Title page

An examination of biochemical parameters and their association with response to ketogenic dietary therapies

Natasha E Schoeler¹,², Gail Bell³, Alan Yuen³, Adam D Kapelner⁴, Simon J R Heales⁵,⁶,⁷, J Helen Cross¹,⁸,⁹, Sanjay Sisodiya²,³

Author information:

¹UCL Great Ormond Street Institute of Child Health, London, United Kingdom
²NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
³Epilepsy Society, Chalfont St Peter, United Kingdom
⁴Queens College, The City University of New York (CUNY), Department of Mathematics, New York, USA
⁵Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
⁶Chemical Pathology, Great Ormond Street Hospital for Children, London, United Kingdom
⁷Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
⁸Great Ormond Street Hospital for Children, London, United Kingdom
⁹Young Epilepsy, Lingfield, United Kingdom

Corresponding author: Dr. Natasha Schoeler. Address: Clinical Neurosciences, 4th Floor PUW, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH. E-mail: n.schoeler@ucl.ac.uk

First author information: Dr Natasha Schoeler is a research dietitian whose principal research interest is in predicting response to ketogenic diets for epilepsy; she is also involved in ketogenic diet trials in children and adults.
Running title: Acetyl carnitine and response to the ketogenic diet

Key Words: Low-carbohydrate, high-fat, biochemistry, blood, epilepsy, predictor

Number of text pages: 18

Number of words: 3586 (including Summary, Acknowledgements and Disclosures of Conflicts of Interest)

Number of references: 40

Number of figures: 2

Number of tables: 3

Summary

Objective:

In the absence of specific metabolic disorders, accurate predictors of response to ketogenic dietary therapies (KDT) for treating epilepsy are largely unknown.

We hypothesised that specific biochemical parameters would be associated with the effectiveness of KDT in humans with epilepsy. The parameters tested were β-hydroxybutyrate, acetoacetate, non-esterified fatty acids, free and acylcarnitine profile, glucose and glucose-ketone index (GKI).

Methods:

Biochemical results from routine blood tests conducted at baseline prior to initiation of KDT and at 3-month follow-up were obtained from 13 adults and 215 children with KDT response data from participating centres. 132/228 (57%) participants had some data at both baseline and 3-months; 52/228 (23%) had data only at baseline; 22/228 (10%) had data only at 3-months; 22/228 (10%) had no data. KDT response was defined as ≥50% seizure reduction at 3-month follow-up.
Results:

Acetyl carnitine at baseline was significantly higher in responders (p<0.007). It was not associated with response at 3-month follow-up. There was a trend for higher levels of free carnitine and other acylcarnitine esters at baseline and at 3-month follow-up in KDT responders. There was also a trend for greater differences in levels of propionyl carnitine and in β-hydroxybutyrate measured at baseline and 3-month follow-up in KDT responders. No other biochemical parameters were associated with response at any time point.

Significance:

Our finding that certain carnitine fractions, in particular baseline acetyl carnitine, are positively associated with greater efficacy of KDT is consistent with the theory that alterations in energy metabolism may play a role in the mechanisms of action of KDT.

Key Words

Low-carbohydrate, high-fat, biochemistry, epilepsy, predictor

Key point box

- Pre-diet acetyl carnitine is associated with ketogenic diet response.
- There is a trend for higher levels of free carnitine and other acylcarnitine esters in responders.
- Acetyl carnitine is reversibly converted to acetyl-CoA. Acetyl-CoA may enter the citric acid cycle or be used to produce ketones.
- Alterations in mitochondrial energy metabolism may play a role in the anti-seizure effects of ketogenic diets.
Introduction

