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A B S T R A C T

Proton magnetic resonance spectroscopy (1H-MRS) has provided valuable information about the neurochemical
profile of Alzheimer's disease (AD). However, its clinical utility has been limited in part by the lack of consistent
information on how metabolite concentrations vary in the normal aging brain and in carriers of apolipoprotein
E (APOE) ε4, an established risk gene for AD. We quantified metabolites within an 8 cm3 voxel within the
posterior cingulate cortex (PCC)/precuneus in 30 younger (20–40 years) and 151 cognitively healthy older
individuals (60–85 years). All 1H-MRS scans were performed at 3 T using the short-echo SPECIAL sequence
and analyzed with LCModel. The effect of APOE was assessed in a sub-set of 130 volunteers. Older participants
had significantly higher myo-inositol and creatine, and significantly lower glutathione and glutamate than
younger participants. There was no significant effect of APOE or an interaction between APOE and age on the
metabolite profile. Our data suggest that creatine, a commonly used reference metabolite in 1H-MRS studies,
does not remain stable across adulthood within this region and therefore may not be a suitable reference in
studies involving a broad age-range. Increases in creatine and myo-inositol may reflect age-related glial
proliferation; decreases in glutamate and glutathione suggest a decline in synaptic and antioxidant efficiency.
Our findings inform longitudinal clinical studies by characterizing age-related metabolite changes in a non-
clinical sample.

Introduction

1H magnetic resonance spectroscopy (MRS) is a non-invasive
technique used to measure the concentration of brain metabolites in
vivo. Over the last two decades, it has provided useful diagnostic
information about brain tumors (Callot et al., 2008), multiple sclerosis
(Narayana, 2005), and a wide range of metabolic disorders (Cecil,
2006). It has also been used to characterize the neurochemical profile
of depression (Godlewska et al., 2015), mild cognitive impairment
(Tumati et al., 2013), Alzheimer's disease (AD) (Graff-Radford and
Kantarci, 2013), and other dementias (Kantarci et al., 2004). Given its
noninvasive nature and the increasing availability of 3 T MR scanners,
1H-MRS has the potential to evolve into a useful clinical modality for

psychiatric and neurodegenerative disorders, but it is still largely
considered a research technique (Graff-Radford and Kantarci, 2013;
Oz et al., 2014). Several drawbacks have limited its clinical utility: the
lack of standardized approaches often yields varying results across
studies, and there is inconsistent information on how the concentration
of brain metabolites vary during healthy aging. Without knowledge of
the latter, it is difficult to conduct longitudinal assessments of patients
and disassociate alterations in metabolite levels that may be the result
of disease progression from those that accompany the aging process
(Haga et al., 2009).

The most widely studied metabolites in the brain are N-acetyl
aspartate (NAA), creatine (Cr), choline, and myo-inositol, which
serve as surrogate markers of neuronal health, energy metabolism,
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membrane turnover and glial proliferation respectively (Miller, 1991).
Glutathione, glutamine, and neurotransmitters, such as GABA and
glutamate can also be quantified (Emir et al., 2011b; Novotny et al.,
2003) and have been related to behavioral changes in AD (Jahng et al.,
2016; Mandal et al., 2015, 2012; Saharan and Mandal, 2014). Two
literature reviews have highlighted the substantial variability in 1H-
MRS studies of these metabolites within the healthy aging brain (Haga
et al., 2009; Reyngoudt et al., 2012). NAA shows the least consistency
across studies; it has been found to decrease (Angelie et al., 2001;
Brooks et al., 2001; Driscoll et al., 2003; Gruber et al., 2008; Harada
et al., 2001; Lundbom et al., 1999), increase (Charlton et al., 2007;
Schuff et al., 1999) and remain unchanged with age (Chang et al., 1996;
Leary et al., 2000; Pfefferbaum et al., 1999; Reyngoudt et al., 2012;
Saunders et al., 1999), depending on the region of the brain and choice
of metabolite quantification technique. Similarly, there have been
findings of increases (Angelie et al., 2001; Chang et al., 1996; Chiu
et al., 2014; Gruber et al., 2008; Leary et al., 2000; Pfefferbaum et al.,
1999) or no changes (Brooks et al., 2001; Charlton et al., 2007; Harada
et al., 2001; Reyngoudt et al., 2012; Saunders et al., 1999; Schuff et al.,
1999) in the concentration of choline with age across different parts of
the brain including both grey and white matter structures. Age-related
variations in myo-inositol have been more consistently reported, with
most studies showing higher concentrations in older people (Chang
et al., 1996; Gruber et al., 2008; Raininko and Mattsson, 2010;
Reyngoudt et al., 2012; Ross et al., 2006), although there have also
been reports of stable levels of myo-inositol within white matter with
age (Leary et al., 2000; Saunders et al., 1999). By comparison, the
concentration of glutathione (Emir et al., 2011a) and glutamate (Chang
et al., 2009; Grachev and Apkarian, 2001; Kaiser et al., 2005; Marsman
et al., 2013; Sailasuta et al., 2008) are known to decline with age across
widespread brain regions.

