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ABSTRACT
Amongst dynamical modelling techniques, the made-to-measure (M2M) method for mod-
elling steady-state systems is amongst the most flexible, allowing non-parametric distribution
functions in complex gravitational potentials to be modelled efficiently using N-body particles.
Here, we propose and test various improvements to the standard M2M method for modelling
observed data, illustrated using the simple set-up of a one-dimensional harmonic oscillator.
We demonstrate that nuisance parameters describing the modelled system’s orientation with
respect to the observer – e.g. an external galaxy’s inclination or the Sun’s position in the Milky
Way – as well as the parameters of an external gravitational field can be optimized simultane-
ously with the particle weights. We develop a method for sampling from the high-dimensional
uncertainty distribution of the particle weights. We combine this in a Gibbs sampler with sam-
plers for the nuisance and potential parameters to explore the uncertainty distribution of the
full set of parameters. We illustrate our M2M improvements by modelling the vertical density
and kinematics of F-type stars in Gaia DR1. The novel M2M method proposed here allows
full probabilistic modelling of steady-state dynamical systems, allowing uncertainties on the
non-parametric distribution function and on nuisance parameters to be taken into account
when constraining the dark and baryonic masses of stellar systems.

Key words: Galaxy: kinematics and dynamics – solar neighbourhood – galaxies: fundamental
parameters – galaxies: general – galaxies: kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

Constraining the orbital structure and mass distribution of astro-
physical systems through dynamical modelling is one of the fun-
damental ways to learn about the dark-matter and baryonic dis-
tribution in external galaxies (e.g. Rix et al. 1997; Cappellari
et al. 2012), supermassive black holes at the centres of galaxies (e.g.
Magorrian et al. 1998), and the mass distribution of the Milky Way
(e.g. Bovy & Rix 2013), to name but a few. Of particular interest are
systems – such as galaxies or star clusters – that may be assumed
to be in a steady state. Many techniques have been proposed to
model such systems, typically combining the steady-state assump-
tion with further assumptions about the orbital structure (e.g. the
velocity anisotropy) or symmetry (e.g. spherical or axisymmetric)
of the system. The simplest amongst these techniques are those
based on moments of the collisionless Boltzmann equation, e.g. the
Jeans equations, which despite their restrictive assumptions remain
a useful tool for interpreting data (e.g. Cappellari et al. 2013). A
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second class of techniques directly uses parametrized distribution
functions (DFs) that satisfy the collisionless Boltzmann equation
by only depending on integrals of the motion. While restricted to
gravitational potentials for which such integrals can be computed,
this class of models has reached a high level of sophistication, espe-
cially in the Milky Way (e.g. Binney 2010; Bovy & Rix 2013; Trick,
Bovy & Rix 2016). A third class of methods eschews parametrized
DFs, but rather builds a steady-state model in a fixed gravita-
tional potential from a large number of orbit building blocks with
weights determined by fitting a set of constraints (Schwarzschild
1979, 1993).

Syer & Tremaine (1996) proposed a method known as made-
to-measure (M2M) modelling that is closely related to orbit-based
modelling. In M2M, the DF is represented not by entire orbits but
instead by a set of N-body particles with positions and velocities
(xi , vi) and weights wi. They demonstrated that a steady-state solu-
tion to a set of constraints on the phase-space distribution (expressed
as a χ2, the mean-squared difference between the model and the
data) can be obtained by slowly adjusting the weights of each parti-
cle in the direction of decreasing χ2 while integrating the orbits of
the particles. The advantages of this particle-based technique over
orbit-based methods are that only the current snapshot needs to be
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stored in memory rather than entire orbits, that the N-body particles
can contribute a self-consistent part of the gravitational potential,
and that one ends up with an actual sampling from the steady-state
DF. The latter makes M2M also an ideal technique for initializing
N-body simulations (e.g. Dehnen 2009; Malvido & Sellwood 2015).

Since its original description, various improvements have been
made to the basic M2M set-up, such as allowing for observational
uncertainties and kinematic data in the constraints (De Lorenzi
et al. 2007; Long & Mao 2010), integrating particles on individ-
ual time-scales for problems with a range of orbital frequencies
(Dehnen 2009), improvements in the smoothing applied to the
model (Dehnen 2009), and allowing data for individual stars as
constraints (Hunt & Kawata 2013; Hunt, Kawata & Martel 2013;
Hunt & Kawata 2014). As currently conceived, M2M modelling
applies to the particle weights only and any other parameter de-
scribing the system is held fixed during the optimization. This
includes nuisance parameters describing the modelled system’s
orientation with respect to the observer, for example, the incli-
nation of an external galaxy or the Sun’s distance to the Galac-
tic centre for Milky Way applications, and the parameters of the
external gravitational field. Furthermore, as methods for mod-
elling observed data both Schwarzschild and M2M modelling re-
main problematic in that they are fundamentally optimization al-
gorithms that do not take into account the uncertainties in the DF
resulting from the strong degeneracies amongst the large number
of orbit or particle weights (Magorrian 2006). For obtaining the
best constraints from a given set of observables, a fully probabilis-
tic treatment is warranted that samples from the full uncertainty
distribution for the particle weights, nuisance parameters and the
parameters describing the potential. In this paper, we extend the
basic M2M modelling framework to optimize for nuisance and po-
tential parameters simultaneously with the particle weights and we
introduce sampling methods to sample the uncertainty distribution
of all parameters.

The outline of this paper is as follows. In Section 2, we de-
scribe the simple, one-dimensional set-up that we use as a toy
problem: modelling an isothermal population in an external
harmonic-oscillator potential. We describe the standard M2M
method in Section 3. In Section 4, we discuss how to sample from
the uncertainty distribution of the particle weights. We show how
one can optimize the value of the nuisance parameters at the same
time as the values of the particle weights in Section 5 and give
a Markov Chain Monte Carlo (MCMC) algorithm to sample both
the particle weights and the nuisance parameters. In Section 6, we
discuss how we can also optimize the value of the parameters de-
scribing the external gravitational potential simultaneously with the
particle weights and the nuisance parameters and present an MCMC
algorithm for sampling all parameters. To illustrate how the M2M
improvements perform for real data, we apply the new M2M al-
gorithm to data on the density and kinematics of F stars in Gaia
DR1 in Section 7. We discuss various aspects of this novel M2M
method and avenues for future work in Section 8 and present our
conclusions in Section 9.

2 H ARMONIC-OSCILLATO R M2M: A SIMPLE
T E S T B E D F O R M2 M M O D E L L I N G

To illustrate and test our modelling extensions of the basic M2M
algorithm below, we consider a one-dimensional system with the
gravitational potential of a harmonic oscillator (HO). This set-up is
chosen for its simplicity; everything that we describe below applies
more generally to full, three-dimensional M2M modelling. This

set-up is an ideal testbed for M2M modelling because (a) orbit
integration is analytic, (b) the DF corresponding to a given potential
and a given density is unique (thus, there is a well-defined unique
solution to the M2M problem; e.g. Kuijken & Gilmore 1989), (c) it
is easy to write down simple DF models and (d) running the M2M
modelling in practice is very fast. While simple, this model is a also
semirealistic, approximate representation of the vertical dynamics
in the solar neighbourhood close to the mid-plane and thus has some
practical applicability (see Section 7). We ignore the self-gravity of
the M2M N-body particles and the potential is thus assumed to be
external and fixed. In this section, we describe the basic notation,
equations and concepts of this model.

We denote the phase-space coordinates as (z, vz). The HO poten-
tial is

�(z; ω) = ω2 z2

2
, (1)

specified by a single parameter ω, the oscillator’s frequency. Orbit
integration in the HO potential is analytic: orbits are given by

zi(t) = Ai cos (ω t + φi) , (2)

vz,i(t) = −Ai ω sin (ω t + φi) , (3)

where

Ai = zmax =
√

2 Ei

ω
=
√

z2
i (0) + v2

z,i(0)

ω2
, (4)

φi = arctan2(−vz,i(0)/ω, zi(0)), (5)

in which (zi(0), vz, i(0)) is the initial phase-space position of an orbit
indexed by i and arctan2 is the arc-tangent function that chooses the
quadrant correctly.

In this HO potential, we attempt to match a population drawn
from a DF given by

f (z, vz) ∝ e−E/σ 2
, (6)

where E = ω2 z2/2 + v2
z /2 is the energy and σ is the velocity dis-

persion parameter. This DF is isothermal – it has the same velocity
dispersion at all heights 〈v2〉 = σ 2 – and in a steady state, because it
is only a function of the conserved energy E. The density distribution
for this distribution is

ν(z) ∝ exp

(
−ω2 z2

2 σ 2

)
, (7)

which is a Gaussian distribution with a standard deviation
σ ν = σ/ω. The velocity distribution at each z is a Gaussian with
dispersion σ . Sampling orbits at initial phase-space locations (zi(0),
vz, i(0)) from f (z, vz) ∝ e−E/σ 2

is simple: (i) sample Ei from the ex-
ponential distribution and convert it to Ai; (ii) sample φi uniformly
between 0 and 2π; (iii) convert (Ai, φi) to (zi, vz, i).

To fit this DF using M2M below, we start with (zi, vz, i) drawn
with uniform weights wi from an isothermal DF, but with a different
σ from the true velocity dispersion: f (z, vz) ∝ e−E/σ 2

in , with σ in

typically 0.2. It is then easy to see that the correct output particle
weights for a true velocity-dispersion parameter σ target should be

wi ∝ exp

(
−Ei

[
1

σ 2
target

− 1

σ 2
in

])
, (8)
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if the potential remains fixed. If the potential is adiabatically
changed from a HO potential with frequency ωin to one with fre-
quency ωtarget the correct output particle weights are

wi ∝ exp

(
−Ji

[
ωtarget

σ 2
target

− ωin

σ 2
in

])
, (9)

where Ji = Ei/ω is the action.