Ketogenic dietary therapies (KDT) can be an effective treatment for people with drug-resistant epilepsy \(^1\)-\(^4\). Despite the effectiveness of these therapies, in the absence of specific metabolic disorders (glucose transporter type 1 deficiency syndrome and pyruvate dehydrogenase complex deficiency \(^5\)) patient characteristics that accurately predict differential response are largely unknown. Evidence for association of favourable response, for example, in younger patients, those with higher pre-diet seizure frequency or specific EEG parameters, is inconsistent \(^6\). High response rates have been observed in certain epilepsy syndromes \(^7\) and individuals with focal malformations \(^8\),\(^9\), but these are merely indications; there are still non-responders within these groups and the question remains whether other patient demographics or clinical parameters allow response to KDT to be predicted. Prior to commencing KDT, individuals are screened with biochemical testing of blood and urine for disorders of fatty acid metabolism and organic acidurias. Blood levels of various vitamins, minerals and electrolytes (depending on local practice) are also measured and monitored throughout treatment.

Previous studies have examined potential associations between KDT response and \(\beta\)-hydroxybutyrate (BHB), the primary circulating ketone body in response to starvation and/or KDT \(^10\) but results have been inconsistent \(^11\)-\(^13\). Other biochemical parameters that are already measured as part of routine clinical practice could theoretically be associated with KDT response based on their role in fat and carbohydrate metabolism. For example acetoacetate, akin to BHB, can be converted back to acetyl-CoA for entry into the citric acid cycle and thus used as an energy source; non-esterified fatty acids (NEFA) are precursors of ketone bodies and flux to the liver is increased in individuals following KDT \(^14\); carnitine and
acylcarnitine esters (measured by the acylcarnitine profile) are essential for mitochondrial uptake of long-chain fatty acids; reduced glucose levels (but stable and within physiological range) are a natural consequence of consuming a low-carbohydrate diet and are necessary for ketone production, which occurs in response to reduced hepatic glycogen stores. The relationship between glucose and BHB levels may also be important for KDT response: a lower glucose-ketone index (GKI), the ratio of blood glucose to ketones, has been found to be associated with greater efficacy of ketogenic diets (or calorie restriction) for brain tumour management in mice and humans.¹⁵

There is very limited evidence suggesting lack of association between carnitine (unclear whether measured at baseline or follow-up)¹³ and KDT response; evidence regarding KDT response and glucose, including measures at baseline, follow-up and differences between the two time points, is conflicting.¹⁶⁻¹⁹ No studies have examined the possible association between acylcarnitine esters, acetoacetate, NEFAs, or calculated GKI and the effectiveness of KDT in humans with epilepsy. We hypothesised that these parameters are associated with response to KDT.

Methods

Ethics and recruitment

Biochemical data were obtained from participants of a study investigating the genetic basis behind response to KDT (²⁰,²¹). The project gained ethical approval through relevant ethics committees or institutional review boards. Written informed consent was obtained from all study participants or from their parents/carers in the case of minors or adults with intellectual disability.
Participants were recruited for the study from April 2011-December 2012 from the following sites: Great Ormond Street Hospital for Children, London; National Hospital for Neurology and Neurosurgery, London; Evelina Children’s Hospital, London; St George’s Hospital, London; Young Epilepsy (including Matthew’s Friends clinics for Ketogenic Dietary Therapies), Surrey; Birmingham Children’s Hospital, Birmingham; Addenbrooke’s Hospital, Cambridge; Alder Hey Children’s Hospital, Liverpool; Bristol Royal Hospital for Sick Children, Bristol, all in the UK.

Criteria for study inclusion were: individuals aged ≥3 months who were either following KDT or who had followed KDT in the past for epilepsy. Exclusion criteria were: individuals who discontinued KDT before the 3-month point due to lack of tolerability (those who discontinued KDT before the 3-month point due to lack of response or seizure increase were included), individuals with progressive myoclonic epilepsies or other progressive neurological diseases.

