(Ci,j+1σ
−2
j )Ci,jσ

−2
j

Γ(Ci,jσ−2
j )

 .
From the functional form of π(φ, σ | D(t)) it can be seen that the components φj of φ and

σj of σ are independent a posteriori, which is a direct consequence of the prior independence.

Moreover, since π(φ |σ, D(t)) ∝ π(φ, σ | D(t)), the result in (5.23) follows.

Remark 5.3.3. Given σ the model in Model Assumptions 5.3.1 belongs to the family of

Bayesian models with conjugate priors that allows for closed form (conditional) posteriors –

for details see [Wüthrich, 2015].

From Theorem 5.3.2, the marginal posterior distribution of the elements of the vector σ is

given by

π
(
σj | D(t)

)
∝ hj(σj | D(t)) = Γ(aj)b−ajj fσj (σj)

(I−j−1)∧I∏
i=1

(Ci,j+1σ
−2
j )Ci,jσ

−2
j

Γ(Ci,jσ−2
j )

, (5.25)

with aj and bj defined in (5.24). As seen in the Lemma below as long as some (mild) conditions

are satisfied, one can ensure the posterior distribution of σ is proper.

Lemma 5.3.4. For 0 ≤ j ≤ J − 1 and t ≥ I if either (t− j− 1)∧ I = 1 or at least one accident

year 1 ≤ i ≤ (t− j − 1)∧ I is such that Ci,j+1
Ci,j

6= f̂j(t) then the marginal posterior π(σ | D(t)) is

integrable, i.e., ∫ dj

0
hj(σj | D(t))dσj <∞.
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Proof. See [Peters et al., 2017, Lemma 3.1].

Therefore, under Model Assumptions 5.3.1 inference for all the unknown parameters can be

performed. It should be noticed, though, that differently from the (conditional) posteriors for

φj (5.23), the posterior for σj (5.25) is not recognized as a known distribution. Thus, whenever

expectations with respect to the distribution of σj | D(t) need to be calculated one needs to

make use of numerical procedures, such as numerical integration or Markov Chain Monte Carlo

(MCMC) methods.

Remark 5.3.5. Note that, comparing Model Assumptions 5.1.1 and 5.3.1 we see that a point

estimate for the parameters σj from the Bayesian CL model is given by

σ̂j(t) =

√
ŝ2
j (t)

f̂j(t)
, ∀0 ≤ j ≤ J − 1.

5.3.1 MSEP results conditional on σ

Following Model Assumptions 5.3.1 we now discuss how to explicitly calculate the quantities

introduced in Section 5.2.

We start with the equivalent of the classic CL factor. From the model structure in (5.22)

we define the posterior Bayesian CL factors, given σ, as

f j(t) = Eφj [φ−1
j | σj , D(t)], (5.26)

which, using the Gamma distribution from (5.23) takes the form

f j(t) =
∑(t−j−1)∧I
k=1 Ck,j+1∑(t−j−1)∧I
k=1 Ck,j

= f̂j(t),

where f̂j(t) is the classic CL factor estimate.

Following (5.8) we define the conditional ultimate claim predictor

C i,J(t) = E[Ci,J |σ, D(t)] = Eφ

[
E[Ci,J |φ, σ, D(t)]

∣∣∣σ, D(t)
]
,

which can be shown (see [Wüthrich, 2015, Theorem 9.5]) to be equal to

C i,J(t) = Ci,t−i

J−1∏
j=t−i

f̂j(t) = Ĉi,J(t), (5.27)

where the right hand side is exactly the classic chain ladder estimator of [Mack, 1993]. For this

reason we take Model Assumptions 5.3.1 as a distributional model for the classical CL method.

Additionally, the conditional reserves defined in (5.8) and (5.13) are also the same as the classic

CL ones:

R(t) =
I∑
i=1

Ĉi,J(t)− Ci,t−i = R̂(t). (5.28)

The importance of equation (5.27) relies on the fact that its right-hand side (the classic

CL predictor) does not depend on the parameter vector σ. In other words, the ultimate claim
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predictor based on the Bayesian model from Model Assumptions 5.3.1 conditional on σ – which

is, in general, a random variable – is a real number (independent of σ), which justifies the

argument used on the calculation of (5.19).

Remark 5.3.6. Using the notation from the previous sections the parameter vector σ plays

the role of θ as the only unknown, since, due to conjugacy properties, φ can be marginalized

analytically.

For the Bayesian model from Model Assumptions 5.3.1 the msep conditional on σ has been

derived in [Wüthrich, 2015, Theorem 9.16] as follows

msepCDRi(t+1) |σ,D(t)(0) =
(
Ĉi,J(t)

)2 (1 + Ψt−i(t)
βt−i(t)

)
J−1∏

j=t−i+1

(
1 + βj(t)Ψj(t)

)
− 1

 , (5.29)

where

βj(t) = Ct−j,j∑t−j
i=1 Ci,j

and Ψj(t) =
σ2
j

−σ2
j +

∑t−j−1
k=1 Ck,j

. (5.30)

Moreover, the conditional msep has been shown to be finite whenever σ2
j <

∑t−j−1
k=1 Ck,j .

The aggregated conditional msep for CDR(t + 1) =
∑I
i=1 CDRi(t + 1) is also derived in

[Wüthrich, 2015, Theorem 9.16], and given by

msepCDR(t+1) |σ,D(t)(0) =
I∑

i=t−J+1
msepCDRi(t+1) |σ,D(t)(0)

+ 2
∑∑

t−J+1≤i<k≤I
Ĉi,J(t)Ĉk,J(t)

(1 + Ψt−i(t)
) J−1∏
j=t−i+1

(
1 + βj(t)Ψj(t)

)
− 1

 . (5.31)

Remark 5.3.7. The assumption that σ2
j <

∑t−j−1
k=1 Ck,j is made in order to guarantee the

conditional msep is finite and we enforce this assumption to hold for all the examples presented

in this work.

5.3.2 Marginalized MSEP results
The results in the previous section are based on derivations presented in [Merz and Wüthrich, 2015]

and [Wüthrich, 2015] where the parameter vector σ is assumed to be known. In this section

we study the impact of the uncertainty in σ over the mean and variance of Ci,J(t+ 1) | D(t) in

light of Model Assumptions 5.3.1, which can be seen as a fully Bayesian version of the models

previously mentioned.

In order to have well defined posterior distributions for σ, through this section we follow

Lemma 5.3.4 and assume that, for all development years 0 ≤ j ≤ J − 1 and t ≥ I, we have

(t− j− 1)∧ I = 1 or at least one accident year 1 ≤ i ≤ (t− j− 1)∧ I is such that Ci,j+1
Ci,j

6= f̂j(t).

For all the results presented this (very mild) assumption is satisfied.

Lemma 5.3.8. The ultimate claim estimator under the marginalized model is equal to the classic

chain ladder predictor, i.e., Ci,J(t) = E[Ci,J | D(t)] = Ĉi,J(t).



5.3. Modelling of individual LoBs PY claims 99

Proof. Due to the posterior independence of the elements of φ and the fact that C i,J(t) = Ĉi,J(t)

does not depend on σ we have

Ci,J(t) = E[Ci,J | D(t)]

= E(φ,σ)
[
E[Ci,J |φ, σ, D(t)] | D(t)

]
= Eσ

[
Eφ
[
E[Ci,J |φ, σ, D(t)] |σ, D(t)

]
| D(t)

]
= Eσ

[
Eφ
[
Ci, t−i

J−1∏
j=t−i

φ−1
j |σ, D(t)

]
| D(t)

]
= Eσ

[
C i,J(t) | D(t)

]
= Ĉi,J(t).

Proposition 5.3.9. The msep in the marginalized model is equal to the posterior expectation

of the msep in the conditional model, i.e.,

msepCDR(t+1) | D(t)(0) = Var
( I∑
i=1

Ci,J(t+ 1)
∣∣D(t)

)
= Eσ[msepCDR(t+1) |σ,D(t)(0) | D(t)]. (5.32)

Proof. From the law of total variance we have that

Var
( I∑
i=1

Ci,J(t+ 1)
∣∣D(t)

)
= Varσ

(
E
[ I∑
i=1

Ci,J(t+ 1) | D(t), σ
] ∣∣D(t)

)
+ Eσ

[
Var
( I∑
i=1

Ci,J(t+ 1) | D(t), σ
) ∣∣D(t)

]
= Eσ

[
Var
( I∑
i=1

Ci,J(t+ 1) | D(t), σ
) ∣∣D(t)

]
,

and the last equality follows from Lemma 5.3.8 and the fact that E[Ĉi,J(t+1) | D(t), σ] = Ĉi,J(t)

is independent of σ.

Remark 5.3.10. Following the conditions required for finiteness of the conditional msep, in the

unconditional case, one can see that msepCDR(t+1) | D(t)(0) < +∞ whenever
∑t−j−1
k=1 Ck,j > d2

j .

Furthermore, we note that this condition can be controlled during the model specification.

5.3.3 Statistical model of PY risk in the SST

Note that the distributional models derived in Sections 5.3.1 and 5.3.2 are rather complex. To

maintain some degree of tractability the overall PY uncertainty distribution is usually approxi-

mated by a log-normal distribution via a moment matching procedure.

5.3.3.1 Conditional PY model
As discussed in Section 5.2.3, when modelling the risk of PY claims we work with the random

variables ZPY , defined in (5.16). Due to their relationship with the conditional CDR, see (5.9)
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and (5.10) and the results discussed in Section 5.3.1, we can use the derived properties of these

random variables to construct the model being used for ZPY .

The conditional mean (see (5.9), (5.10) and (5.28)) and variance (see (5.12) and (5.31)) of

the random variable ZPY are as follows

E[ZPY |σ, D(t)] = R̂(t), (5.33)

Var(ZPY |σ, D(t)) = msepCDR(t+1) |σ,D(t)(0). (5.34)

Given mean and variance, we make the following approximation.

Model Assumptions 5.3.11 (Conditional log-normal approximation). We assume that

ZPY |σ, D(t) ∼ LN
(
µPY , σ

2
PY

)
,

with σ2
PY = log

(
msepCDR(t+1) |σ,D(t)(0)

R̂(t)2
+ 1
)

and µPY = log
(
R̂(t)

)
− σ2

PY

2 .

Although the distribution of ZPY |σ, D(t) under Model Assumptions 5.3.1 can not be de-

scribed analytically it is simple to simulate from it. To test the approximation of Model Assump-

tions 5.3.11 we simulate its distribution under the Bayesian gamma-gamma model (with fixed

σ) and compare it against the log-normal approximation proposed. For the hyper-parameters

presented in Table 6.5 (and calculated in Section 6.3) the quantile-quantile plot of the ap-

proximation is presented in Figure 5.1. For all the LoBs we see the log-normal is a sensible

approximation to the original model assumptions. Note that although the parameters used for

the comparison are based on the marginalized model, Figures 6.5 and 6.6 show that they are

“representative” values for the distributions of µPY and σPY .

5.3.3.2 Marginalized PY model
As an alternative to the conditional Model Assumptions 5.3.11 we use the moments of ZPY | D(t)

calculated in Lemma 5.3.8 and Proposition 5.3.9 and then approximate its distribution. Note

that due to the intractability of the distribution of σ | D(t) the variance term defined in (5.32)

can only be calculated numerically, for example, via MCMC.

Model Assumptions 5.3.12 (Marginalized log-normal approximation). We assume that

ZPY | D(t) ∼ LN
(
µPY , σ

2
PY

)
with σ2

PY = log
(

msepCDR(t+1) | D(t)(0)
R̂(t)2

+ 1
)

and µPY = log
(
R̂(t)

)
− σ2

PY

2 .

The same comparison based on the quantile-quantile plot of Figure 5.1 can be performed

for the marginalized model and the results are presented in Figure 5.2. Once again, the log-

normal model presents a viable alternative to the originally postulated gamma-gamma model,

even though for Motor Hull, Property and Others the right tail of the log-normal distribution

is slightly heavier.
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Figure 5.1: Quantile-Quantile plots, using the data from Figure 6.1, for the different LoBs com-

paring (vertical axis) the empirical distribution of ZPY |σ, D(t) based on Model Assumptions

5.3.1 and (horizontal axis) the log-normal approximation from Model Assumptions 5.3.11.
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Figure 5.2: Quantile-Quantile plots, using the data from Figure 6.1, for the different LoBs

comparing (vertical axis) the empirical distribution of ZPY | D(t) based on Model Assumptions

5.3.1 and (horizontal axis) the log-normal approximation from Model Assumptions 5.3.12 and

using posterior samples as in Figures 6.5 and 6.6.
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5.4 Modelling of individual LoBs CY claims
Model Assumptions 5.3.1 do not assume any specific distribution for Ct+1,0, the CY claims.

These claims are treated differently from PY claims and the models used for these claim random

variables are explained in Sections 5.4.1 and 5.4.2, below. Throughout this section we denote

by λCY = λCY,s+λCY,l the expected number of CY claims over the next year, which is the sum

of the CY small claims (λCY,s) and the CY large claims (λCY,l).

5.4.1 Modelling of small CY claims

As mentioned in the SST Technical Document [FINMA, 2007, Section 4.4.7], the SST does not

make any explicit assumption about the distribution of individual claims; instead, the annual

claims expenses are only represented with their expected value and variance. More precisely, in

[FINMA, 2007, Section 8.4.5.2] the distribution of the premium risk, ZCY,s is assumed to be

such that the square of its coefficient of variation (standard deviation divided by its mean) is

equal to

CoVa2(ZCY,s | D(t)) = A1 + A2 + 1
λCY,s

, (5.35)

where the constants A1 and A2 are provided by the regulatory authority (under the names of

parameter uncertainty and random fluctuation, respectively). Its values for the 2015 solvency

test are found in [FINMA, 2016]. The (known) constant λCY,s denote the expected number of

small claims over the next calendar year.

In order to fully specify the model for CY small claims one also needs to decide on the mean

of the variable ZCY,s | D(t), but we postpone a detailed discussion on this point until Section

6.3.2, where we also present the value of λCY,s.

Model Assumptions 5.4.1 (Distribution of CY small claims). For known constants v, rs > 0

and E[ZCY,s | D(t)] we set

ZCY,s | D(t) ∼ LN
(
µCY,s, σ

2
CY,s

)
with σ2

CY,s = log
(
A1 + A2 + 1

λCY,s
+ 1
)

and µCY,s = log(E[ZCY,s | D(t)])−
σ2
CY,s

2 .

5.4.2 Distribution of large CY claims

In the SST (see [FINMA, 2007, Section 4.4.8]) large CY claims are split into two groups. The first

group encompasses individual claims with a large claim amount, which includes, as exemplified

in [FINMA, 2007, Section 4.4.8] fire in a factory building. The second group of large claims are

those triggered by the same event (e.g. a hailstorm) but with many simultaneous claims. These

types of claims are likely to affect all market participants.

For each risk trigger, CY large claims are required to be modelled as a compound Poisson

process with Pareto severities, i.e.,

ZCY,l =
N∑
k=1

Yk, (5.36)
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where N ∼ Poi(λ) is the number of large claims in LoB under consideration and Yk ∼

Pareto(β, αβ) model the intensity of large claims. It is assumed in the SST that claims are

i.i.d. within the same risk trigger and independent of all ZPY and ZCY,s.

As a notational remark, if Z follows a Compound Poisson - Pareto model as a shorthand

notation we write Z ∼ CP-P(λ, β, α), with the same parameter interpretation as in (5.36).

5.4.2.1 SST model for cumulated claims
In this section we discuss the modelling of cumulated claims (those triggered by a market-wide

event) which are modelled as an event that impacts the whole market and then scales down to an

individual insurance company through its market share. In particular we present the modelling

approach used in the (1) Motor Hull LoB due to hail events and (2) Workers Compensation

(UVG) LoB due to a market-wide large accidents.

In both cases market-wide parameters for a compound Poisson model with Pareto intensity

have been calculated by the regulator, based on an extensive claims data set. The aggregated

market-wide loss is given by

Zmkt =
Nmkt∑
k=1

Yk,mkt ∼ CP-P(λmkt, βmkt, αmkt).

The corresponding market-wide parameter values are found in [FINMA, 2016].

Denoting by β the company’s threshold after which losses are classified as large and m its

market share in the `-th LoB, to be consistent with its assumption the company should model

market-wide large events as events above the threshold of

βmkt, comp = β

m
.

Then, the market-wide total loss (viewed from the specific company in consideration) is

defined as

Zmkt, comp =
Nmkt, comp∑

k=1
Yk,mkt, comp ∼ CP-P(λmkt, comp, βmkt, comp, αmkt),

from which it is easy to see the only unknown parameter is λmkt, comp, since in the SST the

Pareto parameter αmkt is kept the same. This frequency parameter is chosen such that the

company’s view of the market-wide events is equivalent to the suggested market-wide process.

In other words, if d= denotes equality in distribution, λmkt, comp is chosen in order to have

Zmkt
d= Zmkt, comp,

from which it is then easy to see that λmkt = P[Yk,mkt, comp > βmkt]λmkt, comp hence

λmkt, comp = λmkt

(
β/m

βmkt

)−αmkt
.

Therefore, from the company’s point of view, its own large claims are modelled as

Zcomp
d= m× Zmkt, comp =

Nmkt, comp∑
k=1

m× Yk,mkt, comp,
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which implies that

Zcomp ∼ CP-P(λmkt, comp, β, αmkt).

Since the distribution of Zcomp is not known in closed form we will assume it is sufficiently

well approximated by a single Pareto distribution, with the same lower truncation point β and

mean as Zcomp, i.e.,

E[Zcomp] = λmkt

(
β/m

βmkt

)−αmkt αmkt
αmkt − 1β. (5.37)

As in the SST Technical Document [FINMA, 2007], an upper bound γ (provided by the

regulator) is included after matching the lower bound.

Model Assumptions 5.4.2 (Marginal distribution of cumulated claims). For αmkt, βmkt and

γ provided by the regulator in [FINMA, 2016], β ∈ {1, 5}, m ∈ (0, 1),

ZCY,l ∼ Pareto
(
λmkt

(
β/m

βmkt

)−αmkt
β, αmkt, γ

)
,

where Pareto(β, α, γ) denotes a Pareto distribution defined in [β, γ] and tail index α.

Remark 5.4.3. The reader should note that for large CY claims there is no parameter un-

certainty, since both λmkt, αmkt and γ are given by the regulator, the market share, m can be

perfectly calculated and β is chosen by the company.

5.4.2.2 SST model for individual claims
For individual large events, the SST provides p1, the probability of observing losses larger than

CHF 1 million and standard values for αβ , for β = 1 and β = 5 (see Table [FINMA, 2016]).

Since the probability of large claims provided by the SST is based on a lower threshold of CHF

1 million, a thinning process of the CP-P has to be done if the company decides to use β = 5.

Following the same procedure presented in Section 5.4.2.1 we can see that

ZCY,l ∼ CP-P(λβ , β, αβ),

with an expected number of claims larger than β equal to

λβ = λCY,l = p1λCY

(
β

1

)−αβ
, (5.38)

where λCY denotes the expected total number of CY claims in the `-th LoB.