3 STA N DA R D M 2 M MO D E L L I N G

We first describe the standard M2M case. Standard M2M models a
steady-state DF as a set of N particles (zi, vz, i) indexed by i orbiting
in a fixed potential. Each particle has a weight wi that is adjusted
on-the-fly during orbit integration to fit a set of constraints, like
the density in bins, or the velocity dispersion. By only adjusting
the particle weights wi on time-scales � the orbital time-scale, an
approximate equilibrium distribution is obtained.

In practice, M2M maximizes an objective function F that rep-
resents a balance between reproducing the constraints, expressed
as χ2 differences between data and model, and a penalty S that
disfavours non-smooth DFs

F = S − 1

2

∑
j

χ2
j . (10)

Traditionally, the penalty S is implemented through a maximum-
entropy constraint by setting

S = −μ
∑

i

wi [ln (wi/ŵi) − 1] , (11)

where ŵi is a default set of particle weights. In the absence of
constraints, the entropy penalty prefers wi = ŵi . The parameter μ

quantifies the strength of the penalty.
Constraints are expressed as a kernel applied to the DF f(z, vz):

Yj =
∫

dzdvz Kj (z, vz)f (z, vz), (12)

which for the N-body snapshot is computed as

yj =
∑

i

wiKj (zi, vz,i). (13)

To illustrate the standard M2M case, we use the density and the
density-weighted mean-squared velocity, both observed at a few
points indexed by j. The model density is given by

ν(z̃j ) =
∑

i

wiK
0(|z̃j + z� − zi |; h), (14)

where K0(r; h) is a kernel function with a width parameter h that inte-
grates to one (

∫
dr K0(r; h) = 1) and we assume that the observations

are done as a function of z̃, which is measured with respect to the
observer’s position, located at z� from the z = 0 mid-plane (we give
the specific kernel and z̃ used in this paper in Section 3.2). In what
follows, we will abbreviate K0

j (zi ; h) ≡ K0(|z̃j + z� − zi |; h). We
assume that the density is observed with a Gaussian error distribu-
tion characterized by a variance σ 2

0,j and the contribution χ2
j,0 from

the density to χ2 is then

χ2
j,0 = [	0

j /σ0,j ]2 = (
ν(z̃j ) − νobs

j

)2
/σ 2

0,j , (15)

where we have defined 	0
j = ν(z̃j ) − νobs

j , with superscript ‘0’ to
indicate that this is a zeroth moment quantity.

The model density-weighted mean-squared velocity is given by

ν〈v2
z 〉(z̃j ) =

∑
i

wiv
2
z,i K0(|z̃j + z� − zi |; h), (16)

where we have chosen a kernel K II
j (zi, vz,i) = v2

z,i K0
j (zi ; h). As for

the density, we assume that this quantity is observed with a Gaussian
error distribution with variance σ 2

2,j and the contribution χ2
j,II to χ2

is

χ2
j,II = [	II

j /σ2,j ]2 = (
ν〈v2〉(z̃j ) − ν〈v2〉obs

j

)2
/σ 2

2,j , (17)

where we have defined 	II
j = ν〈v2〉(z̃j ) − ν〈v2〉obs

j , where the su-
perscript indicates that this is a second-moment quantity (not a
square), like for the density difference 	0

j . The reason that we work
with the density-weighted mean-squared velocity is that it has a
simple form; for applications to data, one might want to use the
mean-squared velocity directly (for example in the example appli-
cation in Section 7), but this requires normalizing by the density and
thus leads to more complicated derivatives below (see Appendix A).

The standard M2M force of change equation is then given by

dwi

dt
= εwi

∂F

∂wi

= εwi

⎡⎣ ∂S

∂wi

− 1

2

∑
j

∂χ2
j,0

∂wi

− 1

2

∑
j

∂χ2
j,II

∂wi

⎤⎦ . (18)

In this equation, we have that

− 1

2

∂χ2
j,0

∂wi

= −	0
j K0

j (zi ; h)/σ 2
0,j , (19)

− 1

2

∂χ2
j,II

∂wi

= −	II
j v2

z,i K0
j (zi ; h)/σ 2

2,j , (20)

and

∂S

∂wi

= −μ ln [wi/ŵi] . (21)

We solve equation (18) using a simple Euler method with a fixed
step size, computing the orbital evolution as we go along using
equations (2) and (3). Unlike most previous applications of M2M,
we do not require

∑
iwi = 1, but instead let the total weight be

constrained by the data (see discussion in Section 8.3).
The M2M method for optimizing the objective function can be

thought of as a sort of gradient ascent. Gradient-ascent optimiza-
tion of an objective function does not have a physical time-scale
associated with it. However, by writing the gradient-ascent algo-
rithm in the manner of equation (18), we are essentially performing
gradient ascent on a clock that runs with time τ = ε t compared to
the orbit integration that runs with time t. If 	t ≈ 1 is the orbital
time-scale, substantial changes to the objective function and the
particle weights only happen on time-scales 1/ε. M2M works by
adjusting ε such that 1/ε � 1, the orbital time-scale, which pushes
the particle weights to an equilibrium distribution.

3.1 Previous extensions to the standard M2M algorithm

For the sake of completeness, we discuss some of the previous
extensions to the standard M2M method that have been proposed.
These are all concerned with how the M2M optimization for the
particle weights is run and are thus different from the extensions
that we propose in the following sections on how to fit additional
parameters beside the particle weights and how to sample from the
uncertainty distribution of all parameters.

Syer & Tremaine (1996) propose to lessen the impact of Poisson
noise due to the finite number of N-body particles by smoothing the
	0

j and 	II
j deviations that appear in equation (18) with smoothed
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Figure 1. Basic M2M. The left-hand panels display the observed mock data in green: density ν(z̃) (top) and density-weighted mean-squared velocity ν〈v2
z 〉(z̃)

(bottom). The blue curve shows the initial model, while the red curve displays the model for the best-fitting particle weights. The top, middle panel shows the
best-fitting particle weights in red, the initial weights in blue, and the true weights in green. The bottom, middle panel shows the velocity distribution (for all
z) for the initial model (blue), the final model (red), and the true, Gaussian distribution (green). The right-hand panels demonstrate how ten randomly-selected
particle weights evolve (top) and how the total χ2 converges in the M2M optimization. The grey band in the left four panels displays the 68 per cent uncertainty
region in the fit obtained from 100 samples of the PDF for the particle weights.

versions 	̃0
j and 	̃II

j . In the end, this leads one to solve for (	̃0
j , 	̃

II
j )

using the differential equations

d	̃0
j

dt
= α

(
	0

j − 	̃0
j

)
, (22)

d	̃II
j

dt
= α

(
	II

j − 	̃II
j

)
, (23)

where α is another inverse-time-scale parameter. Because we only
want to smooth on shorter time-scales than that over which we
substantially change the particle weights, we typically need α �
ε (see Syer & Tremaine 1996 for a detailed discussion of this
constraint). Dehnen (2009) considers a modified version of this
procedure in which not the constraint but the objective function
itself is smoothed. This leads one to smooth the force-of-change
factor ∂F/∂wi itself in a similar manner as the Syer & Tremaine
(1996) smoothing

d

dt

(
∂̃F

∂wi

)
= α

(
∂F

∂wi

− ∂̃F

∂wi

)
. (24)

Note that if we discretize the solution of equation (18) with a step-
size δt, setting α = 1/δt is equivalent to no smoothing and α cannot
be set to a larger value. Malvido & Sellwood (2015) argue that
for large particle numbers, smoothing is redundant in that the un-
smoothed algorithm already leads to final particle weights based on
the smoothed objective function. We do not apply any smoothing
in any of the examples in this paper.

Dehnen (2009) also introduced a method for solving the M2M
optimization where each particle gets integrated on its own (ap-
proximate) time-scale. This is a necessary addition when mod-
elling systems with a wide range of orbital time-scales (e.g. Hunt
& Kawata 2013) and all of our extensions of the traditional M2M
algorithm below apply to this formalism from Dehnen (2009) as
well. However, we do not consider it here further, because all
orbits in our example problem of the HO have the exact same
orbital frequency.

3.2 An example M2M fit

Fig. 1 shows an example of the standard M2M algorithm. We draw
100 000 mock data points from an isothermal DF with σ = 0.1 and∑

iwi = 1 in a HO potential with ω = 1.3. We evaluate the density
ν(z̃) and the density-weighted mean-squared velocity ν〈v2

z 〉(z̃) at
z̃ = {±0.10, ±0.15, ±0.20} for z� = 0.05 using the expressions
in equations (14) and (16) with a kernel width of h = 0.025 for an
Epanechnikov kernel

K0(x; h) =
{

3
4 h

[
1 − ( x

h
)2
]
, 0 ≤ x ≤ h,

0, otherwise.
(25)

We then assume Gaussian uncertainties σ 0, j and σ 2, j and obtain the
measurements νobs

j and ν〈v2〉obs
j displayed in the left-hand panels of

Fig. 1. These are the measurements that we use for all of the tests
in this paper.