Data collection

All participants underwent electroclinical phenotyping to establish seizure type and epilepsy syndrome. This involved evaluation of medical history, seizure semiology, examination and review of EEG and imaging studies. Demographic data were obtained from medical records. Biochemical results for BHB, acetoacetate, NEFA, free- and acylcarnitine profile and glucose conducted at baseline (prior to initiation of KDT) and at 3-month follow-up (three months after KDT was started) as part of routine clinical care were obtained from medical records and NHS Trust databases. The GKI was calculated using the GKI calculator using glucose and BHB levels measured at baseline and at 3-month follow-up.
KDT response was defined as a function of seizure frequency, as previously published \(^{(20,21)}\). Response was estimated in 28 day epochs prior to starting the diet (baseline) and prior to 3-month follow-up after the start of KDT. Clinic letters and seizure diaries, where already used as part of clinical monitoring, were used to estimate seizure frequency at each time point. The calculation used to determine percentage reduction in seizure frequency was:
\[
\frac{(a-b)}{a} \times 100,
\]
where \(a\) = number of seizures in the 28 days prior to KDT initiation; \(b\) = number of seizures in the 28 days preceding the 3-month point. A case/control observational study design was adopted. Those with \(\geq 50\%\) seizure reduction were classified as ‘responders’; those with \(<50\%\) seizure reduction were ‘non-responders’. Seizure freedom achieved at 3-month follow-up was also documented.

Statistical analyses

The effect of demographic parameters between groups with biochemical data at various time points (either with no biochemical data, some data at baseline and 3-month follow-up, data only at baseline, or data only at 3-month follow-up) was assessed using Fisher’s exact or Kruskal-Wallis tests. The effect of demographic parameters on KDT response was assessed using Fisher’s exact or Kruskal-Wallis tests.

Parametric tests were conducted to assess the relationship between KDT response at 3-month follow-up and blood test results that had \(\geq 50\) data points in each response group. Non-parametric analyses were used for blood test results with \(<50\) data points in each response group. Analyses were conducted with biochemical results from baseline, at 3-month follow-up and also using the difference between the biochemical results taken at these two time points.
A significance threshold of 0.05 was applied, as this was an exploratory analysis. The Bonferroni-corrected significance threshold to account for the multiple testing of 14 tests was $\alpha=0.004$. Note that this correction is too conservative, as our tests are not independent of each other.

All statistics were performed in Stata v13.1 (*Stata Statistical Software: Release 13. College Station, TX: StataCorp LP*).

Results

Response data could not be collected for 4/232(2%) participants which is a small enough proportion to safely ignore dropout without fear of biasing our results. 117/228(51%) participants (113 children and 4 adults [aged \geq18 years at start of diet]) had \geq50% seizure reduction after 3 months of following KDT, of whom 10 were seizure-free (all aged $<$ 18 years); 111/228(49%) (102 children and 9 adults) had $<$50% seizure reduction. There was no statistically significant difference in response between children and adults (Fisher's exact test $p = 0.16$).

132/228(58%) participants with KDT response data had some data at both baseline and 3-months; 52/228(23%) had data only at baseline; 22/228(10%) had data only at 3-months; 22/228(10%) had no data available.

A summary of the clinical and demographic parameters of the cohort are given in Supplementary Table 1. No participants received carnitine supplementation either at baseline or during KDT.

There was no difference in demographic parameters between groups with biochemical data at various time points, as shown in Supplementary Tables 2-9. No analyses were conducted
for cause of epilepsy or for epilepsy syndrome as, for most participants, the cause was ‘unknown’ and they had no syndromic diagnosis.

There was no difference in any demographic parameter between responders and non-responders to KDT when response was defined as 50% seizure reduction, as shown in Supplementary Table 10.

There was a trend for lower age at diet start in those who achieved seizure freedom compared to those who did not become seizure-free (median age=3.4 years in those who became seizure free; median age=5.7 years in those who did not achieve seizure freedom; p=0.02). There was no difference in any other demographic parameters when response was defined as seizure-freedom, as shown in Supplementary Table 10.