Such discrepancies have been attributed to differences in 1H-MRS
methods, such as voxel position, data acquisition, analysis and report-
ing techniques (Haga et al., 2009; Reyngoudt et al., 2012). For
instance, reporting metabolite concentrations as relative ratios of
creatine (Cr) has been suggested to be misleading (Jansen et al.,
2006), as creatine has increasingly been found to vary with age and
across different brain regions (Angelie et al., 2001; Chang et al., 1996;
Charlton et al., 2007; Chiu et al., 2014; Gruber et al., 2008; Leary et al.,
2000; Pfefferbaum et al., 1999; Reyngoudt et al., 2012; Saunders et al.,
1999; Schuff et al., 2001). Underpowered studies also contribute to the
between-study variability; a systematic review of 18 1H-MRS publica-
tions, comparing healthy young ( < 60 years) and older ( > 60 years)
people, found an average of only about 16 older subjects per study.
There is, therefore, an evident need for large-scale studies in healthy
older participants (Haga et al., 2009).

Here, we conducted a single voxel 1H-MRS study in the posterior
cingulate cortex (PCC)/precuneus of 30 younger and 151 older
individuals. We focused on this area because it is one of the first
regions in the brain to show a decline in structural and functional
integrity both during healthy aging as well as in age-related neurode-
generative disorders like AD (Buckner et al., 2005; Greicius et al.,
2004; Lehmann et al., 2010). There is considerable evidence for
metabolite signatures of late-onset AD (lower NAA/Cr, glutamate,
glutamine and glutathione, and higher inositol/Cr) in the cortex of
patients relative to healthy controls, particularly within the PCC/
precuneus (Graff-Radford and Kantarci, 2013; Kantarci et al., 2013,
2007, 2004, 2002, 2000; Mandal et al., 2012; Miller et al., 1993; Riese
et al., 2015; Saharan and Mandal, 2014). These metabolic changes may
be useful biochemical imaging markers of AD, possibly signifying
underlying oxidative, metabolic and neuronal damage. However,
relatively little is known about how the metabolite profile of the PCC
is affected during normal aging and in people who are at a genetic risk
of developing AD (Chiu et al., 2014; Reyngoudt et al., 2012). The APOE
ε4 allele is the best-established genetic risk factor for sporadic late-
onset AD (Bertram and Tanzi, 2009), whereas the rarer (and relatively

understudied) ε2 allele is believed to be protective against AD (Suri
et al., 2013). There is conflicting information about whether the
characteristic metabolite signatures of AD precede its clinical onset
and whether or not the APOE alleles influence the normal aging
process (Gomar et al., 2014; Kantarci et al., 2002, 2000). We therefore
also investigated the effects of the three APOE alleles (ε2, ε3 and ε4) on
PCC metabolites.

Methods and materials

Participants

The younger and older groups belonged to different studies, each with
their own study-specific recruitment protocols (recruitment and genotyp-
ing process detailed in Supplementary materials) (Filippini et al., 2014;
Suri et al., 2014). Nevertheless, identical scan acquisition protocols,
analysis techniques, and exclusion criteria for demographic variables
and spectral quality were used for both the age groups. Data from 30
young participants (20–40 years) and 117 cognitively healthy older
participants (60–85 years) met the inclusion and exclusion criteria and
our strict limits for spectral quality. All older participants were assessed
for cognitive impairment using the Montreal Cognitive Assessment
(MoCA) and only those with scores ≥26 were included in the study
(Nasreddine et al., 2005). APOE genotype information was available for
all 30 young participants and 100 of the 117 older participants. There
were 14 ε2-carriers (n=1 ε2ε2, n=13 ε2ε3), 86 ε3-homozygotes and 30
ε4-carriers (n=2 ε4ε4, n=28 ε3ε4) between 20 and 85 years.