As in Section 5.4.2.1 the distribution of ZCY,l | D(t) is approximated by a single Pareto,

with the same mean and Pareto index αβ . Likewise, an upper bound γ is also introduced.

Model Assumptions 5.4.4 (Marginal distribution of large individual claims). For αβ, p1 and

γ provided by the regulator in [FINMA, 2016], β ∈ {1, 5} and λCY > 0,

ZCY,l | D(t) ∼ Pareto
(
p1λCY β

1−αβ , αβ , γ
)
.
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5.5 Joint distribution of PY and CY claims
Although the SST does not assume any parametric form for the joint distribution of Z | D(t) or

Z | D(t) (defined in (5.18) and (5.17), respectively) it is required that a pre-specified correlation

matrix Λ is used (see [FINMA, 2016]). In this section we discuss how to use the conditional and

marginalized models to define a joint distribution satisfying this correlation.

It is important to notice, though, that the SST correlation matrix may not be attainable

for some joint distributions, as discussed in Section 2.1.3 in the case of log-normal marginals.

It should be noted that, since in the SST the CY large claims are assumed to be independent

from all the other risks, the correlation matrix of (ZPY , ZCY,s, ZCY,l) | D(t) is essentially a

correlation matrix between (ZPY , ZCY,s) | D(t) and the same is true also for the conditional

model.

Regardless of assuming a conditional or a marginalized model, SST’s correlation matrix Λ

should be such that, for i, j = 1, . . . , 2L+ P ,

Λi,j = Corr(Zi, Zj | D(t)) = Corr(Zi, Zj | D(t)).

Remark 5.5.1. In the conditional model we need to “integrate out” the parameter uncertainty,

otherwise the (conditional) correlation would be dependent on an unknown parameter and could

not be matched with the numbers provided by the SST.

5.5.1 Conditional joint model
Under Model Assumptions 5.3.11, 5.4.1, 5.4.2 and 5.4.4 our interest lies on modelling the joint

behaviour of the vector Z |σ, D(t). Under Model Assumptions 5.3.1 it can be shown that the

required conditional independence between ZCY,l and (ZPY , ZCY,s) given D(t) is equivalent to

the conditional independence between ZCY,l and (ZPY , ZCY,s) given D(t), σ.

Moreover, since all the marginal conditional distributions are assumed to be log-normal,

following (5.18) and (5.17) the notation can be further simplified to

Zi |σ, D(t) ∼ LN(mi(σ), V i(σ)), for i = 1, . . . , 2L, (5.39)

with mi(σ), and V i(σ) defined on Model Assumptions 5.3.11 and 5.4.1. For example, for

i = L+ 1, mi(σ) = µ
(1)
CY,s, defined on Model Assumptions 5.4.1.

We are now ready to define the joint conditional model to be used.

Model Assumptions 5.5.2 (Conditional joint model). Based on Model Assumptions 5.3.11

and 5.4.1 we link the marginals of the conditional model through a Gaussian copula with corre-

lation matrix Ω. More formally, given D(t) and σ, the joint distribution of Z is given by

FZ(z1, . . . , z2L; Ω | D(t), σ) = C
(
FZ1

(z1 | D(t), σ), . . . , FZ2L
(z2L | D(t), σ); Ω

)
,

where FZi( · | D(t), σ) denotes the conditional distribution of Zi | D(t), σ defined in (5.39) and

C( · ; Ω) is the Gaussian copula with correlation matrix Ω.
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Remark 5.5.3. In this section the parameter matrix Ω should be understood as a deterministic

variable, differently from σ and φ. For this reason we do not include it on the right hand side

of the conditioning bar. Instead, whenever Ω needs to be explicitly written, we include it on the

left hand side of the bar, separated by the function (or functional, for expectations) arguments

by a semicolon.

In order to match SST’s correlation matrix Λ, under Model Assumptions 5.3.1 and 5.4.1,

the following equation needs to be solved with respect to Ω:

Λi,j = Corr(Zi, Zj ; Ω | D(t)). (5.40)

To compute the right hand side of the equation above we first notice that

Cov(Zi, Zj ; Ω | D(t)) = E[ZiZj ; Ω | D(t)]− E[Zi | D(t)]E[Zj | D(t)],

where, from (5.33) and the discussion in Section 5.4.1

E[Zi | D(t)] = Eσ[E[Zi | D(t), σ] | D(t)]

= Eσ[mi | D(t)] =

R̂(i)(t), if 1 ≤ i ≤ L

E[Z(i−L)
CY,s | D(t)], if L+ 1 ≤ i ≤ 2L

and from (2.4), Section 2.1.3,

E[ZiZj ; Ω | D(t)] = Eσ[E[ZiZj ; Ω | D(t), σ] | D(t)]

= Eσ

[
exp

{
mi +

V
2
i + 2V iωi,jV j + V

2
j

2 +mj

} ∣∣∣D(t)
]
.

Therefore, to satisfy (5.40) Ωi,j needs to be chosen such that the following implicit rela-

tionship (which can be solved through any univariate root search algorithm) holds:

Λi,j
√

Var(Zi | D(t))Var(Zj | D(t)) + E[Zi | D(t)]E[Zj | D(t)]− E[ZiZj ; Ω | D(t)] = 0.

5.5.2 Marginalized joint model
Similarly to Section 5.5.1 in this section we will fully characterize the joint distribution ofZ | D(t)

under Model Assumptions 5.3.12, 5.4.1, 5.4.2 and 5.4.4.

From these assumptions we define the following notation:

Zi | D(t) ∼ LN(mi, Vi), for i = 1, . . . , 2L. (5.41)

Model Assumptions 5.5.4 (Marginalized joint model). Based on Model Assumptions 5.3.12

and 5.4.1 we link the marginal distributions of the marginalized distributions through a Gaussian

copula with correlation matrix Ω. More formally, given D(t), the joint distribution of Z is given

by

FZ(z1, . . . , z2L; Ω | D(t)) = C
(
FZ1(z1 | D(t)), . . . , FZ2L(z2L | D(t)); Ω

)
,

where FZi denotes the conditional distribution of Zi | D(t) defined in (5.41) and C( · ; Ω) is the

Gaussian copula with correlation matrix Ω.
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In order to match SST’s correlation matrix, in the joint marginalized model the Gaussian

copula correlation Ω is chosen such that (see Equation (2.5))

Λi,j = exp{Viωi,jVj} − 1[
(eV 2

i − 1)(eV 2
j − 1)

]1/2 .



Chapter 6

Risk allocation under the Swiss

Solvency Test

In light of the multivariate distributions based on the marginalized and conditional models from

Chapter 5, in this chapter we discuss two SMC-based algorithms for efficient capital allocation.

One the one hand, as the algorithm presented in Chapter 4 does not (directly) account for

parameter uncertainty it can be straightforwardly applied to the marginalized model. On the

other hand, since the expectations involved in the capital allocations for the conditional model

are taken with respect to an intractable density, we develop a pseudo-marginal version of the

algorithm from Chapter 4 (without the transformation to the unit cube). We also present the

balance sheet of a synthetic non-life insurance company from where we generate claims triangles

to be used in the inferential procedure. Details of the SMC algorithms and some results conclude

the chapter.

Parts of this chapter are based on the working paper [Peters et al., 2016b].

6.1 Risk allocation for the SST
In this section we follow the Euler allocation principle from Section 2.2 and discuss how the

risk capital that is held by an insurance company can be split into different risk triggers. As

stochastic models for these risks involve a set of unknown parameters, we present an allocation

procedure for a marginalized model (which arises when the parameter uncertainty is resolved

beforehand) and a conditional model (which is still dependent on an unknown parameter).

Our interest is to split the given overall risk capital into its different LoBs and within each

LoB we are also interested in differentiating the impact on the capital of claims from previous

accident years and new premium liability. The formal model construction for these risks is

presented in Sections 5.2 to 5.5.

As in Chapter 5 let us assume we have two vectors characterizing these risks, namely

Z = (Z1, . . . , Zd) and Z = (Z1, . . . , Zd). In the following sections we discuss the construction of

two models: (1) a marginalized one, for the random variable Z, where the parameter uncertainty

has been previously marginalized; and (2) a conditional one, where risks Z are modelled given
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some parameter θ. Both models assume knowledge of all claims payments up to the current

accounting year and aim at forecasting the outstanding liability (see Section 5.2).

These two models (marginalized and conditional) are defined through the probability den-

sity functions (p.d.f.’s), fZ(z) and fZ|θ(z |θ), respectively. For the conditional model we follow

the Bayesian paradigm and assign a prior distribution with p.d.f. fθ(θ) to the unknown param-

eter θ. This is then combined with the likelihood fZ|θ(z |θ) to construct fZ(z), as seen in (5.6)

and (5.7).

Under the marginalized model we define S =
∑d
i=1 Zi as the company’s overall claims risk.

The SST requires the total capital to be calculated as the 99% expected shortfall of S, given by

ρ(S) = E[S |S ≥ VaR99%
(
S)]. (6.1)

In turn, the Euler allocation principle states that the contribution of each component Zi
to the capital in (6.1) is given by

Ai = E[Zi |S ≥ VaR99%(S)], ∀i = 1, . . . , d. (6.2)

The allocations for the conditional model follow the same structure, with Zi and S replaced,

respectively, by Zi and S in (6.2) and reads as

Ai = E[Zi |S ≥ VaR99%(S)], ∀i = 1, . . . , d, (6.3)

with S =
∑d
i=1 Zi. For the models discussed in Chapter 5 the density of fZ(z) is not known in

closed form, adding one more layer of complexity to the proposed method.

Remark 6.1.1. Due to approximations performed on the models introduced in Chapter 5 the

allocations derived from the marginalized and conditional models do not match perfectly and it

is out of the scope of this work to discuss issues on model selection.

Although computing Ai and Ai is a static problem, for the sake of transforming the Monte

Carlo estimation into an efficient computational framework, we embed the calculation of these

quantities into a sequential procedure, where at each step we solve a simpler problem, in a

strategy similar to the one adopted in Chapter 4.

6.2 SMC samplers and capital allocation
For the marginalized and conditional models presented in Sections 5.2 to 5.5 the marginal

contributions in (6.2) and (6.3) cannot be calculated in analytic form for a generic model, so

a simulation technique needs to be employed. Similarly to Chapter 4, in the sequel we discuss

how to design SMC algorithms to compute the capital allocations.

6.2.1 Allocations for the marginalized model
For a generic random vector Z = (Z1, . . . , Zd) with known marginal densities and distribution

functions, respectively fZi(zi) and FZi(zi), and copula density c(u1, . . . , ud), due to Sklar’s
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theorem (see Theorem 2.1.2) the joint density of Z can be written as

fZ(z) = c(u)
d∏
i=1

fZi(zi),

where u = (u1, . . . , ud) and ui = FZi(xi). In order to approximate the marginal risk contribu-

tions Ai from (6.2) we can use samples from the distribution

π(z) = fZ(z | z ∈ GZ) = fZ(z)1GZ (z)
P[Z ∈ GZ ] , (6.4)

where the set GZ = GZ(B) is defined, for B = VaR99%(S), as

GZ =
{
z ∈ Rd :

d∑
i=1

zi ≥ B

}
, (6.5)

and the indicator function 1GZ (z) is one when z ∈ GZ and zero otherwise. It should be

noted that since the boundary B in (6.5) is given by VaR99%(S) with S =
∑d
i=1 Zi then

P[Z ∈ GZ ] = 0.01.

6.2.1.1 Reaching a rare event using intermediate steps
Instead of directly targeting the conditional distribution (Z1, . . . , Zd) | {S ≥ VaR99%(S)} the

idea of the algorithm proposed in Chapter 4 and adapted to our current problem is to sequentially

sample from intermediate distributions with conditioning events that become rarer until the

point we reach the distribution of interest. The benefit of such an approach is that samples

from a previous step (with a less rare conditioning event) are “guided” to the next algorithmic

step (when targeting a rarer conditioning set) and, if carefully designed, no samples are wasted

on the way to the target distribution, in the sense that no samples are incrementally weighted

with a strictly zero weight.

In order to sample from the target distribution defined in (6.4) we use a sequence of inter-

mediate distributions {πt}Tt=0, such that πT ≡ π and

πt(z) = fZ(z | z ∈ GZt), (6.6)

with GZt = GZt(Bt) given by

GZt =
{
z ∈ Rd :

d∑
i=1

zi ≥ Bt

}
.

Remark 6.2.1. Differently from Chapter 4, in order to make the algorithm more easily com-

parable with the one used for the conditional model, we do not transform the original random

variable Z through its marginal distribution functions. Therefore, instead of sampling from the

conditional copula we sample from the conditional joint distribution of Z.

The thresholds B1, . . . , BT−1 are chosen in order to have increasingly rarer conditioning

events as a function of t, starting from the unconditional joint density. In other words, {Bt}Tt=0

needs to satisfy 0 = B0 < . . . < BT−1 < BT = B = VaR99%(S). Note that the choice B0 = 0

assumes S > 0, P-a.s., otherwise B0 = −∞. Depending on the choice of thresholds {Bt}T−1
t=0 it
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may be the case that the densities defined in (6.6) are only known up to a normalizing constant

so, for now on, we work with γt, the unnormalized version of πt:

πt(z) ∝ γt(z) = fZ(z)1GZt (z). (6.7)

If, at algorithmic time t, we have a set of N weighted samples {W (j)
t , z

(j)
t }Nj=1 from πt,

with z(j)
t = (z(j)

1,t , . . . , z
(j)
d,t ) then we construct the following empirical approximation:

E[Zi |S ≥ Bt] ≈
N∑
j=1

W
(j)
t z

(j)
i,t . (6.8)

6.2.2 Allocations for the conditional model
From the discussion in Section 6.1 we see that the main difference between the marginalized and

conditional models is the fact that the former density is analytically known whilst the latter is

defined through an integral. In this section we discuss how to adapt the algorithm presented

in Section 6.2.1 for situations where the target density cannot be analytically computed but a

positive and unbiased estimator for it can be calculated.

Following the recent developments on pseudo-marginal methods (see [Finke, 2015] for a

survey in the topic and Section 3.3.4, above) we substitute the unknown density fZ by a positive

and unbiased estimate f̂Z and show the SMC procedure still targets the correct distribution

— a strategy similar to the ones proposed in [Everitt et al., 2016] and [McGree et al., 2015].

In the context of rare event simulations a similar idea has been independently developed in

[Vergé et al., 2016] where the authors study the impact of the parameter uncertainty in the

probability of the rare event, whilst we analyse the impact in expectations conditional to the

rare event (as in (6.3)).

To introduce the concept we first estimate fZ by fZ( · |θ), which can be seen as a “one

sample” approximation to the integral in (5.7); then we show how to use an estimator based

on M ≥ 1 samples from fθ. These two approaches have been named in the literature (see

[Everitt et al., 2016] and references therein) as, respectively, the single auxiliary variable (SAV)

and the multiple auxiliary variable (MAV) methods.

6.2.2.1 Single auxiliary variable method
To avoid direct use of fZ on the SMC sampler algorithm we provide a procedure on the joint

space of Z and the parameter θ, defined as Y = Rd×Θ. The reader is referred to [Finke, 2015]

for an exhaustive list of well known algorithms which can also be interpreted in a extended space

way. The target distribution on this new space is defined as the joint distribution of Z and θ

and its marginal with respect to Z is precisely the density of the conditional model.

Formally, for y = (z,θ), GZ(B) = GZ =
{
z ∈ Rd :

∑d
i=1 zi ≥ B

}
and B = VaR99%(S) we

define

πy(y) ∝ γy(y) = fZ(z |θ)fθ(θ)1G
Z

(z),

which has

π(z) ∝ γ(z) = fZ(z |θ)1G
Z

(z) (6.9)
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as a marginal. Similarly to the densities defined in (6.7) and its version in the path space (see

Equation (3.9)) we define a sequence of target distributions both in Y and Yt, respectively, as

πyt (yt) ∝ γyt (yt) = fZ(zt |θt)fθ(θt)1G
Zt

(zt)

and

π̃yt (y1:t) ∝ γ̃yt (y1:t) = γyt (yt)
t−1∏
s=1

Lys (ys+1, ys)

= fZ(zt |θt)fθ(θt)1G
Zt

(zt)
t−1∏
s=1

Ls(zs+1, zs |θs)fθ(θs),

where the second identity specifies the choices of Lys , in terms of Ls and fθ.

Since we can perfectly sample from the distribution of θ, to move y samples backwards

from time s + 1 to s we split this process into sampling θs from fθ (ignoring θs+1) and then,

conditional on θs, moving zs+1 to zs. In other words, to sample

ys = (zs, θs)
∣∣∣ys+1 = (zs+1, θs+1) ∼ Lys (ys+1, ys),

we split the process in two stages,

1. θs ∼ fθ(θs);

2. zs | zs+1 ∼ Ls(zs+1, zs |θs)

The importance distribution on the path space of y can, then, be expressed according to

q̃yt (y1:t) = qy1 (y1)
t∏

s=2
Ky
s (ys−1, ys)

= q1(z1)fθ(θ1)
t∏

s=2
Ks(zs−1, zs |θs)fθ(θs)

and, once again, the second identity provides the choices of qy1 and Ky
s , i.e.,

qy1 (y1) = q1(z1)fθ(θ1) and Ky
s (ys−1, ys) = Ks(zs−1, zs |θs)fθ(θs).

Therefore, a SMC procedure targeting the sequence {πyt (yt)}Tt=1 produces unnormalized

weights

wyt = γ̃yt (y1:t)
q̃yt (y1:t)

= wyt−1
γyt (yt)Lyt−1(yt, yt−1)
γyt−1(yt−1)Ky

t (yt−1, yt)

= wyt−1

fZ(zt |θt)fθ(θt)1G
Zt

(zt)Lt−1(zt, zt−1 |θt−1)fθ(θt−1)
fZ(zt−1 |θt−1)fθ(θt−1)1G

Zt−1
(zt−1)Kt(zt−1, zt |θt)fθ(θt)

= wyt−1

fZ(zt |θt)1G
Zt

(zt)Lt−1(zt, zt−1 |θt−1)
fZ(zt−1 |θt−1)1G

Zt−1
(zt−1)Kt(zt−1, zt |θt)

,

that can be used to create weighted samples from πt(zt), which is the desired marginal of πyt (yt),

the density required for the capital allocation.
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Remark 6.2.2. From the structure of the mutation kernels Ky
t it should be noticed that at each

iteration t a new value of θt needs to be generated and used to sample zt |θt. In other words,

for each particle j = 1, . . . , N a different θ(j)
t is to be used for each z(j)

t |θ
(j)
t .

6.2.2.2 Multiple auxiliary variable
In the previous algorithm we, indirectly, estimate the density fZ(z) by fZ(z |θ). In this section

we discuss how to use a different and more robust estimator, using M ≥ 1 samples from θ. In the

context of pseudo-marginal Monte Carlo Markov Chain (MCMC) [Andrieu and Vihola, 2015]

show that reducing the variance of the estimate of the unknown density fZ(z) leads to reduced

asymptotic variance of estimators from the MCMC. For SMC algorithms this strategy has been

used, for example, in [McGree et al., 2015] and [Everitt et al., 2016].