Acetyl carnitine at baseline was higher in KDT responders (uncorrected p<0.003; Table 1). This is significant, even when applying a Bonferroni-corrected significance threshold (p<0.004).

Acetyl carnitine data at baseline ranged from 2.74-40.7μmol/L for responders and 3.59-32.5μmol/L for non-responders. Figure 1 shows a trend for higher acetyl carnitine levels at baseline in responders although, at the lower end of the scale (acetyl carnitine levels approximately <7μmol/L), there is some overlap between responders and non-responders.

There were trends for higher free, propionyl, octanoyl and palmitoyl carnitine and β-hydroxybutyrate at baseline in KDT responders (p<0.05 but >0.004; Table 1), higher palmitoyl carnitine at 3-month follow-up in KDT responders (p<0.05 but >0.004; *p-values derived from t-tests
Table 2), and greater differences in levels of propionyl carnitine and in BHB measured at baseline and 3-month follow-up in KDT responders (p<0.05 but >0.004; *p-values derived from t-tests

Table 3).

There was a trend for higher NEFA levels at 3-month follow-up and a greater difference in BHB levels at baseline and at 3-month follow-up in participants who achieved seizure freedom at 3-month follow-up compared to those who were not seizure-free (p<0.05 but >0.004). These data are presented in Supplementary Tables 11-13.

Discussion

We have found that acetyl carnitine at baseline was significantly higher in KDT responders compared to responders, although the effect size is small and potential clinical significance unknown. This result is supported by a trend for higher levels of free carnitine and other acylcarnitine esters in KDT responders at baseline, 3-month follow-up or the difference in levels measured at these two time points. We are not aware of previously published reports of a relationship between acetyl carnitine, or any other acylcarnitine esters, and KDT response.

Our finding that higher blood acetyl carnitine levels are associated with greater effectiveness of KDT is consistent with our knowledge of biochemistry: carnitine is needed to transport long-chain fatty acids into hepatic mitochondria to produce ketones and acetyl carnitine and acetyl coenzyme A (acetyl-CoA) plays a critical role in mitochondrial energy
metabolism. There is an equilibrium between acetyl carnitine (acetyl coA + carnitine) and acetyl-CoA. Acetyl carnitine is reversibly converted to acetyl-CoA by carnitine acetyltransferase (CAT) enzymes\(^2\) (see Figure 2). This maintains acetyl-CoA levels for production of ketone bodies (acetyl carnitine then leaves the mitochondria with the ketones) and also for entry of acetyl-CoA into the citric acid cycle. Levels of acylcarnitines, including acetyl carnitine, are increased in patients following KDT\(^2\). These metabolic adaptations, triggered by PPARα, serve to favour the use of ketones as fuel.\(^2\)

Our findings may point to a targetable alteration in energy metabolism and acetyl CoA buffering/availability. Whilst the mechanisms responsible for this observation are unknown, this result may relate to our recent reports that decanoic acid, a component of the medium chain triglyceride (MCT) KD, is able to increase citrate synthase activity in both cultured neurons and fibroblasts.\(^2\)\(^5\).\(^2\)\(^6\). This enzyme utilises acetyl CoA and catalyses the first reaction of the citric acid cycle (the condensation of acetyl-CoA and oxaloacetate to form citrate). We may have identified a subset of patients that responded to KDT due to improvement in mitochondrial energy metabolism. The fact that acetyl carnitine at 3-month follow-up was not associated with response to KDT in our study may reflect the fact that these patients’ ‘deficiencies’ in mitochondrial bioenergetics have been ‘corrected’ through use of KDT. One could infer that acetyl carnitine is important for successfully starting KDT, but once ketosis has been achieved and/or mitochondrial energy metabolism is altered, carnitine levels are no longer associated with seizure control. However, it is unknown whether the serum biochemical parameters looked at in our study reflect cerebral energy metabolism.

