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Abstract—Biological systems have become highly significant 
for traditional computer architectures as examples of highly 
complex self-organizing systems that perform tasks in parallel 
with no centralized control. However, few researchers have 
compared the suitability of different computing approaches for 
the unique features of Artificial Immune Systems (AIS) when 
trying to introduce novel computing architectures, and few 
consider the practicality of their solutions for real world machine 
learning problems. We propose that the efficacy of AIS-based 
computing for tackling real world datasets can be improved by the 
exploitation of intrinsic features of computer architectures. This 
paper reviews and evaluates current existing implementation 
solutions for AIS on different computing paradigms and 
introduces the idea of “C Principles” and “A Principles”. Three 
Artificial Immune Systems implemented on different 
architectures are compared using these principles to examine the 
possibility of improving AIS through taking advantage of intrinsic 
hardware features. 

Keywords—Artificial Immune Systems; Systemic Computing; 
Multi-threaded Computing  

I. INTRODUCTION  
Nature is full of examples of biological computation that 

adapt to their environments and show remarkable tolerance to 
damage or faults. The biological immune system, which protects 
the body from pathogens, has great pattern recognition 
capability that distinguishes between foreign cells entering the 
body (non-self) and self cells [1]. More and more immune-based 
models and techniques have emerged in order to solve complex 
computational or engineering problems during the last decade 
[2]. The attempts mainly focus on two parts: the algorithm itself 
and alternative hardware implementations [1]. In the aspect of 
hardware implementation, due to the mixed nature of AIS-based 
computing, traditional and unconventional computing 
paradigms have been put forward as AIS-based computing 
substrates [3-20]. Although increasing research has been 
conducted to investigate better versions of AIS and more 
suitable computing architectures to accommodate them [3-20], 
few have compared the suitability of different computing 
approaches for the unique features of AIS when trying to 
introduce novel computing architectures, and few consider the 

practicality of their solutions for solving real-world machine 
learning problems.  

We propose that the efficacy of AIS based computing for 
tackling real world datasets can be improved by the 
exploitation of shared intrinsic features between computer 
architectures and algorithms. In this paper, we aim to identify 
the intrinsic features of computer architectures that might 
improve the efficacy of AIS based computing for tackling real 
world datasets.  

The paper is organized in the following way: In the section 
of Background related literatures are reviewed and measuring 
principles for algorithm performance are put forward. Three 
architectures are selected as the substrate on which 
corresponding Artificial Immune Systems are developed in 
order to examine the possibility of improving AIS through 
taking advantage of intrinsic hardware features. Further 
experiments are then conducted on five classic benchmark 
datasets with analysis of results. 

II. BACKGROUND 
Inspired by the biological immune system, the Artificial 

Immune System (AIS) is an emerging computational 
intelligence paradigm, which shares features with evolutionary 
learning such as noise tolerance, adaptability and dynamics [1]. 
Currently, there is an increasing number of new hardware 
architectures specially designed in order to better cater to the 
intrinsic features of AIS. In this section we will focus on the 
different substrates used to accommodate AIS-based computing. 

A.  Field-Programmable-Gate-Array-Based (FPGA-Based) 
AIS 
Among all the implementations of AIS, AIS implemented on 

FPGA is perhaps the most diversified one as the ways FPGAs 
are organized are largely different from each other. Despite that, 
there are generally two ways of implementing AIS on FPGA. 
One is using multiple FPGAs with each of them as a distributed 
computing unit. For example, the Bionode System developed by 
Greensted and Tyrrell contains thirty individual FPGAs, which 
can be configured to model the functionality of a cell, connected 
in a loosely coupled network [3]. Similar attempts have been 
seen on [4], [5] and [6]. The other solution is to use one single 



FPGA as a central processing unit with multiple logic unit flows. 
For instance, Smith et al. proposed a hardware implementation 
of a novel evolutionary algorithm inspired by protein/substrate 
binding exploited in artificial immune networks to classify 
Parkinson’s patient’s response to a conventional figure copying 
task [7]. An intrinsic FPGA-based evolvable hardware platform 
which exhibits high tolerance to transient faults by making use 
of chemical signals was proposed by Liu et al. [8]. Bradley and 
Tyrrell put forward an immunotronic architecture which runs in 
real time hardware and continuously provide monitoring over a 
finite state machine architecture for errors is developed in [9]. 
Canham and Tyrrell developed a multi-layered hardware 
artificial immune system coupled with an embryonic array [10]. 
The system consists of an acquired layer of the immune system 
to monitor unusual system behavior, a non-learning innate layer 
to locate the fault and a homogeneous array of logic units – an 
embryonic array to provide fault avoidance.  