To model these mock data, we draw 1000 M2M particles from
the isothermal DF with σ = 0.2 – twice the true σ – and assign them
initial weights wi = 1/1000. We fix z� and ω to their true values.
We run the standard M2M optimization algorithm with ε = 10−3.5

and solve the M2M evolution with a stepsize of π/3 × 10−2 for
105 steps or about 217 orbits. We do not apply a roughness penalty
(μ = 0) to let the data fully determine the particle weights. We
compute observables from these 1000 particles using a kernel with
size h = 0.075, three times larger than the kernel used to generate
the mock data. We chose this larger kernel to demonstrate that the
kernel size or even its shape may be different between the data
and the model observables, as long as they consistently measure
the observable in question. In Section 7, we apply the new meth-
ods developed in this paper to Gaia data, where to account for
the Gaia selection function the kernel used must be a set of rect-
angular bins, while the model observables are computed using an
Epanechnikov kernel, because rectangular bins do not have well-
behaved derivatives.

The resulting fit is shown in red in Fig. 1. In the left-hand panels
the red line is the model’s density and density-weighted mean-
squared velocity evaluated at the final snapshot of the particles with
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their best-fitting weights. The model is smooth and fits the data well.
The top, middle panel displays the best-fitting weights wi. These
oscillate around their true value, indicated by the green curve. The
bottom, middle panel shows the velocity distribution (for all z) of
the final particle distribution. This velocity distribution is close to
a Gaussian with σ = 0.1, the true distribution displayed in green.
The right-hand panels demonstrate how the particle weights (top)
and χ2 (bottom) converge. At the end of the procedure, we have
that χ2 ≈ 2.5 and we do not optimize further (the true minimum
is χ2 ≈ 2). Some of the weights that are largely unconstrained by
the data are still evolving somewhat, without affecting the model
fit.

4 U N C E RTA I N T I E S O N TH E PA RTI C L E
W E I G H T S

The standard M2M algorithm returns the best-fitting particle
weights without any estimate of their uncertainties. Standard algo-
rithms for sampling from the uncertainty distribution for the particle
weights, such as MCMC methods of various sorts, could in princi-
ple be applied if we interpret the objective function in equation (10)
as the logarithm of a posterior PDF. However, these algorithms
do not work well for the M2M problem, because this posterior
PDF evaluated at any given snapshot is noisy, the weights-space is
high-dimensional (dimension 1000 in the test example employed in
this paper), and the uncertainties of the particle weights are highly
correlated.

The method for obtaining uncertainties on the particle weights
that we propose here is based on the following simple observa-
tion. Consider a linear model in which the vector of observations
Y is modelled as a function of a parameter vector W ∈ R

N as
Y = K W + δ, where δ ∼ N (0, S) is Gaussian noise with mean
0 and known variance S (which may include correlations between
different components of Y ), and K is a constant matrix. For this
model, the posterior probability distribution function (PDF) under
a uniform prior is given by

p(W |Y , S) = N (
M = V [K T S−1 Y ], V

)
, (26)

where the variance V is given by

V = [K T S−1 K ]−1 (27)

(e.g. Hogg, Bovy & Lang 2010). Rather than computing the mean
and variance of this Gaussian posterior PDF, we can sample from
the posterior PDF as follows:

Ỹ ∼ N (Y , S) (28)

M̃ = V [K T S−1 Ỹ ]. (29)

That is, we sample new observations Ỹ from the uncertainty dis-
tribution of Y and compute the ‘best-fitting’ M̃ for this new set
of observations. This M̃ is a sample from the posterior PDF: (a)
the distribution of M̃ is Gaussian, because M̃ is a linear trans-
formation of another Gaussian variable Ỹ , (b) the expectation
value of M̃ = M and (c) the variance 〈M̃ M̃

T 〉 = V ; because a
Gaussian distribution is fully characterized by its mean and vari-
ance, this proves that the distribution of M̃ is the correct posterior
PDF.

In the M2M objective function in equation (10), the observa-
tions Y = Yj are linearly related to the weight parameters W = wi

through the kernels K = Kj (zi, vz,i). The algorithm above is based
on the assumption that there is no constraint on the sign of each

Algorithm 1: Particle Weights Monte Carlo Sampling

/* To draw K sets of particle weights
{wi}k for data points Y with uncertainty
covariance S */

1 for k = 1, 2, . . . , K do
2 Ỹ ∼ N (Y, S)
3 {wi}k ←↩ M2M optimize wi for data points Ỹ
4 with uncertainty covariance S
5 (zi, vz,i) ← value at the end of M2M
6 optimization

7 end

of the weight parameters wi. Our M2M application, however, re-
quires that all weights be non-negative for the DF to be every-
where non-negative. To deal with this, we therefore force the w̃i

to remain positive, which is automatically the case when using the
M2M optimization algorithm described above; we discuss the ef-
fect of this constraint in more detail below. Thus, we sample particle
weights from the weights PDF by (a) sampling new observations
Ỹj from the uncertainty distribution for each Yj and (b) by com-
puting the best-fitting particle weights w̃i using the standard M2M
algorithm (which includes the w̃i > 0 constraint). Each such set
w̃i is an independent sample from the weights PDF, unlike in a
Markov chain. We will refer to this as the ‘data-resampling method
for sampling the particle weights PDF’. This method is presented
in Algorithm 1. The algorithm, as written down there, draws K
samples from the uncertainty distribution for the particle weights;
when we use this algorithm as part of a larger Gibbs MCMC chain,
we will typically use it to draw just a single sample (K = 1 in
Algorithm 1).

This method does not properly deal with particle weights for
which the penalty term in equation (11) (which becomes a prior
when sampling the particle weights) has a significant effect or for
weights that, if they were allowed to be negative, have much proba-
bility mass at wi < 0. An extreme case of the former are weights of
orbits that do not pass through any observed volume. Under the opti-
mization algorithm, these will always return the prior weight with no
scatter. If the prior on the particle weights was Gaussian, we could
similarly sample new prior means as the first step in the algorithm in
equation (28) (because the prior mean ŵi is in this case equivalent
to an ‘observation’ of wi with an error variance equal to the prior
variance). We do not implement this here, but see further discussion
of this in Section 8.4. For weights that want wi < 0, the optimization
algorithm will effectively associate all probability mass at wi < 0
with wi = 0. While this is not technically correct – it does not sample
from the posterior PDF – it is reasonable to set weights to zero that
want to be less than zero. Some M2M algorithms remove orbits with
small or zero weights and our sampling method effectively samples
from the two alternative models for such orbits with the probability
of these two alternatives determined by the data: (a) they get re-
moved (wi = 0) and (b) they have non-zero weights (wi > 0). We
discuss the issue of particle weights that prefer to be negative in the
context of the M2M extensions in the next two sections further in
Section 8.2.

An example of the data-resampling method for sampling the
particle-weights PDF is shown in Fig. 1. We draw 100 samples from
the weight PDF, that is, 100 sets of 1000 particle weights. Each set
is optimized using the same optimization settings as in Section 3.2;
each set’s initial particle distribution is set to the final snapshot
of the previous sample. Because we set μ = 0, we assume a flat,
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improper prior wi > 0 for all particle weights. The grey band dis-
plays the ≈1σ range spanned by this sample of particle weights. The
uncertainty in the particle weights (top, middle panel) and conse-
quent uncertainty in the density and density-weighted mean-squared
velocity (left-hand panels) and the velocity distribution (bottom,
middle panel) adheres to our physical intuition. For example, orbits
with zmax < 0.05 are essentially only constrained by the observations
at z̃ = −0.1, which corresponds to z = −0.05 because z� = 0.05;
the uncertainty in the particle weights blows up at zmax < 0.05 be-
cause of this. The density kernel for an observation at z is dominated
by orbits with zmax ≈ z, while the velocity-squared kernel at all z gets
large contributions from stars with large zmax. Therefore, weights
at high zmax are strongly constrained by the velocity data. The un-
certainty in the density in the left-hand panel is therefore large near
z̃ ≈ 0, while the uncertainty in the velocity is small at the same z̃.
At large z̃ the data allow a more steeply declining density and/or
velocity, but not a shallower distribution (which would have too
large velocities at low heights). Keep in mind that these strong rela-
tions depend on knowing the gravitational potential and keeping it
fixed.

5 O PTIMIZING AND SAMPLING NUISANCE
PA R A M E T E R S

Dynamical modelling of observed galaxy kinematics often requires
the knowledge of parameters separate from those specifying the
DF (the particle weights in the M2M case) and those related to the
gravitational potential. These are typically related to the observer’s
perspective: for example, the observer’s three-dimensional position
and velocity with respect to the centre of the system being mod-
elled (e.g. the Sun’s distance from the Galactic centre for Milky
Way dynamics) or the observer’s viewing angle (e.g. a galaxy’s
inclination for an external galaxy, the Sun’s position with respect
to the bar when modelling the central Milky Way). These types
of parameters enter into the kernel evaluation in the M2M objec-
tive function. The standard method for determining these param-
eters is to optimize the M2M objective function for the particle
weights on a grid of nuisance parameters. Here, we demonstrate
that the M2M objective function in equation (10) can be opti-
mized simultaneously for the particle weights and the nuisance
parameters.

