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Trends	of	growth	and	differentiation	in	street	networks	

	

Abstract.	

Research	in	the	area	of	Space	syntax	tends	to	be	centred	on	static	network	representations	of	the	

built	 environment	 and	 its	 embedded	 social	 logic.	 Lacking	 the	 element	 of	 time,	 this	 synchronic	

representation	cannot	capture	the	dynamics	of	growth	and	change	in	urban	systems.	In	this	paper,	

we	argue	that	the	abstract	values	of	space-time	as	a	dual	dimension	play	a	key	role	as	generators	of	

city	systems.	Hence,	we	map	urban	growth	and	seek	explanatory	descriptions	for	the	driving	forces	

that	characterise	growth	and	differentiation	in	street	networks.	In	two	case	studies;	Manhattan	and	

Barcelona,	 synchronic	 states	of	 the	growing	 systems	are	 analysed.	The	 states	 are	 separated	by	a	

short	 radius	 of	 time.	 The	 analysis	 leads	 to	 regularities	 that	may	 help	 define	 the	 local	 and	 global	

processes	that	characterise	urban	growth	marked	by	alternating	periods	of	expansion	and	pruning	

in	street	networks.		

Introduction	

Instigated	by	the	call	to	understand	cities	as	matters	of	organised	complexity	(Jacobs,	1961),	many	

theorisations	were	made	on	the	description	of	such	organisation	and	how	that	organisation	came	to	

be	(Krafta,	1999;	Portugali	et	al,	2011).	The	consequences	of	a	proclaimed	self-organised	behaviour	

can	-perhaps-	be	traced	in	the	spatial	signature	of	growth	(Al_Sayed,	2013),	and	the	invariant	trends	

that	characterise	it.	In	line	with	Jacobs’	call	(1961),	complexity	theories	of	cities	regarded	urban	

systems	as	emergent	products	of	complex	adaptive	processes	that	involve	nonlinear	interactions	

between	different	sets	of	variables.	The	definition	of	complex	adaptive	behaviour	in	urban	systems	

was	very	much	dependant	on	initial	conditions	and	the	actors	that	are	put	on	display	in	simulation	

models	(Allen	et.	al.,	1977;	Allen	and	Sanglier,	1979;	Portugali	et	al,	2011).	Until	recently	(Masucci	et	

al,	2013),	there	has	been	little	effort	dedicated	to	outline	the	very	trends	that	urban	systems	

converge	to	in	their	growth	patterns,	where	the	majority	of	studies	were	more	focused	on	

comparing	cities	across	different	geographies	(Carvalho	and	Penn,	2004;	Bettencourt	et	al,	2007).	

Recently	there	has	been	a	wide	interest	in	the	research	community	to	empirically	define	the	local	

mechanisms	that	generate	the	patterns	we	observe	in	cities	(Al_Sayed	et	al,	2009;	2010;	2012;	

Strano	et	al,	2012;	Barthelemy	et	al,	2013;	Serra	et	al,	2016).		

With	the	scope	of	identifying	the	local	and	global	trends	that	cities	display	in	their	growth	

behaviour,	an	empirical	investigation	is	held	in	this	paper	focusing	on	two	case	studies;	Barcelona	

and	Manhattan.	Historical	data	on	street	networks	is	mapped	and	analysed	using	space	syntax	

(Hillier	and	Hanson,	1984).	The	values	of	street	network	configurations	are	used	to	build	statistical	



2	
	

models	of	growth.	The	mapping	reveals	positive	and	reinforcing	feedback	mechanisms	that	operate	

through	alternating	periods	of	expansion	and	pruning	in	the	urban	grid.		

Street	network	data	

For	the	purpose	of	our	investigation,	street	network	maps	were	manually	traced	and	extracted	as	a	

vector	 layer	 on	 top	 of	 a	 set	 of	 historical	maps	 (see	 appendix	 1)	 that	 record	 the	 history	 of	 urban	

development	 of	Manhattan	 and	 Barcelona.	 The	maps	 of	Manhattan	were	 observed	 in	 the	 years;	

1642,	1661,	1695,	1728,	1755,	1767,	1789,	1797,	1808,	1817,	1836,	1842,	1850,	1880,	1920,	and	2008.		

The	sequential	dates	of	the	maps	of	Barcelona	are;	1260,	1290,	1698,	1714,	1806,	1855,	1891,	1901,	

1920,	 1943,	 1970	 and	 2008.	 Street	 network	 maps	 were	 drawn	 in	 such	 a	 way	 as	 to	 reduce	 the	

complexity	of	the	street	layout	to	the	fewest	and	longest	lines.	Axial1	lines	were	drawn	manually.	At	

each	stage	of	growth,	an	axial	line	was	drawn	to	match	the	exact	coordinates	of	the	axial	line	in	the	

former	stage.	This	rule	was	to	take	the	preference	when	considering	the	fewest	and	longest	lines	of	

sight.	