B. Sensor Network based AIS 
AIS is also implemented on sensor networks. The General 

Suppression Control Framework (GSCF) is a framework 
inspired by the suppression hypothesis of the immune 
discrimination theory[11].  The possibility to apply Dendritic 
Cell Algorithm (DCA) in the attack detection in sensor network 
is investigated in [12]. An Intrusion Detection System (IDS) 
framework to be applied in the wireless sensor network context 
is proposed in [13]. However, regardless of model differences, 
in the case of large scale networks, sufficient sensors are 
required, which has a negative impact on system scalability. 

C. GPU-based AIS 
GPUs are regarded as another potential substrate to 

implement AIS. Using GPUs, a novel parallel data clustering 
algorithm based on the artificial immune network aiNet is 
proposed to improve its efficiency by 10 times [14]. While 
enjoying good scalability, the flow of the algorithm is relatively 
complex. Similar work is described by [15] where a GPUAIS is 
put forward on NVIDIA GPU using a probabilistic elite 
antibody selection.  

D. Cloud-based AIS 
By analyzing the characteristics of current cloud computing, 

Yang et al. propose a comprehensive real-time network risk 
evaluation model for cloud computing based on the 
correspondence between the artificial immune system antibody 
and pathogen invasion [16]. The way the proposed model places 
multiple immune cells into the network to perceive contexts 
against the traditional network security approach, which relies 
on a single terminal to check the environment, indicates good 
concurrency of the model. 

E. Swarm-robot-based AIS 
Granuloma formation is applied to solve the ‘anchoring’ 

issue in swarm robotics as it acts as a healing mechanism, trying 
to prevent bacterial infections from infecting other cells and to 
contain the infection by attracting other cells such as 
macrophages and T-cells to move to the site of infection [17]. A 
model proposed by Ismail excels in the aspects of fault tolerance 
and self-repair. Nevertheless, compared to hardware which 
realizes concurrency via circuits such as GPU, the scalability of 
the proposed system is not very cost-efficient. A method of 

cooperative control (T-cell modelling) and selection of group 
behavior strategy (B-cell modelling) based on immune system 
in distributed autonomous robotic system is proposed where a 
robot is regarded as a B-cell, each environmental condition as an 
antigen, a behavior strategy as an antibody and control 
parameter as a T-cell [18]. Even though it benefits from good 
concurrency, the proposed system suffers from poor 
performance on self-repair.  

F. von Neumann based AIS 
Apart from the architectures reviewed above, the most 

prevailing hardware is traditional von Neumann architecture. An 
artificial immune network model named aiNet is presented in 
[19] and applied to reduce redundancy as well as spatial 
distribution. Campelo et al. put forward the real-coded clonal 
selection algorithm (RCSA) for use in electromagnetic design 
optimization. Some features of the algorithm, such as the 
number of clones, mutation range, and the fraction of the 
population selected each generation are discussed [20]. The role 
of negative selection in an artificial immune system (AIS) for 
network intrusion detection is investigated in [21]. Martelot 
introduced and developed the notion of artificial metabolism 
using a conventional computer to simulate systemic 
computation (a novel method of distributed natural computation) 
to create an organism which uses input data stream to grow [22]. 
While showing some unusually good abilities for fault tolerance, 
the von Neumann architecture based simulation suffered from 
slow speed and scalability problems. 

G. Summary 
This brief summary of some of the literature illustrates that 

each new AIS implementation induces new trade-offs in terms 
of speed, accuracy, scalability and more difficult-to-measure 
aspects such as ease of encoding the problem or 
programmability. It is clear that every new architecture may be 
better or worse suited to supporting different aspects of AIS; 
every AIS implemented on a different architecture requires 
subtle changes to its algorithm that may impact its efficacy in 
significant ways. The question is then, how to measure these 
differences? 