Before proceeding, we note that even in the case that M = 1 the algorithm still produces

asymptotic and unbiased estimators (when N → +∞). However, the rate of variance reduction

in this asymptotic is directly affected by the choice of M , in a non-trivial manner. Furthermore,

the asymptotic variance of Central Limit Theorem (CLT) estimators under the class of such

pseudo-marginal Monte Carlo approaches is strictly ordered in M , with M increasing reducing

the the asymptotic variance.

For any M ≥ 1, a positive and unbiased estimate for fZ(z) can be constructed as

f̂Z(z; ϑ) = 1
M

M∑
i=1

fZ(z |θ(i)), (6.10)

where ϑ = (θ(1), . . . ,θ(M)) ∈ ΘM and each θ(m) is sampled independently from fθ(θ). Note

that when only one sample of θ is used to estimate fZ(z) the estimator is reduced to f̂Z(z; ϑ) =

fZ(z |θ). Also, note that f̂Z(z; ϑ) → fZ(z) point-wise when M → +∞, by the law of large

numbers.

Since the random variable ϑ has density fϑ(ϑ) =
∏M
i=1 fθ(θ(i)), then∫

ΘM

f̂Z(z; ϑ)fϑ(ϑ)dϑ =
∫
ΘM

1
M

M∑
i=1

fZ(z |θ(i))
M∏
i=1

fθ(θ(i))dθ(1) . . . dθ(M)

=
∫
Θ

fZ(z |θ)fθ(θ)dθ = fZ(z).

Therefore the density π(z) constructed in (6.9) is the marginal of the new target density

defined on YM = Rd ×ΘM

πy(y; ϑ) ∝ γy(y; ϑ) = f̂Z(z; ϑ)fϑ(ϑ)1G
Z

(z).

Apart from the cumbersome notation, the same argument from the previous section can

be used to show that a SMC procedure with estimated density f̂Z(z; ϑ) replacing fZ(z) has

unnormalized weights given by

wyt = wyt−1

f̂Z(zt; ϑt)1G
Zt

(zt)Lt−1(zt, zt−1 |ϑt−1)

f̂Z(zt−1; ϑt−1)1G
Zt−1

(zt−1)Kt(zt−1, zt |ϑt)
,

when targeting a sequence {πt(zt)}Tt=1 with πT (zT ) = π(z).
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LoB Reserves Premium

1 MTPL 2,391.64 503.14

2 Motor Hull 99.08 573.26

3 Property 449.26 748.76

4 Liability 870.27 299.73

5 Workers Compensation (UVG) 1,104.66 338.63

6 Commercial Health 271.54 254.21

7 Private Health 7.32 7.2

8 Credit and Surety 49.5 34.64

9 Others 67.64 46.28

Total 5,310.92 2,805.87

Table 6.1: Original balance sheet.

6.3 Data description and parameter estimation
Starting from the balance sheet of a fictitious insurance company, in this section we discuss how

we set up the fixed parameters in the models discussed so far. Using this balance sheet and the

information contained in the SST we also show how to generate realistic claims triangles and,

based on them, how to perform Bayesian inference for the unknown parameters. Our starting

point is the fictitious balance sheet shown in Table 6.1, which is intended to represent a large

insurance company in Switzerland (for this reason, in this Chapter all monetary units should

be understood as millions of Swiss Francs (CHF)).

6.3.1 Hyperparameters for φj
Based on SST’s standard runoff pattern (see Table 6.2), which is the cumulated proportion of

paid claims for the specific accident year, we first compute the implied CL factors f (`)
j as follows

(once again we suppress the index ` of the LoB). If Fj is the cumulative claims payment pattern

for development year j we define

fj = Fj+1
Fj

, for j = 0, . . . , J − 1.

These values can, then, be used as a hyperparameter in the prior for φj (see Model Assumptions

5.3.1, item (c)).

To generate data from the model (see Section 6.3.3) we fix φj = 1/fj and σj = sj/fj , where

sj is Mack’s standard deviation estimate calculated from exogenous triangles. The values of sj
are presented in Table 6.3.

6.3.2 Current year small and large claims

To calculate the expected number of CY claims, λCY , defined in Section 5.4, we first set what

we believe to be the claims ratio for each LoB, i.e., how much of the premium in that LoB is

used to cover incoming claims (all the rest covers business’ costs). This information is available

in Table 6.4, along with the average claim amount. Based on these values the expected number
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LoB Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15

1 30.18% 15.63% 5.78% 4.94% 4.43% 4.34% 4.09% 3.92% 3.66% 3.5% 3.08% 2.64% 2.16% 1.86% 1.5% 1.3%

2 81.08% 18.67% 0.24% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

3 58.24% 35.06% 4.36% 1.37% 0.64% 0.33% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

4 26.55% 23.53% 8.33% 6.18% 4.79% 4.15% 3.63% 3.14% 2.55% 2.11% 1.8% 1.59% 1.35% 1.2% 1.12% 1.02%

5 40.62% 24.92% 7.14% 4.86% 4.43% 3.13% 2.57% 1.67% 1.31% 1.22% 1.05% 0.69% 0.6% 0.56% 0.51% 0.47%

6 36.83% 47.68% 14.2% 0.88% 0.28% 0.14% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

7 46.26% 38.05% 10.78% 2.94% 1.27% 0.69% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

8 45.85% 35.28% 11.35% 3.72% 1.62% 0.91% 0.52% 0.32% 0.2% 0.13% 0.1% 0% 0% 0% 0% 0%

9 58.24% 35.06% 4.36% 1.37% 0.64% 0.33% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

LoB Year 16 Year 17 Year 18 Year 19 Year 20 Year 21 Year 22 Year 23 Year 24 Year 25 Year 26 Year 27 Year 28 Year 29 Year 30

1 1.06% 0.88% 0.73% 0.64% 0.6% 0.53% 0.47% 0.44% 0.41% 0.37% 0.29% 0.21% 0.15% 0.12% 0.1%

2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

4 0.88% 0.77% 0.72% 0.66% 0.6% 0.55% 0.52% 0.49% 0.45% 0.4% 0.31% 0.22% 0.16% 0.13% 0.11%

5 0.43% 0.4% 0.37% 0.35% 0.33% 0.31% 0.29% 0.27% 0.26% 0.24% 0.23% 0.22% 0.2% 0.19% 0.18%

6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 6.2: SST’s (2015) standard development patterns for claims provision (normalized to have only 30 development years and then rounded to 2 digits).
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LoB Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Year 13 Year 14

1 0.5673 0.228 0.1922 0.2681 0.2683 0.3949 0.2652 0.2641 0.2789 0.3055 0.1458 0.1577 0.214 0.1001 0.1016

2 0.664 0.0659

3 1.3614 0.4921 0.3215 0.0875 0.0666

4 0.8248 0.4328 0.4021 0.3644 0.3772 0.2729 0.5268 0.244 0.2786 0.1559 0.266 0.0776 0.0757 0.122 0.0418

5 0.9914 0.3317 0.1807 0.1072 0.074 0.0444 0.0359 0.0255 0.019 0.0106 0.0166 0.0094 0.004 0.0105 0.004

6 0.6069 0.2405 0.0597 0.0371 0.0172

7 0.1053 0.045 0.0157 0.0113 0.0091

8 0.3098 0.0737 0.031 0.0203 0.0137 0.0051 0.002 0.0026 0.002 0.0014 0.0011

9 0.9163 0.191 0.1248 0.034 0.0258

LoB Year 15 Year 16 Year 17 Year 18 Year 19 Year 20 Year 21 Year 22 Year 23 Year 24 Year 25 Year 26 Year 27 Year 28 Year 29

1 0.0466 0.1097 0.1081 0.0583 0.1353 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916

2

3

4 0.0272 0.0886 0.0422 0.019 0.0238 0.019 0.0152 0.0122 0.0097 0.0078 0.0062 0.005 0.004 0.0032 0.0025

5 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

6

7

8

9

Table 6.3: Mack’s standard deviation estimates, sj , based on exogenous triangles.
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LoB Claims ratio Average claim amount Market share

1 90% 0.005

2 75% 0.003 20%

3 75% 0.004

4 75% 0.004

5 90% 0.004 10%

6 90% 0.003

7 90% 0.002

8 80% 0.003

9 80% 0.003

Table 6.4: Claims ratio, average claim amount (in millions of CHF) and market share.

of claims is defined as

λCY = Claims ratio× Premium
Average claim amount .

In light of the expected number of CY claims its value is used to compute the expected

number of individual large claims, λCY,l, as in (5.38). Using the fact that λCY,s = λCY − λCY,l
we calculate the coefficient of variation for small CY claims given in (5.35).

The last ingredient in Model Assumptions 5.4.1 is E[ZCY,s | D(t)] which is given by

E[ZCY,s | D(t)] = Claims ratio× Premium− E[ZCY,l | D(t)],

and the expectation on the right hand side is given either in Model Assumptions 5.4.2 or Model

Assumptions 5.4.4, depending on the LoB.

For the Large Claims from Model Assumptions 5.4.2 and 5.4.4 we assume the threshold for

large claims β to be equal to 5 (millions of CHF). For the large cumulated claims we use LoBs

market share as given in Table 6.4.

The resulting parameters can be found in Table 6.5. Note these parameters are the same

both for the marginalized and conditional models.

6.3.3 Data generating process
In this section we present the process used to generate claims triangles using the balance sheet

data from Table 6.1 in a way that the estimated reserves from the data match, as closely as

possible, the reserves from Table 6.1.

First of all, for each LoB we set the maximum number of development years as the number

of years it takes until Fj = 1, where Fj denotes the cumulative payment pattern for development

year j (see Section 6.3.1). In order not to use too old claims, we assume each LoB has at most

10 accident years and set I = max(J + 1, 10).

For different accident years we calculate the present value of the runoff pattern, using a

constant claim inflation r = 2% for all years and LoBs. More precisely, we have that

PVi(Fj) = (1 + r)−iFj for j = 1, . . . , J and j + i > I.
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Reserve / Standalone Marginalized Conditional

LoB Premium σ µ CoVa Expectation ES SCR ES SCR Div. benefit ES SCR Div. benefit

1 2365.44 0.0287 7.7659 2.87% 2365.44 2546.31 180.87 2489.85 124.41 31.22% 2492.05 126.61 30%

2 99.37 0.2164 4.5755 21.9% 99.37 173.23 73.86 131.73 32.36 56.19% 132.59 33.21 55.03%

3 405.99 0.1142 5.9998 11.46% 405.99 547.25 141.26 479.11 73.12 48.24% 485.27 79.28 43.88%

4 870.19 0.0315 6.7682 3.15% 870.19 946.06 75.87 905.48 35.29 53.49% 905.29 35.1 53.73%

5 1105.95 0.0193 7.0083 1.93% 1105.95 1164.04 58.09 1137.06 31.11 46.44% 1136.88 30.93 46.76%

6 274.91 0.041 5.6156 4.1% 274.91 306.43 31.52 287.33 12.42 60.59% 286.97 12.06 61.74%

7 7.15 0.0547 1.9657 5.48% 7.15 8.26 1.11 7.45 0.3 73.27% 7.43 0.28 74.5%

8 48.18 0.0493 3.8738 4.93% 48.18 54.89 6.71 50.51 2.32 65.36% 50.43 2.25 66.44%

9 72.2 0.1332 4.2706 13.38% 72.2 102.16 29.96 85.32 13.12 56.21% 85.15 12.95 56.77%

Total PY 5249.38 5249.38 5848.63 599.25 5573.84 324.45 45.86% 5582.06 332.67 44.49%

1 503.14 0.0685 6.0958 6.86% 448.94 533.07 84.13 499.16 50.21 40.32% 498.37 49.43 41.25%

2 573.26 0.0702 6.0356 7.03% 402.87 504.2 101.33 472.25 69.38 31.53% 471.66 68.79 32.11%

3 748.76 0.0683 6.3013 6.84% 547.23 654.38 107.15 603.36 56.13 47.62% 602.61 55.38 48.31%

4 299.73 0.0923 5.3596 9.25% 216.7 272.05 55.35 239.69 22.99 58.47% 239.57 22.87 58.69%

5 338.63 0.0648 5.6841 6.49% 303.77 349.69 45.92 319.17 15.4 66.47% 318.71 14.94 67.45%

6 254.21 0.0804 5.4296 8.05% 228.79 282.62 53.83 249.63 20.85 61.28% 249.31 20.52 61.88%

7 7.2 0.1047 1.8628 10.5% 6.48 8.52 2.04 7.01 0.53 73.84% 7.01 0.53 74.06%

8 34.64 0.0981 3.3172 9.84% 27.72 35.84 8.13 30.32 2.6 67.95% 30.28 2.57 68.44%

9 46.28 0.1004 3.6066 10.06% 37.03 48.16 11.14 41.83 4.81 56.83% 41.79 4.77 57.19%

Total CY,s 2805.85 2219.53 2688.53 469.02 2462.42 242.9 48.21% 2459.31 239.8 48.87%

Table 6.5: Parameters and capital calculations for the marginalized and conditional models (Part I/II).
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Standalone Marginalized Conditional

LoB β(5) γ α Expectation ES SCR ES SCR Div. benefit ES SCR Div. benefit

1 2.5 2.8 3.89 20.14 16.25 4.03 0.15 99.1% 4.01 0.12 99.27%

2 13.35 300 1.85 27.08 191.21 164.13 39.96 12.88 92.15% 39.61 12.53 92.36%

3 6.28 100 1.5 14.34 84.31 69.97 16.5 2.16 96.91% 16.45 2.11 96.98%

4 3.88 100 1.8 8.1 61.34 53.24 8.94 0.84 98.42% 8.91 0.81 98.48%

5 0.5 2 1 10 9 1.07 0.07 99.19% 1.12 0.12 98.69%

Total CY,l 54.41 367 312.59 70.5 16.1 94.85% 70.1 15.69 94.98%

Total 8055.26 7523.32 8904.18 1380.86 8106.77 583.45 57.75% 8111.5 588.18 57.4%

Table 6.5: (Continued) Parameters and capital calculations for the marginalized and conditional models (Part II/II).
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For the most recent accident year, i = I, we define the expected ultimate claim by

C∗I,J = R×
∑J
j=1 PI,j∑J
j=1 Fj

,

where R denotes the reserves from Table 6.1 and

PI,j = PVI(Fj)∑I
i=1
∑J
j=1 PVi(Fj)

.

Note that C∗I,J is neither the ultimate claim predictor for the conditional model defined in (5.8)

nor the marginalized one from (5.14). In this context C∗I,J is just an auxiliary variable being

used in order to simulate triangles which have estimated reserves similar to the original ones in

Table 6.1.

For the remaining accident years the expected ultimate claim is taken as the present value

of C∗I,J . In other words,

C∗i,J = PVi−I(C∗I,J) = (1 + r)I−iC∗I,J .

Given all the values of C∗i,J , we compute E∗i = F0 × C∗i,J , the expected initial payment for

each accident year. These values are, then, combined with the coefficients of variation for CY

small claims and used to simulate the first column of our triangles as

Ci,0 ∼ LN(m∗i , V ∗i ),

with the auxiliary parameters m∗i = log(E∗i )− V ∗i /2, V ∗i = log(1 + CoVa2
CY ) and CoVaCY the

coefficient of variation of CY small claims, based on Model Assumptions 5.4.1. For the remaining

development years we follow Model Assumptions 5.3.1 (a) with φj = 1/fj and σj = sj/fj , as

discussed in Section 6.3.1.

Figure 6.1 presents the generated cumulative claims payments for all LoBs, where each

line represents the cumulative claims payment. In each plot the lighter colours represent more

recent accident years which are not yet fully developed. The reserves calculated based on this

dataset are presented in Table 6.5 and given these values the original reserves from Table 6.1

are ignored.

6.3.4 Parameter estimation
In order to estimate the variance parameters σj in Model Assumptions 5.3.1 we assume priors

centred at Mack’s [Mack, 1993] CL standard deviation estimator normalized by the CL factor

f , both implied by the data. Formally,

σ̂j(t) =

√
ŝ2
j (t)

f̂j(t)
, ∀0 ≤ j ≤ J − 1, (6.11)

where ŝ2
J−1(t) = min{ŝ2

J−3(t), ŝ2
J−2(t), ŝ4

J−2(t)/ŝ2
J−3(t)} = min{ŝ2

J−3(t), ŝ4
J−2(t)/ŝ2

J−3(t)}.

To generate samples from the posteriors we use a Metropolis-Hastings algorithm, with

proposals given by a truncated Normal centred at the current point and standard deviation equal
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Figure 6.1: Cumulative claims payment (in millions of CHF). Lighter colours represent more

recent accident years.
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to 10×dj . All the chains are started at the CL variance estimate and the upper limit for the prior,

dj = k× σ̂j(t) is set as k = 5 times the CL variance estimate. To be left with NMCMC = 1, 000

samples from the posterior we ran the Markov chains for 12,500 iterations, discarding the first

20% as a burn-in and keeping every 10th iteration of the remaining simulations.

Some of the results are presented in Figures 6.2, 6.3 and 6.4 where one finds the unnormal-

ized posteriors, the histogram of the MCMC outputs and a red dashed line indicating the CL

variance estimate for three different LoBs: MTPL, Motor Hull and Property, respectively. As

expected for unidimensional and unimodal densities the resulting estimates are highly accurate.

It is also worth noticing that the larger the development year j the more diffuse the posterior is,

due to the diminishing amount of data available. In the limit, when j = J − 1 the information

available is not enough to estimate the variance parameter and, therefore, as can be seen from

the posterior distribution derived in (5.25), the posterior is the same as the prior.

Using the sample of size NMCMC = 1, 000 mentioned above, the calculated parameters for

the marginalized model are presented in Table 6.5. For the conditional model we use the same

sample from the posterior and calculate the one value of σPY and µPY for each sampled value

σ. The resulting (transformed) samples are presented as histograms in Figures 6.5 and 6.6 and,

for comparison only, the relevant marginalized parameters are included as a red dashed line.

6.3.5 The correlation matrices
For the copula correlation matrices we follow the procedures outlined in Sections 5.5.1 and 5.5.2.

The resulting matrix for the marginalized model is found in Table 6.6. From [FINMA, 2016] it

can be seen the values in ΩPY,CY,s are very similar to ones in the standard ΛPY,CY,s.

Also, it worth noticing that differently from SST’s original correlation matrix, the

block ΩPY,CY,s is no longer symmetric, i.e., in order to have Corr(Z(1)
PY , Z

(2)
CY | D(t)) =

Corr(Z(2)
PY , Z

(1)
CY | D(t)) the term (1, 2) of the matrix ΩPY,CY,s is not equal to the term (2, 1) of

the same matrix.