1H-MRS acquisition and analysis

All participants were scanned at the Oxford Centre for Functional
Magnetic Resonance Imaging of the Brain (FMRIB) using a 3 T Verio
scanner (Siemens Healthcare, Erlangen, Germany) with a 32-channel
head coil. The neuroimaging protocol included:

Structural MRI
High-resolution 3D T1-weighted images were acquired using a

multi-echo MPRAGE (ME-MPRAGE) sequence (van der Kouwe et al.,
2008) (TR=2530 ms, TE=1.79/3.65/5.51/7.37 ms, voxel dimen-
sion=1 mm3). FMRIB's automated segmentation tool (FAST) was used
to segment the structural brain images into grey matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) in order to compute the
tissue composition of the voxel (Zhang et al., 2001).

Single-voxel 1H-MRS
Data were acquired from a 2×2×2 cm3 voxel located in the PCC and

precuneus region (Fig. 1) similar to the voxel placement in previous
studies (Gomar et al., 2014; Kantarci et al., 2004, 2000). We positioned
the voxel manually by referring to anatomical landmarks on the
structural scan, and acquired single volume data at short echo time
(TE) using the SPin-ECho full Intensity Acquired Localized (SPECIAL)
sequence (Mekle et al., 2009; Near et al., 2013) with Variable Power
radio-frequency pulses with Optimized Relaxation delays (VAPOR)
water suppression (Tkác et al., 2001) (TE=8.5 s, TR=4000 ms, spectral
width=2000 Hz, 128 averages, acquisition time=9 min 6 s). This
sequence allows for the simultaneous quantification of several meta-
bolites within a single acquisition without the need for spectral editing,
and minimizes signal decay from T2 relaxation; and the reliability and
specificity of short-TE 1H-MRS measurements of metabolites like
glutathione has been described (Deelchand et al., 2016; Godlewska
et al., 2015; Mekle et al., 2009; Near et al., 2013; Terhune et al., 2015;
Wijtenburg et al., 2014). We used an automated shim tool and outer
volume suppression before each scan to saturate spins on all six sides
of the voxel. Eight averages of water un-suppressed data were acquired
with the same outer volume suppression scheme just prior to the
water-suppressed acquisition (Near et al., 2013).
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For all spectra, an in-house MATLAB (Natick MA, USA) based
semi-automated processing protocol was applied as outlined previously
(Near et al., 2013). Briefly, the processing chain involved correction for
eddy currents, the removal of motion-corrupted averages and correc-
tions for frequency drifts prior to signal averaging. All processed data
were analyzed with LCModel (Version 6.3-1B) (Provencher, 2001),
using a basis set that consisted of 21 simulated basis spectra.
Macromolecule spectra acquired using an inversion recovery sequence
from the anterior cingulate cortex of five independent volunteers
(TR=3 s, TI=0.820 s, TE=8.5 ms) were included in the basis set
(Kühn et al., 2016). No baseline correction, zero filling or line broad-
ening was applied to the in vivo data before input into LCModel. The
spectra were fitted over the 0.5–4.2 ppm range. Spectral quality was

assessed using strict quality limits (Jansen et al., 2006; Kreis, 2004).
The spectra of 34 out of 151 subjects from the older group that did not
meet the guidelines were removed from further analysis. All included
spectra had Full Width Half Maximum (FWHM) < 0.06 ppm (~8 Hz)
and signal-to-noise ratio (SNR) > 50 as output by LCModel, with no
outliers for either of the measures. As reliability criterion we used a
Cramer-Rao lower bound threshold of 20% (Jansen et al., 2006; Kreis,
2004). Accordingly, alanine, GABA and lactate could not be reliably
measured in over 50% of the participants in the older group and were
excluded from further analysis. We measured the water-scaled con-
centrations of aspartate (Asp), glycerophosphocholine (GPC), phos-
phocholine (PCh), creatine, phosphocreatine (PCr), glucose (Glc),
taurine (Tau), glutamine (Gln), glutamate (Glu), glutathione (GSH),