Tracing	growth	trends	in	historical	data	

The	next	two	sections	will	be	directed	towards	understanding	and	analysing	dual	historical	

transformations	in	the	organic	and	uniform	grids	of	Manhattan	and	Barcelona.	While	we	take	the	

synchronic	representation	of	cities	as	networks	interconnecting	spatial	elements,	we	map	

synchronic	episodes	of	growth	to	trace	their	diachronic	development	(Griffiths,	2009).	The	

assumption	is	that,	the	configurations	of	space	are	the	main	influential	factors	in	the	formation	of	

cities.	The	synchronic	view	of	space	might	be	identified	as	a	frame	in	time.	Hence,	a	resultant	

diachronic	model	would	be	constituted	of	a	sequence	of	synchronic	models.	We	assume	the	

presence	of	invariant	features	that	mark	the	general	trends	in	a	diachronic	model	of	urban	growth,	

hence	our	analysis	is	aimed	at	identifying	any	regularity	in	the	behaviour	of	urban	systems	as	they	

expand	and	change.		

In	order	to	build	an	explanatory	model	of	urban	development	we	chose	to	analyse	sequential	

synchronic	episodes.	In	Space	Syntax	terms,	these	episodes	might	be	represented	by	spatial	

networks	that	captures	street	configurations	at	each	historical	stage	of	growth.	To	calculate	

network	distance	we	used	the	segment2	representation	of	Space	Syntax	(Hillier	and	Iida,	2005).	The	

representation	is	manually	constructed	as	a	vector	layer	on	top	of	historical	map	data3.	Considering	

																																																													
1	The	topological	description	of	street	networks	might	be	simply	defined	as	the	fewest	and	longest	lines	of	sight	(axial	
lines)	that	cover	all	continuous	spaces	in	an	urban	region.	Each	axial	line	will	have	a	certain	connectivity	value	(degree);	
that	is	the	number	of	axial	lines	intersecting	with	it.	
2	A	finer-scale	description	of	streets	is	the	(segment	lines);	the	uninterrupted	street	interjunctions	that	link	two	road	
intersections	(Turner,	2000).	
3	see	appendix	1	
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the	two	cases	under	studies,	synchronic	states	of	the	growing	systems	were	analysed.	The	states	

are	separated	by	a	short	radius	of	time.	For	a	more	accurate	representation,	the	streets	were	

unlinked	were	there	are	multilevel	interchanges	in	the	road	infrastructure4.	Patterns	of	Integration5	

calculated	within	local	(500m)	and	global	(R2000m)	will	be	examined.	Of	interest,	is	how	values	of	

integration	distribute	and	change	over	time.	Further	to	that,	statistical	distributions	will	be	outlined	

for	each	stage	to	reveal	whether	the	probability	distributions	of	geometric	network	properties	

change	as	the	system	expands.	This	is	of	great	value,	since	the	distribution	of	road	networks	-

particularly	in	what	concerns	the	network	geometry-	was	not	studied	before	(Waters,	2006).	

1.	Syntactic	analysis	of	Manhattan’s	growth		

After	acquiring	historical	map	data	for	Manhattan6,	it	was	possible	to	map	and	analyse	the	growth	

of	the	street	network.	The	axial	and	segment	integration	values	of	each	historical	stage	of	growth	

were	computed	in	Depthmap	(Turner,	2010),	and	the	statistical	distributions	of	segment	integration	

maps	were	visualised	using	JMP	(SAS/Stat	software).	In	the	maps	and	associated	distribution	plots,	

the	values	of	angular	segment	Integration	showed	an	increase	in	local	and	global	Integration	as	the	

urban	system	grows	(see	Figure	1).	Local	Integration	values	were	calculated	within	500	metre	radius	

which	almost	equals	five	minutes	walking	distance.	The	number	of	elements	retaining	high	local	

Integration	values	dropped	when	the	uniform	grid	was	imposed.	Spatially,	higher	values	appeared	

to	concentrate	in	downtown	Manhattan	and	Washington	Heights	areas.	During	the	later	phases	of	

growth,	clusters	with	high	local	Integration	values	appeared	to	concentrate	in	areas	that	have	grown	

organically	over	time.	On	a	global	scale	and	within	a	radius	that	captures	a	metric	distance	of	2000	

metres	from	each	segment	element,	there	was	a	more	recognisable	increase	in	Integration	values	as	

the	system	grows	(see	Figure	1).	The	highest	values	concentrated	in	the	Lower	Manhattan	area	at	

the	initial	stages	of	growth,	spreading	in	later	stages	to	the	midtown	area.		

Overall,	the	local	and	global	Integration	values	of	the	segment	elements	proved	to	fit	well	into	a	

heavy	tailed	lognormal	distribution	in	most	phases	of	growth	(see	Figure	1).	As	the	urban	system	

grew,	the	range	of	global	Integration	values	was	spreading	more	widely	than	the	range	of	local	

Integration	values.	Local	structures	preserved	their	range	of	values	with	slight	changes	on	the	mean	

and	median	values.	The	peaks	of	the	distribution	plots	for	local	Integration	sharpened	in	later	phases	

of	growth.	This	was	less	evident	when	rendering	global	Integration	values.	

