
Improving Artificial-Immune-System-Based
Computing by Exploiting Intrinsic Features of

Computer Architectures

Yiqi Deng, Peter J. Bentley, Alvee Momshad
Dept. of Computer Science
University College London
London, United Kingdom

y.deng.11@ucl.ac.uk, p.bentley@ucl.ac.uk, momshad.alvee.13@ucl.ac.uk

Abstract—Biological systems have become highly significant
for traditional computer architectures as examples of highly
complex self-organizing systems that perform tasks in parallel
with no centralized control. However, few researchers have
compared the suitability of different computing approaches for
the unique features of Artificial Immune Systems (AIS) when
trying to introduce novel computing architectures, and few
consider the practicality of their solutions for real world machine
learning problems. We propose that the efficacy of AIS-based
computing for tackling real world datasets can be improved by the
exploitation of intrinsic features of computer architectures. This
paper reviews and evaluates current existing implementation
solutions for AIS on different computing paradigms and
introduces the idea of “C Principles” and “A Principles”. Three
Artificial Immune Systems implemented on different
architectures are compared using these principles to examine the
possibility of improving AIS through taking advantage of intrinsic
hardware features.

Keywords—Artificial Immune Systems; Systemic Computing;
Multi-threaded Computing

I. INTRODUCTION
Nature is full of examples of biological computation that

adapt to their environments and show remarkable tolerance to
damage or faults. The biological immune system, which protects
the body from pathogens, has great pattern recognition
capability that distinguishes between foreign cells entering the
body (non-self) and self cells [1]. More and more immune-based
models and techniques have emerged in order to solve complex
computational or engineering problems during the last decade
[2]. The attempts mainly focus on two parts: the algorithm itself
and alternative hardware implementations [1]. In the aspect of
hardware implementation, due to the mixed nature of AIS-based
computing, traditional and unconventional computing
paradigms have been put forward as AIS-based computing
substrates [3-20]. Although increasing research has been
conducted to investigate better versions of AIS and more
suitable computing architectures to accommodate them [3-20],
few have compared the suitability of different computing
approaches for the unique features of AIS when trying to
introduce novel computing architectures, and few consider the

practicality of their solutions for solving real-world machine
learning problems.

We propose that the efficacy of AIS based computing for
tackling real world datasets can be improved by the
exploitation of shared intrinsic features between computer
architectures and algorithms. In this paper, we aim to identify
the intrinsic features of computer architectures that might
improve the efficacy of AIS based computing for tackling real
world datasets.

The paper is organized in the following way: In the section
of Background related literatures are reviewed and measuring
principles for algorithm performance are put forward. Three
architectures are selected as the substrate on which
corresponding Artificial Immune Systems are developed in
order to examine the possibility of improving AIS through
taking advantage of intrinsic hardware features. Further
experiments are then conducted on five classic benchmark
datasets with analysis of results.

II. BACKGROUND
Inspired by the biological immune system, the Artificial

Immune System (AIS) is an emerging computational
intelligence paradigm, which shares features with evolutionary
learning such as noise tolerance, adaptability and dynamics [1].
Currently, there is an increasing number of new hardware
architectures specially designed in order to better cater to the
intrinsic features of AIS. In this section we will focus on the
different substrates used to accommodate AIS-based computing.

A. Field-Programmable-Gate-Array-Based (FPGA-Based)
AIS
Among all the implementations of AIS, AIS implemented on

FPGA is perhaps the most diversified one as the ways FPGAs
are organized are largely different from each other. Despite that,
there are generally two ways of implementing AIS on FPGA.
One is using multiple FPGAs with each of them as a distributed
computing unit. For example, the Bionode System developed by
Greensted and Tyrrell contains thirty individual FPGAs, which
can be configured to model the functionality of a cell, connected
in a loosely coupled network [3]. Similar attempts have been
seen on [4], [5] and [6]. The other solution is to use one single

FPGA as a central processing unit with multiple logic unit flows.
For instance, Smith et al. proposed a hardware implementation
of a novel evolutionary algorithm inspired by protein/substrate
binding exploited in artificial immune networks to classify
Parkinson’s patient’s response to a conventional figure copying
task [7]. An intrinsic FPGA-based evolvable hardware platform
which exhibits high tolerance to transient faults by making use
of chemical signals was proposed by Liu et al. [8]. Bradley and
Tyrrell put forward an immunotronic architecture which runs in
real time hardware and continuously provide monitoring over a
finite state machine architecture for errors is developed in [9].
Canham and Tyrrell developed a multi-layered hardware
artificial immune system coupled with an embryonic array [10].
The system consists of an acquired layer of the immune system
to monitor unusual system behavior, a non-learning innate layer
to locate the fault and a homogeneous array of logic units – an
embryonic array to provide fault avoidance.