As an example we consider the Sun’s height z� above the plane.
The Sun’s height enters the kernels through z = z̃ + z�. Similar
to the standard M2M algorithm, we can form a force of change
equation for z� as

dz�
dt

= ε�
∂F

∂z�

= ε�

⎡⎣−1

2

∑
j

∂χ2
j,0

∂z�
− 1

2

∑
j

∂χ2
j,II

∂z�

⎤⎦ , (30)

where we have allowed the freedom to use a different ε� from the
ε parameter used in the force-of-change equation for the particle
weights. We have that

−1

2

∂χ2
j,0

∂z�
= − 	0

j

σ 2
0,j

∑
iwi

dK0
j (r; h)

dr

∣∣∣∣∣∣
|z̃j +z�−zi |

sign(z̃j + z� − zi),

(31)

Algorithm 2: MCMC sampling of nuisance parameters

/* To draw K MCMC samples z�,k, given a
set of particle weights {wi} and a
gravitational potential, for data
points Y with uncertainty covariance
S */

// Average objective function for
current z�:

1 F̃ ← 0
2 for m = 1, 2, . . . , M do
3 (zi, vz,i) ← advance orbits by 1 step
4 F̃+ = F (zi, vz,i |z�, wi, Y, S)/M
5 end
// MCMC sample using

Metropolis-Hastings:
6 for k = 1, 2, . . . , K do

// Draw proposed z′�:

7 z′� ∼ Q(z′�|z�)

8 (zi, vz,i) ← rewind orbits by M steps
// Average objective function for z′�:

9 F̃ ′ ← 0
10 for m = 1, 2, . . . , M do
11 (zi, vz,i) ← advance orbits by 1 step
12 F̃ ′+ = F (zi, vz,i |z′�, wi, Y, S)/M

13 end
// Accept/reject:

14 q ← F̃ ′ − F̃

15 r ∼ [0, 1]
16 if ln r < q then
17 z� ← z′�
18 F̃ ← F̃ ′

19 else
20 z� ← z�
21 end
22 z�,k ← z�
23 end

−1

2

∂χ2
j,II

∂z�
= − 	II

j

σ 2
2,j

∑
iwi v2

z,i

dK0
j (r; h)

dr

∣∣∣∣∣∣
|z̃j +z�−zi |

sign(z̃j + z� − zi).

(32)

If one wants to include a prior on z� there would be an additional
contribution to the force of change from this prior. We then again
solve the system of equations (18) and (30) using an Euler method
with a fixed step size, computing the orbital evolution as we go
along using equations (2) and (3).

An example of this is displayed in Fig. 2, where we fit the same
data as in the example described in Section 3.2, but now also fitting
z�. All of the optimization parameters are kept the same and we set
ε� = 10−6 ≈ ε/300. We start at an initial guess of z� = −0.05, far
from the true value. We see that z� quickly and smoothly converges
to z� = 0.053, close to the true value.

After finding the best-fitting z� from the M2M optimization, we
can sample the joint posterior PDF for (wi, z�) using a Metropolis-
Hastings-within-Gibbs sampler by repeating the following
steps

(a) wi ∼ p(wi |z�, observations), [Algorithm1] (33)
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Figure 2. M2M with nuisance parameters. Like Fig. 1, except that we also fit for the Sun’s height above the plane z� using the force of change for z� and
we sample the uncertainty in both the particle weights and z�. The top right-hand panel demonstrates how z� converges during the joint M2M optimization
of the particle weights and z�. We find that z� = 0.0527 ± 0.0042, in good agreement with its true value of 0.0500, shown as the dashed grey line in the top
right-hand panel.

(b) z� ∼ p(z�|wi, observations), [Algorithm 2], (34)

where we sample particle weights in the (a) step using the data-
resampling technique of Section 4 (see Algorithm 1 with K = 1
to draw a single particle-weights sample) and sample z� us-
ing a Metropolis-Hastings (MH) update using the objective func-
tion as the log posterior PDF ln p(z�|wi, observations), in which
the weights wi are held fixed. Step (b) is presented in detail in
Algorithm 2. In practice, we average the objective function
in step (b) over about one orbital period (lines 2–5 and 10–13
in Algorithm 2) and use the exact same orbital trajectories (thus
the rewind step in line 8 of Algorithm 2) to reduce the noise in the
objective function. Because the optimization in step (a) typically re-
quires tens to hundreds of orbital periods, step (b) proceeds quickly
compared to step (a). We can improve mixing in the MCMC chain
by performing multiple MH steps for each weights sample (K > 1 in
Algorithm 2) and keeping only the final z� sample in each step (b);
as long as the total number of orbital steps in (b) is much less than
that for a single optimization, this does not increase the computa-
tional cost significantly.

The result of this procedure for the example problem is shown in
Figs 2 and 3. We have drawn 100 samples from the joint PDF of the
particle weights and z�, using a Gaussian proposal distribution with
standard deviation σz� = 0.01 and performing 105 M2M optimiza-
tion time steps in step (a) and 20 MH steps for each particle-weight
sample. The chain is initialized at the best-fitting z� from the M2M
optimization described above. We average the objective function
using M = 500 steps or about 1 orbital period. The behaviour of the
MCMC chain is displayed in Fig. 3. This figure demonstrates that
the chain is well mixed and has a small correlation length (adja-
cent samples have very different values). The chain for the particle
weights demonstrates that weights with similar zmax are strongly
correlated. The acceptance ratio for the MH steps for z� for this
chain is 0.30.

The uncertainty in the density and velocity profiles in Fig. 2
now includes the uncertainty in z� and this increases the overall
uncertainty. We find that z� = 0.0527 ± 0.0042. We can compare
this to the standard method of constraining z�: we optimize the

particle weights for a set of fixed z� and record the minimum
χ2 for each z�. This gives z� = 0.0534 ± 0.0046. We can also
compare our M2M-based result to the result if we assume that the
DF is isothermal with unknown σ and normalization. In that case,
the data constrain z� = 0.0560 ± 0.0048, similar to the M2M
analyses. Overall, we find that the novel M2M procedure performs
well.

6 O PTI MI ZI NG AND SAMPLI NG THE
G R AV I TAT I O NA L POT E N T I A L

Traditionally, M2M modelling, much like Schwarzschild mod-
elling, keeps the external gravitational field fixed during the M2M
fit. The gravitational potential is optimized by running the fit for
different fixed potentials and choosing the potential that provides
the best fit. While the overall distance and velocity scale can be
optimized by writing down a force of change equation for these
(De Lorenzi et al. 2008), this does not apply to other parameters of
the potential. However, similar to the force of change for nuisance
parameters, we can write down the force of change for parameters
describing the potential and adjust these parameters during the fit.
Naively, the problem with this procedure is that the instantaneous
objective function F does not depend on the potential, because it
is only a function of the current phase–space position of the M2M
particles. In this section, we discuss how to get around this problem,
such that we can fit and MCMC sample the parameters describing
the gravitational potential.

Using our HO example, we vary the frequency ω of the HO
potential. The force of change equation for ω is

dω

dt
= εω

∂F

∂ω

= εω

⎡⎣−1

2

∑
j

∂χ2
j,0

∂ω
− 1

2

∑
j

∂χ2
j,II

∂ω

⎤⎦ ,

= −εω

[
	0

j

σ 2
0,j

∂	0
j

∂ω
+ 	II

j

σ 2
2,j

∂	II
j

∂ω

]
, (35)
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Figure 3. MCMC sampling of the particle weights and z�. This figure
demonstrates the MCMC chain of 100 samples from the uncertainty dis-
tribution of the particle weights and z� constrained by the mock data.
The top panel displays the behaviour of χ2, the middle panel that of five
random particle weights (normalized by the standard deviation of their sam-
ples, colour-coded by zmax) and the bottom panel shows the z� samples.
The chain has a small correlation length, because we perform 20 MH steps
for z� for each sample from the weights PDF.

where we have again allowed the freedom to use a different εω

from the ε parameter used in the force-of-change equation for the
particle weights or for the nuisance parameters. We can directly

evaluate
∂	0

j

∂ω
and

∂	II
j

∂ω
using a finite difference approximation, e.g.

∂	0
j

∂ω
= 	0

j (ω+	ω)−	0
j (ω)

	ω
, by integrating the orbit starting from the

previous time step in the two potentials characterized by frequen-
cies ω and ω + 	ω and comparing the (	0

j , 	
II
j ) at the current time.

In practice, we compute these finite differences with a 	ω large
enough to give a substantial difference in (zi, vz, i) over the time step
	t. The parameter εω should be small enough such that substantial
changes to ω only happen on many orbital time-scales. In that case,
the (non-resonant) orbits change adiabatically and the orbital struc-

Algorithm 3: MCMC sampling of potential parameters

/* To draw K MCMC samples ωk

characterizing potentials �(z; ωk),
given a set of particle weights {wi}
and nuisance parameter z�, for data
points Y with uncertainty covariance
S */

// Average objective function for
current ω:

1 F̃ ← 0
2 for m = 1, 2, . . . , M do
3 (zi, vz,i) ← advance orbits by 1 step in �(z; ω)
4 F̃+ = F (zi, vz,i |ω, z�, wi, Y, S)/M
5 end
// MCMC sample using

Metropolis-Hastings:
6 for k = 1, 2, . . . , K do

// Draw proposed ω′:
7 ω′ ∼ Q(ω′|ω)

// Adiabatically change ω to ω′:
8 (z′

i , v
′
z,i) ← (zi, vz,i)

9 for l = 1, 2, . . . , L do
10 ωl ← ω + (ω′ − ω) l/L

11 (z′
i , v

′
z,i) ← rewind orbits by 1 step in �(z; ωl)

12 end
13 (z′

i , v
′
z,i) ← advance orbits by L − M steps in

14 �(z; ω′)
// Average objective function for ω′:

15 F̃ ′ ← 0
16 for m = 1, 2, . . . , M do
17 (z′

i , v
′
z,i) ← advance orbits by 1 step in

18 �(z; ω′)
19 F̃ ′+ = F (z′

i , v
′
z,i |ω′, z�, wi, Y, S)/M

20 end
// Accept/reject

21 q ← F̃ ′ − F̃

22 r ∼ [0, 1]
23 if ln r < q then
24 ω ← ω′

25 F̃ ← F̃ ′

26 (zi, vz,i) ← (z′
i , v

′
z,i)

27 else
28 ω ← ω

29 end
30 ωk ← ω

31 end

ture corresponding to the M2M particles does not change between
potentials. In certain applications, it may also be necessary to adia-
batically change the potential to that, in this case, corresponding to
ω + 	ω when computing the finite difference, but we do not find
this to be necessary here.