One study previously investigated the relationship between carnitine (it is unclear whether this was free or total carnitine) and KDT response; no statistically significant relationship
was found. Correlations have been identified between KDT response and other biochemical markers not usually measured as part of routine management in the UK. For example, responders to KDT were found to have larger absolute decreases in plasma phospholipid fatty acid 18:0 and smaller increases in 24:1 during dietary treatment than non-responders; there are also reports of a positive correlation between reduction in seizure frequency and elevation in serum total arachidonic acid compared to pre-diet levels, higher serum palmitoleic acid in responders after one month, lower serum arachidonic acid in responders after one month, and lower serum arachidonic and docosahexaenoic in responders at 3-month follow-up. However, no difference has been found in levels of other plasma fatty acids, monoamine or HVA/SHIAA, linoleic acid or alpha-linolenic acid, octanoic or decanoic acid between responders and non-responders.

We found a trend for association between KDT response – both defined as ≥50% seizure reduction and seizure-freedom – and the difference in blood BHB levels at baseline and 3-month follow-up. This is a novel approach to analysing the relationship between BHB and KDT effectiveness. Some studies have previously reported a correlation between improved seizure control at various follow-up points and higher blood BHB levels in children, adolescents and adults following KDT. Others have found no correlation, either with blood BHB or urinary ketosis in all KD variants, with use of the classical diet, MCT diet, Modified Atkins diet/Modified Ketogenic Therapy and the Low Glycaemic Index Treatment (see for a comprehensive list of references). BHB has been shown to have direct and indirect neuroprotective and/or anticonvulsant effects, and ketone esters have displayed anticonvulsant properties in animal seizure models, which supports the premise that the production of ketones is necessary for effectiveness of KDT. On the other hand, recent studies found that medium chain fatty acids, specifically decanoic acid, displayed anti-
seizure activity (although this has not yet been tested in humans), whereas BHB did not 25,26,39, pointing towards alternative therapeutic mechanisms of KDT. We also found a trend for higher NEFA levels at 3-month follow-up in participants who achieved seizure freedom at 3-month; no other studies were found assessing the relationship between total NEFA and KDT response.

We did not find that GKI, either at baseline or at 3-months, was associated with KDT effectiveness. We hoped to investigate the difference in the GKI values taken at the two time points, but the baseline results were much higher; thus, it would have mainly reflected the effect of the baseline values. Furthermore, no relationship was seen with glucose alone, showing that the GKI trends are driven by BHB levels. A more accurate and consistent measurement of GKI could be obtained by measuring blood glucose and BHB twice a day, 2-3 hours post-prandially, at approximately the same time of day for each patient, as suggested in the manuscript that originally discussed the concept of GKI 15.

Our findings are not affected by differences in demographic parameters between KDT responders and non-responders, nor between groups with biochemical data at various time points. Age at diet start was lower in those who achieved seizure-freedom, but there were only 10 participants in this group, compared with 218 who did not achieve seizure-freedom. This correlation may have been related to epilepsy syndrome; many participants did not have a syndromic diagnosis and, for those who did, the numbers within each syndrome group were too small for statistical analysis. Although some studies have reported a more favourable response in younger children or infants, the majority have found that age makes no difference (see 6 for a detailed list of references).
We may have been underpowered to detect the small effect sizes of certain biochemical parameters (in particular other acylcarnitine esters, BHB and NEFA), leading to non-significant results when accounting for multiple testing. Although large effect sizes would be more beneficial when considering translation into clinical practice, factors with small effect sizes may provide insight into the mechanisms of action of KDT. There were missing data in our cohort and very few participants achieved seizure-freedom. Missing data may have been because some blood tests were performed at local hospitals and were not recorded on participating centres’ databases. Despite missing data, with 56 responders and 56 non-responders with baseline acetyl carnitine data, any concentration error estimates in the laboratory values should be spread evenly within the two groups. Our results are worth following up in a larger cohort, particularly with a larger number of seizure-free patients.