B. Sensor Network based AIS
AIS is also implemented on sensor networks. The General

Suppression Control Framework (GSCF) is a framework
inspired by the suppression hypothesis of the immune
discrimination theory[11]. The possibility to apply Dendritic
Cell Algorithm (DCA) in the attack detection in sensor network
is investigated in [12]. An Intrusion Detection System (IDS)
framework to be applied in the wireless sensor network context
is proposed in [13]. However, regardless of model differences,
in the case of large scale networks, sufficient sensors are
required, which has a negative impact on system scalability.

C. GPU-based AIS
GPUs are regarded as another potential substrate to

implement AIS. Using GPUs, a novel parallel data clustering
algorithm based on the artificial immune network aiNet is
proposed to improve its efficiency by 10 times [14]. While
enjoying good scalability, the flow of the algorithm is relatively
complex. Similar work is described by [15] where a GPUAIS is
put forward on NVIDIA GPU using a probabilistic elite
antibody selection.

D. Cloud-based AIS
By analyzing the characteristics of current cloud computing,

Yang et al. propose a comprehensive real-time network risk
evaluation model for cloud computing based on the
correspondence between the artificial immune system antibody
and pathogen invasion [16]. The way the proposed model places
multiple immune cells into the network to perceive contexts
against the traditional network security approach, which relies
on a single terminal to check the environment, indicates good
concurrency of the model.

E. Swarm-robot-based AIS
Granuloma formation is applied to solve the ‘anchoring’

issue in swarm robotics as it acts as a healing mechanism, trying
to prevent bacterial infections from infecting other cells and to
contain the infection by attracting other cells such as
macrophages and T-cells to move to the site of infection [17]. A
model proposed by Ismail excels in the aspects of fault tolerance
and self-repair. Nevertheless, compared to hardware which
realizes concurrency via circuits such as GPU, the scalability of
the proposed system is not very cost-efficient. A method of

cooperative control (T-cell modelling) and selection of group
behavior strategy (B-cell modelling) based on immune system
in distributed autonomous robotic system is proposed where a
robot is regarded as a B-cell, each environmental condition as an
antigen, a behavior strategy as an antibody and control
parameter as a T-cell [18]. Even though it benefits from good
concurrency, the proposed system suffers from poor
performance on self-repair.

F. von Neumann based AIS
Apart from the architectures reviewed above, the most

prevailing hardware is traditional von Neumann architecture. An
artificial immune network model named aiNet is presented in
[19] and applied to reduce redundancy as well as spatial
distribution. Campelo et al. put forward the real-coded clonal
selection algorithm (RCSA) for use in electromagnetic design
optimization. Some features of the algorithm, such as the
number of clones, mutation range, and the fraction of the
population selected each generation are discussed [20]. The role
of negative selection in an artificial immune system (AIS) for
network intrusion detection is investigated in [21]. Martelot
introduced and developed the notion of artificial metabolism
using a conventional computer to simulate systemic
computation (a novel method of distributed natural computation)
to create an organism which uses input data stream to grow [22].
While showing some unusually good abilities for fault tolerance,
the von Neumann architecture based simulation suffered from
slow speed and scalability problems.

G. Summary
This brief summary of some of the literature illustrates that

each new AIS implementation induces new trade-offs in terms
of speed, accuracy, scalability and more difficult-to-measure
aspects such as ease of encoding the problem or
programmability. It is clear that every new architecture may be
better or worse suited to supporting different aspects of AIS;
every AIS implemented on a different architecture requires
subtle changes to its algorithm that may impact its efficacy in
significant ways. The question is then, how to measure these
differences?

III. MEASURING AIS ARCHITECTURES
There are many indexes to evaluate the performance of

architecture, just as there are many principles for evaluating
performance of machine learning algorithms. However, few has
performed direct comparisons between published AIS methods
that use very different architectures with results for very
different problems. In an attempt to enable some useful level of
comparison, in this work, we introduce two types of evaluation
principles for features specifically related to AIS: “capability
principles” which are designed to be problem-independent and
“accuracy principles” which require the algorithms to be
compared on identical problems.

The seven capability principles (C Principles) used here are:
1. Ease of encoding: whether it is easy to for the user present
the raw data to the algorithm. 2. Precision: the depth of
knowledge encoded in data or the quality of presented data. In
other words, the number of bits the algorithm could possibly
process for each sample data. 3. Programmability: the
difficulty of implementing the algorithm on the hardware

architecture. 4. Concurrency: to what extent are several
computations executed simultaneously. 5. Scalability: the ease
with which the platform hosting the algorithm can be modified,
added or removed to accommodate the changing load and how
effectively the algorithm can use increased computational
resources. 6. Fault-tolerance: the capability for the algorithm to
operate properly in the case of failure of one or more of the
system components it based on. 7. Self-repair: the ability to
repair/heal damage or corruption on the platform over time. As
C Principles evaluate AIS methods on different architectures
with results for various problems, the quantification relies on an
analysis of the work and claims made by the authors of each
paper. Each C Principle has four grades: Inadequate, Average,
Above Average and Excellent. For each C Principle all the
approaches reviewed are compared with each other. The grades
are then determined by comparing to the one with the best grade
and the one with the worst grade in this specific principle among
all the reviewed approaches.