Fig. 1. (A) Placement of the 8 cm3 1H-MRS voxel in the PCC/precuneus on a midline T1-weighted image. (B-C) Example 1H-MRS spectra showing the LCModel fit (Version 6.3-1B) for
a participant from the (B) younger and (C) older age group. The lower black curve is the baseline. The data is plotted as a thin black spectrum and the LCModel fit to the data is the thick
red spectrum. The top panel contains the residuals, which are fairly scattered about zero, indicating a good fit of the model to the data. Abbreviations: A: anterior, P: posterior, S:
superior, I: inferior.
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myo-inositol (MI), NAA, N-acetylaspartylglutamate (NAAG). GPC and
PCh were combined to quantify total choline content (tCho), and
similar measures were made for total creatine (Cr+PCr), total NAA
(NAA+NAAG) and total glucose (Glc+Tau), as previously described
(Mekle et al., 2009). In agreement with previous reports, we used
creatine as a metabolite of interest, rather than as a reference for other
metabolites in this study (Jansen et al., 2006). Sample spectra together
with their fits from LCModel are presented in Fig. 1.

As expected, the older group had generally broader line widths than
the younger group. The two groups belonged to different samples, each
with their own study protocols, and the 1H-MRS sequences, although
identical, were acquired at different times during the multimodal scan
protocol. Whereas in the young group the 1H-MRS data were acquired
towards the start of the protocol, the older group had the 1H-MRS
sequence towards the end, immediately after high-duty-cycle gradient
switching multiband resting-state fMRI [TR/TE=1.3 s/40 ms, field of
view=212 mm, 460 volumes, acquisition time=10 min 10 s] and EPI-
based DTI acquisition [TR/TE=8.9 s/91.2 ms, field of view=192 mm,
b-value=1500 s/mm2, 60 directions+ 5 B0, acquisition time=9 min
56 s] (Filippini et al., 2014). The fMRI and DTI acquisitions generated
gradient-induced frequency drift which impaired the spectral quanti-
fication (Lange et al., 2011). Thus, in order to minimize the effect of
longitudinal drift in scanner hardware on the spectra for the older
group, we included line width as a confounding covariate in all our
analyses and performed an L2 normalisation of the signal intensity of
metabolites measured by LCModel. Spectra were normalized to ac-
count for the entire metabolic profile, i.e. the water-scaled signal
intensity of each metabolite was divided by the sum of the water-
scaled signal intensities of all metabolites reliably quantified by
LCModel (Andronesi et al., 2012). Accordingly, for each subject:

Metabolitenormalized=Metaboliteraw/
(tChoraw+tCrraw+tNAAraw+MIraw+Glnraw+Gluraw+GSHraw+Aspraw+tGl-
craw). Here, “raw” refers to the water-scaled signal intensity of each
metabolite.

Statistical analysis

We used SPSS (SPSS, Chicago IL) for statistical analysis.
Sociodemographic variables (age, education), spectral line width, and
voxel tissue composition were compared using unpaired t-tests (between
the two age groups) or one-way analysis of variance (ANOVA) (across the
three APOE groups). Exact Fisher's test was used for categorical variables
(sex). Χ2-test was used to confirm that the APOE distribution of our
sample reflected that expected in a healthy Caucasian population. The
effects of age, APOE, and the interaction of APOE×age on 1H-MRS
metabolite ratios were computed using a multivariate analysis of covar-
iance (MANCOVA) with post-hoc Bonferroni correction for multiple
comparisons across the three APOE groups.

Results

Effect of age on metabolite concentrations

Thirty young and 117 healthy elderly individuals were compared for
metabolite concentrations in the PCC/precuneus. The two groups did
not differ in years of education or voxel content of white matter (WM) (
Table 1). There were significant group differences in sex, spectral line
width, and GM and CSF concentrations within the voxel, and these
variables were therefore included as covariates in the model for
studying the effect of age on voxel metabolite content.