An example of fitting for ω is shown in Fig. 4 where we fit the
same data as in the example described in Section 3.2, but now
also fitting ω (while keeping z� fixed to its true value). We keep
the optimization parameters for the particle weights the same as in
Section 3.2, but use εω = 10−3. We compute the finite difference
using equation (35) with 	ω = 0.3, and we only update ω every
10 time steps (and we therefore compute the finite difference using
a time step 	t =10 times the basic stepsize). We start at an initial
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Figure 4. M2M for the parameters of the gravitational potential. Like Fig. 1, except that we also fit for the HO potential’s frequency ω using the force of
change for ω and we sample the uncertainty in both the particle weights and ω. Because zmax is not conserved when changing ω, we plot the weights as a
function of zmax

√
ω, which is proportional to the square root of the action, which is approximately conserved during the M2M fit and sampling. The top

right-hand panel demonstrates how ω converges during the joint M2M optimization of the particle weights and ω. We find that ω = 1.32 ± 0.08, in good
agreement with its true value of 1.3, indicated by the dashed grey line in the top right-hand panel.

guess ω = 0.8 and the fit converges to ω = 1.297, close to the true
value (ω = 1.3).

Like for nuisance parameters, we can sample the joint posterior
PDF for the particle weights and the potential parameters, in this
case ω, using Metropolis-Hastings-within-Gibbs. The full MCMC
sampler including the nuisance parameter z� is then given by

(a) wi ∼ p(wi |z�, ω, observations), [Algorithm 1], (36)

(b) z� ∼ p(z�|ω,wi, observations), [Algorithm 2], (37)

(c) ω ∼ p(ω|z�, wi, observations), [Algorithm 3], (38)

where we again sample particle weights in the (a) step using the
data-resampling technique of Section 4 (using K = 1 to draw a
single particle-weight sample) and sample z� and ω in steps (b)
and (c) using a MH update using the objective function as the log
posterior PDF, presented in detail in Algorithms 2 and 3. Like for the
nuisance parameters on their own, we average the objective function
in steps (b) and (c) over about one orbital period. Rather than simply
changing the potential abruptly from a frequency ω to a proposal
ω′ for the likelihood evaluation in step (c), we adiabatically change
the potential parameter from its current value to its proposed value
before evaluating the likelihood (lines 8–12 in Algorithm 3). We
perform this adiabatic change by integrating backwards in time and
then partially integrating forwards in time, in such a way that the
subsequent likelihood evaluation would use the exact same orbital
trajectories if ω were not changed (line 13 in Algorithm 3). This
reduces the noise from the particle distribution in the likelihood
evaluation. We can again improve mixing in the MCMC chain by
performing multiple MH steps (b) and (c) for each particle-weight
sample (K > 1 in Algorithms 2 and 3, not necessarily equal) and
keeping only the final ω sample in each step (c). The adiabatic
change of the potential is important for maintaining the reversibility
of the MCMC chain. If the potential is changed non-adiabatically,
orbits differ when revisiting the same potential �(z; ω) and the
likelihood of a given set of particle weights is then different at
later times. This does not happen when the potential is changed

adiabatically, because the nature of the orbits represented by the
M2M particles does not change.

We apply this MCMC algorithm to sample the uncertainty dis-
tribution of the particle weights and ω given the mock data, fixing
z� to its true value [that is, skipping step (b)]. In step (c), we use
a Gaussian proposal with standard deviation σω = 0.2 and again
perform 105 M2M optimization time steps in step (a) and 20 MH
steps for each step (a). We adiabatically change the potential us-
ing L = 10 000 steps – or about 20 orbital periods – and average
the objective function using 1000 orbital time steps. The MCMC
chain is started at the best-fitting ω in the M2M optimization de-
scribed above. The behaviour of the MCMC chain is displayed in
Fig. 5. The MH acceptance ratio for the ω steps in the chain is
0.37. The chain is again well mixed and has a short correlation
length.

From the MCMC samples, we find that the mock data constrain
ω = 1.32 ± 0.08. We can compare this to the standard M2M pro-
cedure, where the PDF for ω is approximated using the best-fitting
particle weights for each trial ω. This gives ω = 1.31 ± 0.08, sim-
ilar to the MCMC result. If we assume that the DF is isothermal
and marginalize over the amplitude and velocity dispersion of this
isothermal DF, we find ω = 1.19 ± 0.07. All of these are consis-
tent with the true value ωtrue = 1.3. That the isothermal DF gives
a different best-fitting ω than the M2M modelling is unsurprising,
because it fits a different functional shape to the density and veloc-
ity constraints: the best-fitting M2M DF is close to, but not exactly
isothermal.

As a final test problem, we fit the particle weights, nuisance
parameter z�, and the potential parameter ω simultaneously to
the mock data and then perform full MCMC sampling using steps
(a) through (c) above. For the optimization part, we use (ε, ε�,
εω) = (10−3.5, 10−6, 10−3) and integrate for 3 × 105 time steps,
again updating ω only every 10 time steps. Otherwise the set-up
is the same as above. We use the best-fitting (z�, ω) as the initial
condition for MCMC sampling. In the MCMC sampling, we use
105 optimization time steps in step (a) of the algorithm and we
average the likelihood using 500 steps for sampling z� and us-
ing 1000 steps for sampling ω and again adiabatically change the
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Figure 5. MCMC sampling of the particle weights and ω. This figure
demonstrates the MCMC chain of 100 samples from the uncertainty distri-
bution of the particle weights and ω constrained by the mock data. The top
panel displays the behaviour of χ2, the middle panel that of five random
particle weights (normalized by the standard deviation of their samples,
colour-coded by zmax

√
ω) and the bottom panel shows the ω samples. The

chain has a small correlation length, because we perform 20 MH steps for
ω for each sample from the weights PDF.

frequency in MH steps over 10 000 time steps. The result is shown
in Fig. 6. The parameters z� and ω converge to best-fitting values
of z� = 0.0530 and ω = 1.27. From the MCMC chain, we find that
z� = 0.053 ± 0.005 and ω = 1.316 ± 0.085, similar to the analyses
where one of these was kept fixed at its true value.

7 A PPLICATION TO GAIA D R 1

As a first real-data application of the M2M extensions described in
this paper, we model the vertical dynamics of F-type dwarfs using
data from the Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS;
Gaia Collaboration et al. 2016; Lindegren et al. 2016). We stress
that the point of this application is only to illustrate the performance

of the new M2M method on real data. Because we use the same
HO model for the potential, which is not a fully realistic model for
the vertical potential near the Sun, the parameter constraints that
we derive below cannot be easily translated into a constraint on the
local mass distribution and we do not attempt to put any constraint
on the local gravitational potential from this modelling.

We define F-type dwarfs as those with near-infrared J − Ks

in the range of 0.143 < J − Ks < 0.3. Bovy (2017) have mea-
sured the vertical stellar density profiles for different sub-types of F
dwarfs (e.g. F0V) from the TGAS data, correcting for the selection
biases inherent in the TGAS data. We use similar measurements
of the vertical stellar density of all F-type dwarfs (F0V through
F9V), defined as the combination of all of the sub-types considered
by Bovy (2017). These density measurements cover the range of
−400 pc ≤ z̃ ≤ 400 pc in 25 pc wide bins and are shown in the top
left-hand panel of Fig. 7; z̃ is the vertical height as measured from
the Sun’s position, similar to the toy example above.

We also measure the vertical velocity dispersion as a function
of vertical height from the TGAS data. For this, we select 103 603
F-type dwarfs using the same colour and magnitude cuts as in
Bovy (2017) and requiring relative parallax uncertainties less than
10 per cent. These data provide us with (vα , vδ) = (μαcos δ/� ,
μδ/� ), where � is the parallax and (μαcos δ, μδ) are the proper
motion components in right ascension and declination. We obtain
the uncertainty covariance for each data point by Monte Carlo sam-
pling 10 001 points from the correlated uncertainty covariance for
the parallax and proper motions. We fit the vz distribution from these
data by deconvolving the observed two-dimensional distribution of
(vα , vδ) using a mixture-of-Gaussians model of the velocity distri-
bution in rectangular Galactic coordinates (vx, vy, vz) = (U, V, W)
using the extreme-deconvolution (XD; Bovy, Hogg & Roweis 2011)
algorithm (see Bovy, Hogg & Roweis 2009 for a similar applica-
tion to Hipparcos data). Because we are only interested in the vz

distribution and are not interested in the details of this distribu-
tion, we use only two Gaussians. We fit this model in 25 pc bins
covering −200 pc < z̃ < 200 pc and extract σ 2

z . Outside of this z̃

range, the data are too few and the proper motions constrain vz too
little to provide a useful measurement of σ 2

z . We obtain uncertain-
ties on these σ 2

z using 200 bootstrap resamplings. In the context
of our modelling, we use these σ 2

z measurements as a stand-in for
〈v2

z 〉, that is, we assume that these have been corrected for the solar
motion. In principle, we could marginalize over the solar motion
in the same way as we marginalize over the solar position, but for
the purpose of this illustration, we will assume that the correction
for the solar motion is perfect. These data are shown in the bottom
left-hand panel of Fig. 7.