The five accuracy principles (A Principles) used in this work
are: 1. Accuracy; 2. Standard Deviation; 3.Processor Time;
4. Sensitivity; 5. Precision.

Table 1 Summary of Evaluation using C Principles for reviewed architectures,

where darker shades represent better, or more intrinsic, capabilities.

	 Ea
se
	o
f	E

nc
od

in
g	

Pr
ec
isi
on

	

Pr
og
ra
m
ab
ili
ty
	

Co
nc
ur
re
nc
y	

Sc
al
ab
ili
ty
	

Fa
ul
t	T

ol
er
an
ce
	

Se
lf-
re
pa
ir	

Re
fe
re
nc
e	

FPGA	 		 ?	 		 		 		 		 		 	[3,Reensed]	
	 		 		 		 		 		 		 		 	[4,Qadir]	
	 		 		 		 		 		 		 		 	[5,ZAMORANO]	
	 		 		 		 		 		 		 		 	[6,Liu]	
	 		 		 		 		 		 		 		 	[7,Smith]	
	 		 		 		 		 		 		 		 	[8,Liu]	
	 		 		 		 		 		 		 		 	[9,Bradly]	
	 		 		 		 		 		 		 		 	[10,Canham]	
	 	 	 	 	 	 	 	 	
Sensor	Networks	 		 		 		 		 		 		 		 	[11,Ko]	
	 		 		 		 		 		 		 		 	[12,Wallenta]	
	 		 		 		 		 		 		 		 	[13,Salmon]		
	 	 	 	 	 	 	 	 	
GPU	 		 		 		 		 		 		 		 	[14,Luo]	
	 		 		 		 		 		 		 		 	[15,Sinnott]		
	 	 	 	 	 	 	 	 	
Cloud	Computing	 		 		 		 		 		 		 		 	[16,Yang]	
	 	 	 	 	 	 	 	 	
Swarm	Robots	 		 		 		 		 		 		 		 	[17,Ismail]	
	 		 		 		 		 		 		 		 	[18,Sun]	
	 	 	 	 	 	 	 	 	
von	Neumann	 		 		 		 		 		 		 		 	[19,De	Castro]	
	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 	[20,Campelo]	
	 		 		 		 		 		 		 		 	[21,Kim]	

	 		 		 		 		 		 		 		 	[22,Le	Martelot]	
	 	 	 	 	 	 	 	 	

 Using the capability principles, we can now assess the AIS
systems published in the literature that were summarized in the
previous section. Table 1 summarizes the reviewed architectures
by evaluating based on the seven capability principles, with the
black square denoting Excellent (more intrinsic to that
architecture) and lightest grey as Inadequate (not intrinsic to that
architecture). The grid square marked “?” indicates failure to
evaluate due to absence of description by the authors of that
work. Measures such as Fault tolerance and Self repair are
included because this work anticipates the use of AIS for
applications such as intrusion detection or robot control, where
these additional capabilities of human immune systems are
required in the AIS. For this work, a hypothetical “perfect AIS

architecture” would have black squares denoting Excellent for
all C principles.

It can be seen that no single hardware architecture shows
complete superiority over the rest. GPU enjoys good
performance in the aspect of concurrency and scalability at the
cost of high demand on algorithm and code design as well as
sacrifice on the feature of fault tolerance. Sensor networks and
swarm robots show similar performance in the seven principles
as both of them make use of distributed computing units
interacting with each other with the only difference on the aspect
of self-repair due to better mobility of swarm robot. For FPGA,
the difference in the organization style is reflected on the
disparate markings on the aspect of concurrency. The first four
with higher marking all adopt the organizing style of multiple
FPGAs, which as a result, show advantage in fault tolerance as
well. Traditional von Neumann shows sharp imbalanced
performance over the seven principles. It is worth mentioning
that Le Martelot’s unoptimized version of artificial immune
system could serve as a good example of implementing right
algorithms on the wrong hardware. On the other hand, different
approaches of AIS also pose an impact on the performance of
hardware.

Based on the analysis above, we believe that the efficacy of
AIS based computing for tackling real world datasets can be
improved by the exploitation of intrinsic features of computer
architectures. In this rest of paper, we aim to understand to what
extent the intrinsic features of computer architectures might
improve the efficacy of AIS based computing.

IV. METHODOLOGY
The analysis of existing work in the previous section showed

that each hardware platform shows advantages and
disadvantages as measured by our capability principles. Here
we focus on three architectures for AIS: traditional sequential
von Neumann Architecture, Multi Threaded architecture, and
Systemic Computation, that will enable us to explore how the
capabilities of each may enhance the efficacy of a bio-inspired
AIS algorithm. The von Neumann architecture is the standard
computer architecture as used throughout the world; the multi-
threaded architecture comprises parallel processes running on a
modern multi-core processor.