III. MEASURING AIS ARCHITECTURES 
There are many indexes to evaluate the performance of 

architecture, just as there are many principles for evaluating 
performance of machine learning algorithms. However, few has  
performed direct comparisons between published AIS methods 
that use very different architectures with results for very 
different problems. In an attempt to enable some useful level of 
comparison, in this work, we introduce two types of evaluation 
principles for features specifically related to AIS: “capability 
principles” which are designed to be problem-independent and 
“accuracy principles” which require the algorithms to be 
compared on identical problems.  

The seven capability principles (C Principles) used here are: 
1. Ease of encoding: whether it is easy to for the user present 
the raw data to the algorithm. 2. Precision: the depth of 
knowledge encoded in data or the quality of presented data. In 
other words, the number of bits the algorithm could possibly 
process for each sample data. 3. Programmability: the 
difficulty of implementing the algorithm on the hardware 



architecture. 4. Concurrency: to what extent are several 
computations executed simultaneously. 5. Scalability: the ease 
with which the platform hosting the algorithm can be modified, 
added or removed to accommodate the changing load and how 
effectively the algorithm can use increased computational 
resources. 6. Fault-tolerance: the capability for the algorithm to 
operate properly in the case of failure of one or more of the 
system components it based on. 7. Self-repair: the ability to 
repair/heal damage or corruption on the platform over time. As 
C Principles evaluate AIS methods on different architectures 
with results for various problems, the quantification relies on an 
analysis of the work and claims made by the authors of each 
paper. Each C Principle has four grades: Inadequate, Average, 
Above Average and Excellent. For each C Principle all the 
approaches reviewed are compared with each other. The grades 
are then determined by comparing to the one with the best grade 
and the one with the worst grade in this specific principle among 
all the reviewed approaches.   

The five accuracy principles (A Principles) used in this work 
are: 1. Accuracy; 2. Standard Deviation; 3.Processor Time; 
4. Sensitivity; 5. Precision. 

 
Table 1 Summary of Evaluation using C Principles for reviewed architectures, 

where darker shades represent better, or more intrinsic, capabilities. 
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FPGA	 		 ?	 		 		 		 		 		 	[3,Reensed]	
	 		 		 		 		 		 		 		 	[4,Qadir]	
	 		 		 		 		 		 		 		 	[5,ZAMORANO]	
	 		 		 		 		 		 		 		 	[6,Liu]	
	 		 		 		 		 		 		 		 	[7,Smith]	
	 		 		 		 		 		 		 		 	[8,Liu]	
	 		 		 		 		 		 		 		 	[9,Bradly]	
	 		 		 		 		 		 		 		 	[10,Canham	]	
	 	 	 	 	 	 	 	 	
Sensor	Networks	 		 		 		 		 		 		 		 	[11,Ko]	
	 		 		 		 		 		 		 		 	[12,Wallenta]	
	 		 		 		 		 		 		 		 	[13,Salmon]		
	 	 	 	 	 	 	 	 	
GPU	 		 		 		 		 		 		 		 	[14,Luo]	
	 		 		 		 		 		 		 		 	[15,Sinnott]		
	 	 	 	 	 	 	 	 	
Cloud	Computing	 		 		 		 		 		 		 		 	[16,Yang]	
	 	 	 	 	 	 	 	 	
Swarm	Robots	 		 		 		 		 		 		 		 	[17,Ismail]	
	 		 		 		 		 		 		 		 	[18,Sun]	
	 	 	 	 	 	 	 	 	
von	Neumann	 		 		 		 		 		 		 		 	[19,De	Castro]	
	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 	[20,Campelo]	
	 		 		 		 		 		 		 		 	[21,Kim]	

	 		 		 		 		 		 		 		 	[22,Le	Martelot]	
	 	 	 	 	 	 	 	 	

 Using the capability principles, we can now assess the AIS 
systems published in the literature that were summarized in the 
previous section. Table 1 summarizes the reviewed architectures 
by evaluating based on the seven capability principles, with the 
black square denoting Excellent (more intrinsic to that 
architecture) and lightest grey as Inadequate (not intrinsic to that 
architecture). The grid square marked “?” indicates failure to 
evaluate due to absence of description by the authors of that 
work. Measures such as Fault tolerance and Self repair are 
included because this work anticipates the use of AIS for 
applications such as intrusion detection or robot control, where 
these additional capabilities of human immune systems are 
required in the AIS. For this work, a hypothetical “perfect AIS 

architecture” would have black squares denoting Excellent for 
all C principles. 