We thus model the density νobs(z̃) and mean-squared velocity
〈v2

z 〉. The latter is different from the observable νobs〈v2
z 〉(z̃) that

we have considered so far and requires us to write down the var-
ious forces of change for the particle weights, z�, and ω for the
〈v2

z 〉 observable. These forces of change are similar to the ear-
lier expressions, although they are slightly more complicated be-
cause the weights enter into the normalization in the denominator.
We give the relevant expressions in the Appendix A. Because the
particle weights enter into the denominator of each 〈v2

z 〉 measure-
ment, the model is no longer linear in the particle weights and the
procedure for sampling the uncertainty distribution of the particle
weights is no longer strictly correct. However, for large numbers of
particle weights, the normalization factor is only slightly affected
by each individual particle and the model is still close to linear in
the particle weights. We have run all of the mock tests described
in the previous sections for a mock data set consisting of density
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Figure 6. Full probabilistic M2M modelling. Like Fig. 1, except that we also fit for the HO potential’s frequency ω as well as the Sun’s height above the
plane z�. We MCMC sample from the joint PDF for the particle weights, z�, and ω. As in Fig. 4, because zmax is not conserved when changing ω, we plot
the weights as a function of zmax

√
ω, which is proportional to the square root of the action. The top right-hand and middle panels demonstrate how ω and z�,

respectively, converge during the joint M2M optimization of the particle weights, ω, and z�. We find that ω = 1.316 ± 0.085 and z� = 0.053 ± 0.005 in
good agreement with their true values of ωtrue = 1.3 and z�, true = 0.05 (dashed lines in the right-hand panels).

and 〈v2
z 〉 measurements and find that the method proposed here still

works well. We thus apply it as is to the TGAS data.
We use 10 000 N-body particles and start from a HO poten-

tial with a frequency of 100 km s−1 kpc−1, an isothermal DF with
σ = 12 km s−1, and a solar offset of z� = 25 pc. We use a ker-
nel width of 35 pc. We then optimize the values of the particle
weights, z�, and the frequency ω using the observed TGAS data
using 30 000 steps with 	t ≈ 0.1 Myr or a total time ≈3 Gyr. We
use ε = 10−5.5, ε� = 10−5, and εω = 100 and only update ω

every 10 steps using 	ω = 30 km s−1 kpc−1. We use a flat prior,
μ = 0.

The result from the M2M optimization is displayed in Fig. 7.
The M2M optimization quickly converges to a well-constrained DF
with z� = −0.3 pc and ω = 69.8 km s−1 kpc−1. We run the MCMC
algorithm for sampling the particle weights, z�, and ω using 30 000
M2M optimization time steps for sampling the weights and using a
proposal distribution for z� with width σz� = 7 pc and a proposal

for ω with width σω = 3 km s−1 kpc−1. We use 500 steps to average
the objective function for the MH steps for z� and 1000 steps for ω,
again changing ω to proposed values using 10 000 steps. We obtain
20 MH samples for z� and 10 MH samples for ω for each sample
from the uncertainty distribution for the particle weights. The MH
acceptance fraction for z� and ω was 0.25 and 0.27, respectively.

The resulting uncertainty in the observed density and 〈v2
z 〉 as

well as that in the inferred DF is shown in Fig. 7. Because the
density is so well measured, the uncertainty in the model density is
barely visible, but the uncertainty in the kinematics is larger. The DF
becomes uncertain at large zmax, but is well determined for orbits that
stay closer to the plane. Marginalizing over the uncertainty in the
DF, we find that z� = −1 ± 3 pc and ω = 69.1 ± 1.1 km s−1 kpc−1.

The HO potential fits the data that we chose to model well. This
is surprising, because the local vertical potential should be quite
different from a constant density model (the HO model) over the
800 pc range over which we have observed the density. The HO
model is able to fit the density data by having a large, high-energy
component in the DF, that is, the peak at zmax ≈ 0.3 kpc in the top

middle panel in Fig. 7. This leads to two observable consequences in
other panels of this figure: the velocity dispersion increases for |z̃| �
150 pc (bottom left-hand panel) and the local velocity distribution
should display a wide, high-velocity tail. An inspection of the TGAS
F-star kinematics close to the plane where the vertical velocity is
approximately given by the vertical component of the proper motion
shows that such a high-velocity tail is absent in the observations (see
also Holmberg & Flynn 2000). This means that the HO potential
is not a good model for the local vertical potential. Therefore, we
do not compare our constraint on ω to previous determinations of
the local gravitational potential (e.g. Holmberg & Flynn 2000) or
interpret our measurement of z�, which may be affected by the
model for the potential. Still, it is promising that the novel M2M
algorithm proposed in this paper works reasonably well with the
observational data with realistic uncertainties. We defer a more
realistic treatment of the vertical potential to future work.

8 D I SCUSSI ON

In the previous sections, we have introduced various extensions of
the basic M2M method that are crucial to applying this method to
model observational data. Here, we discuss the formal assumptions
and underpinnings of the sampling methods in more detail, comment
on some aspects of the method further, and describe other extensions
and improvements that could be made.

8.1 On interpreting the M2M objective function as a PDF

The algorithm for sampling the uncertainty distribution of the par-
ticle weights and the MCMC algorithms for sampling nuisance
and potential parameters depend on our assumption that we can
interpret the M2M objective function as the logarithm of a PDF
for the parameters. However, the M2M objective function, de-
fined in equation (10), is not a static function, but fluctuates as the
M2M particles orbit, even when all parameters are held fixed. Thus,
the interpretation of the M2M objective function as a PDF is not
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Figure 7. Probabilistic M2M modelling of the vertical dynamics of F-type dwarfs in Gaia DR1. Panels are the same as in Fig. 6, except that we model the
mean-squared velocity directly rather than the density-weighted mean-squared velocity (bottom left-hand panel) and we display the local velocity distribution
in the bottom middle panel. We can successfully model the density and the velocity dispersion of F-type dwarfs in a simple harmonic oscillator potential with
ω = 69.1 ± 1.1 km s−1 kpc−1, but this predicts the existence of an extended tail in the local velocity distribution (bottom middle panel).

obvious. We argue now that when run properly, the M2M procedure
optimizes and samples from a well-defined correct PDF.

M2M modelling can be seen as an approximation of
Schwarzschild modelling. Schwarzschild modelling uses the same
form of the objective function, except that the kernels that in
M2M are evaluated for a snapshot are in Schwarzschild mod-
elling averaged in time. The objective function in that case defines
the logarithm of a well-defined static PDF. Malvido & Sellwood
(2015) have shown that M2M optimization is formally equivalent
to Schwarzschild optimization in the limit of large times, large N,
and small ε. Therefore, the basic M2M optimization procedure in
fact optimizes a well-defined static objective function if the opti-
mization is performed sufficiently slowly, that is, over a long enough
time and with small ε. Moreover, our proposed sampling procedure
for the uncertainty in the particle weights also optimizes the same
objective function and thus effectively samples the well-defined
Schwarzschild PDF. To the extent that the objective function is
convex (exactly so for the objective function in our mock example
above when no smoothing is applied), there is also no danger of
optimizing to a local maximum.

To sample parameters other than the particle weights, we have
introduced MH algorithms that use the averaged objective function
as the logarithm of the PDF. The correct objective function is once
again the equivalent Schwarzschild objective function. The question
is in what limit these two are equivalent. For a single observation Y,
we can schematically write down the contribution to χ2 as (ignoring
the observational uncertainty in the denominator)

χ2
M2M =

(∑
i

wiKi − Y

)2

, (39)

where Ki are the relevant kernel functions. The equivalent
Schwarzschild form of this equation is

χ2
Schwarzschild =

(∑
i

wi〈Ki〉 − Y

)2

, (40)

where 〈Ki〉 denotes the orbit-averaged kernel. Averaging
equation (39) gives

〈χ2
M2M〉 =

∑
i,j

wi wj 〈KiKj 〉 − 2Y
∑

i

wi〈Ki〉 + Y 2,

=
∑
i,j

wi wjρij σKi
σKj

+ χ2
Schwarzschild, (41)

where ρ ij is the correlation matrix of the orbital
kernels: ρij σKi

σKj
= 〈(Ki − 〈Ki〉) (Kj − 〈Kj 〉)〉 and

σKi
=
√

〈(Ki − 〈Ki〉)2〉. Thus, for the orbit-averaged
M2M objective function to be a good approximation to
the Schwarzschild objective function, we need∑

i,j

wi wjρij σKi
σKj

� χ2
Schwarzschild. (42)

Orbits with very different trajectories have ρ ij ≈ 0, while orbits with
similar trajectories have wi ≈ wj and Ki ≈ Kj. Therefore, we can
simplify the left-hand side of the previous equation to a sum over
sets of orbits with similar trajectories∑

i,j

wi wjρij σKi
σKj

≈
∑

sets of orbits i

w2
i σ 2

Ki

∑
j similar to i

ρij . (43)

For a large enough number of M2M particles distributed randomly
in orbital phase,

∑
j similar to iρ ij ≈ 0. Thus, if the M2M system con-

sists of a large number N of particles with well-mixed phases, the
averaged M2M objective function is a good approximation to
the Schwarzschild objective function and can therefore be used
as the logarithm of the PDF in a MH update.