Table 2 Comparison of VN, Multi-Threaded and SC
von Neumann

Architecture
Multi-Threaded Systemic

Computation

Deterministic Deterministic Stochastic

Synchronous Synchronous Asynchronous
Centralised Distributed Distributed
Externally-

organized
Externally-

organized
Self-organized

Heterostatic Heterostatic Homoeostatic
Brittle Robust Robust

Limited Limited Autonomous
Fault intolerant Fault-tolerant Fault-tolerant

In contrast, Systemic Computation is a computer
architecture designed to provide native support for common
characteristics of biological processes yet still compatible with

current processors [23]. Instead of the traditional centralized
view of computation, in SC all computation is distributed. There
is no separation of data and code, or functionality into memory,
ALU, and I/O. In SC, everything is regarded as a system.
Systems could never be created, nor destroyed. Instead,
discarded computation remnants are constantly transformed into
new systems. Systems interact and differentiate with each other
through a medium called “contextual” system which depicts
what the two interacting systems transform into. Different
contexts would result in various transformations accordingly.
Another important concept in Systemic computation is scope.
Systemic computation rules that interactions could only happen
on the premise that both systems are in the same scope.
Although it seems that natural computation such as SC shares
more similarity in features with bio-inspired algorithms, for
example AIS, it still remains a question whether Systemic
Computation could be as fast as or even faster than traditional
computing paradigm for such algorithms. To what extent, if any,
could SC improve the performance on data? What is SC’s
scalability? These questions are made more pertinent because,
like many radically different architectures, SC is most
commonly used as a virtual machine running on a von Neumann
architecture. Could there be any advantage at all in running an
AIS on a virtual bio-inspired architecture, which itself runs on a
traditional architecture? Would a multi-threaded architecture not
provide a simpler and superior choice? To answer those
questions, these three architectures will be directly compared
using real world datasets.

Figure 1 Systemic Computing relies on the concept of a system to perform all
computation. A system comprises three elements: two schemata and a
transformation function. Systems may be defined in memory as strings; they
are graphically depicted as a circle surrounding the transformation function,
with two “cups” or receptors representing the two schemata (A). The two
schemata of a system define which other systems may match and hence be
affected by this system. The transformation function of a system defines how
two schemata-matching systems are changed when they interact with each other
in the context of this system; arrows indicate transformed systems at time t+1
(B). A system may be pushed inside the scope of a second system through
interaction with it (C). A system within the scope of a larger system may be
pushed outside that scope through interaction with another system (D).
Computation occurs by transforming input from the environment into systems,
which interact with “organism” systems (equivalent to software or hardware)
and potentially each other to produce new systems that provide output by
stimulating or altering the environment (E). Most computation requires more
structured systems enabling the equivalent of modules, subroutines, recursion

and looping. Most or all systems may be active and capable of enabling
interactions. Note the similarity between a typical systemic computation with
the structure of biological systems such as the cell (F).[23]

A. AIS on von Neumann Architecture
For simplicity, the classical clonal selection algorithm

CLOCLAS [24] is selected as below:

1. Randomly generate an initial population of antibodies 𝐴𝑏.
This is composed of two subsets 𝐴𝑏# (memory population)
and 𝐴𝑏$ (reservoir population).

2. Create a set of antigenic patterns 𝐴𝑔.
3. Select an antigen 𝐴𝑔& from the population 𝐴𝑔.
4. For 𝐺 generations

a) For every member of the population 𝐴𝑏 calculate its
affinity to the antigen 𝐴𝑔&.

b) Select the 𝑛 highest affinity antibodies and generate
clones for each antibody in proportion to their affinity,
placing the clones in a new population 𝐶&.  

c) Mutate the clone population 𝐶& to a degree inversely
proportional to their affinity  to produce a mature
population 𝐶&∗.

d) Re-calculate the affinity of each member in 𝐶&∗ and
select the  highest score as candidate memory cell. If
its affinity is greater than the current memory cell
𝐴𝑏#+ , then the candidate becomes the new memory
cell. 

e) Remove those antibodies with low affinity in the
population 𝐴𝑏$ and replace them  with new randomly
generated members.  

5. Select an antigen from the population to be
classified Ag∗	and Calculate the affinity of the antigen with
each memory cell. 

6. Set classification to the memory cell with highest affinity.
7. Loop until all antigens s have been presented.		

Here	affinity	function	is	the	same	as	the	one	used	in	AIS-SC	
(see	section	4.3).	