It can be seen that no single hardware architecture shows 
complete superiority over the rest. GPU enjoys good 
performance in the aspect of concurrency and scalability at the 
cost of high demand on algorithm and code design as well as 
sacrifice on the feature of fault tolerance. Sensor networks and 
swarm robots show similar performance in the seven principles 
as both of them make use of distributed computing units 
interacting with each other with the only difference on the aspect 
of self-repair due to better mobility of swarm robot. For FPGA, 
the difference in the organization style is reflected on the 
disparate markings on the aspect of concurrency. The first four 
with higher marking all adopt the organizing style of multiple 
FPGAs, which as a result, show advantage in fault tolerance as 
well. Traditional von Neumann shows sharp imbalanced 
performance over the seven principles. It is worth mentioning 
that Le Martelot’s unoptimized version of artificial immune 
system could serve as a good example of implementing right 
algorithms on the wrong hardware. On the other hand, different 
approaches of AIS also pose an impact on the performance of 
hardware. 

Based on the analysis above, we believe that the efficacy of 
AIS based computing for tackling real world datasets can be 
improved by the exploitation of intrinsic features of computer 
architectures. In this rest of paper, we aim to understand to what 
extent the intrinsic features of computer architectures might 
improve the efficacy of AIS based computing.  

IV. METHODOLOGY 
The analysis of existing work in the previous section showed 

that each hardware platform shows advantages and 
disadvantages as measured by our capability principles.  Here 
we focus on three architectures for AIS: traditional sequential 
von Neumann Architecture, Multi Threaded architecture, and 
Systemic Computation, that will enable us to explore how the 
capabilities of each may enhance the efficacy of a bio-inspired 
AIS algorithm. The von Neumann architecture is the standard 
computer architecture as used throughout the world; the multi-
threaded architecture comprises parallel processes running on a 
modern multi-core processor.  

Table 2 Comparison of VN, Multi-Threaded and SC 
von Neumann 

Architecture 
Multi-Threaded Systemic 

Computation 

Deterministic Deterministic Stochastic 

Synchronous Synchronous Asynchronous 
Centralised Distributed Distributed 
Externally-

organized 
Externally-

organized 
Self-organized 

Heterostatic Heterostatic Homoeostatic 
Brittle Robust Robust 

Limited Limited Autonomous 
Fault intolerant Fault-tolerant Fault-tolerant 

 

In contrast, Systemic Computation is a computer 
architecture designed to provide native support for common 
characteristics of biological processes yet still compatible with 



current processors [23]. Instead of the traditional centralized 
view of computation, in SC all computation is distributed. There 
is no separation of data and code, or functionality into memory, 
ALU, and I/O. In SC, everything is regarded as a system. 
Systems could never be created, nor destroyed. Instead, 
discarded computation remnants are constantly transformed into 
new systems. Systems interact and differentiate with each other 
through a medium called “contextual” system which depicts 
what the two interacting systems transform into. Different 
contexts would result in various transformations accordingly. 
Another important concept in Systemic computation is scope. 
Systemic computation rules that interactions could only happen 
on the premise that both systems are in the same scope. 
Although it seems that natural computation such as SC shares 
more similarity in features with bio-inspired algorithms, for 
example AIS, it still remains a question whether Systemic 
Computation could be as fast as or even faster than traditional 
computing paradigm for such algorithms. To what extent, if any, 
could SC improve the performance on data? What is SC’s 
scalability? These questions are made more pertinent because, 
like many radically different architectures, SC is most 
commonly used as a virtual machine running on a von Neumann 
architecture. Could there be any advantage at all in running an 
AIS on a virtual bio-inspired architecture, which itself runs on a 
traditional architecture? Would a multi-threaded architecture not 
provide a simpler and superior choice? To answer those 
questions, these three architectures will be directly compared 
using real world datasets.  