Further	topological	structural	properties	are	listed	below	the	distribution	plots	to	reflect	on	how	

changes	on	the	shape	of	the	distribution	associated	a	change	on	the	topological	structures.	The	
																																																													
4	An	example	for	that	is	where	bridges	and	tunnels	connect	to	the	street	network.	
5	Integration	is	a	special	measure	of	angular	closeness	in	the	segment	network.	It	is	calculated	by	relating	total	angular	
depth	in	the	neighbourhood	to	the	node	count	(Turner,	2000).	Segment	integration	was	not	normalised	in	this	particular	
case	
6	see	appendix	1	
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topological	properties	were	defined	by	axial	Intelligibility	R2	(R2,	Rn)	and	Synergy	R2	(R2,	R5).	Along	

with	the	structural	properties,	the	distribution	shape	defined	by	the	mean,	median	and	skewness	

showed	interesting	patterns	where	transitional	states	in	the	street	network	distinguished	periods	of	

rapid	change.	With	these	measures,	two	sharp	changes	were	recognised;	one	in	the	years	(1695,	

1728)	and	the	other	in	the	years	(1850,	1880).	Both	periods	witnessed	critical	changes	in	the	grid	

directionality	and	structure.	These	changes	had	an	observable	effect	on	the	distribution	shape	as	

well	as	on	Intelligibility	and	Synergy	correlation	coefficients.	The	goodness	of	fit	measured	by	a	

Kolmogorov–Smirnov	limits	(KSL)	test7	acted	as	an	indicator	to	sharp	transitions	where	the	D	value	

suddenly	dropped	to	the	half.	In	this	case,	the	drop	marked	an	improvement	in	the	degree	to	which	

the	empirical	distribution	fits	the	reference	distribution	(the	lognormal	distribution).	There	was	no	

particular	rule	that	associated	the	rise	and	drop	of	Intelligibility	and	Synergy	on	one	hand	and	the	

mean	and	median	on	the	other	hand.	Generally,	the	structure	of	the	grid	was	weakened	when	

exposed	to	a	massive	addition	of	segment	street	elements	within	relatively	shorter	periods	of	time.	

After	a	sudden	drop	in	Intelligibility,	the	system	appeared	to	retrieve	the	structural	properties	it	had	

before.	In	parallel,	the	distribution	shape	settled	with	no	significant	changes.	These	findings	are	

significant	as	they	indicate	to	an	autonomous	process	that	takes	place	in	urban	structures.	This	is	

mostly	visible	in	the	way	the	street	network	preserved	certain	patterns	of	persistence	and	change.	

When	such	patterns	were	disturbed	by	an	artificial	intervention,	the	system	readapted	its	structure	

to	retrieve	its	prior	distribution	patterns.	

Overall,	the	analytical	attempts	to	understand	the	spatial	structure	of	Manhattan	underlined	several	

consistencies	that	were	noticeable	in	the	growth	process	of	the	urban	region.	On	both	local	and	

global	metric	radii,	segment	angular	Integration	values	increased	as	the	system	grew.	The	pace	of	

change	on	the	global	scale	was	more	rapid	than	that	on	the	local	scale.	The	latter	was	less	affected	

after	a	certain	stage,	probably	due	to	the	scale	of	measurement.	Where	evident,	the	increase	in	

Integration	values	seemed	to	be	directional.	It	generally	started	from	certain	centres	and	developed	

in	space	and	time.	Another	consistency	was	evident	in	how	the	street	network	presented	sharp	

changes	in	Intelligibility	and	Synergy	that	appeared	to	synchronise	with	changes	on	the	shape	of	

statistical	distributions.	The	sharp	transitional	stages	were	often	associated	with	a	massive	addition	

of	streets,	and	were	characterized	by	a	change	on	the	fitness	level	of	integration	values	to	a	

lognormal	distribution.	These	transitional	states	of	the	system	were	followed	by	a	period	where	the	

urban	system	adapted	back	to	its	prior	structural	patterns	to	improve	its	fitness	to	a	lognormal	

distribution.	

																																																													
7		KSL	test	measures	here	a	distance	between	the	empirical	distribution	function	of	the	segment	Integration	values	and	
the	cumulative	distribution	function	of	the	lognormal	distribution	
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Figure	1	Comparing	angular	Integration	maps	(radius	500	and	radius	2000	meters),	their	distribution	

plots,	and	the	axial	Intelligibility	R2	(R2,	Rn)	and	Synergy	R2	(R2,	R5)	for	each	stage	of	growth	in	

Manhattan.	

2.	Syntactic	analysis	of	Barcelona’s	growth		

In	this	section,	we	present	a	similar	set	of	analytical	investigations	to	that	applied	on	Manhattan’s	

case.	The	scope	is	to	examine	whether	a	different	case	study	would	present	different	trends	of	

persistence	and	change	in	the	statistical	distribution	of	accessibility	values.	Similar	to	Manhattan’s	
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case,	the	choice	of	growth	phases	to	be	examined	was	limited	to	the	data	available	(see	appendix	1).	