Another limitation of the study is that KDT response data were collected retrospectively, predominantly from clinic letters. Ideally, seizure diaries would be used throughout the 3-month period to allow for the natural variability of seizures over time, rather than relying on 28 day epochs. Seizure recording throughout the entire follow-up period may be crucial for individuals whose seizures occur in weekly/monthly clusters; seizure reduction on the diet may not be accurately reflected by using 28 day epochs, as the cluster may occur just before the 28 days prior to baseline and so, according to the seizure diary, the patient would be seizure-free before starting the diet. This was not an issue for any of our participants, as they all had seizures in the 28 days prior to baseline. Completion of a seizure diary for any prolonged length of time, however, can be burdensome for patients and/or carers. A 3-month baseline period before starting KDT may also be prohibitively long for some patients. Prospective data collection may have resulted in fewer missing data points and have allowed the possibility of ensuring a more consistent procedure for timing of blood
collection - this would be particularly important for glucose and BHB levels. However, this would be difficult to achieve in an outpatient setting.

There are possible analyses that could be performed in a follow-up study. If seizure diaries were used for all participants, we could use percentage seizure frequency change directly as a response variable; much information is lost when using binary outcomes. We could also perform a multivariable regression of our biochemical markers, as many of our measurements were correlated.

Conclusion

We have found a previously-unreported relationship between acetyl carnitine at baseline and KDT response. This provides supporting evidence for the role of altered mitochondrial energy metabolism in the mechanisms of action of KDT. We also report a trend for association with free- and other acylcarnitine esters – some at baseline, others at 3-month follow-up, or the difference between results at the two time points. Our findings also add to the conflicting evidence that blood BHB levels are associated with KDT response. These results are worth following-up in a larger cohort; although the relationship between baseline acetyl carnitine and KDT response is significant, the effect size is small and thus the finding has limited clinical meaning until followed up with a more controlled prospective study. Confirming the association would aid our understanding of the mechanisms of action of KDT and could potentially be used to target resources towards patients who are more likely to response favourably to KDT.

Acknowledgements

This work was undertaken at UCLH/UCL, and a proportion of funding was received from the Department of Health’s NIHR Biomedical Research Centres funding scheme. NS was
supported by a UCL Impact Studentship in conjunction with Epilepsy Society. Funding was also received from the Wellcome Trust (084730).

Disclosures of Conflicts of Interest

JHC has received funds to the department for research into the ketogenic diet from Vitaflo. Honoraria for speaking have also been made to the department on her behalf from Nutricia. JHC has co-written a cookery book, ‘Ketocooking’, funds from the sale of which will be donated to the department. ADK owns a share in Kuma Shake, Inc., an American food startup developing a vegan 4:1 ketogenic shake. SMS has received meeting support or honoraria from Vitaflo and Nutricia. SJRH has received research funding and honoraria from Vitaflo. The remaining authors have no conflicts of interest in relation to this work.

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

References

Table 1: Relationship between KDT response at 3-month follow-up with biochemical parameters at baseline