The results for the copula correlation ΩPY,CY,s follow the same patterns as ΩPY,CY,s and

for this reason its values are omitted.
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Figure 6.2: Posterior distributions for σj for the MTPL line of business. One sees solid lines

representing the unnormalized posteriors, the histogram of the MCMC outputs and a red dashed

line indicating the CL variance estimate.
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Figure 6.3: Posterior distributions for σj for the Motor Hull line of business. One sees solid

lines representing the unnormalized posteriors, the histogram of the MCMC outputs and a red

dashed line indicating the CL variance estimate.
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Figure 6.4: Posterior distributions for σj for the Property line of business. One sees solid lines

representing the unnormalized posteriors, the histogram of the MCMC outputs and a red dashed

line indicating the CL variance estimate.
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Figure 6.5: Histogram of the parameter σPY for the conditional model. Red dashed line: σPY .
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Figure 6.6: Histogram of the parameter µPY for the conditional model. Red dashed line: µPY .
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Ω =


ΩPY ΩPY,CY,s 0L×P

ΩCY,s 0L×P
IP×P


Table 6.6: Copula correlation matrix from the marginalized model.

LoB 1 2 3 4 5 6 7 8 9

1 1 0.1517 0.1505 0.2501 0.5001 0.2501 0.1501 0.2502 0.2511

2 1 0.152 0.1517 0.1517 0.1517 0.1517 0.1517 0.2532

3 1 0.1505 0.1505 0.1505 0.1505 0.1505 0.2515

4 1 0.2501 0.1501 0.1501 0.1501 0.2511

5 1 0.2501 0.1501 0.2501 0.2511

6 1 0.1501 0.2502 0.2511

7 1 0.1502 0.2511

8 1 0.2511

9 1

Table 6.7: Correlation block for the marginalized model: ΩPY

LoB 1 2 3 4 5 6 7 8 9

1 0.5004 0.5005 0.1502 0.2505 0.2503 0.2504 0.1504 0.2506 0.2506

2 0.5046 0.5046 0.2528 0.1519 0.2528 0.1518 0.1519 0.1519 0.2529

3 0.1506 0.2509 0.5013 0.251 0.1506 0.1506 0.1508 0.1507 0.2511

4 0.2503 0.1502 0.2503 0.5008 0.1502 0.1503 0.1504 0.1504 0.2506

5 0.2503 0.2503 0.1502 0.1503 0.5004 0.2504 0.1504 0.2506 0.2506

6 0.2503 0.1502 0.1502 0.1503 0.2503 0.5006 0.2507 0.2506 0.2506

7 0.1502 0.1503 0.1502 0.1504 0.1502 0.2505 0.501 0.1504 0.2506

8 0.2503 0.1502 0.1502 0.1504 0.2503 0.2504 0.1504 0.5009 0.2506

9 0.2511 0.2511 0.2511 0.2513 0.2511 0.2512 0.2514 0.2513 0.5018

Table 6.8: Correlation block for the marginalized model: ΩPY,CY,s

LoB 1 2 3 4 5 6 7 8 9

1 1 0.5006 0.1503 0.2506 0.2504 0.1504 0.1505 0.1505 0.2507

2 1 0.2505 0.1504 0.2504 0.1504 0.1505 0.1505 0.2507

3 1 0.2506 0.1503 0.1504 0.1505 0.1505 0.2507

4 1 0.1504 0.1505 0.1506 0.1506 0.2509

5 1 0.2505 0.1505 0.2507 0.2507

6 1 0.2508 0.2508 0.2508

7 1 0.1507 0.251

8 1 0.2509

9 1

Table 6.9: Correlation block for the marginalized model: ΩCY,s
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p0 1 2 3 4 5 6 7

0.4 0.6 0.84 0.936 0.9744 0.9898 0.9959

0.5 0.5 0.75 0.875 0.9375 0.9688 0.9844 0.9922

0.7 0.3 0.51 0.657 0.7599 0.8319 0.8824 0.9176

p0 8 9 10 11 12 13

0.4

0.5

0.7 0.9424 0.9596 0.9718 0.9802 0.9862 0.9903

Table 6.10: Intermediate quantiles for different values of p0.

6.4 Details of the SMC algorithm
6.4.1 Selection of intermediate sets
For both the marginalized and the conditional models we use an adaptive strategy similar to

[Cérou et al., 2012] in order to estimate “on the fly” the levels B1, . . . , BT . When levels are

being chosen “on the fly” one of the main advantages of the proposed SMC algorithm is the

ability to estimate, in one run, the company-wide value at risk, the expected shortfall as well as

the risk allocations.

Starting from B0 = 0 (or B0 = 0 if the conditional model is being used) the idea consists

of, at each algorithmic iteration t − 1, choosing the next level, Bt, such that a percentage

p0 ∈ (0, 1) of the (t − 1)–particles is above this set. More formally, we set Bt to be the 1 − p0

empirical quantile of the weighted sample {s(j)
t−1, W

(j)
t−1}Nj=1 or {s(j)

t−1, W
(j)
t−1}Nj=1, where st−1 and

st−1 denote, respectively, the sum of the components of zt and zt. Therefore, at algorithmic time

t the level Bt corresponds to an estimate of the (1 − pt0)-th quantile of the target distribution.

In our examples we set p0 = 0.4, 0.5 and 0.7 which induces intermediate quantiles seen in Table

6.10 for the algorithm. Note that, given a value of p0 the number of levels in the algorithm is

deterministic. For example, for p0 = 0.5 there are 7 levels until the estimated quantile is above

99% and one can decide to stop the algorithm at this step or at the previous one, when the

quantile level is only slightly lower than 99%.

An alternative approach to choosing the level sets is to use the classic normalizing constant

estimator derived from the SMC sampler algorithm (see Section 3.4.2). Using the notation from

Section 6.2, we have that the normalizing constant Zt = P[S > Bt] can be estimated as

Ẑt = Ẑt−1

N∑
j=1

W
(j)
t−1α̃

(j)
t , (6.12)

where Wt−1 and α̃t are, respectively the normalized and the incremental weights at time t− 1.

Similarly to our proposed estimate, in this alternative route one would choose Bt such that

p0×100% of the time t−1 particles are above this level. Using the estimator in (6.12) one could

stop the algorithm as soon as Ẑt < α. The main disadvantage of this approach is that although
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Ẑt can be proved to be unbiased and asymptotically normally distributed when the number of

particles N → +∞ (see [Del Moral, 2004, Propositions 7.4.1 and 9.4.1] and [Pitt et al., 2012]

for a proof in the special case of state-space models), one can not guarantee that Ẑt ∈ [0, 1].

In our experiments the results based on this classic estimate were deemed unsatisfactory, as we

observed estimates of the normalizing constant as large as 15.

6.4.2 Marginalized model

6.4.2.1 The forward kernel
Similarly to Section 4.2.1 we propose a mutation kernel Kt(zt−1, zt) such that the condition∑d
i=1 zi,t > Bt is always satisfied. Due to the independence assumption of the CY large claims

(the P Pareto variables) we first independently mutate the Pareto coordinates, following their

true (unconditional) marginal and then mutate the other 2L variables.

First we split the vector into its log-normal and Pareto components, zt = (z′t, z′′t ), where

z′t = (zt,1, . . . , zt,2L) and z′′t = (zt,2L+1, . . . , zt,2L+P ). Using this notation we use

Kt(zt−1, zt) = K ′t(z′t−1, z
′
t | z′′t )×K ′′t (z′′t−1, z

′′
t )

=
{

1
2L

2L∑
m=1

[
K
′(−m)
t (z′t−1, z

′
t,−m)K ′(m)

t (z′t−1, z
′
t,m | z′t,−m, z′′t )

]}

×
2L+P∏
i=2L+1

Pareto(z′′t ; αi, βi)

where the kernel K ′(−m)
t (z′t−1, · ), which mutates all but the m-th dimension of z′t−1, consists

of independent moves in each dimension, i.e.,

K
(−m)
t (z′t−1, z

′
t) =

2L∏
i=1
i 6=m

K
′(−m,i)
t (z′t−1,i, z

′
t,i).

Note that these moves are also independent of the P Pareto mutations.

Let us denote {z(j)
t−1, W

(j)
t−1}Nj=1 the weighted sample approximating

πt(zt−1) = fZ(zt−1 | zt−1 ∈ GZt−1),

as defined in (6.6). The components of the mutation kernel are then defined as

K
′(−m,i)
t (z′t−1, z

′
t,i) = LN(z′t,i; µ̂i, σ̂i), for i = 1, . . . , 2L, i 6= m (6.13)

where µ̂i and σ̂i are the empirical mean and variance of {z(j)
t−1, W

(j)
t−1}Nj=1 when i = 1, . . . , 2L

µ̂t−1,i =
N∑
j=1

W
(j)
t−1z

(j)
t−1,i,

σ̂2
t−1,i = µ̂2

t−1,i −
N∑
j=1

Wt−1

(
z

(j)
t−1,i

)2
.
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For the mutation of the remaining dimension, m, to ensure all the samples satisfy the

condition
∑d
i=1 zi,t > Bt we proceed as follows. First we define

Bzt (m) = max
{

0, Bt −
d∑
i=1
i 6=m

zt,i

}

and then sample the last component zm,t ∈ [Bzt (m),+∞) according to

K
(m)
t (zt−1, zt,m | zt,−m) = TN(zt,m; µ̂m, σ̂m, Bzt (m),+∞), for m = 1, . . . , 2L, (6.14)

where TN( · ;µ, σ, a, b) denotes the density of a Normal with mean µ and variance σ2 truncated

at [a, b].

6.4.2.2 The backward kernel
For the backward kernel we follow the discussion in Section 3.4.3.1 and use the (approximation

to the) optimum kernel, given by equation (3.12)

Lt(zt+1, zt) = γt(zt)Kt+1(zt, zt+1)
1
N

∑N
j=1 w

(j)
t Kt+1(z(j)

t , zt+1)
,

where w(j)
t denotes the unnormalized weights at time t and the weighted sample {z(j)

t , w
(j)
t }Nj=1

targets the unnormalized density γt(zt). Proceeding this way the unnormalized weights for the

SMC sampler algorithm (see Algorithm 8) satisfy the following recursion

w
(j)
t = w

(j)
t−1

γt(zt)
1
N

∑N
k=1 w

(k)
t Kt(zt−1, zt)

.

6.4.2.3 The MCMC move kernel
To improve particle diversity after a resampling step (which is performed whenever the effective

sample size drops bellow N/2) the following MCMC move kernel is applied to the particles.

As in Chapter 4 we propose a Gibbs-type update combined with a slice sampler. For

notational simplicity we suppress the dependence in t in the vector zt and denote v∗(m) =

(z∗1 , . . . , z∗m, zm+1, . . . , zd) the vector where the first m components have already been updated

in the Gibbs scan. The full conditional for the m-th component of zt is given by

πt(z∗m | z∗1 , . . . , z∗m−1, zm+1, . . . , zd) ∝ πt(v∗(m)) ∝ fZ(v∗(m))1GZt (v
∗(m)),

which can be sampled from using an unidimensional slice sampler.

6.4.3 Conditional model
Following the discussion in Section 6.2.2.2 we use equation (6.10) as an approximation to the

unknown density fZ(z). For our simulations M = 5 samples of the unknown parameter θ are

used, where

θ = (σ(1), . . . ,σ(L))

and each vector σ(`) = (σ(`)
1 , . . . , σ

(`)
J ) contains all the unknown variance parameters for the `-th

LoB. Therefore, ϑ = (θ(1), . . . ,θ(M)) and it should be noticed the superscript has a different

interpretation from those in σ
(`)
j .
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As the parameter estimation step described in Section 6.3.4 is independent of the allocation

process we assume NMCMC samples for each unknown parameter vector σ have already been

generated. Therefore, to sample z ∼ fZ(z) we first sample an index n ∼ U({1, . . . , NMCMC})

and then z ∼ fZ(z |θ(n)).

6.4.3.1 The forward kernel
The forward kernel used for the conditional model follows the same structure as the one used

in the marginalized model and described in Section 6.4.2.1: first we sample the P independent

Pareto variables (with the same distribution as in the marginalized case) and then the remaining

2L variables. More precisely,

K
′(−m,i)
t (z′t−1, z

′
t,i |ϑt) = K

′(−m,i)
t (z′t−1, z

′
t,i) = K

′(−m,i)
t (z′t−1, z

′
t,i)

where the last term is defined in equation (6.13) and µ̂i and σ̂i are now the empirical mean and

variance of {z(j)
t−1, W

(j)
t−1}Nj=1. Likewise,

K
′(m)
t (z′t−1, z

′
t,m | z′t,−m, ϑt) = K

′(m)
t (z′t−1, z

′
t,m | z′t,−m) = K

′(m)
t (z′t−1, z

′
t,m | z′t,−m)

with the last term defined in equation (6.14). As samples from fϑ(ϑ) have already been gener-

ated through MCMC then the mutation kernel in the extended space, Ky
t (yt−1,yt), is completely

characterized.

6.4.3.2 The backward kernel
As in Section 6.4.2.2 we use the optimum backward kernel in the extended space Y = Rd×ΘM ,

which for the conditional model leads to the following incremental weights (see equation (3.13))

αt = γy
t (yt)

1
N

∑N
j=1 w

(j)
t−1K

y
t (yt−1,yt)

=
f̂Z(zt; ϑt)fϑ(ϑt)1G

Zt
(zt)

1
N

∑N
j=1 w

(j)
t−1Kt(zt−1, zt)fϑ(ϑt)

=
f̂Z(zt; ϑt)1G

Zt
(zt)

1
N

∑N
j=1 w

(j)
t−1Kt(zt−1, zt)

.

6.4.3.3 The MCMC move kernel
The MCMC move kernel used for the conditional model needs to keep the target distribution in

the extended space, πy
t (yt), invariant. The strategy adopted is to first sample ϑ∗ ∼ fϑ(ϑ) and

then zt |ϑ∗ ∼ f̂Z(zt; ϑ∗t )1GZt (zt).

For the second step above we use exactly the same Gibbs-sampler update as in Section

6.4.2.3, with fZ( · ) replaced by f̂Z( · ; ϑt).

6.5 Results
In this section we present the results of the SMC procedure when used to calculate the marginal

expected shortfall allocations from (6.2) and (6.3) and, consequently, the solvency capital re-

quirement.
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Before proceeding to the results calculated via the SMC algorithm, in order to understand

the simulated data presented in Figure 6.1, in Table 6.5 we present some results based on a

“brute force” Monte Carlo (rejection-sampling) simulation, which is taken as the base line for

comparisons with the SMC algorithm. Table 6.5 is divided in three blocks of rows, with PY

claims, CY small (CY,s) claims and CY large (CY,l) claims.

First of all, it should be noticed that the reserves presented on the first block of Table

6.5 are the ones implied by the data, which we then assume to be the true ones (ignoring

the original data from Table 6.1). The parameters σ and µ for PY claims are related to the

marginalized model (for the parameters of the conditional model see Figures 6.5 and 6.6). It is

also important to note that only the PY parameters are different between the conditional and

marginalized models.

For each LoB the standalone expected shortfall (ES) is calculated analytically and its value

is, then, combined with the LoB’s expectation to calculate the solvency capital requirement

(SCR). These values are added up, both within risk type (i.e., PY, CY,s and CY,l) and globally,

in order to calculate the overall standalone capital. For the marginalized and conditional models

the columns “ES” and “SCR” denote, respectively, the expected shortfall and capital allocations

to each LoB. These values are compared to its standalone counterparts to generate the diver-

sification benefit, which is around 45% for PY and CY,s claims (regardless of the model used)

and ranges between 30% and 70% within the PY and CY,s groups. Due to the independence

assumption the largest diversification benefit comes from the CY,l claims, where the capital is

reduced by around 95%.

The data presented in Table 6.5 is calculated as follows. For the marginalized model

(and conditional model in brackets), 5× 109 (2.5× 107) independent samples of the model are

generated in order to calculate the overall VaR99%. Conditional on this value, for each LoB we

then generate 5× 107 (5× 105) samples above the VaR and use the average of these samples as

the true ES allocation (presented in Table 6.5). In order to asses the variance of the estimators,

we divide these samples into Nrep = 500 groups of NMC = 105 (NMC = 103 for the conditional

model) simulations. More formally, we approximate the ES allocations Ai, defined in (6.2), by

Âi,MC = 1
Nrep

Nrep∑
k=1
Â(k)
i,MC , (6.15)

where Â(k)
i,MC stands for the estimate (using NMC particles) from the k-th run (out of Nrep),

and is defined as

Âi,MC = 1
NMC

NMC∑
j=1

Z
(j)
i .

Similarly to the analysis performed in [Peters et al., 2017] the impact of the prior density

can be assessed by comparing the sum of the SCR allocations with the SCR from the “empirical

Bayes model”, i.e., the model where the prior for σ is set as a Dirac mass on σ̂j(t), see (6.11).

In this case we have that the total capital is equal to SCR = 505.48 and the fully Bayesian
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Figure 6.7: Histograms levels used in the SMC sampler algorithm with p0 = 0.5 in the marginal-

ized model. The red dashed bar represents the true value of the α quantile.

model with prior defined with k = 5 (see Section 6.3.4) requires 15% more capital (both in the

marginalized and conditional cases).

To check the accuracy of the SMC procedure we first analyse the estimate of the level

sets (intermediate VaRs). For p0 = 0.5, Figures 6.7 and 6.8 show, respectively, the histogram

of the levels B1, . . . , B7 (as per Table 6.10) for the marginalized and conditional models. The

red dashed bars represent the true value of the quantiles (based on the “brute force” MC

simulations), which is very close to the mode of the empirical distribution of the SMC estimates.

It should be noticed, though, that the SMC estimates seem to be negatively biased and the bias

appears to become more pronounced for extreme quantiles. Apart from this negligible bias we

assume the levels are being sensibly estimated and proceed, as in Chapter 4, to calculate the

relative bias and the variance reduction of the SMC method when compared to a MC procedure.

For each of the LoBs the plots on the Figures 6.9 and 6.10 show the relative bias, defined

as

Relative Bias = Âi,SMC − Âi,MC

Âi,MC

,

where Âi,SMC is computed analogously to the MC estimate but, instead, using the SMC method,

with NSMC = 100. The behaviour of the two models is very similar, and we observe that the bias

in the PY and CY,s allocations are negligible (less than 5%) while for some of the large CY risks

a higher bias (of more than 10%) may be observed. Apart from the difficulty of performing the

estimation based on Pareto distributions we stress the fact that although these errors may look

large, as we can see from Table 6.5, their impact in the overall capital are almost imperceptible,

due to the small capital charge due to these risks.

Another way to compare the SMC calculations is through the actual capital charges, as

seen in Figures 6.11 and 6.12. In these figures we compare the 99% SCR calculated via the MC
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Figure 6.8: Histograms levels used in the SMC sampler algorithm in the conditional model. The

red dashed bar represents the true value of the α quantile.