The MANCOVA revealed a significant effect of age on metabolite
concentrations (F(8,134)=11.45, p < 0.001; Wilk's λ, partial η2=0.41).
Post-hoc comparisons showed that relative to the young group, the
older group had significantly higher levels of myo-inositol
(F(1,141)=5.08, p < 0.05; partial η2=0.04) and total creatine
(F(1,141)=33.58, p < 0.001; partial η2=0.19), and significantly lower

levels of glutamate (F(1,141)=34.40, p < 0.001; partial η2=0.20) and
glutathione (F(1,141)=5.56, p < 0.05; partial η2=0.04) (Fig. 2). To
account for multiple comparisons across the metabolites, we performed
an additional Bonferroni correction and accepted statistical signifi-
cance at p < 0.005. Accordingly, only age-related changes in total
creatine and glutamate survived. There were no group differences in
any other metabolite. For reference, we have also included myo-
inositol/creatine, NAA/creatine and myo-inositol/NAA ratios in
Table 1. There was a significant decrease in NAA/creatine and increase
in myo-inositol/NAA in the older group (p < 0.001).

Table 1
Effect of age.

Sociodemographics, tissue content and metabolite concentrations within the voxel for
the younger and older groups. Values represent means ± standard deviations. P values
indicate results of chi-square test (for sex), t-tests (for sociodemographics, voxel
characteristics) and MANCOVA (for metabolite concentrations). Sex, GM% , CSF% and
FWHM were included as covariates. ** indicates comparisons which survived post-hoc
Bonferroni correction for multiple comparisons across metabolites.

Younger Older P
N=30 N=117

Sociodemographics
Age (yrs) 23.87 ± 4.95 68.88 ± 5.32 < 0.001
Education (yrs) 17.08 ± 2.63 16.01 ± 3.29 0.10
Sex (% males) 56.7% 78.6% < 0.05
Voxel characteristics
GM (%) 0.60 ± 0.03 0.52 ± 0.10 < 0.001
WM (%) 0.23 ± 0.03 0.23 ± 0.04 0.72
CSF (%) 0.17 ± 0.03 0.23 ± 0.06 < 0.001
FWHM (ppm) 0.026 ± 0.005 0.034 ± 0.006 < 0.001
Neuropsychological tests
CES-D – 3.71 ± 3.98 (range 0–16)
MOCA – 28.35 ± 1.15 (range 26–30)
Metabolites
Aspartate 0.0631 ± 0.004 0.0636 ± 0.006 0.41
Glutamine 0.0447 ± 0.006 0.0538 ± 0.009 0.21
Glutamate 0.2152 ± 0.007 0.1962 ± 0.009 <0.001**
Glutathione 0.0241 ± 0.001 0.0223 ± 0.002 <0.05
Myo-inositol 0.1296 ± 0.007 0.1375 ± 0.010 <0.05
Total NAA 0.2489 ± 0.007 0.2405 ± 0.012 0.29
Total creatine 0.1732 ± 0.007 0.1810 ± 0.008 <0.001**
Total choline 0.0266 ± 0.002 0.0273 ± 0.003 0.13
Total glucose 0.0747 ± 0.007 0.0779 ± 0.014 0.61
Myo-inosital/

Creatine
0.7491 ± 0.049 0.7608 ± 0.061 0.28

NAA/Creatine 1.4398 ± 0.078 1.3313 ± 0.093 <0.001*
Myo-inositol/NAA 0.0904 ± 0009 0.1040 ± 0.012 <0.001*

Fig. 2. The effect of age on metabolites. Graphs show significant reductions in
glutathione and glutamate, and increases in myo-inositol and creatine in the older
group. Spectral line width, sex, voxel GM and CSF content were included as covariates.
Metabolites are expressed as normalised concentrations. Bars represent means ± SD. *p
< 0.05, **p < 0.005.
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Effect of APOE on metabolite concentrations

APOE information was available for 30 young and 100 of the 117
older participants. Thus, 14 ε2-carriers, 86 ε3-homozygotes, and 30 ε4-
carriers aged 20–85 years were compared for effects of APOE within
the voxel. There was no significant difference in the proportion of
young subjects in the three APOE groups (χ2=0.68, df=2, p=0.71).
Further, there were no significant APOE-differences in sex (χ2=4.42,
df=2, p=0.11), age, years of education, spectral line width, voxel CSF,
GM or WM content. The multivariate analysis revealed no significant
effect of APOE (F(16,234)=0.68, p=0.81; Wilk's λ, partial η2=0.05) or
interaction between APOE and age group (F(16,234)=0.77, p=0.72,
Wilk's λ, partial η2=0.05) on metabolite concentrations (Table 2). For
reference, we have also displayed myo-inositol/creatine, NAA/creatine
and myo-inositol/NAA ratios, which did not differ significantly be-
tween APOE groups.