Axial	maps	were	drawn	manually	following	the	procedure	explained	in	earlier	sections.	The	axial	

representation	was	analysed	to	obtain	axial	Intelligibility	and	Synergy.	A	more	refined	segmental	

representation	was	also	used	to	obtain	angular	segment	Integration.	Statistical	distributions	were	

plotted	to	display	how	aggregate	properties	of	the	urban	system	change	in	time.		

The	segmental	angular	measures	appeared	to	plot	analogous	patterns	in	Barcelona	to	those	

explored	in	Manhattan	(see	Figure	2).	Similarities	appeared	where	organic	or	deformed	local	

structures	preserved	the	highest	values.	Over	the	period	of	growth,	the	old	city	continued	to	

preserve	the	highest	values	of	angular	segment	Integration	(R	500m).	Equally,	emergent	suburban	

town	centres	in	the	urban	fringe	maintained	similar	values	of	local	Integration.	Similar	to	

Manhattan’s	case,	segment	integration	maps	radius	(2000m)	rendered	how	highly	integrated	

centres	expand	and	shift	leaving	lower	values	on	the	peripheries.	In	Barcelona,	higher	Integration	

values	shifted	from	the	old	city	to	centre	at	the	heart	of	the	uniform	grid.	The	lines	representing	

major	roads	in	the	street	network	appeared	to	be	particularly	integrated	connecting	all	parts	of	the	

urban	grid	with	the	local	old	city	centre	and	the	suburban	town	centres.	As	the	spatial	system	grew	

and	deformed,	the	distinct	features	of	the	two	different	grid	patterns	(organic	and	uniform)	faded	

and	a	connective	structure	arose	tracing	the	rural	freeways	that	preceded	the	uniform	grid.		

The	patterns	of	aggregate	distributions	were	consistent	with	our	observations	in	Manhattan.	In	

most	stages,	the	distribution	plots	for	angular	segment	Integration	radius	500	and	radius	2000	

appeared	to	fit	into	a	lognormal	curve	(see	Figure	2).	The	period	from	1698	to	1855	presented	a	

multi	modal	distribution	pattern	that	hardly	fits	in	the	former	lognormal	curve.	This	is	due	to	

distinct	differences	in	density,	angularity	and	segment	line	length	between	fully	urbanised	

agglomerations	around	the	old	city	centre	and	the	rural	freeway	network	on	the	peripheries.	This	

phenomenon	may	help	delineate	compact	urban	form	statistically.	Distinct	transitional	periods	that	

characterise	transformations	in	the	street	network	might	be	recognised	when	comparing	the	

shapes	of	statistical	distributions.	In	two	cases	out	of	three,	we	found	the	distribution	of	local	

Integration	turning	from	a	relatively	unimodal	to	multimodal.	The	case	is	less	clear	in	Manhattan.	

With	that	comes	also	a	change	on	the	distribution	moments	including	the	median	and	mean.	

Intelligibility	and	Synergy	coefficients	came	as	to	confirm	these	transitional	periods	revealing	

changes	on	the	level	of	the	structural	unity	between	the	parts	and	the	whole.	Again,	similar	to	

Manhattan’s	case;	the	changes	on	the	structure	were	associated	with	a	mass	addition	of	segment	

elements	to	the	urban	networks.		

On	the	whole,	the	analyses	exposed	several	particularities	that	had	to	do	with	the	inclusion	of	less	

urbanised	areas	in	the	analysis.	Where	such	differences	were	clear,	they	had	a	significant	impact	on	
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the	shape	of	statistical	distribution	in	Barcelona’s	case.	The	impact	of	stubs	on	the	segment	

representation	and	the	effect	of	highway	infrastructure	were	found	to	disrupt	the	overall	

distribution	patterns.	This	finding	might	help	outline	the	characteristics	of	compact	urban	form;	

defined	by	how	aggregate	angular	configurations	of	street	structures	fit	into	lognormal	

distributions.		

The	effect	of	anomalies	on	the	representation	is	not	likely	to	dismiss	the	more	prevailing	

consistencies,	particularly	in	how	local	centres	conserve	high	local	Integration	values	and	in	how	

global	Integration	spreads	to	central	areas	as	the	system	grows.	Consistencies	are	also	evident	in	

how	transitional	periods	are	characterised	by	an	association	with	mass	addition	of	segment	street	

elements.	Such	associations	often	synchronised	with	changes	on	the	fitness	of	the	lognormal	

distribution	function;	where	the	D	value	–here	describing	the	goodness	of	fit-	dropped	to	half	or	else	

doubled.	This	all	needs	to	be	considered	given	different	local	radii.	Here	a	radius	of	2000m	proved	to	

be	a	stronger	indicator	of	the	transitions	in	the	growing	street	network.	The	more	the	angular	depth	

fits	a	lognormal	distribution,	the	less	likely	the	system	would	call	for	changes.	On	the	contrary,	the	

more	erratic	are	the	Integration	values	around	the	lognormal	distribution	curve	the	more	likely	it	is	

for	the	system	to	change.	In	this	way,	the	system’s	inclination	to	change	is	strongly	related	to	how	

good	it	fits	a	lognormal	distribution	function.		