● ● ● ● ● ● ●

R
ea

lti
ve

 b
ia

s

●
●

●
●

● ●

●● ● ● ● ● ●
●● ● ● ● ● ● ●● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ●
●

●
●● ● ● ● ● ● ●

● ● ● ● ● ● ●● ● ● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ●

● ● ●

● ● ● ●
● ● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ● ●

−
15

 %
−

10
 %

−
5 

%
0 

%
5 

%

0.5 0.75 0.875 0.9375 0.9688 0.9844 0.9922

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Expected Shortfall
Workers Compensation UVG (LC)
Liability (LC)
Property (LC)
Motor Hull (LC)
MTPL (LC)
Others (CY)
Credit and Surety (CY)
Private Health (CY)
Comercial Health (CY)
Workers Compensation UVG (CY)
Liability (CY)
Property (CY)
Motor Hull (CY)
MTPL (CY)
Others (PY)
Credit and Surety (PY)
Private Health (PY)
Comercial Health (PY)
Workers Compensation UVG (PY)
Liability (PY)
Property (PY)
Motor Hull (PY)
MTPL (PY)

Marginalized model
NSMC = 100    Nrep = 500    p0 = 0.5

Figure 6.9: Bias for the marginalized model.
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Figure 6.10: Bias for the conditional model.

scheme discussed above with the SMC results for the quantile level right before 99% (which,

for p0 = 0.5 is 98.44%) and the one right after it (99.22%). From these figures we see the

SMC calculation based on the 99.22% quantile is very precise, for both the marginalized and

conditional models. Visually, the only perceivable difference comes from the CY,l claims, which

accounts (in total) for less than 2% of the overall capital.

To calculate the improvement generated by the SMC algorithm compared to the MC proce-

dure we need to analyse the variance of the estimates generated by both methods, under similar

computational budgets.

We start by noticing that the expected number of samples in the Monte Carlo scheme in

order to have NMC samples satisfying the α condition is equal to MMC = NMC/(1−α), which

can be prohibitive if α is very close to 1. Then, similarly to (6.15) we define the empirical

variance of the MC and the SMC algorithms which are, then, compared as follows

Variance Reduction = MMC × V̂ar(Âi,MC)
/
T ×NSMC × V̂ar(Âi,SMC). (6.16)

The variance reduction statistic defined in (6.16) takes into account how many samples one

needs to use in order to generate NMC samples via rejection sampling or NSMC using the SMC

algorithm. The later also takes into account the fact that T levels are being used and in each

one NSMC samples need to be generated. For the conditional model we further multiply the

denominator by the number of samples used to estimate the unknown density, which in our

examples is set to M = 5.

The results follow on Figures 6.13 and 6.14. As in Chapter 4 we observe that the variance

of the SMC estimates become smaller (compared to the MC results) for larger quantiles. In

particular, for the quantiles of interest the variance of the marginal ES allocation estimates are
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Figure 6.11: Comparison between the “true” allocations (calculated via a large Monte Carlo

procedure) and the SMC sampler solution for the marginalized model.
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Figure 6.12: Comparison between the “true” allocations (calculated via a large Monte Carlo

procedure) and the SMC sampler solution for the conditional model.
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Figure 6.13: Variance reduction for the marginalized model.

around 3 times smaller than its MC counterparts, while the overall ES estimate is slightly less

variable for the MC scheme.

For the marginalized model we also present two plots, Figures 6.15 and 6.16, related, respec-

tively, to the sensitivity to the parameter p0 and to the number of samples, NSMC . In Figure

6.15, for the same number of samples, NSMC = 100 we analyse the bias relative to the 99% ES

allocations of the first quantile larger than 99% (top plot) and the previous one (bottom plot)

for p0 ∈ {0.4, 0.5, 0.7}. The quantiles used in these different setups are presented in Table 6.10.

Although the results may look slightly different the main message is the same: the “higher”

quantile is effectively unbiased for PY and CY,s risks but presents a negative bias of around

10% for some of the CY,l risks.

Regarding the sensitivity to the number of particles in the SMC algorithm, as expected, the

absolute bias decreases when the number of samples increases, as seen in Figure 6.16. Although

the SMC algorithm is generically guaranteed to be unbiased when NSMC → +∞ the trade-off

between bias and the variance reduction in the allocation problem may lead us to accept a small

bias in order to have a smaller variance.

6.6 Conclusions
In this chapter we provide a complete and self-contained view of the capital allocation process

for non-life insurance companies. As prescribed by the Swiss Solvency Test we break down the

company’s overall Solvency Capital Requirement (SCR) into the one-year reserve risk, due to

claims from previous years (PY) and the one-year premium risk due to claims’ payments in the

current year (CY). The later is further split into the risk of normal/small claims (CY,s) and large

claims (CY,l). For the premium risk in each line of business we assume a log-normal distribution
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Figure 6.14: Variance reduction for the conditional model.

for CY,s risks with mean and variance as per the SST, which also describe a distribution for

CY,l risks, in this case Pareto. For the reserve risk, as in [Peters et al., 2017], we postulate a

Bayesian gamma-gamma model which, for allocation purposes, is approximated by log-normal

distributions leading to what we name the marginalized and the conditional models.

The allocation process is performed using state-of-the-art (pseudo-marginal) Sequential

Monte Carlo (SMC) algorithms, which are presented in a self-contained and accessible format.

Although the algorithms described form an extremely flexible class, we provide an off-the-

shelf version, where minimal or no tuning is needed. The algorithms are also shown to be

computationally efficient in a series of numerical experiments.

One of the advantages of our proposed methodology is that it is able to compute in one

single loop (1) the value at risk (VaR) and (2) the Expected Shortfall (ES), both at the company

level and (3) the capital allocations for the risk drivers. This procedure should be compared

with routinely applied methodologies, where one simulation is performed to compute the VaR,

which is used in a different simulation to compute the ES and only then a final simulation uses

these two estimates to calculate the allocations, in a process that accumulate different errors.

Moreover, even ignoring the computational cost of calculating a precise estimate for the

required VaR in a “brute force” Monte Carlo scheme, the proposed SMC algorithm is numerically

shown to provide estimates that are less volatile than comparable “brute force” implementations.



142 Chapter 6. Risk allocation under the Swiss Solvency Test

●
● ●

p0 (quantile)

R
el

at
iv

e 
bi

as
 (

hi
gh

er
)

●

●
●

●

● ●● ● ●● ● ●● ● ●● ● ●● ● ●

●

● ●
●

● ●
●

● ●
●

● ●
●

● ●●
● ●

●
● ●● ● ●

●
● ●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

40% (0.9959) 50% (0.9922) 70% (0.9903)

−
15

%
−

10
%

−
5%

0%

● ● ●

p0 (quantile)

R
el

at
iv

e 
bi

as
 (

lo
w

er
)

●

●

●
●

●

●
● ● ●● ● ●● ●

●● ●
●

● ● ●

●
●

●●
●

●●
●

●●
●

●●
●

●● ●
●

● ●
●

● ●
●

● ●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

40% (0.9898) 50% (0.9844) 70% (0.9862)

−
15

%
−

10
%

−
5%

0%

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Expected Shortfall

Workers Compensation UVG (LC)

Liability (LC)

Property (LC)

Motor Hull (LC)

MTPL (LC)

Others (CY)

Credit and Surety (CY)

Private Health (CY)

Comercial Health (CY)

Workers Compensation UVG (CY)

Liability (CY)

Property (CY)

Motor Hull (CY)

MTPL (CY)

Others (PY)

Credit and Surety (PY)

Private Health (PY)

Comercial Health (PY)

Workers Compensation UVG (PY)

Liability (PY)

Property (PY)

Motor Hull (PY)

MTPL (PY)

Marginalized model

NSMC = 100

Figure 6.15: Relative bias in the marginalized model as a function of the parameter p0.
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Figure 6.16: Relative bias in the marginalized model as a function of the sample size in the

SMC sampler, NSMC .



Chapter 7

Multiple optimal stopping times

In this chapter we return the focus to operational risk modelling and propose a novel class of

insurance products that can help financial companies to offload some of its operational losses.

The class of products introduced in this chapter lasts for T years but the policyholder only

has the right to make claims on k < T years, which can make it affordable to a wider class of

buyers. For two different types of annual insurance coverage we derive closed form strategies

for the optimal usage of the product (i.e., when to use the k rights). When the combination

of loss distribution and insurance mitigation does not lead to closed form usage strategies we

also derive analytic expressions based on series expansions. The results of this chapter were

published in [Targino et al., 2016].

7.1 Introduction
Since the New Basel Capital Accord in 2004, Operational Risk (OpRisk) quantification has

become increasingly important for financial institutions. However, the same degree of attention

has not yet been devoted to insurance mitigation of OpRisk losses nor, consequently, to detailed

analysis of potential risk and capital reduction that different risk transfer strategies in OpRisk

may allow.

Historically the transference of credit and market risks through credit derivatives and

interest rate swaps, for example, has been an active subject of extensive studies both from

practitioners and academics while only a few references about OpRisk transfer of risk and

possible approach to such risk transfers can be found in the literature (see [Brandts, 2004],

[Bazzarello et al., 2006] and [Peters et al., 2011]). In the banking industry, Credit Suisse

has very recently issued around CHF 220 millions worth of bonds said to cover OpRisk

losses between CHF 3.5 billions and CHF 4.2 billions (see [Das and Scism, 2016] and

[Foerster and Beardsworth, 2016]), in one of the first operations of this kind.

This slow uptake of insurance policies in OpRisk for capital mitigation can be partially

attributed to four general factors: (a) there still remains a rather limited understanding of

the impact on capital reduction of currently available OpRisk insurance products, especially in

the complex multi-risk, multi-period scenarios; (b) the relative conservative Basel II regulatory
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cap of 20% in a given year (for Advanced Measurement Approach models); (c) the limited

understanding at present of the products and types of risk transfer mechanisms available for

OpRisk processes; and (d) the limited competition for insurance products available primarily for

OpRisk, where yearly premiums and minimum Tier I capital requirements required to even enter

into the market for such products precludes the majority of banks and financial institutions in

many jurisdictions.

Some of the reasons for these four factors arises when one realizes that OpRisk is particularly

challenging to undertake general risk transfer strategies for, since its risk processes range from

loss processes which are insurable in a traditional sense to infrequent high consequence loss

processes which may be only partially insurable and may result from extreme losses typically

covered by catastrophe bonds and other types of risk transfer mechanisms. For these reasons,

the development of risk transfer products for OpRisk settings by insurers is a relatively new

and growing field in both academic research and industry, where new products are developed

as greater understanding of catastrophe and high consequence low frequency loss processes are

better understood.

It is noted in [Chernobai et al., 2008] that the existence of such specialised products is

limited in scope and market since the resulting premium one may be required to pay for such

an insurance product can typically run into very significant costs, removing the actual gain

from obtaining the insurance contract in terms of capital mitigation in the first place. Hence,

although the impact of insurance in OpRisk management is yet to be fully understood it is clear

that it is a critical tool for the management of exposures and should be studied more carefully.

In this chapter we discuss aspects of an insurance product that provides its owner several

opportunities to decide which annual OpRisk loss(es) to insure. This product can be thought

of as a way to decrease the cost paid by its owner to the insurance company in a similar way

to what occurs with swing options in energy markets (see for example, [Jaillet et al., 2004] and

[Carmona and Touzi, 2008]): instead of buying T yearly insurance policies over a period of T

years, the buyer can negotiate with the insurance company a contract that covers only k of the

T years (to be chosen by the owner). This type of structured product will result in a reduction

in the cost of insurance or partial insurance for OpRisk losses and this aspect is highlighted in

[Allen et al., 2009, page 188], where they note that “even without considering the cost of major

catastrophes, insurance coverage is very expensive”. In addition, we argue it may be interesting

to explore such structures if the flexibility they provide results in an increased uptake of such

products for OpRisk coverage, further reducing insurance premiums and resulting perhaps in

greater competition in the market for these products.

The general insurance product presented here can accommodate any form of insurance

policy, but we focus on two generic “building block” policies (see Definitions 7.2.1 to 7.2.2)

which can be combined to create more complex types of protection. For these two basic policies

we present a “moderate-tailed” model for annual risks that leads to closed form usage strategies
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of the insurance product, answering the question: when is it optimal to ask the insurance

company to cover the annual losses?

For the rest of the chapter we assume that throughout a year a financial institution incurs a

random number of loss events, say N , with severities (loss amounts) X1, . . . , XN . Additionally,

we suppose the company holds an insurance product that lasts for T years and grants the

company the right to mitigate k of its T annual losses through utilisation of its insurance

claims. To clarify consider a given year t ≤ T where the company incur N(t) losses adding up

to Z(t) =
∑N(t)
n=1 Xn(t), assuming it has not yet utilised all its k insurance mitigations it then

has the choice to make an insurance claim or not. If it utilises the insurance claim in this year

the resulting annual loss is denoted by Z̃(t). Such a loss process model structure is standard in

OpRisk and insurance and is typically referred to as the Loss Distributional Approach (LDA)

which we illustrate an example instance of in Figure 7.1.

Timet=1 t=2 t=3
(in years)

Loss

0

1

2

3

4

5

X1(1)

X2(1)

X3(1)

Z(1)

Figure 7.1: Schematic representation of a LDA model. The aggregated loss in each year is

represented hatched.

In this context the company’s aim is to choose k distinct years out of the T in order to

minimize its expected operational loss over the time interval [0, T ], where it is worth noting that

if Z > Z̃ i.e., if the insurance is actually mitigating the company’s losses, all its k rights should

be exercised. Then the question that must be addressed is what is the optimal decision rule,

or, in other words, how to define the multiple optimal stopping times for making the k sets of

insurance claims.

The rest of the chapter is organized as follows. In Section 7.2 we present the insur-

ance policies we use as mitigation for the insurance product described above. Section 7.3

presents an overview of useful theoretical results in the field of multiple stopping rules for

independent observations in discrete time, in particular we state Theorem 7.3.5 (proved in

[Nikolaev and Sofronov, 2007]) which is the main result in this section. A summary of prop-
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erties related to the LDA model used in this chapter is presented in Section 7.4 and used in

Section 7.5 to present the main contribution of this work, namely closed form solutions for the

optimal multiple stopping rules for the insurance products considered. In Section 7.6 we check

the theoretical optimality of the rules derived in Section 7.5, comparing them with predefined

rules.

Since these closed form results rely upon the stochastic loss model considered, we also pro-

vide a general framework applicable for any loss process. In Section 7.7 we discuss a method

based on series expansions of unknown densities to calculate the optimal rules when the combina-

tion of insurance policy and severity density does not lead to analytical results. The conclusions

and some final considerations are shown in Section 7.8.

7.2 Insurance policies
As previously mentioned, the insurance policies presented here must be thought as building

blocks for more elaborated ones, leading to mitigation of more complex sources of risk. It also

worth noticing that the policies presented are just a mathematical model of the actual policies

that would be sold in practice and although some characteristics, such as deductibles, can be

incorporated in the model they are not presented at this stage.

In the sequel we present these basic insurance policies a company can use within the insur-

ance product. For the sake of notational simplicity, if a process
{
Z(t)

}T
t=1 is a sequence of i.i.d.

random variables, we will drop the time index and denote a generic r.v. from this process as Z.

For the rest of the chapter 1A will denote the indicator function on the event A, ie, 1A = 1 if

A is valid and zero otherwise.

Definition 7.2.1 (Individual Loss Policy (ILP)). This policy applies a constant haircut to the

loss process in year t in which individual losses experience a Top Cover Limit (TCL) as specified

by

Z̃ =
N∑
n=1

max (Xn − TCL, 0) .

Definition 7.2.2 (Accumulated Loss Policy (ALP)). The ALP provides a specified maximum

compensation on losses experienced over a year. If this maximum compensation is denoted by

ALP then the annual insured process is defined as

Z̃ =
(

N∑
n=1

Xn −ALP

)
1{∑N

n=1
Xn>ALP

}.
To characterize the annual application of such policies we provide a schematic representation

of each of these policies in Figures 7.2 to 7.3, assuming the same losses as in Figure 7.1. The (part

of the) loss mitigated by the insurance policy is represented by a white bar and the remaining

loss due to the owner of the insurance product is coloured grey. As in Figure 7.1, annual losses

are represented by hatched bars.
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Timet=1 t=2 t=3
(in years)

Loss

0

1

2

3

4

5

X2(1)

X3(1)

Z(1)

TCL = 1.5
X1(1)

Figure 7.2: Individual Loss Policy (ILP) with TCL level of 1.5.

7.3 Multiple optimal decision rules
Assume an agent sequentially observe a process

{
W (t)

}T
t=1, for a fixed T < +∞ and wants to

choose k < T of these observations in order to maximize (or minimize, see Remark 7.3.7) the

expected sum of these chosen observations. For k = 1, this problem is known in the literature

as the house selling problem (see [Sofronov, 2013] for an updated literature review) since one of

its interpretations is as follows. If the agent is willing to sell a house and assume that at most

T bids will be observed he wants to choose the optimal time τ such that the house will be sold

for the highest possible value. The extension of this problem for k > 1 is know as the multiple

house selling problem, where the agent wants to sell k identical houses. It is worth noting that

in our insurance problem the agent is interested in choosing k periods to exercise the insurance

policy in order to minimize its loss, in a sense that will be make precise shortly in this chapter.

Formally, the mathematical framework of this problem consists of a filtered probability

space
(
Ω,F , {Ft}t≥0,P

)
, where Ft = σ

(
W (t)

)
is the sigma-algebra generated by W (t). Within

this framework, where we assume the flow of information is given only by the observed values

of W , it is clear that any decision taken at time t should take into account only values of the

process W up to time t. It is also required that two actions can not take place at the same

time, i.e., we do not allow two stopping times to occur at the same discrete time instant. These

assumptions are precisely stated in the following definition, and for further details on the theory

of multiple optimal stopping rules we refer the reader to [Nikolaev and Sofronov, 2007] and

[Sofronov, 2013].

Definition 7.3.1. A collection of integer-valued random variables (τ1, . . . , τi) is called an i-

multiple stopping rule if the following conditions hold:

(a) {ω ∈ Ω : τ1(ω) = m1, . . . , τj(ω) = mj} ∈ Fmj , ∀mj > mj−1 > . . . > m1 ≥ 1, j = 1, . . . , i;
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Timet=1 t=2 t=3
(in years)

Loss

0

1

2

3

4

5

X2(1)

X3(1)

Z(1)

ALP = 2

X1(1)

Figure 7.3: Accumulated Loss Policy (ALP) with ALP level of 2.0.

(b) 1 ≤ τ1 < τ2 < . . . < τi < +∞, (P-a.s.).

Given the mathematical definition of a stopping rule the notion of optimality of these rules

can be made precise in the following definitions.

Definition 7.3.2. For a given multiple stopping rule τ = (τ1, . . . , τk) the gain function utilized

in this chapter takes the following additive form:

g(τ ) = W (τ1) + . . .+W (τk).

Definition 7.3.3. Let Sm be the class of multiple stopping rules τ = (τ1, . . . , τk) such that

τ1 ≥ m (P-a.s.). The function

vm = sup
τ∈Sm

E[g(τ )],

is defined as the m-value of the game and, in particular, if m = 1 then v1 is the value of the

game.

Definition 7.3.4. A multiple stopping rule τ ∗ ∈ Sm is called an optimal multiple stopping rule

in Sm if E[W (τ ∗)] exists and E[W (τ ∗)] = vm.

The following result (first presented in [Nikolaev and Sofronov, 2007], Theorem 3) provides

the optimal multiple stopping rule that maximizes the expectation of the sum of the observations

(see Figure 7.3 for a schematic representation).

Theorem 7.3.5. Let W (1),W (2), . . . ,W (T ) be a sequence of independent random variables

with known distribution functions F1, F2, . . . , FT , and the gain function g(τ ) =
∑k
j=1W (τj).