Discussion

To our knowledge this is the first examination of metabolite
concentrations in a relatively large sample of cognitively healthy
individuals older than 60 years. We have shown age-related alterations
in the concentrations of metabolites that are independent of APOE
genotype. Most importantly, we found that creatine, which has widely
been used as a reference metabolite, does not remain stable with age
within the PCC/precuneus and may therefore not be a suitable
reference in studies involving a broad age-range.

Effect of age on metabolite concentrations

We compared 30 young and 117 older participants and found
significant higher concentrations of total creatine and myo-inositol and
lower levels of glutamate and glutathione within the PCC/precuneus of

older individuals. Group differences in total creatine and glutamate
survived an additional conservative correction for multiple compar-
isons across metabolites. These changes may point towards alterations
in cellular efficiency that are characteristic of the normal aging process.

Our finding of a significant age-related increase in total creatine is
supported by several previous reports both within this brain region
(Chiu et al., 2014; Reyngoudt et al., 2012) and in other parts of the
brain including frontal and parietal grey and white matter (Angelie
et al., 2001; Chang et al., 1996; Charlton et al., 2007; Gruber et al.,
2008; Leary et al., 2000; Pfefferbaum et al., 1999; Saunders et al.,
1999; Schuff et al., 2001), although stable levels of creatine have also
been noted in the frontal lobe of males (Brooks et al., 2001). Creatine is
a marker of energy metabolism and it is predominantly found in glia
(Urenjak et al., 1993). Increases in creatine could be indicative of age-
related glial proliferation (Charlton et al., 2007; Leary et al., 2000;
Reyngoudt et al., 2012), particularly when observed together with a rise
in the concentration of another prominent glial marker, myo-inositol
(Brand et al., 1993), as is the case in our study and other investigations
(Chang et al., 1996; Gomar et al., 2014; Gruber et al., 2008; Raininko
and Mattsson, 2010; Reyngoudt et al., 2012; Saunders et al., 1999).

Importantly, our findings add to the growing body of evidence
expressing reservations about using creatine as a reference metabolite
in 1H-MRS evaluations of metabolite concentrations, particularly
across a wide age-range (Jansen et al., 2006). This is clearly illustrated
in our comparison of the water-scaled NAA and myo-inositol concen-
trations that were normalized to the summated metabolites with those
normalized to creatine. NAA is perhaps the most widely studied
metabolite in the brain. It is present exclusively in neurons (Urenjak
et al., 1993). Levels of NAA are altered in neurodegenerative diseases
(Graff-Radford and Kantarci, 2013), but reports within the healthy
aging brain have been far less consistent, with studies finding
increases, decreases and no change in NAA/Cr (Haga et al., 2009;
Reyngoudt et al., 2012). However, while observed decreases in NAA/Cr
have been interpreted as decreases in levels of NAA, they may in fact
simply be methodological artefacts that are wholly explained by
increases in creatine (Haga et al., 2009; Reyngoudt et al., 2012). Our
observation of no significant age-related change in normalized water-
scaled NAA concentrations, but a significant decline in NAA/Cr,
supports this notion that NAA/Cr studied over a wide age-range may
be confounded by an age-related increase in creatine. In agreement
with our findings, previous cross-sectional (Gomar et al., 2014;
Reyngoudt et al., 2012) and longitudinal reports (Kantarci et al.,
2007; Schott et al., 2010) have found that PCC NAA concentrations
remain stable with age, with a recent study concluding that whole-brain
NAA is also conserved during normal aging (Wu et al., 2012). Stable
PCC NAA levels may suggest a lack of measurable age-related loss in
number of neurons within the PCC, but it does not rule out the
existence of neuronal shrinkage in this region (Reyngoudt et al., 2012),
the latter also being a prominent feature of the aging brain.