<table>
<thead>
<tr>
<th></th>
<th>Non-responders (<50% seizure reduction)</th>
<th>Responders (≥50% seizure reduction)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoacetate (mmol/L)</td>
<td>N=16 Median 0.03</td>
<td>N=18 Median 0.036</td>
<td>0.82</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>N= 47 Median 4.5</td>
<td>N= 60 Median 4.5</td>
<td>0.85</td>
</tr>
<tr>
<td>β-hydroxybutyrate (mmol/L)</td>
<td>N= 61 Median 0.07</td>
<td>N= 65 Median 0.09</td>
<td>0.028*</td>
</tr>
<tr>
<td>Glucose-ketone index</td>
<td>N=35 Median 84</td>
<td>N=41 Median 62.96</td>
<td>0.06</td>
</tr>
<tr>
<td>Non-esterified fatty acids (mmol/L)</td>
<td>N=56 Median 0.303</td>
<td>N= 59 Median 0.4</td>
<td>0.40*</td>
</tr>
<tr>
<td>Free carnitine (μmol/L)</td>
<td>N= 70 Median 29.5</td>
<td>N= 72 Median 34</td>
<td>0.03*</td>
</tr>
<tr>
<td>Acetyl carnitine (μmol/L)</td>
<td>N=56 Median 12.15</td>
<td>N=56 Median 15.05</td>
<td>0.003*</td>
</tr>
<tr>
<td>Propionyl carnitine (μmol/L)</td>
<td>N= 39 Median 0.78</td>
<td>N= 50 Median 1.08</td>
<td>0.018</td>
</tr>
<tr>
<td>Butyryl carnitine (μmol/L)</td>
<td>N= 39 Median 0.22</td>
<td>N= 50 Median 0.25</td>
<td>0.70</td>
</tr>
<tr>
<td>Isovaleryl carnitine (μmol/L)</td>
<td>N=39 Median 0.16</td>
<td>N = 49 Median 0.17</td>
<td>0.48</td>
</tr>
<tr>
<td>Hexanoyl carnitine (μmol/L)</td>
<td>N=32 Median 0.06</td>
<td>N=44 Median 0.07</td>
<td>0.47</td>
</tr>
<tr>
<td>Octanoyl carnitine (μmol/L)</td>
<td>N=40 Median 0.075</td>
<td>N=50 Median 0.09</td>
<td>0.046</td>
</tr>
<tr>
<td>Tetradecenyl carnitine (μmol/L)</td>
<td>N=29 Median 0.07</td>
<td>N=40 Median 0.07</td>
<td>0.63</td>
</tr>
<tr>
<td>Palmitoyl carnitine (μmol/L)</td>
<td>N=31 Median 0.6</td>
<td>N=44 Median 0.8</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table 2: Relationship between KDT response at 3-month follow-up with biochemical parameters at 3-month follow-up

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Non-responders (<50% seizure reduction)</th>
<th>Responders (≥50% seizure reduction)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoacetate (mmol/L)</td>
<td>N=10 Median 1.11</td>
<td>N=19 Median 1.06</td>
<td>0.61</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>N= 37 Median 3.7</td>
<td>N= 51 Median 3.8</td>
<td>0.91</td>
</tr>
<tr>
<td>β-hydroxybutyrate (mmol/L)</td>
<td>N= 59 Median 2.56</td>
<td>N= 65 Median 2.82</td>
<td>0.13*</td>
</tr>
<tr>
<td>Glucose-ketone index</td>
<td>N= 31 Median 1.27</td>
<td>N= 41 Median 1</td>
<td>0.17</td>
</tr>
<tr>
<td>Non-esterified fatty acids (mmol/L)</td>
<td>N= 53 Median 0.89</td>
<td>N= 61 Median 0.93</td>
<td>0.99*</td>
</tr>
<tr>
<td>Free carnitine (μmol/L)</td>
<td>N= 46 Median 29.5</td>
<td>N= 58 Median 38</td>
<td>0.054</td>
</tr>
<tr>
<td>Acetyl carnitine (μmol/L)</td>
<td>N= 44 Median 24.15</td>
<td>N= 49 Median 27.2</td>
<td>0.08</td>
</tr>
<tr>
<td>Propionyl carnitine (μmol/L)</td>
<td>N= 32 Median 0.51</td>
<td>N=43 Median 0.47</td>
<td>0.74</td>
</tr>
<tr>
<td>Butyryl carnitine (μmol/L)</td>
<td>N= 32 Median 0.28</td>
<td>N= 43 Median 0.27</td>
<td>0.49</td>
</tr>
<tr>
<td>Isovaleryl carnitine (μmol/L)</td>
<td>N= 32 Median 0.16</td>
<td>N= 43 Median 0.19</td>
<td>0.77</td>
</tr>
<tr>
<td>Hexanoyl carnitine (μmol/L)</td>
<td>N=28 Median 0.09</td>
<td>N=40 Median 0.10</td>
<td>0.75</td>
</tr>
<tr>
<td>Octanoyl carnitine (μmol/L)</td>
<td>N=32 Median 0.14</td>
<td>N=43 Median 0.12</td>
<td>0.53</td>
</tr>
<tr>
<td>Tetradecenyl carnitine (μmol/L)</td>
<td>N=27 Median 0.10</td>
<td>N=34 Median 0.095</td>
<td>0.47</td>
</tr>
<tr>
<td>Palmitoyl carnitine (μmol/L)</td>
<td>N=28 Median 0.80</td>
<td>N= 39 Median 1</td>
<td>0.049</td>
</tr>
</tbody>
</table>