8.2 On the approximate data-resampling technique for
sampling the particle-weight PDF

As we already stressed in Section 4, the method for sampling
the particle-weight PDF by resampling the data and obtaining the
best-fitting weights for the resampled data is approximate in the
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sense that it technically only applies in the case that the parti-
cle weights can take any value, both positive and negative. When
the weights are required to be positive, the data-resampling tech-
nique will oversample the zero-weight edge of parameter space –
oversample it relative to its correct proportion under the PDF. Be-
cause a non-parametric method such as M2M can only constrain
the gravitational potential by excluding solutions that require par-
ticles to have negative weights – without this restriction, the data
can always be perfectly fit – this is a matter of concern. Here, we
provide some arguments that demonstrate that this is not a major
problem.

There are two general statements that we can make about any
M2M particle-weight PDF. The first is that for gravitational po-
tentials that are close to the true potential, all orbits should be
able to contribute non-negatively to the DF. Some orbital families
may not exist and thus be constrained to have weights close to
zero, but no orbits should require negative weights. This means
in particular that we may assume that the mode of the PDF
lies in the volume of R

N where all weights are non-negative (if
the weights are underconstrained, the mode is a trough that for the
correct potential will extend into this volume; we will continue to
use ‘mode’ below, but this always includes the ‘trough’ case as well).
A second general property of the M2M PDF for the weights is that
it is log convex if the uncertainties are Gaussian and the predicted
observables depend linearly on the particle weights. Combined with
the fact that the mode of the PDF has all weights non-negative for
gravitational potentials close to the true one, this implies that a
significant amount of probability mass has non-negative weights.

We use the data-resampling technique for sampling the particle-
weight PDF for two purposes: (i) for sampling the uncertainty in
the particle DF when investigating the DF and (ii) to marginal-
ize over the uncertainty in the particle DF when constraining the
gravitational potential or any nuisance parameters. When using the
data-resampling technique for studying the uncertainty in the or-
bital DF, presumably this will be done for a reasonable gravita-
tional potential (otherwise one would adjust the potential first). The
data-resampling technique will oversample weights exactly equal
to zero for those orbits that are required to have negative weights to
provide a good fit to the observations. The arguments in the previ-
ous paragraph demonstrate that this oversampling will only have a
minor effect, because the mode is expected to have all non-negative
particle weights.

In the full MCMC method for constraining nuisance parameters
and the parameters of an external gravitational potential, the data-
resampling technique is used to marginalize over the uncertainty in
the particle DF. The MH steps are based on the ratio of the PDF
for the current and the proposed set of parameters. That the data-
resampling method oversamples weights being exactly equal to zero
has a different effect based on whether the mode of the weights PDF
has all non-negative weights (the case for well-fitting potentials) or
whether it wants to have some negative weights (the case for badly-
fitting potentials). In the first case, the likelihood of the model will
be biased low by the oversampling, because there is a higher chance
than there should be (under the correct PDF) of sampling the zero-
weight edge, where the PDF has a lower value than in the wi > 0
region (this follows from the log-convexity of the likelihood). In
the second case, the likelihood of the model will be biased high,
because the oversampled edge now has higher probability than the
wi > 0 region. Thus, the MH sampling is biased towards worse-
fitting models and the data-resampling technique will therefore lead
to conservative, somewhat inflated uncertainties on the parameters
of the model. However, the more severe the oversampling of zero

weights, the worse-fitting the model must be in the first place,
because the oversampling fraction – the fraction of samples that
land on the zero-weight edge – gets larger the further the mode of
the particle-weights PDF is from the non-negative part of parameter
space (the oversampling fraction is equal to the integral of the PDF
over the part of space where at least one wi is negative when the wi

are allowed to take on negative values, divided by the integral of the
PDF over all space; for this to be large for a Gaussian PDF, the mode
needs to be deep in the negative-weight region). Therefore, the bias
will be small, because even when evaluated too often with weights
set to zero, these models will still have low likelihoods relative to
better fitting models. We see no evidence of significantly inflated
uncertainties on the nuisance or gravitational-potential parameters
from the limitations of the data-resampling technique in any of the
experiments in this paper.

8.3 Aspects of the method

Fixing the sum of the particle weights: From when M2M was first
proposed, the sum of the particle weights has typically been fixed to
a constant, under the assumption that the total mass of the modelled
system is known. The standard M2M algorithm does not conserve
the sum of the particle weights and the weights are typically sim-
ply renormalized after each update step. We have left the sum of
the particle weights free to be constrained by the data, which is
the appropriate thing to do because the total mass is never exactly
known. This completely gets around the issue of the weights renor-
malization. Nevertheless, when setting up an N-body simulation
using the M2M method one may want to constrain the total mass
of the system to a specific value. A simple way to do this is to (a)
define the particle weights to sum to one, in which case the weights
cover the simplex embedded in N-dimensional space and (b) trans-
form the simplex to a N − 1 dimensional space that covers all of
R

N−1. We discuss how to do this in Appendix B.
The importance of the integration method: We have sidestepped

the issue of orbit integration in our example of a HO potential, be-
cause orbit integration can be performed analytically in this model.
However, in more realistic models, orbits need to be integrated nu-
merically with a small enough time step such that numerical errors
are small. While typically not important in galactic dynamics, we
recommend use of a symplectic integrator such as leapfrog for the
following reason. When performing the entire sampling procedure,
orbits can be integrated for thousands of dynamical times or more
and small energy errors can accumulate to a significant fraction of
the energy. Symplectic integrators with a small time step typically
avoid growth of the energy error and faithfully follow the evolu-
tion of the dynamical system being modelled over many dynamical
times.

Other MCMC samplers: In Algorithms 2 and 3, we have opted
to use a simple MH sampler to sample the nuisance and poten-
tial parameters. However, in applications with more nuisance pa-
rameters or more complicated potential models, we may want to
use an MCMC sampler that is less sensitive to the proposal step
size or explores the PDF more efficiently. Of particular inter-
est is Hamiltonian Monte Carlo (Duane et al. 1987; Neal 2011),
which can make large strides across the PDF by making use of
the derivatives of the PDF. For the nuisance parameters, we can
straightforwardly compute these derivative as the average force of
change similar to how the average objective function is computed in
algorithm 2.
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8.4 Directions for future work

Self-consistently generating the potential: One attractive aspect
of M2M modelling compared to other dynamical modelling ap-
proaches is that it is possible to let the M2M particles gener-
ate the gravitational force field or some part of it (e.g. Hunt &
Kawata 2013). That is, when modelling the stellar kinematics of,
for example, an external galaxy, one can run the M2M optimization
while integrating the particles in the gravitational potential that they
themselves generate (plus perhaps additional dark matter). If the
particle weights are changed slowly enough, the potential changes
adiabatically and if the number of particles is large enough, the po-
tential, being the combination of many particles, changes on longer
time-scales than the individual particle weights. Therefore, the ar-
guments above that demonstrate that the M2M procedure optimizes
a well-defined objective function still hold. The data-resampling
method for obtaining uncertainties on the values of the particle
weights should therefore still perform well. In the MCMC updates
of the nuisance parameters, the particle weights are held fixed and
the gravitational force generated by the particles should therefore
not change much (it could be held fixed). In the MCMC updates for
the parameters of the external gravitational potential, the orbits are
changed adiabatically and the potential generated by the particles
needs to be updated on the fly as well to preserve the consistency
between the M2M particles and the potential.

Dynamical stability: When we do not demand that the M2M
particles generate (part of) the gravitational potential, one can end
up with a solution or an MCMC sample that is dynamically unstable.
M2M modelling, by virtue of using particles, can easily add the
constraint of dynamical stability after the fact, by using the set of
particle weights for a given MCMC sample to initialize an N-body
simulation and determining whether it is dynamically stable or not.
Samples that are not stable could be rejected and pruned from the
chain.

Priors on the particle weights: We have paid little attention to the
penalization term (the prior) in the M2M objective function and set
it to zero in all of our examples (corresponding to an improper, flat
prior on the weights). While it is clear that we do have definite prior
beliefs about the particle weights, these are not well expressed by the
standard entropy-like M2M or Schwarzschild penalization terms in
the objective function. These standard forms express the prior belief
that the particle weights are close to a reference set of weights, but
without any correlation between the weights of similar orbits. This
is problematic when we want to sample the uncertainty distribution
of the particle weights. Interpreting the standard penalization as the
logarithm of a prior PDF and sampling from this prior PDF gives
sets of particle weights in which similar orbits can have widely
different weights. A better prior would express the fact that similar
orbits have similar weights without necessarily having strong prior
beliefs about the actual value of the weights. This could, for exam-
ple, be done using a Gaussian process with a kernel function in the
space of integrals of the motion. Alternatively, a local smoothing of
the current set of particle weights could be substituted for the prior
(Morganti & Gerhard 2012). One advantage of using a Gaussian
process is that this would allow the prior to be taken into account in
the data-resampling technique for sampling the uncertainty in the
particle weights: we can ‘resample’ the mean of the prior applied
in each optimization sequence similar to how each data point is re-
sampled in this technique and this returns formally correct samples
from the posterior PDF for the particle weights (as long as they are
positive). For spherical or axisymmetric systems, integrals of the
motion are available that can be used to evaluate the similarity of

orbits, but even in general time-independent systems, the energy
could be used or one can construct other similarity functions.