We also found significantly lower levels of glutathione and gluta-
mate in the older age group. Glutathione is an antioxidant that
regulates the elimination of toxic oxidative stressors (Forman et al.,
2009) and has been reported to decrease with age (Emir et al., 2011b).
This decline may stem from an increase in cellular glutathione
consumption because of higher occurrences of reactive oxidative
species with age. Alternatively, it may be suggestive of a shortfall in
glutathione production, which could eventually lead to downstream
deficits in protection from oxidative stress (Maher, 2005). Both ideas
lend support to the free radical theory of aging (Beckman and Ames,
1998). In line with our findings, age-related reductions in glutamate
have also been observed in 1H-MRS studies of cortical grey matter
(Chang et al., 2009; Grachev and Apkarian, 2001; Kaiser et al., 2005;
Marsman et al., 2013; Raininko and Mattsson, 2010; Sailasuta et al.,
2008). Glutamate is the main excitatory neurotransmitter in the brain,
mediating key cognitive and motor functions that are impaired during
the normal aging process (Segovia et al., 2001). Unlike creatine and

Table 2
Effect of APOE.

Sociodemographics, tissue content and metabolite concentrations within the voxel for
the three APOE groups. Values represent means ± standard deviations. P values are
results of chi-square (for sex), one-way ANOVA (for sociodemographics, voxel char-
acteristics, metabolites).

ε2-carriers ε3-homozygotes
N=86

ε4-carriers P
N=14 N=30

Sociodemographics
Age (yrs) 55.60 ± 19.57 59.93 ± 19.69 56.26 ± 20.68 0.57
% from older

group
71.4% 79.1% 73.3% 0.71

Education (yrs) 17.36 ± 2.93 15.91 ± 3.19 16.40 ± 3.51 0.28
Sex (% males) 78.6% 67.4% 86.7% 0.11
Voxel characteristics
GM (%) 0.53 ± 0.05 0.54 ± 0.10 0.55 ± 0.05 0.77
WM (%) 0.25 ± 0.06 0.23 ± 0.04 0.24 ± 0.04 0.28
CSF (%) 0.22 ± 0.07 0.22 ± 0.06 0.21 ± 0.06 0.88
FWHM (ppm) 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.65
Metabolites
Aspartate 0.0641 ± 0.006 0.0635 ± 0.005 0.0636 ± 0.007 0.92
Glutamine 0.0491 ± 0.008 0.0517 ± 0.010 0.0524 ± 0.007 0.53
Glutamate 0.2013 ± 0.014 0.2002 ± 0.012 0.1997 ± 0.011 0.91
Glutathione 0.0226 ± 0.003 0.0227 ± 0.002 0.0230 ± 0.002 0.81
Myo-inositol 0.1382 ± 0.014 0.1345 ± 0.010 0.1367 ± 0.010 0.33
Total NAA 0.2450 ± 0.013 0.2435 ± 0.012 0.2403 ± 0.011 0.35
Total creatine 0.1757 ± 0.008 0.1799 ± 0.009 0.1801 ± 0.009 0.21
Total choline 0.0273 ± 0.003 0.0271 ± 0.003 0.0272 ± 0.002 0.95
Total glucose 0.0766 ± 0.010 0.0769 ± 0.013 0.0772 ± 0.012 0.99
Myo-inosital/

Creatine
0.7861 ± 0.062 0.7487 ± 0.061 0.7595 ± 0.054 0.09

NAA/Creatine 1.3988 ± 0.123 1.3564 ± 0.093 1.3390 ± 0.113 0.19
Myo-inositol/

NAA
0.1001 ± 0.017 0.0998 ± 0.012 0.1031 ± 0.014 0.51
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myo-inositol, glutamate is localized primarily in neurons and its
concentration in the brain is an indicator of neuronal integrity (Patel
et al., 1982). Glutamate reductions have therefore often been attributed
to neuronal loss, shrinkage, or a decline in neurotransmission (Kaiser
et al., 2005).

Effect of APOE on metabolite concentrations

This is the first study to characterize the effects all three APOE
alleles (14 ε2-carriers, 86 ε3-homozygotes and 30 ε4-carriers) on PCC/
precuneus metabolites across a wide age-range. We found no effect of
APOE or an interaction of APOE and age group. Our findings are in line
with two previous small studies (with largely overlapping samples) of
healthy elderly ε3-homozygotes and ε4-carriers, which also found no
significant APOE-differences in NAA/Cr, myo-inosital/Cr and NAA/
myo-inositol within the PCC (Kantarci et al., 2002, 2000). In contrast, a
larger study of 89 ε3-homozygotes and 23 ε4-carriers found no effect of
APOE on NAA/Cr, but significantly higher myo-inositol/Cr and Cho/Cr
and in old ε4-carriers relative to ε3-homozygotes within the PCC
(Gomar et al., 2014). More recently, Riese and colleagues reported
significantly lower NAA/Cr concentrations in ε4 carriers (n=9) relative
to non-carriers (n=27), but found no APOE-related changes in GABA
and glutamate+glutamine (Riese et al., 2015). However, 50% of the ε4
carriers in Riese and colleagues’ study had amnestic mild cognitive
impairment, which makes it difficult to disassociate the effects of APOE
from any interaction between APOE and underlying amyloid pathology.