B. AIS on Multi-threaded Architecture
The essence of multi-threaded architecture is to execute

multiple processes or threads concurrently in a multi-core
processor. As each antibody memory cell achieves learning
independently from other memory cells [23], the AIS
implemented on Multi-threaded Architecture executes M tasks
in parallel where M is the number of memory cells (classes) in
datasets. To assure this change, corresponding modification is
needed for CLONCLAS [24] used on von Neumann
Architecture

1.Each antibody memory only gets exposed to one antigen (training
data) exclusively and each Antibody in the memory pool has its local
copy of the reservoir pool.

2.For datasets with M classes, M antigens are selected each time
with each from a different class and exposed simultaneously to
corresponding antibody memories and reservoir pools.

3.The algorithms proceed such that if any particular class runs out
of training data then from the next iteration only the remaining classes
are picked up by the ExecutorService to be processed in parallel.

C. AIS on the Systemic Computation
Le Martelot first modelled an ‘organism’ using SC based on

the notion of AIS [22]. To enable systemic computation model
to be simulated using conventional computer processors, a new
optimized systemic computation simulation has been created for
this work, including the creation of a virtual architecture,
instruction set, machine code and corresponding assembly
language with compiler. Four implementation-specific features
enable systemic computers to be tailored to a given application:

(i) the word-length / coding method,

(ii) the transformation function set / schemata matching
method

(iii) the order of system interactions and

(iv) the scope definition method.

In the implementation described here, (i) in order to
accommodate more information, schemata and transformation
functions are defined by strings of 16 and 32 respectively,
resulting in each system being 64 characters long; (ii) thirty-four
transformation functions have been implemented; (iii) system
interactions occur randomly except where a system is changed,
in which case changed systems are chosen for subsequent
interaction first; (iv) scopes are held globally in a system scope
table. (Full details of SC can be found in [23].)

We also extend his early model and extend the capability of
SC by introducing the idea of “virtual systems". Le Martelot’s
model uses one SC system to model each AIS ‘cell’. However
in our version of SC with virtual memory, each system points to
a fixed and unique region of memory where a larger or more
complex data structure can be held.

Figure 2 System organization of AIS-SC

The whole system is organized in the scope of a ‘Universe

system’ which is an abstraction of the immune system. Inside it,
B cells generate memory antibodies once attacked by training
data (carried by antigens). The generated antibodies would then
be secreted and used to recognize data with similar features
(antigens).

Figure 3 Zoom in Organization for B Cells

Bits 15 to bit 17 of transformation function in each SC
system are used to represent types of data systems. The six types
of data systems are: data (antigen), B cell, antibody candidate,
clone antibody, antibody memory and winner cell. Bit 18 is used
to identify the livelihood of systems: alive or dead /semi-
finished or finished (see in Figure 3(a)).

Figure 4 SC System representation (a); Code for system organization (b)

After identifying the elementary systems, we move to the

identification of contextual systems which are in charge of
system interaction and transformation. An initialize context is
implemented in order to vaccinate the B-cell with training data.
In the first phase of maturation, the functionality of Compare1
system is streamlined as it only calculates the affinity between
B-cell and antibody candidate and decides whether the affinity
is better than the current winner whose corresponding index is
stored in the right schemata of compare system.

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝐴𝑏&, 𝐴𝑔N

= (𝐴𝑏& 𝑘 − 𝐴𝑔N 𝑘)R 																						(1)

Should it succeed, the compare system hands the index of
selected antibody candidate over to the chaining contextual
system copy which stores the index to semi-winner cell. The

counter implemented in Compare1 system keeps track of
continuous winning time for the current winner. When it reaches
the counter threshold, the B-cell would be turn to semifinibcell.
Correspondingly, semi-winner cell is transformed to winner cell
by semi-mature context for next phase maturation. In the
previous model [25], great efforts were wasted in going through
each and every antibody candidate to find the final winner to
proceed into next phase. By introducing the copy winner step to
hold the selected winner, the successful interaction rate is
improved more than 700 times.

Table 3 Summary of the Integrated AISO SC model functions
Function Name Description

Initialize Initializes a non-initialized data system with
random values, transforms it to antibody
candidate and inserts it to the first selection
scope.

Compare 1 & 2 Both Compare 1 and 2 compare the distance
between the antigen itself and the interacted
antibody candidates and store better the
index and distance in the right schema of the
context. Both contexts also keep a counter of
consecutive comparison time. In addition,
Compare 2 expels the losing clone
candidates to the general pool.

Mature Transform the antigen to the state of second
round of selection and mark the final
selected antibody candidate as antibody
memory.

Generate Duplicates the winner antibody candidate
with a mutation on each dimension
proportional to its distance to the antigen it
compares to.

Kill Compares the distance between the two
mutated duplicates antibody candidates and
their corresponding antigens, mark the
winner and record its winning time in the
counter. If the counter exceeds counter
threshold, transforms the winner to antibody
memory.

Expel Pulls the generated antibody memory out of
the scope of the second selection to the root
scope.

Merge Calculates the distance between the two
interacted antibody memories and if it is
below the sigmoid threshold, pulls all the
classified test data systems into one antibody
memory and update the value of that
memory with the average of the two
memories. Meanwhile, transforms the other
antibody memory into waste for recycle.