Modelling multiple populations: In our mock example, we have
assumed that only a single population of stars is being modelled.
However, if density and kinematic measurements are available for
different populations of stars, one could use the same set of par-
ticles with multiple weights associated with each particle, one for
each stellar population. That is, suppose that we had modelled both
F and G-type dwarfs in Gaia DR1 as an example, we could have
used N particles with two weights for each particle, one for F-type
stars and one for G-type stars. These weights can all be optimized
simultaneously. More generally, if we have additional information
such as overall metallicity Z, abundance ratios, or ages for stars,
we can replace the particle weights wi associated with each par-
ticle with parametrized functions, e.g. wi(Z), of these additional
quantities and fit for the parameters of these functions. One par-
ticular attractive way of doing this is to represent these functions
in terms of basis functions with free amplitude parameters, e.g.
wi(Z) = ∑

kαik βk(Z) with βk(·) a set of fixed basis functions. In
this case, the observables remain linearly related to the parameters
(αik) and the data-resampling technique for obtaining uncertainties
on the particle weights then also applies to the amplitudes of the
basis functions.

9 C O N C L U S I O N

M2M modelling is one of the most promising dynamical-modelling
methods for fitting observational constraints on relaxed stellar sys-
tems without making additional assumptions about the shape of the
system’s DF. This generality is a prerequisite to making the most
robust inferences regarding the stellar, baryonic and dark masses
of stellar systems. M2M has been used successfully to model the
dynamics of external galaxies (e.g. De Lorenzi et al. 2008) and of
the bar-shaped inner Milky Way region (e.g. Portail et al. 2017).
However, so far M2M models (or Schwarzschild models for that
matter; Magorrian 2006) have not dealt with the massive degenera-
cies that necessarily accompany a DF model as flexible as that used
in M2M. Because these degeneracies can have a large influence on
the inferences about the gravitational potential made using M2M
modelling, results obtained without taking the uncertainty in the
particle distribution into account should be viewed with suspicion.

We have improved and extended the standard M2M algorithm for
fitting observational data in various ways. First, we have shown that
all parameters describing the system – particle weights, nuisance
parameters, and the parameters of an external gravitational field –
can be optimized simultaneously in the M2M optimization. This
makes it much easier to fit M2M models to observational data, as
only a single M2M run is necessary, no matter how complicated the
nuisance parameters or external gravitational potential is.

Secondly, we have introduced algorithms to sample from the full
posterior PDF that describes the uncertainty in the particle weights
and the nuisance and gravitational-potential parameters. For the par-
ticle weights, which can be very numerous, this is done through a
technique that resamples the data within its uncertainties and turns
the sampling problem into an optimization problem. This technique
is formally correct when the model is linear in the parameters and
the data uncertainties are Gaussian. This is typically the case for
M2M, where the model typically consists of kernels combined using
linear weights, but we have also shown that this techniques works
when the data is the second moment of the velocity distribution.
We sample the nuisance parameters and those describing the ex-
ternal gravitational field through a carefully designed MH MCMC
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algorithm, where the averaged M2M objective function is used as
the logarithm of the PDF and the potential is only ever changed
adiabatically. Because of the tight connection between M2M and
Schwarzschild modelling demonstrated in Malvido & Sellwood
(2015) and in Section 8.1, these new techniques can also be useful
for Schwarzschild modelling.

The full M2M method described in this paper allows for large-
scale, fully-probabilistic modelling of observational data. It will be
useful in future modelling of data on Milky Way stars (e.g. Hunt &
Kawata 2014) and on external galaxies. As a first example, we
have analysed data on the vertical density and kinematics of F-type
dwarfs from Gaia DR1 in a simple harmonic-oscillator model for
the local gravitational potential. We find that we can fit the data
that we have chosen to model, but a more realistic model for the
gravitational potential is necessary to make definitive statements
about what these data imply about the local mass distribution.

All of the analysis in this paper can be reproduced using the code
found at https://github.com/jobovy/simple-m2m.
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APPENDI X A : U SI NG THE MEAN-SQUARED
V E L O C I T Y A S T H E O B S E RVA B L E

Instead of the density-weighted mean-squared velocity shown in
equation (16), we can use the mean-squared velocity, 〈v2

z 〉(z̃j ), itself
as an observable. This allows us to use the velocity measurements
from a subsample of the one used for the density measurement. The
model mean-squared velocity is defined as

〈v2
z 〉(z̃j ) =

∑
i

wiv
2
z,i K0(|z̃j + z� − zi |; h)/νv2,j , (A1)

where νv2,j = ∑
i wiK

0
j (zi ; h), corresponding to a choice of a kernel

of Kv2

j (zi, vz,i) = v2
z,i K0

j (zi ; h)/νv2,j . Note that the denominator
can be calculated using a different kernel (or kernel width) than the
density itself (equation 14) and, therefore, we use νv2,j which can be
different from ν(z̃j ). Assuming that the 〈v2

z 〉(z̃j ) observations have
a Gaussian error distribution with variance σ 2

v,j , the contribution to
χ2 from 〈v2

z 〉(z̃j ) is given by

χ2
j,v2 =

[
	v2

j /σ2,j

]2
=
(〈

v2
z

〉
(z̃j ) − 〈

v2
z

〉obs

j

)2
/σ 2

v,j . (A2)

In this case, the contribution from 〈v2
z 〉(z̃j ) to the force of change

for the particle weights becomes

− 1

2

∂χ2
j,v2

∂wi

= −	v2

j

[
v2

z,i − 〈
v2

z

〉
(z̃j )

]
K0

j (zi ; h)

σ 2
v,j νv2,j

. (A3)

Similarly, the contribution from 〈v2
z 〉(z̃j ) to the force of change

for z� is

−1

2

∂χ2
j,v2

∂z�
= − 	v2

j

σ 2
v,j νv2,j

×
∑

iwi [v2
z,i − 〈v2

z 〉(z̃j )]
dK0

j (r; h)

dr

∣∣∣∣
|z̃j +z�−zi |

sign(z̃j + z� − zi).

(A4)

The force-of-change for ω is again computed using a direct finite
difference, similar to equation (35).

A P P E N D I X B : M2 M O N T H E SI M P L E X

If one wants to run M2M modelling under a hard constraint on the
sum of the particle weights (e.g. if the total mass represented by
the M2M particles is exactly known, as in setting up an N-body
simulation), the standard M2M force-of-change-based algorithm
fails because the update equations for the particle weights do not
conserve the sum of the weights. No satisfactory solution of this
problem has been proposed in the literature.

If the particle weights must sum to a constant value we can always
redefine them such that they sum to one:

∑
iwi = 1. The weights
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are then constrained to be positive and to sum to one and they
therefore define a N − 1 dimensional simplex embedded in R

N . We
can then rewrite the M2M algorithm in terms of a transformed set of
variables yi that cover all of R

N−1 and that parametrize the simplex.
In this case, the particle weights always exactly sum to one and
the algorithm cannot stray from this condition. Generically, such
a transformation would require O(N2) operations to compute the
derivatives with respect to the yi from those with respect to the
wi. Here, we propose a specific transformation that is simple to
implement and for which the derivatives with respect to yi can be
computed in O(N ) time. Transforming to the yi is then a feasible
method even for very large numbers of N-body particles.

The transformation from wi to yi is the combination of the fol-
lowing transformations (partially following Betancourt 2012)

xi = 1 − wi∏i−1
k=1 xk

, (B1)

yi = logit(xi) − logit(XN ), (B2)

where logit( · ) is the log-odds function logit(x) = ln (x/[1 − x]) with
the inverse logit−1(x) = 1/[1 + e−x]. XN is a N − 1 dimensional
vector with entries [ N−1

N
, N−2

N−1 , . . . , 1
2 ], which causes the simplex

with all particle weights equal to each other, wi = 1/N, to be mapped
to the zero vector. The inverse transformation is given by

xi = logit−1(yi + logit(XN )), (B3)

wi =
(

i−1∏
k=1

xk

)
·
{

1 − xi, i < N

1, i = N
. (B4)

This inverse transformation is straightforward to implement using
vectorized operations, while the wi → yi transformation requires a
loop to accumulate the product in the first line. The inverse trans-
formation is the one that is relevant for evaluating the objective
function during the running of the M2M algorithm. The wi → yi

transformation is only needed at initialization (if the weights are
initialized as wi = 1/N, then the initial yi = 0 for all i).

To run the M2M algorithm in terms of the yi variables, we
compute the derivative of the objective function F using the
chain rule. The Jacobian ∂wk/∂yi of this transformation is (cf.
Betancourt 2012)

∂wk

∂yi

=

⎧⎪⎨⎪⎩
wk (1 − xi), i < k

−wi xi, i = k

0, i > k

. (B5)

This is a lower-triangular matrix. The chain rule can then be sim-
plified to

∂F

∂yi

= −xiwi

∂F

∂wi

+ (1 − xi)
N∑

k=i+1

wk

∂F

∂wk

. (B6)

All N − 1 derivatives can be computed together in O(N ) time by
accumulating the sum.

If one interprets the objective function as the logarithm of a prob-
ability distribution, transforming to a new set of variables requires
tracking the determinant of the Jacobian. Because the Jacobian is a
lower-triangular matrix, its determinant is given by the product of
the diagonal entries∣∣∣∣∂w

∂y

∣∣∣∣ =
N−1∏
k=1

wk xk . (B7)

The derivative of the logarithm of the Jacobian with respect to yi is
given by

∂

∂yi

ln

∣∣∣∣∂w

∂y

∣∣∣∣ = (N − i) (1 − xi) − xi, (B8)

for i = 1, . . . , N − 1.
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