The	way	in	which	the	urban	system	settled	back	into	a	lognormal	distribution	after	the	transitional	

periods	is	again	suggestive	of	an	autonomous	behaviour	that	cities	exhibit	in	their	growth	patterns.	

Such	hypothesis	needs	to	be	supported	by	a	more	extensive	investigation	into	the	local	

mechanisms	that	govern	growth.	Before	going	for	a	higher	resolution,	it	is	imperative	to	think	about	

the	time	dimensionality	and	how	it	couples	spatial	transitions.	In	Manhattan,	we	noted	a	time	

factor,	or	what	we	might	term	as	a	radius	of	time	that	associates	the	radius	of	space,	in	that	local	

Integration	maintains	a	slower	pace	of	change	when	compared	to	global	radii.	To	further	expose	this	

duality	we	need	to	plot	spatial	changes	against	the	time	axis.		
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Figure	2	Comparing	angular	Integration	maps	(radius	500	and	radius	2000	meters),	their	distribution	

plots,	and	the	axial	Intelligibility	R2	(R2,	Rn)	and	Synergy	R2	(R2,	R5)	for	each	stage	of	growth	in	

Barcelona.	

Generic	Trends	of	Growth	in	street	networks		

Measuring	on	the	overall	growth	patterns	of	the	spatial	structure	in	Manhattan	and	Barcelona,	

growth	could	be	outlined	by	exponential	trends	that	plot	the	increase	in	the	number	of	street	

segments	(see	Figure	3).	Overlaid	on	top	of	that	exponential	trend	is	a	trend	that	marks	the	changes	
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on	the	fractal	dimension	of	the	urban	system	as	it	grows.	The	range	is	relative	to	the	image	size	of	

the	two	street	structures.	The	fractal	dimension	is	calculated	using	the	box-counting	algorithm,	by	

iteratively	overlaying	boxes	with	different	sizes	and	calculating	the	black	pixels	within	(see	appendix	

2).	The	output	of	this	procedure	is	a	regression	line.	The	slope	of	this	regression	line	is	the	fractal	

dimension	of	the	street	structure.		

The	exponential	growth	parameters	recorded	different	values	for	the	two	urban	regions.	This	

difference	might	be	reasoned	by	the	system’s	sensitive	dependence	on	initial	conditions;	a	

phenomenon	that	characterises	complex	systems.	The	circumstances	that	limit	growth	at	certain	

stages	might	also	play	a	role	in	driving	the	exponential	trend.	Physical	boundary	limitation	–for	

example-	presents	a	constraint	during	the	last	stages	of	growth	diverting	the	exponential	trend	in	

Manhattan	to	a	linear	trend	that	settles	at	a	certain	global	maxima.	At	this	point,	we	were	able	to	

distinguish	a	point	of	inflection	that	marked	a	change	on	the	concavity	of	the	curve.	In	Barcelona,	

the	addition	of	new	elements	continued	to	follow	an	exponential	trend	provided	that	the	structure	

has	not	reached	its	maximum	geographical	boundaries.	On	the	exponential	models,	we	marked	

transitional	states	that	were	derived	from	critical	changes	on	the	probability	distributions	of	the	

street	structures	to	expose	any	correspondences	with	the	generic	trends.	We	noted	a	remarkable	

correspondence	between	these	transitions	and	a	sudden	rise	or	fall	in	the	number	of	elements,	

along	with	the	grid’s	fractal	dimension.	Such	transitions	were	also	traceable	in	the	changes	on	the	

overall	size	of	the	urban	system	and	in	the	patterns	it	rendered.	

While	both	growth	trends	followed	a	nonlinear	exponential	model,	they	did	that	with	different	

rates.	Manhattan’s	exponential	growth	covered	a	period	of	240	years	starting	from	year0	=1640,	

whereas	Barcelona’s	growth	spanned	over	a	period	of	750	years	starting	from	year0=1260.	The	

number	of	elements	(NoE)	variable	was	modelled	as	a	nonlinear	function	of	year.	To	build	the	

exponential	model,	a	prediction	formula	was	set.	The	prediction	formula	included	parametric	

estimates	(X0,	X1).	X0	is	the	prediction	of	the	number	of	elements	at	year	1240	in	Barcelona	and	year	

1698	in	Manhattan.	It	should	be	near	the	actual	value	of	the	number	of	street	segments	in	the	

network	representation	of	the	historical	data.	The	formula	contained	the	parameters’	initial	values.	