* p-values derived from t-tests

Table 3: Relationship between KDT response at 3-month follow-up with the difference in biochemical parameters at baseline and 3-month follow-up

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Non-responders (<50% seizure reduction)</th>
<th>Responders (≥50% seizure reduction)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoacetate (mmol/L)</td>
<td>N=8 Median 0.66</td>
<td>N=10 Median 1.02</td>
<td>0.20</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>N=23 Median -0.5</td>
<td>N=32 Median -0.8</td>
<td>0.84</td>
</tr>
<tr>
<td>β-hydroxybutyrate (mmol/L)</td>
<td>N=38 Median 2.2</td>
<td>N=45 Median 2.93</td>
<td>0.02</td>
</tr>
<tr>
<td>Non-esterified fatty acids (mmol/L)</td>
<td>N=35 Median 0.51</td>
<td>N=42 Median 0.415</td>
<td>0.76</td>
</tr>
<tr>
<td>Free carnitine (μmol/L)</td>
<td>N=35 Median -2</td>
<td>N=42 Median 2.5</td>
<td>0.99</td>
</tr>
<tr>
<td>Acetyl carnitine (μmol/L)</td>
<td>N= 33 Median 10.6</td>
<td>N= 35 Median 11.9</td>
<td>0.54</td>
</tr>
<tr>
<td>Propionyl carnitine (μmol/L)</td>
<td>N =24 Median -0.31</td>
<td>N=32 Median -0.69</td>
<td>0.014</td>
</tr>
<tr>
<td>Butyryl carnitine (μmol/L)</td>
<td>N = 24 Median 0.075</td>
<td>N = 32 Median -0.015</td>
<td>0.09</td>
</tr>
<tr>
<td>Isovaleryl carnitine (μmol/L)</td>
<td>N=24 Median 0.04</td>
<td>N=31 Median 0.02</td>
<td>0.46</td>
</tr>
<tr>
<td>Hexanoyl carnitine (μmol/L)</td>
<td>N=22 Median 0.035</td>
<td>N=29 Median 0.03</td>
<td>0.89</td>
</tr>
<tr>
<td>Octanoyl carnitine (μmol/L)</td>
<td>N=25 Median 0.05</td>
<td>N=32 Median 0.05</td>
<td>0.99</td>
</tr>
<tr>
<td>Tetradecenyl carnitine (μmol/L)</td>
<td>N=21 Median 0.02</td>
<td>N= 27 Median 0.05</td>
<td>0.28</td>
</tr>
<tr>
<td>Palmitoyl carnitine (μmol/L)</td>
<td>N=21 Median 0.1</td>
<td>N= 29 Median 0.1</td>
<td>0.87</td>
</tr>
</tbody>
</table>

* p-values derived from t-tests

Figure 1: Box and whisker plot of acetyl carnitine (μmol/L) at baseline for ketogenic diet responders and non-responders
The box and whisker plot shows the distribution of data for responders and non-responders divided into quartiles, highlighting the mean (x), median (-) and outliers.

Figure 2: Acetyl carnitine and acetyl CoA, adapted from Figure 1