Let vL,l be the value of a game where the agent is allowed to stop l times (l 6 k) and there are

L (L 6 T ) steps remaining. If there exist E[W (1)],E[W (2)], . . . ,E[W (T )] then the value of the
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game is given by

v1,1 = E[W (T )],

vL,1 = E
[
max{W (T − L+ 1), vL−1,1}

]
, 1 < L ≤ T,

vL,l+1 = E
[
max{vL−1,l +W (T − L+ 1), vL−1,l+1}

]
, l + 1 < L ≤ T,

vl,l = E
[
vl−1,l−1 +W (T − l + 1)

]
.

If we put

τ∗1 = min{m1 : 1 6 m1 6 T − k + 1,W (m1) > vT−m1,k − vT−m1,k−1};

τ∗i = min{mi : τ∗i−1 < mi 6 T − k + i,W (mi) > vT−mi,k−i+1 − vT−mi,k−i}, i = 2, . . . , k − 1;

τ∗k = min{mk : τ∗k−1 < mk 6 T,W (mk) > vT−mk,1};
(7.1)

then τ ∗ = (τ∗1 , . . . , τ∗k ) is the optimal multiple stopping rule.

In the context we consider it is always be optimal to stop the process exactly k times, but

this may not be true, for example, if some reward is given to the product holder for less than k

years of claims of insurance. In the absence of such considerations, we proceed with assuming

always k years of claims will be made. In Theorem 7.3.5 we see that the value function for L > l

is artificial and v0,1, for example, has no interpretation. On the other hand, v1,1 can not be

calculated using the general formula (it would depend on v0,1). With one stop remaining and

one step left, from the reasons given above, we are obliged to stop, and, therefore, there is no

maximization step when calculating v1,1, i.e., v1,1 = E[W (T − 1 + 1)]. The same argument is

valid for l > 1 and, in this case,

vL,l = E
[
max{vL−1,l−1 +W (T − L+ 1), vL−1,l}

]
, 1 ≤ l ≤ T,

and, if we have l ≤ (T − 1) steps left and also l stops, we must stop in all the steps remaining.

So,

vl,l = E
[
vl−1,l−1 +W (T − l + 1)

]
.

From Theorem 7.3.5 and the assumption of independence of the annual losses, we see that

to be able to calculate the optimal rule we only need to calculate (unconditional) expectations

of the form E[W ] and E[max{c1 +W, c2}], for different values of c1 and c2. In addition, since

0 ≤ vL−1,l ≤ vL−1,l+1, we actually only need to calculate E[max{c1 +W, c2}] for 0 ≤ c1 ≤ c2.

7.3.1 Objective functions for rational and boundedly rational insurees

In this section we consider two possible general populations for the potential insuree. The first

group are those that are perfectly rational, meaning that they always act in an optimal fashion

when given the chance and, more importantly, are capable (i.e. have the resources) to figure

out what is the optimal behaviour. In this case we consider a global objective function to be

optimized.
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l=1 l=2 l=3 l=4 l=5 l=6 l=7

L = 0 v0,1

L = 1 v1,1 v1,2

L = 2 v2,1 v2,2 v2,3

L = 3 v3,1 v3,2 v3,3 v3,4

L = 4 v4,1 v4,2 v4,3 v4,4 v4,5

L = 5 v5,1 v5,2 v5,3 v5,4 v5,5 v5,6

L = 6 v6,1 v6,2 v6,3 v6,4 v6,5 v6,6 v6,7

L = 7 v7,1 v7,2 v7,3 v7,4 v7,5 v7,6 v7,7

L = 8 v8,1 v8,2 v8,3 v8,4 v8,5 v8,6 v8,7

Left end point of the support of W

vL,l+1 = max{vL−1,l +W (T − L+ 1), vL−1,l+1}

vl,l = vl−1,l−1 +W (T − l + 1)

vl,l+1 = 0 (artificial value)

Figure 7.4: Schematic representation of the value function iteration.

The second group represent boundedly rational insurees who act sub-optimally. This group

represents firms who are incapable or lack the resources/knowledge to understand how to act

optimally when determining their optimal behaviours/actions and are captured by local be-

haviours.

Hence, these two populations are encoded in two objective functions: one which is opti-

mal (globally) and one which represents a sub-optimal (local strategy) the boundedly rational

population would likely adopt. These behaviours can be made precise through the following

exercising strategies, for the first and second groups, respectively.

1. Global Risk Transfer Strategy: Minimizes the (expected) total loss over the period

[0, T ];

2. Local Risk Transfer Strategy: Minimizes the (expected) sum of the losses at the

insurance times (i.e. stopping times).

These two different groups can be understood as, for example, large corporations, with

employees dedicated to fully understand the mathematical nuances of this kind of contract and

small companies, with limited access to information. The group with “bounded rationality”

may decide (heuristically, without the usage of any mathematical tool) to follow the so-called

Local Risk Transfer Strategy, which produces smaller gain in the period [0, T ]. As we will see

in Section 7.6 these two different objective functions can lead to completely different exercising

strategies, and we believe the insurance company who sells this contract should be aware of

these different behaviours.
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For the first loss function the formal objective is to minimize

T∑
t=1

t/∈{τ1,...,τk}

Z(t) +
k∑
j=1

Z̃(τj) =
T∑
t=1

Z(t)−
T∑
t=1

t∈{τ1,...,τk}

{
Z(t)− Z̃(t)

}
.

Since
∑T
t=1 Z(t) does not depend on the choice of τ1, . . . , τk, this is, in fact, equivalent to

maximize
k∑
j=1

W (τj) =
k∑
j=1

{
Z(τj)− Z̃(τj)

}
,

where the process W is defined as W (t) = Z(t)− Z̃(t).

For the second objective function, the company aims to minimise the total loss not over

period [0, T ] but instead only at times at which the decisions are taken to apply insurance and

therefore claim against losses in the given year,

k∑
j=1

Z̃(τj),

and, in this case, the process W should be viewed as W (t) = −Z̃(t).

Remark 7.3.6. Note that if the agent is trying to maximize the first loss function (using

W = Z − Z̃), then W is non-negative stochastic process, and only one kind of expectation is

required to be calculated, since if c1 = c2 = 0, then E[max{c1 +W, c2}] = E[W ].

Remark 7.3.7. If the agent is trying to minimize the expected gain of the sum of Z̃(t) random

variables (instead of maximizing it) one can rewrite the problem as follows. Define a process

W (t) = −Z̃(t) and note that minE[
∑k
j=1 Z̃(τj)] = maxE[

∑k
j=1W (τj)]. Therefore the optimal

stopping times that maximize the expected sum of the process W are the same that minimize the

expected sum of the process Z̃.

Although this work is mainly devoted to study of a combination of insurance policy and

severity distribution that leads to closed form results of the value function integrals required

for closed form multiple optimal stopping rules, we also show how one can develop principled

approximation procedures can be used to calculate the distribution of the insured process Z̃

(see Section 7.7). In the remainder of this section we present a very simple example using the

second (local) objective function, where we assume the annual insured losses are modelled as

Log-Normal random variables.

Example 7.3.8 (Log-Normal). To give us some intuition, let us assume that the insured losses

Z̃(1), . . . , Z̃(T ) form a sequence of i.i.d. random variables such that Z̃ ∼ Log-Normal(0,1). Note

that this would not be a reasonable assumption in practice, as we know the true distribution of

the insured losses has a point mass at zero. To calculate the multiple optimal rule that minimizes

the expected loss let us define W = −Z̃. The values of the game using the equations in Theorem

7.3.5 can be seen in Table 7.1.
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Note that Table 7.1 presents the value of expected loss at the times we stop, i.e. ,

E
[∑k

j=1−Z̃(τj)
]
, so it only makes sense to compare values within the same column. Do-

ing so one can see that for a fixed number of stops l, the value of the game is increasing with

the number of steps remaining. In other words the more one can wait to decide in which step

to stop the smaller is the expected loss.

L l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9

0 0.00

1 -1.65 0.00

2 -1.02 -3.30 0.00

3 -0.77 -2.19 -4.95 0.00

4 -0.64 -1.71 -3.45 -6.59 0.00

5 -0.55 -1.43 -2.76 -4.77 -8.24 0.00

6 -0.49 -1.25 -2.34 -3.87 -6.12 -9.89 0.00

7 -0.44 -1.12 -2.05 -3.32 -5.04 -7.51 -11.54 0.00

8 -0.41 -1.02 -1.85 -2.94 -4.36 -6.26 -8.91 -13.19 0.00

9 -0.38 -0.94 -1.69 -2.65 -3.88 -5.45 -7.50 -10.34 -14.84

10 -0.36 -0.88 -1.56 -2.43 -3.52 -4.87 -6.58 -8.78 -11.78

Table 7.1: Table of the value function for different L (steps remaining) and l stops in the

Log-Normal example.

If we suppose that T = 7, and we are granted four stops the expected loss is v7,4 = −3.32.

In this case the optimal stopping rule is given by

τ∗1 = min{m1 : 1 6 m1 6 4,W (m1) > v7−m1,4 − v7−m1,3},

τ∗2 = min{m2 : τ∗1 < m2 6 5,W (m2) > v7−m2,3 − v7−m2,2},

τ∗3 = min{m3 : τ∗2 < m3 6 6,W (m3) > v7−m3,2 − v7−m3,1},

τ∗4 = min{m4 : τ∗3 < m4 6 7,W (m4) > v7−m4,1}.

For instance, if we observe the sequence

w1 = −0.57, w2 = −0.79, w3 = −4.75, w4 = −1.07, w5 = −1.14, w6 = −5.56, w7 = −1.59,

then the optimal stopping times are given by:

τ∗1 = 1, since w1 = −0.57 ≥ v7−1,4 − v7−1,3 = −3.87− (−2.34) = −1.53;

τ∗2 = 2, since w2 = −0.79 ≥ v7−2,3 − v7−2,2 = −2.76− (−1.43) = −1.33;

τ∗3 = 4, since w4 = −1.07 ≥ v7−4,2 − v7−4,1 = −2.19− (−0.77) = −1.42;

τ∗4 = 7, because we are obliged to stop exactly 4 times.

In this case the realized loss at the stopping times is −0.57− 0.79− 1.07− 1.59 = −4.02, wich

should be comparable with the expected loss under the optimal rule: −3.32.
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7.4 Loss process models via Loss Distributional Approach
Before discussing the application of the Theorem 7.3.5 to the problem of choosing the multiple

exercising dates of the insurance product present in Section 7.1, in this section we present the

LDA model that leads to closed form solutions in Section 7.5.

The Loss Distributional Approach (LDA) in OpRisk assumes that during a year t a company

suffers N(t) operational losses, with N(t) following some counting distribution (usually Poisson

or Negative Binomial). The severity of each of these losses is denoted by X1(t), . . . , XN(t)(t)

and the cumulative loss by the end of year t is given by Z(t) =
∑N(t)
n=1 Xn(t). For the purpose

of modelling OpRisk losses it is essential that the severity density allows extreme events to

occur, since these events often occur in practice, as shown, for example, in [Peters et al., 2013,

Section 1.1]. Following the nomenclature in [Franzetti, 2011, Table 3.3], the Inverse Gaussian

distribution possess a “moderate tail” which makes it a reasonable model for OpRisk losses for

many risk process types and is often used in practice. This family of distributions also has the

advantage of being closed under convolution and this characteristic is essential if closed form

solutions for the multiple optimal stopping problem are to be obtained.

In the closed form solutions we present for the different insurance policies we use prop-

erties of the Inverse Gaussian distribution and its relationship with the Generalized Inverse

Gaussian distribution. The following Lemmas will be used throughout; see additional details in

[Folks and Chhikara, 1978] and [Jørgensen, 1982].

In the following, let X1, . . . , Xn be a sequence of i.i.d. Inverse Gaussian (IG) random

variable with parameters µ, λ > 0, ie,

fX(x; µ, λ) =
(
λ

2π

)1/2
x−3/2 exp

{
−λ(x− µ)2

2µ2x

}
, x > 0.

Let also G be a Generalized Inverse Gaussian (GIG) r.v. with parameters α, β > 0, p ∈ R, i.e.,

fG(x; α, β, p) = (α/β)p/2
2Kp(

√
αβ)

xp−1 exp
{
−1

2(αx+ β/x)
}
, x > 0,

where Kp is a modified Bessel function of the third kind (sometimes called modified Bessel

function of the second kind), defined as

Kp(z) = 1
2

∫ +∞

0
up−1e−z(u+1/u)/2du.

Lemma 7.4.1. The Inverse Gaussian family of random variables is closed under convolution

and the distribution of its sum is given by

Sn :=
n∑
l=1

Xl ∼ IG(nµ, n2λ). (7.2)

Lemma 7.4.2. Any Inverse Gaussian random variable can be represented as a Generalized

Inverse Gaussian, and for the particular case of Lemma 7.4.1 the relationship is

fSn(x; nµ, n2λ) ≡ fG(x; λ/µ2, n2λ,−1/2). (7.3)
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Lemma 7.4.3. Modified Bessel functions of the third kind are symmetric around zero in the

parameter p. In particular when p = 1/2,

K1/2(nλµ )
K−1/2(nλµ )

= 1. (7.4)

Lemma 7.4.4. The density of an Inverse Gaussian r.v. has the following property (which

clearly holds for any power of x, with the proper adjustment in the last parameter of the GIG in

the right hand side):

xfG(x; λ/µ2, n2λ,−1/2) ≡ nµ fG(x; λ/µ2, n2λ, 1/2). (7.5)

Proof. (of Lemmas 7.4.1–7.4.4) The proof of Lemma 7.4.1 can be found in [Tweedie, 1957, Sec-

tion 2] and the result in Lemma 7.4.2 can be seen by comparing the kernel of both distributions.

The symmetry in Lemma 7.4.3 can be seen through the following characterization of mod-

ified Bessel functions of the third kind

Kp(x) :=
∫ +∞

0
exp {−x cosh(t)} cosh(pt)dt,

(see [Watson, 1922], page 181) and the fact that cosh(−p) = (−1) cosh(p). The last result,

Lemma 7.4.4, follows from Lemma 7.4.3 and a simple comparison of the densities.

7.5 Closed-form multiple optimal stopping rules for mul-

tiple insurance usage decisions
In this section we present some models in which the optimal rules can be calculated explicitly,

with all the technical proofs postponed to the Appendix. Using the results presented in Section

7.4 we show that if we assume a Poisson-Inverse Gaussian LDA model, where Xn ∼ IG(λ, µ)

and N ∼ Poi(λN ), the optimal times (years) to exercise or make claims on the insurance policy

for the Accumulated Loss Policy (ALP) can be calculated analytically regardless of where the

global or local gain (objective) functions are considered. For the Individual Loss Policy (ILP),

when using the local objective function we propose to model the losses after the insurance policy

is applied and, in this case, we present analytical solutions for the stopping rules. On the other

hand, the ILP under the total loss case given by the global objective function does not produce

a closed form solution. However, we show how a simple Monte Carlo scheme can be used to

accurately estimate the results.

Since we assume the annual losses Z(1), . . . , Z(T ) are identically distributed we denote by Z

a r.v. such that Z ∼ Z(1). As in the previous sections, Z̃ is the insured process; Sn =
∑n
k=1Xk

is the partial sum up to the n-th loss and pm = P[N = m] is the probability of observing m

losses in one year. The gain W is defined as either −Z̃, when the objective is to minimize the

loss at the times the company uses the insurance policy (local optimality), or Z− Z̃, in case the

function to be minimized is the total loss over the time horizon [0, T ], i.e. (global optimality).
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7.5.1 Accumulated Loss Policy (ALP)

For the ALP case (see Definition 7.2.2) we can model the severity of the losses before applying

the insurance policy. Conditional upon the fact that
∑m
n=1Xn > ALP , then the annual loss

after the application of the insurance policy is
∑m
n=1Xn−ALP . With this in mind, we calculate

the c.d.f.’s of the insured process, Z̃ and also of the random variable Z − Z̃.

7.5.1.1 Local risk transfer objective: Minimizing the loss at the stopping times
Proposition 7.5.1 (Local Risk Transfer Case). The c.d.f. and p.d.f. of the insured process are

given, respectively, by

F
Z̃

(z) =
+∞∑
m=1

FIG(z +ALP ; mµ,m2λ)pm + C0, (7.6)

f
Z̃

(z) =
+∞∑
m=1

{
fIG(z +ALP ; mµ,m2λ)pm

}
1{z>0} + C01{z=0}; (7.7)

where the constant C0 is defined as C0 :=
∑+∞
m=1 FIG(ALP ; mµ,m2λ)pm + p0.

Proof.

F
Z̃

(z) = P[Z̃ ≤ z]

= P[max{Z −ALP, 0} ≤ z]

= P[max{Z −ALP, 0} ≤ z | Z −ALP > 0] P[Z −ALP > 0]

+ P[max{Z −ALP, 0} ≤ z | Z −ALP ≤ 0] P[Z −ALP ≤ 0]

= P[max{Z −ALP, 0} ≤ z | Z > ALP ] P[Z > ALP ]

+ P[0 ≤ z | Z ≤ ALP ] P[Z ≤ ALP ]

= P[A < Z ≤ z +A] + 1{z≥0}(z)FZ(A)

=
[
FZ(z +A)− FZ(A)

]
1{z>0}(z) + 1{z>0}(z)FZ(A) + 1{z=0}(z)FZ(A)

= FZ(z +A)1{z>0}(z) + FZ(A)1{z=0}(z)

= FZ(z +A)1{z≥0}(z)

=
∞∑
m=1

pmFSm(z +A) + p0

=
∞∑
m=1

pmFIG(z +A; mµ, m2λ) + p0.

The p.d.f. easily follows from the derivation of F
Z̃

(z) with respect to z but it is important

to note that f
Z̃

is a continuous density with discrete mass at z = 0, ie,

f
Z̃

(z) =
+∞∑
m=1

{
fIG(z +ALP ; mµ,m2λ)pm

}
1{z>0} +

{
p0 +

+∞∑
m=1

FIG(ALP ; mµ,m2λ)pm︸ ︷︷ ︸
P[Z̃=0]

}
1{z=0}.
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After calculating the distribution of Z̃ we can calculate expectations of the form

E [max {c1 +W, c2}] w.r.t. the loss process Z and, therefore one can consequently obtain the

multiple optimal stopping rules under the Accumulated Loss Policy via direct application of

Theorem 7.3.5.