The	X1	growth	rate	parameter	was	given	the	initial	value	of	0.006	for	Barcelona,	and	0.013	for	

Manhattan,	which	would	match	the	estimate	of	the	slope	that	is	derived	from	fitting	the	natural	log	

of	NoE	to	year	with	a	straight	line.	The	initial	values	did	fit	reasonably	well	with	the	final	parameter	

estimates	of	the	exponential	model.	The	prediction	formula	was	defined	as	follows;	

ƒ(x)	=	X0	*	Exp(X1	*	(year	–	year0))	 (1)	

where	the	parameters	initial	values	are;	

X1	=	0.013,	X0	=	159	for	Manhattan	
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X1	=	0.006,	X0	=	90	for	Barcelona	

The	nonlinear	fitting	process	was	tailored	so	that	the	confidence	limits8	retained	a	value	for	

Alpha=0.05	and	the	convergence	criterion	was	set	to	0.00001.	Using	this	method,	solutions	were	

found	for	a	minimised	Sum	Square	Errors	(SSE)	value.	The	fitness	to	an	exponential	trend	appeared	

to	be	different	for	the	two	urban	regions.	The	mean	squared	error	(MSE)	in	Manhattan’s	growth	

trend	was	about	1978047.3	while	in	Barcelona’s	trend	MSE	approximated	7270391.8.	The	MSE	can	

be	significantly	reduced	for	Manhattan,	if	we	did	not	consider	the	last	stage	of	growth	(year	=	2005)	

in	the	calculation.	If	we	were	to	miss	that	year	from	the	analysis,	we	would	have	reached	out	to	an	

MSE	value	of	531727.42;	four	times	less	than	the	MSE	value	for	the	full	period	of	growth.	This	test	

highlighted	the	role	of	physical	boundaries	in	shaping	the	growth	process.	It	is	important	to	

mention	here	that	such	constraint	is	only	one	of	many.	For	this	reason,	it	might	be	impossible	to	

find	an	averaged	solution	that	fits	both	urban	scenarios.	This	is	not	only	made	difficult	by	the	

sensitive	dependence	on	initial	conditions	but	is	also	very	much	dependant	on	the	circumstances	and	

conditions	that	direct	growth	at	each	time	interval	and	for	each	localised	addition	of	street	segment	

to	the	network.	Given	the	difficulty	in	finding	data	that	maps	the	progress	of	urban	development	at	

this	spatiotemporal	scale,	it	is	maybe	reasonable	to	pursue	another	form	of	morphogenetic	mapping	

that	only	reflects	on	how	structures	change	in-between	different	time	frames	following	the	

methods	developed	in	(Al	Sayed	et	al,	2012).	Such	an	approach	would	help	inferring	the	rules	and	

forces	that	operate	on	the	local	level	that	ultimately	build	into	the	growth	patterns	outlined	in	this	

section.	Before	opting	for	an	investigation	into	the	local	transformations	of	urban	structures,	we	

need	to	cast	some	light	on	the	localised	processes	that	are	thought	to	constitute	the	principal	

feedback	dynamics	in	urban	systems.	

	

																																																													
8	The	iterations	for	confidence	limits	do	not	find	the	profile-likelihood	confidence	intervals	successfully.	
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Figure	3	A	nonlinear	exponential	growth	model	for	Manhattan	and	Barcelona	marking	transitional	

states	corresponding	to	those	outlined	in	the	statistical	distributions	of	integration	values	(figure	1	

&	2).	

	

Local	mechanisms	of	preferential	attachment	and	pruning	in	street	networks	

The	previous	section	elucidated	the	general	trends	of	growth	that	outlined	the	yearly	increase	in	the	

number	of	street	elements	in	Manhattan	and	Barcelona.	Looking	at	the	exponential	models,	it	is	

imperative	to	regard	the	factors	that	might	have	affected	and	distorted	the	growth	patterns.	The	

increase	in	the	number	of	street	elements	did	not	go	without	resistance.	At	different	rates	and	on	

different	scales,	streets	emerged	or	disappeared	locally	due	to	artificial	and	natural	causes.	Artificial	

interventions	could	be	an	effect	of	intentional	planning	actions	that	alter	the	street	layout.	Natural	

causes	could	be	theoretically	defined	as	a	tendency	in	the	urban	system	to	follow	an	autonomous	

process	of	self-organisation	in	which	the	urban	system	adapts	following	artificial	interventions	to	

preserve	the	structural	unity	between	the	whole	and	the	parts.	It	is	implicit	to	our	knowledge,	how	

such	processes	build	from	the	local	to	the	global	to	render	the	hierarchical	organisation	that	makes	
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urban	systems.	Yet,	it	might	be	possible	to	set	forth	some	assumptions	on	the	mechanisms	involved	

by	looking	at	the	elementary	processes	of	addition	and	deletion,	mergence	and	subdivision	that	

lead	to	growth	and	differentiation	in	cities.		

The	two	basic	processes	that	govern	trends	of	growth	or	shrinking	in	cities	are	based	on	a	positive	

feedback	loop	that	results	from	the	addition	of	new	elements	and	a	reinforcing	feedback	loop	that	

results	from	pruning	certain	elements	(Al	Sayed	et	al,	2012).	In	this	way,	urban	growth	is	a	product	

of	the	elementary	processes	of	addition,	pruning,	mergence	and	subdivision.	The	latter	processes	

branch	from	the	main	loops	(Figure	).	

	

	
	

Figure	4	Positive	and	reinforcing	feedback	loops	in	the	spatial	networks	of	streets.	