 

 
Figure 1 Systemic Computing relies on the concept of a system to perform all 
computation. A system comprises three elements: two schemata and a 
transformation function. Systems may be defined in memory as strings; they 
are graphically depicted as a circle surrounding the transformation function, 
with two “cups” or receptors representing the two schemata (A). The two 
schemata of a system define which other systems may match and hence be 
affected by this system. The transformation function of a system defines how 
two schemata-matching systems are changed when they interact with each other 
in the context of this system; arrows indicate transformed systems at time t+1 
(B). A system may be pushed inside the scope of a second system through 
interaction with it (C). A system within the scope of a larger system may be 
pushed outside that scope through interaction with another system (D). 
Computation occurs by transforming input from the environment into systems, 
which interact with “organism” systems (equivalent to software or hardware) 
and potentially each other to produce new systems that provide output by 
stimulating or altering the environment (E). Most computation requires more 
structured systems enabling the equivalent of modules, subroutines, recursion 

and looping. Most or all systems may be active and capable of enabling 
interactions. Note the similarity between a typical systemic computation with 
the structure of biological systems such as the cell (F).[23] 

 

A. AIS on von Neumann Architecture 
For simplicity, the classical clonal selection algorithm 

CLOCLAS [24] is selected as below: 

1. Randomly generate an initial population of antibodies 𝐴𝑏. 
This is composed of two subsets 𝐴𝑏# (memory population) 
and 𝐴𝑏$ (reservoir population). 

2. Create a set of antigenic patterns 𝐴𝑔. 
3. Select an antigen 𝐴𝑔& from the population 𝐴𝑔. 
4. For 𝐺 generations   

a) For every member of the population 𝐴𝑏 calculate its 
affinity to the antigen 𝐴𝑔&. 

b) Select the 𝑛  highest affinity antibodies and generate 
clones for each antibody in proportion to their affinity, 
placing the clones in a new population 𝐶&.   

c) Mutate the clone population 𝐶&  to a degree inversely 
proportional to their affinity  to produce a mature 
population 𝐶&∗. 

d) Re-calculate the affinity of each member in 𝐶&∗  and 
select the  highest score as candidate memory cell. If 
its affinity is greater than the current memory cell 
𝐴𝑏#+ , then the candidate becomes the new memory 
cell.  

e) Remove those antibodies with low affinity in the 
population 𝐴𝑏$ and replace them  with new randomly 
generated members.   

5. Select an antigen from the population to be 
classified Ag∗	and Calculate the affinity of the antigen with 
each memory cell.  

6. Set classification to the memory cell with highest affinity. 
7. Loop until all antigens s have been presented.		

Here	affinity	function	is	the	same	as	the	one	used	in	AIS-SC	
(see	section	4.3).	

B. AIS on Multi-threaded Architecture 
The essence of multi-threaded architecture is to execute 

multiple processes or threads concurrently in a multi-core 
processor.  As each antibody memory cell achieves learning 
independently from other memory cells [23], the AIS 
implemented on Multi-threaded Architecture executes M tasks 
in parallel where M is the number of memory cells (classes) in 
datasets.  To assure this change, corresponding modification is 
needed for CLONCLAS [24] used on von Neumann 
Architecture 

1.Each antibody memory only gets exposed to one antigen (training 
data) exclusively and each Antibody in the memory pool has its local 
copy of the reservoir pool. 

2.For datasets with M classes, M antigens are selected each time 
with each from a different class and exposed simultaneously to 
corresponding antibody memories and reservoir pools.  

3.The algorithms proceed such that if any particular class runs out 
of training data then from the next iteration only the remaining classes 
are picked up by the ExecutorService to be processed in parallel. 



 

C. AIS on the Systemic Computation 
Le Martelot first modelled an ‘organism’ using SC based on 

the notion of AIS [22]. To enable systemic computation model 
to be simulated using conventional computer processors, a new 
optimized systemic computation simulation has been created for 
this work, including the creation of a virtual architecture, 
instruction set, machine code and corresponding assembly 
language with compiler. Four implementation-specific features 
enable systemic computers to be tailored to a given application: 

(i) the word-length / coding method, 

(ii) the transformation function set / schemata matching 
method 

(iii) the order of system interactions and 

(iv) the scope definition method. 

In the implementation described here, (i) in order to 
accommodate more information, schemata and transformation 
functions are defined by strings of 16 and 32 respectively, 
resulting in each system being 64 characters long; (ii) thirty-four 
transformation functions have been implemented; (iii) system 
interactions occur randomly except where a system is changed, 
in which case changed systems are chosen for subsequent 
interaction first; (iv) scopes are held globally in a system scope 
table. (Full details of SC can be found in [23].) 