Theorem 7.5.2 (Local Risk Transfer Case). Using the notation of Theorem 7.3.5 and defining
W (t) = −Z̃(t), for t = 1, . . . , T the multiple optimal stopping rule is given by the set of equations
in (7.1), where

v1,1 = −
+∞∑
m=1

pm

(
mµFGIG(ALP ; λ/µ2,m2λ, 1/2)−ALPFGIG(ALP ; λ/µ2,m2λ,−1/2)

)
,

vL,1 = −
+∞∑
m=1

pm

[(
mµ
(
FGIG(vL−1,1 +ALP ; λ/µ2,m2λ, 1/2)− FGIG(ALP ; λ/µ2,m2λ, 1/2)

)
+ALP

(
FGIG(vL−1,1 +ALP ; λ/µ2,m2λ,−1/2)− FGIG(ALP ; λ/µ2,m2λ,−1/2)

))

+ vL−1,1FGIG(vL−1,1 +ALP ; λ/µ2,m2λ,−1/2)

]
,

vL,l+1 = −
+∞∑
m=1

pm

[(
mµ
(
FGIG(vL−1,l+1 − vL−1,l +ALP ; λ/µ2,m2λ, 1/2)− FGIG(ALP ; λ/µ2,m2λ, 1/2)

)
− (vL−1,l −ALP )

(
FGIG(vL−1,l+1 − vL−1,l +ALP ; λ/µ2,m2λ,−1/2)− FGIG(ALP ; λ/µ2,m2λ,−1/2)

))

+ vL−1,l+1FGIG(vL−1,l+1 − vL−1,l +ALP ; λ/µ2,m2λ,−1/2)

]
− vL−1,lC0,

vl,l = vl−1,l−1 −
+∞∑
m=1

pm

(
mµFGIG(ALP ; λ/µ2,m2λ, 1/2)−ALPFGIG(ALP ; λ/µ2,m2λ,−1/2)

)
.

Proof. As in Theorem 7.5.5, to calculate the optimal rule we only need to calculate E[W ] and

E[max{−c1 +W, −c2}], for 0 < c1 < c2. Given the expression (7.7) for the density of Z̃ we can

calculate E[W ] as follows

E[Z̃] =
∫ +∞

0
z

+∞∑
m=1

fIG(z +ALP ; mµ,m2λ)pmdz

=
+∞∑
m=1

pm

∫ +∞

0
zfGIG(z +ALP ; λ/µ2,m2λ,−1/2)dz

=
+∞∑
m=1

pm

∫ +∞

ALP

(w −ALP )fGIG(w; λ/µ2,m2λ,−1/2) dw

=
+∞∑
m=1

pm

(
mµFGIG(ALP ; λ/µ2,m2λ, 1/2)−ALPFGIG(ALP ; λ/µ2,m2λ,−1/2)

)

And then we use the fact that E[W ] = −E[Z̃].
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For the second term we have that E[max{−c1 +W, −c2}] = (−1)E[min{c1 + Z̃, c2}] and

E[min{c1 + Z̃, c2}] =
∫ +∞

0
min{c1 + z, c2}fZ̃(z)dz

=
+∞∑
m=1

pm

∫ +∞

0
min{c1 + z, c2}fIG(z +ALP ; mµ,m2λ)dz

+ min{c1 + 0, c2}
{
p0 +

+∞∑
m=1

FIG(ALP ; mµ,m2λ)pm
}

=
+∞∑
m=1

pm

[∫ +∞

ALP

min{c1 + w −ALP, c2}fIG(w; mµ,m2λ)dw
]

+ c1C0

=
+∞∑
m=1

pm

[∫ c2−c1+ALP

ALP

(c1 + w −ALP )fIG(w; mµ,m2λ)dw

+
∫ +∞

c2−c1+ALP
c2fIG(w; mµ,m2λ)dw

]
+ c1C0

=
+∞∑
m=1

pm

[(
mµ
(
FGIG(c2 − c1 +ALP ; λ/µ2,m2λ, 1/2)− FGIG(ALP ; λ/µ2,m2λ, 1/2)

)
+ (c1 −ALP )

(
FGIG(c2 − c1 +ALP ; λ/µ2,m2λ,−1/2)

− FGIG(ALP ; λ/µ2,m2λ,−1/2)
))

+ c2FGIG(c2 − c1 +ALP ; λ/µ2,m2λ,−1/2)
]

+ c1C0.

7.5.1.2 Global risk transfer objective: Minimizing the loss over the period [0, T ]
If we assume the company wants to minimize its total loss over the period [0, T ] the gain achieved

through the Accumulated Loss Policy (ALP) is given by

W = Z − Z̃

=
N∑
n=1

Xn −

(
N∑
n=1

Xn −ALP

)
1{∑N

n=1
Xn>ALP

}
= ALP1{∑N

n=1
Xn>ALP

} +
(

N∑
n=1

Xn

)
1{∑N

n=1
Xn>ALP

}
= min

{
ALP,

N∑
n=1

Xn

}
.

For notational convenience we denote by Wm = min {ALP,
∑m
n=1Xn} the annual gain condi-

tional on the fact that m losses were observed.

Proposition 7.5.3 (Global Risk Transfer Case: ALP). The c.d.f. and p.d.f. of the gain process

are given, respectively, by

FW (w) = 1{w≥ALP} + FSm(w)1{w<ALP}, (7.8)

fW (w) =
N∑
m=1

{(
FSm(ALP )1{w=ALP} + fSm(w)1{0<w<ALP}

)
pm

}
+ p01{w=0}. (7.9)
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Proof. For w ≥ ALP , we clearly have FW (w) = P[min{ALP, Z} ≤ w] = 1. For 0 ≤ w < ALP ,

FW (w) = P[W ≤ w]

= P[min{ALP, Z} ≤ w]

= P[min{ALP, Z} ≤ w | Z ≤ ALP ] P[Z ≤ ALP ]

+ P[min{ALP, Z} ≤ w | Z > ALP ] P[Z > ALP ]

= P[Z ≤ w | Z ≤ ALP ] P[Z ≤ ALP ] + P[ALP ≤ w | Z > ALP ] P[Z > ALP ]

= P[Z ≤ w, Z ≤ ALP ] + 1{w≥ALP}(w)FZ(ALP )

= P[Z ≤ min{w, ALP}] + 1{w≥ALP}(w)FZ(ALP ).

Since we assumed w < ALP , we have that min{w, ALP} = w and the indicator function on

the second term is always equal to zero leading to the following expression for an arbitrary w ≥:

FW (w) = 1{0≤w<ALP}(w)FZ(w) + 1{w≥ALP}(w)

= 1{0≤w<ALP}(w)
{
p0 +

∞∑
m=1

FSm(w)pm
}

+ 1{w≥ALP}(w)

= 1{0≤w<ALP}(w)
{
p0 +

∞∑
m=1

FIG(w; mµ, m2λ)pm
}

+ 1{w≥ALP}(w).

Consequently, the pdf of the gain is given by

fW (w) =
N∑
m=1

{(
FSm(ALP )1{w=ALP} + fSm(w)1{0<w<ALP}

)
pm

}
+ p01{w=0}.

After calculating the distribution of the gain, W , we can calculate expectations w.r.t. it

and, therefore, the multiple optimal stopping rule under the Accumulated Loss Policy is obtained

via direct application of Theorem 7.3.5.

Theorem 7.5.4 (Global Risk Transfer Case: ALP). Defining W (t) = Z(t) − Z̃(t), for t =

1, . . . , T the multiple optimal stopping rule is given by (7.1), where

v1,1 =
+∞∑
m=1

pm

{
FSm(ALP )ALP +mµFGIG(ALP ; λ/µ2,m2λ, 1/2)

}
,

vL,1 =
+∞∑
m=1

pm

{
FSm(ALP ) max{ALP, vL−1,1}+mµ

(
FGIG(ALP ; λ/µ2,m2λ, 1/2)

− FGIG(vL−1,1; λ/µ2,m2λ, 1/2)
)

+ vL−1,1FSm(min{vL−1,1, ALP})
}

+ p0v
L−1,1,

vL,l+1 =
+∞∑
m=1

pm

{
FSm(ALP ) max{vL−1,l +ALP, vL−1,l+1}

+ vL−1,l(FSm(ALP )− FSm(vL−1,l+1 − vL−1,l)) +mµ
(
FGIG(ALP ; λ/µ2,m2λ, 1/2)

− FGIG(vL−1,l+1 − vL−1,l; λ/µ2,m2λ, 1/2)
)

+ vL−1,l+1FSm(min{vL−1,l+1 − vL−1,l, ALP})
}

+ p0v
L−1,l+1,

vl,l =
+∞∑
m=1

pm

{
FSm(ALP )ALP +mµFGIG(ALP ; λ/µ2,m2λ, 1/2)

}
.
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Proof. For 0 < c1 < c2, the quantity of interest can be calculated as

E[max{c1 +W, c2}] =
∫ +∞

0
max{c1 + w, c2}fW (w)dw

=
+∞∑
m=1

pm

{
FSm(ALP ) max{c1 +ALP, c2}

+
∫ ALP

c2−c1

(c1 + w)fSm(w)dw +
∫ min{c2−c1, ALP}

0
c2fSm(w)dw

}
+ p0c2

=
+∞∑
m=1

pm

{
FSm(ALP ) max{c1 +ALP, c2}

+ c1(FSm(ALP )− FSm(c2 − c1)) +mµ
(
FGIG(ALP ; λ/µ2,m2λ, 1/2)

− FGIG(c2 − c1; λ/µ2,m2λ, 1/2)
)

+ c2FSm(min{c2 − c1, ALP})
}

+ p0c2.

7.5.2 Individual Loss Policy (ILP)

The previous insurance policy, the ALP structure, has been based on the aggregated amount

throughout the year. In the case of the ILP insurance structure, the coverage is not on an

accumulated aggregate coverage, instead it is based on an individual loss event coverage.

7.5.2.1 Local risk transfer objective: minimizing the loss at the stopping times

Let us assume a company buys the insurance policy we call Individual Loss Policy (ILP). In

this case, a particular loss process observed by the company after applying the insurance policy

may be given by

X1(ω)− TCL, X2(ω)− TCL, 0, 0, 0, X6(ω)− TCL, 0, . . . , XN−1(ω)− TCL, 0.

In this case we can define a new process (X̃n)n≥1 such that

X̃1(ω) := X1(ω)−TCL, X̃2(ω) := X2(ω)−TCL, X̃3(ω) := X6(ω)−TCL, . . . , X̃
Ñ

(ω) := XN−1(ω)−TCL

and the annual insured loss would be given by Z̃ =
∑Ñ
n=1 X̃n. Note that in this example the

new process, (X̃n)n≥1 would have Ñ < N non zero observations and, in general, Ñ ≤ N . The

process (X̃n)n≥1 can be interpreted as an auxiliary process, meaning that if the company had

claimed on the insurance policy for this year then the observed losses would have been X̃n,

instead of Xn.

In our approach we model the random variable Ñ and the process (X̃n)n≥1, the first as

an homogeneous Poisson process with mean λ̃
Ñ

and the second as a sequence of i.i.d. random

variables such that X̃ ∼ IG(λ, µ).

Theorem 7.5.5 (Local Risk Transfer Case: ILP). Assuming that Ñ ∼ Poi(λ
Ñ

) and X̃1, X̃2, . . .

are i.i.d. with X̃ ∼ IG(λ, µ) define Z̃(t) =
∑Ñ(t)
n=1 X̃n(t), and W (t) = −Z̃(t), for t = 1, . . . , T .
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In this case the optimal stopping rule is given by (7.1), where

v1,1 = −λ
Ñ
µ,

vL,1 = −
+∞∑
n=1

Pr[Ñ = n]
[
FGIG(vL−1,1; λ/µ2, n2λ, 1/2)nµ

− vL−1,1FGIG(vL−1,1; λ/µ2, n2λ,−1/2) + vL−1,1
]
, 1 < L ≤ T,

vL,l+1 = −
+∞∑
n=1

Pr[Ñ = n]
[
FGIG(vL−l,l+1 − vL−l,l; λ/µ2, n2λ, 1/2)nµ

+ (vL−l,l − vL−l,l+1)FGIG(vL−l,l+1 − vL−l,l; λ/µ2, n2λ,−1/2) + vL−l,l+1
]

+ vL−l,lPr[Ñ = 0], l + 1 < L ≤ T,

vl,l = vl−1,l−1 − λ
Ñ
µ.

Proof. It is clear from Theorem 7.3.5 that we only need to calculate two terms, namely E[W ] and

E[max{−c1 +W, −c2}], for 0 < c1 < c2. The first term can be derived by a simple application

of the Tower Property:

E[W ] = −E[Z̃] = −E
[
E[Z̃|Ñ ]

]
= −E[Ñ ] E[X̃] = −λ

Ñ
µ.

For the second term, first note that E[max{−c1 +W, −c2}] = (−1)E[min{c1 + Z̃, c2}] and

it then follows that, for 0 < c1 < c2,

E[min{c1 + Z̃, c2}] =
∫ +∞

0
min{c1 + z, c2}fZ̃(z)dz + min{c1 + 0, c2}Pr[Ñ = 0]

=
∫ +∞

0

(
(c1 + z)1{c1+z<c2} + c21{c1+z≥c2}

)
f
Z̃

(z)dz + c1Pr[Ñ = 0]

=
∫ c2−c1

0
zf
Z̃

(z)dz + c1

∫ c2−c1

0
f
Z̃

(z)dz + c2

∫ +∞

c2−c1

f
Z̃

(z)dz + c1Pr[Ñ = 0]

=
+∞∑
n=1

Pr[Ñ = n]
[ ∫ c2−c1

0
zf
S̃n

(z)dz + c1

∫ c2−c1

0
f
S̃n

(z)dz + c2

∫ +∞

c2−c1

f
S̃n

(z)dz
]

+ c1Pr[Ñ = 0]

=
+∞∑
n=1

Pr[Ñ = n]
[
FGIG(c2 − c1; λ/µ2, n2λ, 1/2)nµ+ c1FGIG(c2 − c1; λ/µ2, n2λ,−1/2)

+ c2FGIG(c2 − c1; λ/µ2, n2λ,−1/2)
]

+ c1Pr[Ñ = 0]

=
+∞∑
n=1

Pr[Ñ = n]
[
FGIG(c2 − c1; λ/µ2, n2λ, 1/2)nµ

+ (c1 − c2)FGIG(c2 − c1; λ/µ2, n2λ,−1/2) + c2

]
+ c1Pr[Ñ = 0].

Note that, for notational ease, f
Z̃

must be understood as the absolutely continuous part of the

density of Z̃.
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7.5.2.2 Global risk transfer objective: minimizing the loss over the period [0, T ]

via Monte Carlo
If we assume the frequency of annual losses is given by N ∼ Poi(λN ) and its severities by

Xi ∼ IG(λ, µ) then the gain process W is given by

W = Z − Z̃

=
N∑
n=1

Xn −
N∑
n=1

max (Xn − TCL, 0)

=
N∑
n=1

Xn −
N∑
n=1

(Xn − TCL)1{Xn>TCL}

=
N∑
n=1

(
TCL1{Xn>TCL} +Xn1{Xn≤}

)
=

N∑
n=1

min{Xn, TCL}.

From Lemma 7.4.1 we know the Inverse Gaussian family is closed under convolution, but

the distribution of the sum of truncated Inverse Gaussian r.v.’s does not take any known form.

A simple and effective way to approximate the expectations necessary to the calculation of the

optimal multiple stopping rule is to use a Monte Carlo scheme as follows.

Inputs: Model parameters (λ, µ, λN ); Insurance policy parameter, TCL; Number of

simulations M ;

Result: Simple Random Sample from the gain r.v. W (W (1), . . . ,W (M));

for i = 1, . . . ,M do

Sample N (i) ∼ Poi(λN );

if N = 0 then

W (i) = 0;

else

Sample X(i)
k ∼ IG(λ, µ), for k = 1, . . . , N (i);

W (i) =
∑N(i)

k=1 min{X(i)
k , TCL}

end

end

By the end of this process we will have a sample W (1), . . . ,W (M) from the gain, which can

be used to approximate, for any given values of 0 < c1 < c2 the expectations as

E[max{c1 +W, c2}] ≈
1
M

M∑
i=1

max{c1 +W (i), c2}.

7.6 Case studies
In this Section we analyse the results provided by the optimal rule in the scenario where analyt-

ical expressions are available. Although the loss distribution parameters are different for each
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insurance policy, in this section we assume the insurance product is valid for T = 8 years and

gives its owner the right to mitigate k = 3 losses.

First, for the Accumulated Loss Policy (ALP), Figure 7.5 presents a comparison of the two

objective functions (Global and Local Risk Transfer), when the LDA parameters are (λ, µ, λN ) =

(3, 2, 3) and the insurance specific parameter is set to ALP = 10. In this case we know the

probability of having an annual loss that would make it worth utilising the insurance product in

one year is P[Z > ALP ] ≈ 20%. In this study, for a large number of scenarios, M = 50, 000, the

optimal rules from both objective functions were calculated as well as, for each scenario, the set

of stopping times (m1,m2,m3). On the bottom of Figure 7.5 we see that the exercising strategy

is considerably different for the two objective functions. For the Global Risk Transfer, we see

that fixing the first two stopping times, say (m1,m2) = (1, 2), it is preferable (on average) to

use the remaining right as early as possible. Another way to see the same pattern is to verify

that the frequency of occurrence of the set of strategies (1, 2, 3); (2, 3, 4); (3, 4, 5); (4, 5, 6) is

decreasing, again indicating a prevalence of early exercise strategies. On the other hand, if the

objective is to minimize the “local risk”, in more than 25% of the cases the optimal strategy

will be to use the rights as soon as possible.

On the top of Figure 7.5 we present histograms of the total loss over [0, T ] (i) without

insurance (solid line); (ii) using the global objective function (dark grey); (iii) using the local

objective function (light grey). As expected the mean of the total loss when using the local

loss function is greater than the global one, but still smaller than the total loss without any

insurance.

For both the ALP and the ILP cases we check the optimality of the rules presented, com-

paring them with pre-specified stopping rules. Denoting (m1,m2,m3) the three stopping times,

the rules are defined as follows.

(i) Rule 1 (Deterministic): Always stops at m1 = 1,m2 = 5,m3 = 8;

(ii) Rule 2 (Random): Stops randomly at three points in (1, . . . , 8), subject to 1 ≤ m1 < m2 <

m3 ≤ 8;

(iii) Rule 3 (Average): Stops when the observed loss is less then the expected loss, i.e., E[W ].

For a large number of scenarios, M = 10, 000, we calculated the loss for each of the four rules

(the Optimal, the Deterministic, the Random and the Average rules) and plot the histogram,

comparing with the expected loss under the optimal rule, see Figure 7.6 for the Accumulated

Loss Policy (ALP) and Figure 7.7 for the Individual Loss Policy (ILP). In all the examples the

Optimal rule outperforms the other three showing the difficulty of creating a stopping rule that

leads to losses as small as the optimal one.

In the first row of histograms on Figure 7.6 the results are related to the global loss function,

and in the second one to the local loss. Note that the horizontal axis in each line is exactly the
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Figure 7.5: Comparison of the two objective functions using the Accumulated Loss Policy (ALP):

(top) histograms of the total loss under the global objective function (dark grey), local objective

function (light grey), no insurance case (solid line); (bottom) Multiple optimal stopping times

under the two loss functions.
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Figure 7.6: Histogram of losses under four different stopping rules for the ALP case with

(λ, µ, λN ) = (3, 2, 3) and ALP = 10.

objective function we are trying to minimize, precisely,
T∑
t=1

t/∈{τ1,...,τk}

Z(t) +
k∑
j=1

Z̃(τj) for the global

optimization and
∑k
j=1 Z̃(τj) for the local one. In this figure the vertical dashed bar represents

the average total loss under the different rules and the solid grey line is defined as

1. E[Z]× T − vT,k, for the global optimization

2. vT,k, for the local optimization.