Classify Decides whether the interacted test data
systems belong to this category. If so, tags
them.

Once semi-mature context finds matching system successfully,
meaning the completion of first phase, the generate context
chained after semi-mature context proliferate 5 mutated copies
of the winner antibody candidates and absorbs each clone
candidate it creates into the corresponding winner cell to
produce antibody memories for the specific antigens later. Then
Compare2 context follows similar rules of Compare1 with one
more functionality to expel the losing clone candidates in the
second comparison in to the general pool.

 Moving into the next pair of interactions, Refresh system
updates the loser antibody candidate with new randomized value
to introduce new solutions to the system. Thus Refresh system
acts as context, defining the refresh of failed data systems in the
maturation. The mature context changes antibody winner in the
second phase to antibody memory which is then expelled to the
general pool by expel context. Finally, antigens in the
environment are voted by the expelled antibody memories.
More specifically, antigens will be classified in the class by
which receives the most votes.

Moving to the scope: If we let each B cell hold a certain
amount of antibody candidates exclusively as in reality, more
than needed antibody candidates are set into each B cell
considering the fact of system aging in order to cover the need
for both comparison and clone generation, which is a waste both
in storage resources and computing efficiency. In current model,
all the B cells share a large antibody candidates pool. In other
words, each B cell ‘sees’ all the antibody candidates at the very
first beginning.

However, each B cell still holds private winner cell. By
doing so, less antibody candidates are required and high rate of
successful memory production is achieved. Another change is
the scope relation settings between B cells and their
corresponding winner cells. B cells and their corresponding
winner cells are set to stay within each other’s scope, namely, B
cells could see their winner cells and so do winner cells.
Consequently, the first comparisons happen in the scope of B
cells with winner cells and general candidate pool while the
second comparisons happen within the scope of winner cells
with B cells and clone candidates.

V. EXPERIMENTS
In order to understand how the performance of the models

are affected by the substrate they are based on, the three models
are assessed in terms of the C principles and A principles. To
test the latter, all three models are compared on five benchmark
datasets: Iris, Wine, Ecoli, Liver Disorder and Breast Cancer
[26].

 Two classes (imL and imS) from the Ecoli Dataset are not
included in the experiments due to insufficient data. 20% of data
in each dataset is reserved as test dataset while 10 fold cross
validation is performed on the other 80% data to select the best
parameter settings. For simplicity, the performance is evaluated
by average accuracy, standard deviation of 10 runs, processor
time, sensitivity and prevision for each class in all five datasets.
The results are shown in Table 4.

As shown in Table 4, in terms of average accuracy, the three
models perform roughly the same. Although AIS-SC scores a
little lower in Wine, Ecoli and Breast Cancer dataset. Its average

Table 4 Results on five benchmark datasets, where S= Sensitivity and P = Precision.
 Average Accuracy Std Processor time

AIS-VN AIS-MT AIS-SC AIS-VN AIS-MT AIS-SC AIS-VN AIS-MT AIS-SC
Iris 91.67% 88.07% 93.12% 4.77% 8.59% 4.91% 2.98s 2.32s 2.47s
Wine 79.91% 85.02% 77.72% 12.16% 7.37% 10.37% 46.18s 37.57s 32.31s
Ecoli 76.82% 84.60% 71.88% 7.71% 4.67% 8.77% 2.27s 2.07s 1.91s
Liver
Disorder 52.52% 52.80% 63.71% 6.24% 5.23% 4.21% 23.67s 22.36s 22.59s

Breast
Cancer 95.37% 91.30% 91.59% 2.75% 2.46% 3.24% 29.52s 26.19 24.97s

 Iris Wine Ecoli Liver Disorder Breast Cancer

Setosa Versicol
our

Virginia Wine 1 Wine 2 Wine 3 CP IM PP IMU OM Liver1 Liver2 Benign Maligna
nt

AI
S-

VN

S 100.0% 80.00% 90.00% 91.67% 57.14% 100.0% 82.76% 73.33% 72.51% 80.27% 66.26% 44.83% 60.00% 95.51% 80.85%

P 100.0% 88.89% 81.82% 91.67% 88.89% 90.91% 96.00% 73.33% 78.69% 70.00% 90.51% 44.83% 60.00% 90.43% 90.48%

AI
S-

M
T S 100.0% 78.77% 85.27% 93.22% 65.27% 99.45% 87.26% 76.48% 73.52% 90.77% 70.21% 45.13% 59.87% 93.45% 80.88%

P 100.0% 86.88% 82.34% 94.44% 60.51% 95.77% 94.01% 72.88% 74.49% 80.11% 83.33% 47.13% 60.00% 89.16% 85.23%

AI
S-

SC

S 100.0% 87.29% 88.53% 89.67% 60.11% 95.17% 81.21% 71.54% 71.15% 82.27% 64.96% 65.66% 62.11% 93.48% 82.74%

P 100.0% 89.77% 88.99% 91.67% 85.33% 92.17% 94.00% 73.93% 75.55% 77.97% 85.29% 69.37% 70.23% 89.55% 89.19%
	
	