The lack of observable APOE effects in our study may be attributed
to several factors. We were limited by the constraints of a cross-
sectional design and potential population biases. Our older group was
screened for cognitive impairment and there is a possibility that we
may have only included “survivors” who have sidestepped their genetic
status for cognitive decline (Gomar et al., 2014). This may have
diminished any potential modulatory effect of the ε4 allele. We also
did not have sufficient ε2 and ε4 homozygotes to test for a gene-dose
effect. Alternatively, it could be that any potential underlying effects of
APOE on brain metabolites are region-specific, and that the PCC may
not be the ideal region of interest to study APOE, particularly in
cognitively healthy individuals. Recent studies point towards effects of
ε4 on NAA/Cr and myo-inositol/Cr within the hippocampus in healthy
individuals and MCI patients (Calderon-Garciduenas et al., 2015; Yin
et al., 2015). Although the reproducibility of measurements obtained
from 1H-MRS of the hippocampus may be lower than in other brain
regions (Geurts et al., 2004), advances in acquisition techniques have
allowed for more reliable quantification of hippocampal metabolites
(Allaili et al., 2015; Bednarik et al., 2015). Given the relevance of the
hippocampus in studies of APOE and AD, future examinations of the
pre-clinical effects of APOE should consider focusing on this region.
Our findings suggest that APOE may not strongly influence PCC/
precuneus metabolite concentrations in cognitively healthy individuals
and that any gene effects in this region that have been observed in AD
patients (e.g. lower NAA/Cr, higher myo-inositol/Cr) may relate to
later stages of the neuropathological cascade.

Limitations and conclusions

This study offers an improved understanding of age-related changes
in metabolite concentrations. However, we must consider some
limitations when interpreting our results. First, metabolite concentra-
tions vary between different parts of the brain and between grey and
white matter (Angelie et al., 2001; Kreis, 2004; Schuff et al., 2001).
Age-dependent changes are therefore likely to be specific to the
examined brain region, and our findings must be interpreted in the
context of the PCC/precuneus. Second, because of the increasing
speculation about the use of creatine as a reference, particularly in
studies of subjects with a wide age-range, we refrained from reporting
metabolites referenced to creatine in this study. We have therefore

reported normalized values of metabolites for each subject, which were
referenced to the sum of all reliably estimated metabolites within the
spectrum. Although this approach is unconventional, it has been used
previously and it seems unlikely that it would introduce systematic
biases (Andronesi et al., 2012). Third, metabolite levels are known to
vary in neurodegenerative disorders like AD (Graff-Radford and
Kantarci, 2013; Kantarci et al., 2002, 2000) and without longitudinal
follow-up we cannot entirely rule out the possibility of participants
from the older group being in the early stages of dementia. However,
since we employed a cognitive screening test for this group, it is
unlikely that the observed age-related changes in metabolites reflect
neurodegenerative processes and are, instead, more suggestive of
neurological changes accompanying normal aging. Fourth, our study
did not include participants who were 40–60 years old and future
studies should consider focusing on this important age range so as to
obtain a more complete understanding of the metabolite profile during
aging.

We have addressed the current lack of consistent information on
age-related changes in the concentration of metabolites and the need
for large-scale studies of older populations by examining 1H-MRS
measurements in a relatively large sample of cognitively healthy
individuals. We focused on a single voxel within the PCC/precuneus,
which is a region of interest in studies of neurodegeneration but has
thus far been understudied in the context of healthy aging. We have
shown that metabolites within the PCC/precuneus are susceptible to
the aging process and our findings can better inform studies involving
longitudinal patient follow-up, where changes in metabolite levels
resulting from disease progression may be confounded by those
secondary to normal aging.
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