We also extend his early model and extend the capability of 
SC by introducing the idea of “virtual systems". Le Martelot’s 
model uses one SC system to model each AIS ‘cell’. However 
in our version of SC with virtual memory, each system points to 
a fixed and unique region of memory where a larger or more 
complex data structure can be held.  

 
Figure 2 System organization of AIS-SC 

 
The whole system is organized in the scope of a ‘Universe 

system’ which is an abstraction of the immune system. Inside it, 
B cells generate memory antibodies once attacked by training 
data (carried by antigens). The generated antibodies would then 
be secreted and used to recognize data with similar features 
(antigens).  

 

 
Figure 3 Zoom in Organization for B Cells 

Bits 15 to bit 17 of transformation function in each SC 
system are used to represent types of data systems. The six types 
of data systems are: data (antigen), B cell, antibody candidate, 
clone antibody, antibody memory and winner cell. Bit 18 is used 
to identify the livelihood of systems: alive or dead /semi-
finished or finished (see in Figure 3(a)).  

 

 
Figure 4 SC System representation (a); Code for system organization (b) 

 
After identifying the elementary systems, we move to the 

identification of contextual systems which are in charge of 
system interaction and transformation. An initialize context is 
implemented in order to vaccinate the B-cell with training data. 
In the first phase of maturation, the functionality of Compare1 
system is streamlined as it only calculates the affinity between 
B-cell and antibody candidate and decides whether the affinity 
is better than the current winner whose corresponding index is 
stored in the right schemata of compare system.  

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝐴𝑏&, 𝐴𝑔N

= (𝐴𝑏& 𝑘 − 𝐴𝑔N 𝑘 )R 																						(1) 

Should it succeed, the compare system hands the index of 
selected antibody candidate over to the chaining contextual 
system copy which stores the index to semi-winner cell. The 



counter implemented in Compare1 system keeps track of 
continuous winning time for the current winner. When it reaches 
the counter threshold, the B-cell would be turn to semifinibcell. 
Correspondingly, semi-winner cell is transformed to winner cell 
by semi-mature context for next phase maturation. In the 
previous model [25], great efforts were wasted in going through 
each and every antibody candidate to find the final winner to 
proceed into next phase. By introducing the copy winner step to 
hold the selected winner, the successful interaction rate is 
improved more than 700 times.  

Table 3 Summary of the Integrated AISO SC model functions 
Function Name Description 

Initialize Initializes a non-initialized data system with 
random values, transforms it to antibody 
candidate and inserts it to the first selection 
scope. 

Compare 1 & 2 Both Compare 1 and 2 compare the distance 
between the antigen itself and the interacted 
antibody candidates and store better the 
index and distance in the right schema of the 
context. Both contexts also keep a counter of 
consecutive comparison time. In addition, 
Compare 2 expels the losing clone 
candidates to the general pool. 

Mature Transform the antigen to the state of second 
round of selection and mark the final 
selected antibody candidate as antibody 
memory. 

Generate Duplicates the winner antibody candidate 
with a mutation on each dimension 
proportional to its distance to the antigen it 
compares to. 

Kill Compares the distance between the two 
mutated duplicates antibody candidates and 
their corresponding antigens, mark the 
winner and record its winning time in the 
counter. If the counter exceeds counter 
threshold, transforms the winner to antibody 
memory. 

Expel Pulls the generated antibody memory out of 
the scope of the second selection to the root 
scope. 

Merge Calculates the distance between the two 
interacted antibody memories and if it is 
below the sigmoid threshold, pulls all the 
classified test data systems into one antibody 
memory and update the value of that 
memory with the average of the two 
memories. Meanwhile, transforms the other 
antibody memory into waste for recycle.  

Classify Decides whether the interacted test data 
systems belong to this category. If so, tags 
them. 

 

Once semi-mature context finds matching system successfully, 
meaning the completion of first phase, the generate context 
chained after semi-mature context proliferate 5 mutated copies 
of the winner antibody candidates and absorbs each clone 
candidate it creates into the corresponding winner cell to 
produce antibody memories for the specific antigens later. Then 
Compare2 context follows similar rules of Compare1 with one 
more functionality to expel the losing clone candidates in the 
second comparison in to the general pool.  