Table 5 Evaluation of three methods using the C principles

	
Ease	 of	
Encoding	

Precisio
n	

Program
mability	

Concurre
ncy	 Scalability	

Fault	
Tolera
nce	

Self-
repair	

AIS-VN	 		 		 		 		 		 		 		

AIS-MT	 		 		 		 		 		 		 		

AIS-SC	 		 		 		 		 		 		 		

accuracy in Liver Disorder dataset is as much as 11.2% higher
than that of AIS-VN, 10.9% higher than AIS-MT and 1.5%
higher in Iris Dataset, 5.1% higher than AIS-MT. For all five
datasets, AIS-SC has a more balanced performance in not only
general as a whole, but sensitivity and precision across classes
in all five datasets as well, compared to AIS implemented on
other two architectures. In the aspect of calculating speed, there
is a clear benefit from the parallel nature of Systemic Computing,
with AIS-SC performing quicker in all the five datasets. The
difference is particularly obvious for Wine and Breast Cancer
datasets (nearly 1.7 times quicker than AIS-VN) which shows
AIS-SC is much more competitive in dealing with high
dimension data. (This speedup occurs despite the fact that SC is
running as an optimized virtual machine on a von Neumann
computer, and is not truly executing in parallel.) As for standard
deviation, there is no clear winner across the three
implementations. AIS-SC shows a slightly higher standard
deviation, which is largely due to the fact that Systemic
Computing is highly stochastic.

 In summary, the results using the A principles show that the
same AIS algorithm implemented on different computing
architectures can produce subtly different results, because of the
changes necessary to implement that algorithm on differing
substrates. Considering the C principles, in terms of data
presentation which is mainly illustrated by ease of encoding and
precision, AIS implemented on all three selected architectures
show equivalent performance. As for programmability, as
shown above, AIS-SC is also quite intuitive while programming

on VN is commonly accepted by researchers. On the other hand,
AIS-MT is more demanding in programming skills.
Furthermore, the innate mechanism endows AIS-SC with higher
capabilities in Concurrency, Fault Tolerance and Self-repair
especially while the other two versions fails to demonstrate
advantage in the above three aspects. Table 5 shows the three
versions of the AIS method evaluated using the C principles.

From the table above it is clear to see that AIS-MT improves
C Principles in the aspect of Scalability and Fault-Tolerance and
AIS-SC shows further improvement in the four aspects which
AIS-VN is not good at by exploiting the common innate features
between Multi-Threaded Architecture, Systemic Computer and
AIS. As AIS-SC is running on a virtual machine on VN
architecture, further improvement is expected on a true SC
computer [23], which will be examined in future experiments.

VI. CONCLUSION
In this paper we reviewed the development on traditional and

bio-inspired algorithms and evaluated current existing
implementation solutions for AIS both on conventional
computing architecture and unconventional computing
paradigms. The work introduced the concept of C Principles and
A Principles in order to compare the efficacy of AIS based
computing in terms of the exploitation of shared intrinsic
features between computer architectures and algorithms. The
work then focused on three computing architectures: von
Neumann Architecture, Multi-threaded Architecture and
Systemic Computing. We examined how to best realize AIS on

a non von Neumann computing architecture by improving the
classification system inspired from AIS on the platform of
systemic computation. AIS-VN, AIS-MT and AIS-SC were
compared in terms of C Principles and A Principles, the latter
using five benchmark datasets. The results showed that the use
of the bio-inspired SC architecture, even when running as a
virtual machine, improved the capability of the algorithm in
terms of scalability and fault tolerance while also improving
processing time, and achieving a competitive accuracy rate. This
provides evidence that measurable performance gains can be
achieved if hardware architectures are designed to support bio-
inspired algorithms such as AIS by ensuring that both share
intrinsic features.

REFERENCES
[1] DE CASTRO, L. N. 2007. Fundamentals of natural computing: an

overview. Physics of Life Reviews, 4, 1-36.
[2] DE CASTRO, L. N., VON ZUBEN, F. J. & KNIDEL, H. 2007. Artificial

Immune Systems, Springer.
[3] REENSTED, A. J. & TYRRELL, A. M. An endocrinologic-inspired

hardware implementation of a multicellular system. Evolvable Hardware,
2004. Proceedings. 2004 NASA/DoD Conference on, 2004. IEEE, 245-
252.

[4] QADIR, O., LIU, J., TIMMIS, J., TEMPESTI, G. & TYRRELL, A.
Hardware architecture for a bidirectional hetero-associative protein
processing associative memory. Evolutionary Computation (CEC), 2011
IEEE Congress on, 2011. IEEE, 208-215.