It	is	suggested	that	in	periods	of	expansion,	a	positive	feedback	mechanism	operates	and	takes	the	

form	 of	 exponential	 addition	 of	 elements.	 New	 street	 structures	 are	 preferentially	 added	 where	

there	 is	 a	 potential	 increase	 in	 the	 street	 network	 accessibility.	 At	 each	 stage	 of	 growth	 the	

connectivity	 (degree)	 of	 street	 lines	 follows	 power	 law	 distributions,	 a	 phenomenon	 that	 is	 also	

observed	in	scale-free	networks.	The	observed	historical	growth	behaviour	comes	as	to	confirm	this	

finding.	 In	 a	 process	 that	 resembles	 preferential	 attachment	 in	 information	 networks;	 the	

emergence	of	new	patches	of	grid	structures	 in	18th	century	Barcelona	 follows	high	values	 in	 the	

connectivity	of	straight	street	lines.		

Preferential	 attachment	 was	 previously	 suggested	 to	 be	 a	 possible	 model	 for	 growth	 in	 street	

networks	 taking	 the	 topological	 Space	 Syntax	 representation	 (Volchenkov	 and	Blanchard,	 2008).	

This	suggestion	was	made	after	observing	that	control	values	(degree	of	choice)	fall	into	power	law,	

an	 observation	 that	 was	 also	 compatible	 with	 Porta	 et.	 al.’s	 findings	 (2006).	 The	 model	 was	

presented	 in	 the	 form	of	 cautious	 suggestion	 since	 no	 evidence	was	 explicitly	 presented	 for	why	

such	model	 –famous	 in	 information	 networks-	would	 fit	 the	 case	 of	 physically	 constrained	 urban	

systems.	Here	we	found	historical	traces	for	such	processes	in	both	the	geometric	and	topological	

representations	of	Barcelona’s	urban	growth,	 less	clearly	 in	Manhattan.	The	observed	phenomena	

we	 reported	 indicated	 that	a	process	of	preferential	attachment	did	not	exactly	 follow	 the	model	

initially	 proposed	 in	 (Barabási-Albert,	 1999).	 In	 the	 famous	Barabási-Albert	model	 description	 for	
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preferential	attachment,	nodes	that	are	highly	connected	(high	degree)	will	have	more	likelihood	to	

attach	 to	more	nodes.	 In	other	words;	nodes	 that	are	 rich	with	connections	will	be	more	 likely	 to	

increase	 their	 connections.	 The	 presence	 of	 physical	 constraints	 in	 urban	 networks,	 might	 have	

contributed	to	what	our	observations	here,	that	 is	a	form	of	preferential	attachment	where	nodes	

that	are	highly	connected	developed	a	whole	neighbourhood	cluster	in	their	localities	(Al	Sayed	et	

al,	2012).		

This	 Barabási-Albert	 model	 will	 probably	 need	 to	 be	 adjusted	 to	 fit	 with	 the	 nature	 of	 street	

networks.	Considering	the	topological	axial	representation	of	streets	and	how	it	developed	in	time	

(Figure	 5),	 we	 might	 note	 some	 patterns	 arising	 from	 the	 use	 of	 simple	 network	 measures	 like	

connectivity	 (degree).	 These	 observations	 were	 reconstructed	 from	 historical	 map	 data	 to	 track	

how	the	system	changed	with	the	addition	of	new	elements	 in	Barcelona.	The	emergence	of	new	

grid	structures	seemed	to	coincide	with	high	values	of	connectivity.	At	each	stage	in	the	system,	the	

connectivity	values	exhibited	Power	law	distributions	(Figure	6).	These	observations	would	stand	as	

an	 empirical	 validation	 for	 the	 applicability	 of	 the	 Barabasi-Albert	 model	 on	 urban	 networks.	

However,	it	 is	important	to	emphasise	here	that	spatial	networks	in	cities	are	not	really	scale-free;	

since	 they	have	geometric	 properties	 that	 are	 particularly	 crucial	 for	 them	 to	operate.	Moreover,	

there	 is	a	cap	on	how	many	connections	an	axial	 line	may	connect	to	given	 its	relative	 length	and	

the	intensity	of	the	grid	structure	that	neighbours	it.	Some	additional	constraints	-possibly	axial	line	

length-	may	be	applied	to	distinguish	those	elements	in	vacant	land.		
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Figure	5	A	reconstruction	of	Barcelona’s	growth	process	considering	the	historical	maps	dated	(at	

the	bottom).	The	Connectivity	values	(at	the	top)	rendered	again	the	phenomenon	of	preferential	

attachment	in	how	high	values	precede	the	emergence	of	new	grid	patches.		

	

	

Figure	 6	 Log-Log	 plot	 of	 Connectivity	 (degree)	 values	 for	 different	 developmental	 stages	 of	

Barcelona’s	axial	structure	fitting	with	Power	law	distributions.	