 Moving into the next pair of interactions, Refresh system 
updates the loser antibody candidate with new randomized value 
to introduce new solutions to the system. Thus Refresh system 
acts as context, defining the refresh of failed data systems in the 
maturation. The mature context changes antibody winner in the 
second phase to antibody memory which is then expelled to the 
general pool by expel context. Finally, antigens in the 
environment are voted by the expelled antibody memories. 
More specifically, antigens will be classified in the class by 
which receives the most votes. 

Moving to the scope: If we let each B cell hold a certain 
amount of antibody candidates exclusively as in reality, more 
than needed antibody candidates are set into each B cell 
considering the fact of system aging in order to cover the need 
for both comparison and clone generation, which is a waste both 
in storage resources and computing efficiency. In current model, 
all the B cells share a large antibody candidates pool. In other 
words, each B cell ‘sees’ all the antibody candidates at the very 
first beginning.  

However, each B cell still holds private winner cell. By 
doing so, less antibody candidates are required and high rate of 
successful memory production is achieved. Another change is 
the scope relation settings between B cells and their 
corresponding winner cells. B cells and their corresponding 
winner cells are set to stay within each other’s scope, namely, B 
cells could see their winner cells and so do winner cells. 
Consequently, the first comparisons happen in the scope of B 
cells with winner cells and general candidate pool while the 
second comparisons happen within the scope of winner cells 
with B cells and clone candidates.  

V. EXPERIMENTS 
In order to understand how the performance of the models 

are affected by the substrate they are based on, the three models 
are assessed in terms of the C principles and A principles. To 
test the latter, all three models are compared on five benchmark 
datasets: Iris, Wine, Ecoli, Liver Disorder and Breast Cancer 
[26].  

 Two classes (imL and imS) from the Ecoli Dataset are not 
included in the experiments due to insufficient data. 20% of data 
in each dataset is reserved as test dataset while 10 fold cross 
validation is performed on the other 80% data to select the best 
parameter settings. For simplicity, the performance is evaluated 
by average accuracy, standard deviation of 10 runs, processor 
time, sensitivity and prevision for each class in all five datasets. 
The results are shown in Table 4. 

As shown in Table 4, in terms of average accuracy, the three 
models perform roughly the same. Although AIS-SC scores a 
little lower in Wine, Ecoli and Breast Cancer dataset. Its average  



Table 4 Results on five benchmark datasets, where S= Sensitivity and P = Precision. 
 Average Accuracy Std Processor time 

AIS-VN AIS-MT AIS-SC AIS-VN AIS-MT AIS-SC AIS-VN AIS-MT AIS-SC 
Iris 91.67% 88.07% 93.12% 4.77% 8.59% 4.91% 2.98s 2.32s 2.47s 
Wine 79.91% 85.02% 77.72% 12.16% 7.37% 10.37% 46.18s 37.57s 32.31s 
Ecoli 76.82% 84.60% 71.88% 7.71% 4.67% 8.77% 2.27s 2.07s 1.91s 
Liver 
Disorder 52.52% 52.80% 63.71% 6.24% 5.23% 4.21% 23.67s 22.36s 22.59s 

Breast 
Cancer 95.37% 91.30% 91.59% 2.75% 2.46% 3.24% 29.52s 26.19 24.97s 

 
 Iris Wine Ecoli Liver Disorder Breast Cancer 

Setosa Versicol
our 

Virginia Wine 1 Wine 2 Wine 3 CP IM PP IMU OM Liver1 Liver2 Benign Maligna
nt 

AI
S-

VN
 

S 100.0% 80.00% 90.00% 91.67% 57.14% 100.0% 82.76% 73.33% 72.51% 80.27% 66.26% 44.83% 60.00% 95.51% 80.85% 

P 100.0% 88.89% 81.82% 91.67% 88.89% 90.91% 96.00% 73.33% 78.69% 70.00% 90.51% 44.83% 60.00% 90.43% 90.48% 

AI
S-

M
T S 100.0% 78.77% 85.27% 93.22% 65.27% 99.45% 87.26% 76.48% 73.52% 90.77% 70.21% 45.13% 59.87% 93.45% 80.88% 

P 100.0% 86.88% 82.34% 94.44% 60.51% 95.77% 94.01% 72.88% 74.49% 80.11% 83.33% 47.13% 60.00% 89.16% 85.23% 

AI
S-

SC
 

S 100.0% 87.29% 88.53% 89.67% 60.11% 95.17% 81.21% 71.54% 71.15% 82.27% 64.96% 65.66% 62.11% 93.48% 82.74% 

P 100.0% 89.77% 88.99% 91.67% 85.33% 92.17% 94.00% 73.93% 75.55% 77.97% 85.29% 69.37% 70.23% 89.55% 89.19% 
	
	