[5] ZAMORANO, A. G., TIMMIS, J. & TYRRELL, A. A flexible
decentralised communication architecture on a field programmable gate
array for swarm system simulations. Evolutionary Computation (CEC),
2011 IEEE Congress on, 2011. IEEE, 230-237.

[6] LIU, Y. & LI, W. Study on Hardware Implementation of Artificial
Immune System. Information Engineering and Computer Science
(ICIECS), 2010 2nd International Conference on, 2010. IEEE, 1-4.

[7] SMITH, S. L., GREENSTED, A. & TIMMIS, J. 2008. Hardware
acceleration of an immune network inspired evolutionary algorithm for
medical diagnosis. Evolvable Systems: From Biology to Hardware.
Springer.

[8] LIU, H., MILLER, J. F. & TYRRELL, A. M. Intrinsic evolvable hardware
implementation of a robust biological development model for digital
systems. Evolvable Hardware, 2005. Proceedings. 2005 NASA/DoD
Conference on, 2005. IEEE, 87-92.

[9] BRADLEY, D. & TYRRELL, A. A hardware immune system for
benchmark state machine error detection. wcci, 2002. IEEE, 813-818.

[10] CANHAM, R. & TYRRELL, A. M. 2003. A learning, multi-layered,
hardware artificial immune system implemented upon an embryonic
array. Evolvable Systems: From Biology to Hardware. Springer.

[11] KO, A., LAU, H. Y. K. & LEE, N. M. Y. 2008. AIS based distributed
wireless sensor network for mobile search and rescue robot tracking.
Artificial Immune Systems. Springer.

[12] WALLENTA, C., KIM, J., BENTLEY, P. J. & HAILES, S. 2010.
Detecting interest cache poisoning in sensor networks using an artificial
immune algorithm. Applied Intelligence, 32, 1-26.

[13] SALMON, H. M., DE FARIAS, C. M., LOUREIRO, P., PIRMEZ, L.,
ROSSETTO, S., RODRIGUES, P. H. D. A., PIRMEZ, R., DELICATO,
F. C. & DA COSTA CARMO, L. F. R. 2013. Intrusion detection system
for wireless sensor networks using danger theory immune-inspired
techniques. International journal of wireless information networks, 20,
39-66.

[14] LUO, R. & YIN, Q. 2011. A novel parallel clustering algorithm based on
artificial immune network using nVidia CUDA framework. Human-
Computer Interaction. Design and Development Approaches. Springer.

[15] SINNOTT-ARMSTRONG, N. A., GRANIZO-MACKENZIE, D. &
MOORE, J. H. 2010. High performance parallel disease detection: an
artificial immune system for graphics processing units. Computational
Genetics Laboratory Dartmouth Medical SchoolLebanon, NH, 3756.

[16] YANG, J., WANG, C., LIU, C. & YU, L. 2013. Cloud computing for
network security intrusion detection system. Journal of Networks, 8, 140-
147.

[17] ISMAIL, A. R. 2011. Immune-inspired self-healing swarm robotic
systems.

[18] SUN, S.-J., LEE, D.-W. & SIM, K.-B. Artificial immune-based swarm
behaviors of distributed autonomous robotic systems. Robotics and
Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, 2001. IEEE, 3993-3998.

[19] DE CASTRO, L. N. & VON ZUBEN, F. J. 2001. aiNet: an artificial
immune network for data analysis. Data mining: a heuristic approach, 1,
231-259.

[20] CAMPELO, F., GUIMARÃES, F. G., IGARASHI, H. & RAMÍREZ, J.
2005. A clonal selection algorithm for optimization in electromagnetics.
Magnetics, IEEE Transactions on, 41, 1736-1739.

[21] KIM, J. & BENTLEY, P. J. An evaluation of negative selection in an
artificial immune system for network intrusion detection. Proceedings of
GECCO, 2001. 1330-1337.

[22] LE MARTELOT, E. 2010. Investigating and Analysing Natural
Properties Enabled by Systemic Computation within Nature-inspired
Computer Models. EngD Thesis, Department of Electrical & Electronic
Engineering, UCL, London, 363.

[23] Bentley, P. J. (2009) Methods for Improving Simulations of Biological
Systems: Systemic Computation and Fractal Proteins. In Special Issue on
Synthetic Biology, J R Soc Interface 2009 6:S451-S466;
doi:10.1098/rsif.2008.0505.focus.

[24] White, J.A. and Garrett, S.M., 2003, September. Improved pattern
recognition with artificial clonal selection?. In International Conference
on Artificial Immune Systems (pp. 181-193). Springer Berlin Heidelberg.

[25] DENG, Y. & BENTLEY, P. J. Dynamic learning of heart sounds with
changing noise: an AIS-based multi-agent model using systemic
computation. Proceedings of the 2014 conference companion on Genetic
and evolutionary computation companion, 2014. ACM, 985-992.

[26] Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