These values must be understood as the expected loss under each of the two different gain

functions and are easily derived from the definition of the gain functions and Theorem 7.3.5.

On Figure 7.7 we present the same comparison as in the second row of Figure 7.6 using the

modelling proposed in Section 7.5.2.1, with parameters (λ, µ, λ
Ñ

) = (3, 1, 4). For this simulation

study the conclusion is similar to the one drawn from the ALP case, where the pre-defined

stopping rules underperformed the multiple optimal rule.

7.7 Series expansion for the density of the insured process
Section 7.5 presented some combinations of Insurance Policies and LDA models that lead to

closed form solutions for the multiple stopping rule. For the cases where analytical solutions can

not be found, one alternative is to create a series expansion of the density of the insured process

Z̃ such that all the expectations necessary in Theorem 7.3.5 can be analytically calculated. In

this Section we assume the first n moments of the distribution of the insured process Z̃ are

known and our objective is to minimize the local risk, but the calculations are also valid if we

work with the global optimization problem (in this case one should use Z − Z̃ instead of Z̃).
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Figure 7.7: Histogram of losses under four different stopping rules for the ILP case with

(λ, µ, λ
Ñ

) = (3, 1, 4)

Alternatively, one could proceed with some of the well established approximations of com-

pound Poisson distributions. For a comparison of some approximation schemes, in the context

of operational risk, the reader is referred to [Shevchenko, 2011, Chapter 3]. For a book-length

discussion on these approximations, see [Willmot and Lin, 2001].

7.7.1 Gamma basis approximation

If the n-th first moments of the insured process Z̃ can be calculated (either algebraically or

numerically) and the support of the insured random variable is [0,+∞) one can use a series

expansion of the density of Z̃ in a Gamma basis. For notational convenience, define a new

random variable U = bZ̃, where b = E[Z̃]
V ar[Z̃]

and set a = E[Z̃]2

V ar[Z̃]
. Denoting by fU the density of

U the idea, as in the Gaussian case of a Gram-Charlier expansion, is to write fU as

fU (u) = g(u; a)
[
A0L

(a)
0 (u) +A1L

(a)
1 (u) +A2L

(a)
2 (u) + . . .

]
. (7.10)

Since supp(U) = supp(Z̃) = [0,+∞) we assume the kernel g(· ; a) also has positive support

(differently from the Gram-Charlier expansion, where g(·) is chosen as a Gaussian kernel). If

g(u; a) = ua−1e−u

Γ(a) i.e., a Gamma kernel with shape = a and scale = 1, then the orthonormal

polynomial basis (with respect to this kernel) is given by the Laguerre polynomials (in contrast

to Hermite polynomials in the Gaussian case) defined as

L(a)
n (u) = (−1)nu1−ae−u

dn

dun
(un+a−1e−u). (7.11)

L
(a)
0 (u) = 1

L
(a)
1 (u) = u− a

L
(a)
2 (u) = u2 − 2(a+ 1)u+ (a+ 1)a

L
(a)
3 (u) = u3 − 3(a+ 2)u2 + 3(a+ 2)(a+ 1)u− (a+ 2)(a+ 1)a

L
(a)
4 (u) = u4 − 4(a+ 3)u3 + 6(a+ 3)(a+ 2)u2 − 4(a+ 3)(a+ 2)(a+ 1)u+ (a+ 3)(a+ 2)(a+ 1)a

Table 7.2: The first five Laguerre polynomials
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Remark 7.7.1. Note that the definition of the Laguerre polynomials on Equation (7.11) is

slightly different from the usual one, based on Rodrigues’ formula

L̃(a)
n = u−aex

n!
dn

dun

(
e−xxn+a

)
,

but it is easy to check that

L(a)
n (u) = n!(−1)nL̃(a−1)

n .

From the orthogonality condition (see, for example, [Jackson, 1941] p. 184),

∫ +∞

0

xa−1e−x

Γ(a) L(a)
n (x)L(a)

m (x)dx =


n!Γ(a+n)

Γ(a) , n = m,

0, n 6= m

and using the fact that fU can be written in the form of Equation (7.10) we find that

An = Γ(a)
n!Γ(a+ n)

∫ +∞

0
fU (x)L(a)

n (x)dx. (7.12)

Then, using the characterization of An in (7.12) and the fact that E[U ] = V ar[U ] = a we

see that

A0 =
∫ +∞

0
fU (x)L(a)

0 (x)dx =
∫ +∞

0
fU (x)dx = 1,

A1 =
∫ +∞

1
fU (x)L(a)

1 (x)dx =
∫ +∞

0
fU (x)(z − a)dx = 0,

A2 =
∫ +∞

1
fU (x)L(a)

2 (x)dx =
∫ +∞

0
fU (x)(z2 − 2(a+ 1)z + (a+ 1)a)dx = 0.

Similar but lengthier calculations show that for µn = E [(U − E[U ])n], n = 3, 4,

A3 = Γ(a)
3!Γ(a+ 3)(µ3 − 2a), (7.13)

A4 = Γ(a)
4!Γ(a+ 4)(µ4 − 12µ3 − 3a2 + 18a). (7.14)

Therefore, matching the first four moments, the density of the original random variable Z̃ can

be approximated as

f
Z̃

(z) = bfU (u) ≈ bu
a−1e−u

Γ(a)

[
1 +A3L

(a)
3 (u) +A4L

(a)
4 (u)

]
,

where u = bz, A3 and A4 are given, respectively, by (7.13) and (7.14) and the Laguerre polyno-

mials can be found in Table 7.2. For additional details on the Gamma expansion we refer the

reader to [Bowers Jr, 1966].

Since this expansion does not ensure positivity of the density at all points (it can be

negative for particular choices of skewness and kurtosis) we adopt the approach discussed in

[Jondeau and Rockinger, 2001] for the Gauss-Hermite Gramm Charlier case, modifying it to

the Gamma-Laguerre setting. To find the region on the (µ3, µ4)-plane where fU (u) is positive

for all u we first find the region where fU (u) = 0, i.e.,

ua−1e−u

Γ(a)
(
1 +A3L

(a)
3 (u) +A4L

(a)
4 (u)

)
= 0. (7.15)
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For a fixed value u, we now want to find the set (µ3, µ4) as a function of u such that (7.15)

remains zero for small variations on u. This set is given by (µ3, µ4) such that

d

du

[
ua−1e−u

Γ(a)
(
1 +A3L

(a)
3 (u) +A4L

(a)
4 (u)

)]
= 0. (7.16)

We then rewrite Equations (7.15) and (7.15) as the following system of algebraic equations µ3B1(u) + µ4B2(u) +B3(u) = 0

µ3B
′
1(u) + µ4B

′
2(u) +B′3(u) = 0,

where

B1(u) = ua−1e−u

Γ(a)

(
Γ(a)

3!Γ(a+ 3)L
(a)
3 (u)− 12 Γ(a)

4!Γ(a+ 4)L
(a)
4 (u)

)
;

B2(u) = ua−1e−u

Γ(a)
Γ(a)

4!Γ(a+ 4)L
(a)
4 (u);

B3(u) = ua−1e−u

Γ(a)

(
1− 2a Γ(a)

3!Γ(a+ 3)L
(a)
3 (u) +

(
−3a2 + 18a

) Γ(a)
4!Γ(a+ 4)L

(a)
4 (u)

)
;

B′1(u) =
(
(a− 1)u−1 − 1

)
B1(u) + ua−1e−u

Γ(a)

(
Γ(a)

3!Γ(a+ 3)
dL

(a)
3
du

(u)− 12 Γ(a)
4!Γ(a+ 4)

dL
(a)
4
du

(u)
)

;

B′2(u) =
(
(a− 1)u−1 − 1

)
B2(u) + ua−1e−u

Γ(a)

(
Γ(a)

4!Γ(a+ 4)
dL

(a)
4
du

(u)
)

;

B′3(u) =
(
(a− 1)u−1 − 1

)
B3(u) + ua−1e−u

Γ(a)

(
−2a Γ(a)

3!Γ(a+ 3)
dL

(a)
3
du

(u) +
(
−3a2 + 18a

) Γ(a)
4!Γ(a+ 4)

dL
(a)
4
du

(u)
)

;

dL
(a)
3
du

(u) = 3u2 − 6(a+ 2)u+ 3(a+ 2)(a+ 1);

dL
(a)
4
du

(u) = 4u3 − 12(a+ 3)u2 + 12(a+ 3)(a+ 2)u− 4(a+ 3)(a+ 2)(a+ 1).

Therefore, solving this system we find the curve where the approximation stays positive for

all u to be given by

 µ4(u) =
(
B′1B3
B1
−B′3

)(
B′2 −

B′1B2
B1

)−1

µ3(u) = − 1
B1

(µ4(u)B2 +B3)
, for u ∈ [0,+∞). (7.17)

As an illustration, Figure 7.8 presents (on the left) the histogram of the loss process

Z =
∑N
n=1Xn for X ∼ LN(µ = 1, σ = 0.8) and N ∼ Poi(λN = 2) and in red the Gamma

approximation using the first four moments of Z. On the right it is presented the graph of the

region where the density is positive for all values of u, given by equation 7.17. The grey area

was calculated numerically, for all combinations in a fine grid on the plane (µ3, µ4) it was tested

if the density became negative in some point z. Grey points indicate the density is strictly

positive. The dark dot indicates the third and fourth moments in the Log-Normal example and

since it lies inside the positivity area we can ensure this approximation is strictly positive for

all values of z.

If the the third and fourth moments of the chosen model lied outside the permitted

area one could chose µ̂3 and µ̂4 as the estimates that minimize some constrained opti-

mization problem, for instance, the Maximum Likelihood Estimator (using fU (u;µ3, µ4) =
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ua−1e−u

Γ(a)

[
1 +A3L

(a)
3 (u) +A4L

(a)
4 (u)

]
as the likelihood). The constrained region is clearly given

by a segment of the curve in equation 7.17 and the endpoints can be found using a root-search

method checking for which values of u the curve in Figure 7.8 touches the grey area.

Given the approximation of fU , and consequently of f
Z̃

, one can easily calculate the optimal

multiple stopping rule, since E[Z̃] is assumed to be known and E[min{c1 + Z̃, c2}] can be

calculated as follows.

Lemma 7.7.2. If G ∼ Gamma(a, 1), ie, fG(x) = xa−1e−x

Γ(a) then, similarly to Lemma 7.4.4 the

following property holds

xfG(x; a, 1) ≡ afG(x; a+ 1, 1). (7.18)

Using this notation we can rewrite the approximation of Z̃ as

f
Z̃

(z) ≈ fG(bz; a, 1)A∗1 + fG(bz; a+ 1, 1)A∗2 + fG(bz; a+ 2, 1)A∗3 + fG(bz; a+ 3, 1)A∗4 + fG(bz; a+ 4, 1)A∗5,

where A∗1 =
(

1− Γ(a+3)
Γ(a) A3 + Γ(a+4)

Γ(a) A4

)
b, A∗2 =

(
3Γ(a+3)

Γ(a) A3 − 4Γ(a+4)
Γ(a) A4

)
b,

A∗3 =
(
−3Γ(a+3)

Γ(a) A3 + 6Γ(a+4)
Γ(a) A4

)
b, A∗4 =

(
Γ(a+3)

Γ(a) A3 − 4Γ(a+4)
Γ(a) A4

)
b, A∗5 =

(
Γ(a+4)

Γ(a) A4

)
b.

Then, we can calculate the other main ingredient of Theorem 7.3.5, namely

E[min{c1 + Z̃, c2}] =
∫ +∞

0
min{c1 + z, c2}fZ̃(z)dz

=
∫ +∞

0

(
(c1 + z)1{c1+z<c2} + c21{c1+z≥c2}

)
f
Z̃

(z)dz

=
∫ c2−c1

0
zf
Z̃

(z)dz + c1

∫ c2−c1

0
f
Z̃

(z)dz + c2

∫ +∞

c2−c1

f
Z̃

(z)dz

= a

5∑
k=1

FG(b(c2 − c1); a+ k, 1)A∗k + c1

5∑
k=1

FG(b(c2 − c1); a− 1 + k, 1)A∗k

+ c2

5∑
k=1

FG(b(c2 − c1); a− 1 + k, 1)A∗k.

7.8 Conclusions and final remarks
In this chapter we studied some properties of an insurance product where its owner has the right

to choose which of the next k years the issuer should mitigate its annual losses. For two different

forms of mitigation we presented closed form solutions for the exercising strategy that minimized

(on average) the sum of all annual losses in the next T years. This model assumed a “moderate

tail” for the severity of the losses the owner incurs, namely a Poisson-Inverse Gaussian LDA

model.

Although it is assumed the company already holds the proposed contract, the company

can use the analysis presented on Figure 7.5 as a proxy for the price of the insurance product.

The value, from the company’s point of view, of the insurance product should be the expected

difference (under the natural probability) of the losses that would be incurred without the

product and the losses incurred using the product in the most profitable way (for the buyer),

E

 L∑
t=1

Z(t)−

 L∑
t=1

t/∈{τ1,...,τk}

Z(t) +
l∑

j=1
Z̃(τj)


 .
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It must also be said this price does not include the premium asked by the insurance company

and also does not take into consideration the fact that external insurance companies will not

have access to the models used by the company but it can still be a valuable proxy.

An alternative to the results presented in Section 7.7 can involve the use of a Monte Carlo

method. If there exists a mechanism to sample from the severity distribution one can easily

create a sample of the insured process Z̃ and use this sample to calculate all the necessary

expectations on Theorem 7.3.5. The advantage of this approach is that one can handle any

combination of severity distribution and insurance policy, but it can be extremely time con-

suming and the variance of the estimative can be prohibitive. It is important to note the

sampling of the severity can be made offline, i.e., the same sample should be used to cal-

culate all the integrals. Another alternative to solve the optimal multiple stopping problem

is the usage of an extended version of the so-called Least-Square Monte Carlo method, first

presented in [Longstaff and Schwartz, 2001] and extended to the multiple stopping scenario in

[Bender and Schoenmakers, 2006] (see also [Bender et al., 2013] for recent related work).

Regarding the results presented in Theorem 7.5.5 and 7.5.2 the truncation point for the

infinite sums can be chosen to be much larger than the expected number of losses (parameter

λN ), since the summands are composed by a p.m.f. of a Poisson r.v. (which presents exponential

decay) and a bounded term (difference of c.d.f.’s times constants).

From a critical perspective, it should be understood the policies introduced in this chapter

are to be seen as a first attempt to reduce the price of operational insurance and still lack some

real features. For example, neither the Individual Loss Policy (ILP) nor the Accumulated Loss

Policy include deductibles. One possible extension would be to study the following adjusted

structure for ILP: Z̃ = Z − min{(Z − d)+, l). The adjusted ILP structure would tackle the

possible issue of moral hazard on the original ILP, where small claims (smaller than k) are

always paid in full, without any sort of deductible. Another important factor not taken into

consideration is the impact of the insurance policies in the distribution of the liabilities. For

the ILP and ALP we do not discuss the impact of these policies, for example, in the capital

requirements. Along these lines, the decision criteria, i.e., minimization of the expected loss, does

not take into account the shape of the resulting distribution either. The optimization problem

with respect to the whole distribution (in order to see the impact in capital requirements, for

example) would be a much harder than just analyzing the expected values, and is left as a future

direction of research.
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Figure 7.8: (Left) Histogram of the loss process Z =
∑N
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and N ∼ Poi(λN = 2) and in red the Gamma approximation using the first four moments of

Z. (Right) The graph of the region where the density is positive for all values of z.



Chapter 8

Conclusions and future work

The recent regulatory changes in the financial/actuarial landscape are leading to stricter capital

requirements, making it even more important to develop tools to understand and manage the

company’s risks. This thesis provides quantitative tools to be used for this purpose. In partic-

ular, within the contexts of operational and actuarial risk management we discuss the problem

of allocating the company’s capital and also provide a new class of insurance products to help

mitigating operational risk losses.

Regarding the capital allocation problem we introduce novel simulation algorithms based

on Sequential Monte Carlo (SMC) methods, which can be applied to a wide range of models.

In a scenario where no parameter uncertainty is present, we are able to perform the sampling

procedure in a bounded space, which leads to good performance gains. In order to optimize the

algorithm even further, one possible direction is to make use of the geometric properties of the

constrained region, such as its curvature, as discussed in Section 4.1.1.

Parameter uncertainty is dealt with in the case of allocation of actuarial risks in Chap-

ters 5 and 6, where we introduce a marginalized and a conditional model. For allocations

under the conditional model we use a pseudo-marginal SMC algorithm, which involves the es-

timation, via simple Monte Carlo, of an intractable density. In light of the recent results from

[Deligiannidis et al., 2015] and [Dahlin et al., 2015] it worth analyzing the impact of introducing

correlated random variables when estimating the density fZ .

On a different direction, another alternative to be explored is to calculate a deterministic

approximation to the unknown density fZ . When used within the SMC procedure this approx-

imation induces some bias in the allocations, but may substantially reduce the computational

cost, as the approximation is computed only once (outside the SMC loop). This strategy has

been tested, for example, in [Everitt et al., 2016] and [McGree et al., 2015].

In order to make comparisons between the marginalized and conditional approaches simpler,

we perform the sampling procedure of the later in the original space, instead of using the inverse

c.d.f. transformation from Chapter 4. Although the copula implicitly defined in fZ cannot be

unbiasedly estimated, a deterministic approximation can be derived, which would allow us to

use the strategy discussed above. The result based on the deterministic approximation of the
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(implicit) copula of fZ could then be compared with the SMC procedure in the (explicitly

defined) copula space for fZ .

Another possible extension is related to the risk measure used in the capital calculation.

From the recent derivation of expectiles allocations in [Emmer et al., 2015] it is clear that similar

SMC methods to those proposed in this work can be used, as similar conditional expectations

are involved.

The SMC methodology presented in Chapters 4 and 5 could also accommodate the sen-

sitivity calculations performed in [Tsanakas and Millossovich, 2016]. In this work, sensitivity

analysis is based on quantities such as ESα(g(X)), where g is a non-linear function and X is a

high dimensional vector (with several hundreds of variables). The efficiency of the SMC when

compared to naive MC will depend on two important factors. First, as seen in the Gumbel

copula example in Figure 4.8, the SMC method suffers from the so called “curse of dimension-

ality”, where the relative bias increase and the variance reduction decreases as the dimension of

X increases. The second factor is the cost of computing the function g. As discussed in Chapter

4, the theoretical computational gain of the SMC method over the naive MC is of the order

(1 − α)/T . Since the naive MC method doesn’t need to compute g, the SMC can be expected

to present some efficiency gains whenever the cost of computing g for each sample is lower than

than (1− α)/T .

Related to the insurance product proposed in Chapter 7, the recent frustrating sales of

“operational risk bonds” by Credit Suisse (see [Foerster and Beardsworth, 2016]), when the

issuers were said to sell as little as 1/3 of the initially planned amount, show that the lack

of flexible operational risk transfer strategies may be preventing companies from getting the

coverage they want/need. In this regard, the class of insurance products introduced in Chapter

7 may provide a viable and affordable alternative to products that keep the company insured

for the whole policy’s life-span.
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