Table 5 Evaluation of three methods using the C principles 

	
Ease	 of	
Encoding	

Precisio
n	

Program
mability	

Concurre
ncy	 Scalability	

Fault	
Tolera
nce	

Self-
repair	

AIS-VN	 		 		 		 		 		 		 		

AIS-MT	 		 		 		 		 		 		 		

AIS-SC	 		 		 		 		 		 		 		

accuracy in Liver Disorder dataset is as much as 11.2% higher 
than that of AIS-VN, 10.9% higher than AIS-MT and 1.5% 
higher in Iris Dataset, 5.1% higher than AIS-MT. For all five 
datasets, AIS-SC has a more balanced performance in not only 
general as a whole, but sensitivity and precision across classes 
in all five datasets as well,  compared to AIS implemented on 
other two architectures. In the aspect of calculating speed, there 
is a clear benefit from the parallel nature of Systemic Computing, 
with AIS-SC performing quicker in all the five datasets. The 
difference is particularly obvious for Wine and Breast Cancer 
datasets (nearly 1.7 times quicker than AIS-VN) which shows 
AIS-SC is much more competitive in dealing with high 
dimension data. (This speedup occurs despite the fact that SC is 
running as an optimized virtual machine on a von Neumann 
computer, and is not truly executing in parallel.) As for standard 
deviation, there is no clear winner across the three 
implementations. AIS-SC shows a slightly higher standard 
deviation, which is largely due to the fact that Systemic 
Computing is highly stochastic. 

 In summary, the results using the A principles show that the 
same AIS algorithm implemented on different computing 
architectures can produce subtly different results, because of the 
changes necessary to implement that algorithm on differing 
substrates. Considering the C principles, in terms of data 
presentation which is mainly illustrated by ease of encoding and 
precision, AIS implemented on all three selected architectures 
show equivalent performance. As for programmability, as 
shown above, AIS-SC is also quite intuitive while programming 

on VN is commonly accepted by researchers. On the other hand, 
AIS-MT is more demanding in programming skills. 
Furthermore, the innate mechanism endows AIS-SC with higher 
capabilities in Concurrency, Fault Tolerance and Self-repair 
especially while the other two versions fails to demonstrate 
advantage in the above three aspects. Table 5 shows the three 
versions of the AIS method evaluated using the C principles.  

From the table above it is clear to see that AIS-MT improves 
C Principles in the aspect of Scalability and Fault-Tolerance and 
AIS-SC shows further improvement in the four aspects which 
AIS-VN is not good at by exploiting the common innate features 
between Multi-Threaded Architecture, Systemic Computer and 
AIS. As AIS-SC is running on a virtual machine on VN 
architecture, further improvement is expected on a true SC 
computer [23], which will be examined in future experiments. 

VI. CONCLUSION 
In this paper we reviewed the development on traditional and 

bio-inspired algorithms and evaluated current existing 
implementation solutions for AIS both on conventional 
computing architecture and unconventional computing 
paradigms. The work introduced the concept of C Principles and 
A Principles in order to compare the efficacy of AIS based 
computing in terms of the exploitation of shared intrinsic 
features between computer architectures and algorithms. The 
work then focused on three computing architectures: von 
Neumann Architecture, Multi-threaded Architecture and  
Systemic Computing. We examined how to best realize AIS on 



a non von Neumann computing architecture by improving the 
classification system inspired from AIS on the platform of 
systemic computation. AIS-VN, AIS-MT and AIS-SC were 
compared in terms of C Principles and A Principles, the latter 
using five benchmark datasets. The results showed that the use 
of the bio-inspired SC architecture, even when running as a 
virtual machine, improved the capability of the algorithm in 
terms of scalability and fault tolerance while also improving 
processing time, and achieving a competitive accuracy rate. This 
provides evidence that measurable performance gains can be 
achieved if hardware architectures are designed to support bio-
inspired algorithms such as AIS by ensuring that both share 
intrinsic features. 
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