Another	 observed	 regularity	 in	 street	 network	 growth	 is	 the	 disappearance	 of	weakly	 connected	

street	 structures	 (Pruning).	 Once	 the	 urban	 system	 reached	 its	 maximum	 boundary,	 another	

process	 of	 reinforcing	 feedback	 took	 place.	 This	 mechanism	 was	 mostly	 evident	 in	 Manhattan,	

where	 the	 filling	 of	 the	 central	 park	 rendered	 this	 exact	 area	 as	 poorly	 connected	 indicating	 a	

process	 of	 pruning	 of	 weak	 local	 structures	 (Figure	 7).	 The	 process	 of	 pruning	 was	 less	 clear	 in	

Barcelona,	where	the	filling	of	the	citadel	area	shows	a	slight	increase	in	local	integration	values	in	
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the	area	adjacent	to	the	old	city	centre.	The	mechanism	of	pruning	took	place	at	a	certain	stage	of	

growth	and	contributed	to	the	demarcation	of	a	structure	deforming	the	homogeneity	of	the	grid.	It	

is	important	to	consider	here	the	historical	circumstances	that	led	to	the	formation	of	a	void	within	

a	 densely	 occupied	 urban	 structure	 in	 both	 cases.	 Some	 are	 explained	 in	 (Al	 Sayed,	 2014).	

Ultimately,	 the	 abstract	 physical	 form	 of	 the	 urban	 grid	 is	 a	 materialisation	 of	 many	 less	 easily	

delineated	 social	 and	 economic	 conditions	 that	 historically	 shape	 urban	 regions	 (Griffiths,	 2009;	

Vaughan	et	al,	2013).		

Manhattan	2008	

Integration	R500m	-	Range	(60,	100)	

Manhattan	–	Central	Park	area	filled	with	grid	

Integration	R500m	-	Range	(60,	100)	

	 	

Barcelona	2008	

Integration	R500m	-	Range	(60,	200)	

Barcelona	–	citadel	area	filled	with	grid	

Integration	R500m	-	Range	(60,	200)	

	

	

	Higher	values	of	accessibility	
	

Figure	7	A	pruning	process	of	elements	with	low	integration	values	(radius	500m)	in	Manhattan	and	

Barcelona.	The	models	on	the	right	are	produced	by	filling	the	Central	Park	void	in	Manhattan	and	

the	Citadel	area	in	Barcelona	with	a	grid	that	has	an	analogous	structure	to	its	surrounding.		
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Conclusion	

This	paper	presents	empirical	models	of	street	network	growth	that	are	explanatory	of	some	of	the	

mechanisms	of	growth	and	change	in	Manhattan	and	Barcelona.	Looking	at	the	generic	trends	

elucidated	in	this	paper,	there	seems	to	be	what	suggests	that	spatial	systems	are	inclined	to	follow	

a	simple	exponential	model	in	their	growth	that	pertain	to	the	invariant	geometric	transformations	

in	the	network	structure.	The	exponential	trend	was	also	marked	in	population	size	(Bretagnolle	et.	

al.,	2002;	Pumain	et.	al.,	2006).	The	mapping	method	was	instrumental	in	looking	for	patterns	of	

growth	and	differentiation	in	the	urban	regions	under	study.	In	general,	these	patterns	seem	to	be	

drawn	by	certain	forces	governing	how	the	physical	processes	of	addition,	subdivision,	mergence	

and	disappearance	operate	on	the	level	of	segment	element	or	axial	line.	The	addition	and	

subdivision	are	products	of	a	process	of	preferential	attachment	that	is	similar	to	the	mechanism	

that	govern	growth	in	information	networks,	in	that	nodes	(here	axial	lines)	that	are	highly	

connected	are	more	likely	to	attach	to	new	nodes	in	subsequent	stages	of	growth.	The	mergence	

and	disappearance	of	streets	are	products	of	a	process	of	pruning,	where	weak	local	structures	

disappear	in	later	stages	of	growth	to	reinforce	structural	differentiation	within	the	urban	grid.	The	

physical	processes	appear	to	be	associated	with	changes	on	angular	Integration	values	in	the	street	

network.	The	local	and	global	Integration	values	seem	to	increase	to	a	certain	level	to	settle	at	

certain	average	values	once	the	system	has	grown	beyond	the	radii	of	measurement.	While	

integrated	centres	are	preserved,	changes	seem	to	travel	in	certain	directions.	Where	such	

processes	are	interrupted	by	a	massive	addition	of	segment	street	elements,	they	seem	to	revert	

back	to	their	initial	rates.	These	interruptions	might	be	recognised	as	periods	of	transitions.	The	

transitions	might	also	be	concurrent	to	innovation	cycles	where	information,	economic	and	

industrial	developments	take	place	on	a	large	scale	transforming	the	landscape	of	a	city	(Pumain	

and	Moriconi,	1997;	Pumain	et.	al.,	2006).	They	appear	to	have	a	destabilisation	effect	on	the	

structural	unity	of	the	system	and	the	aggregate	distributions	of	Integration	values	that	

consequently	reduced	its	fitness	level	to	a	lognormal	distribution.		

The	ambition	to	find	a	model	that	unlocks	the	process	of	growth	should	not	be	taken	without	

raising	concerns	over	the	specific	initial	conditions	that	would	inevitably	determine	the	course	of	

growth	in	some	cases.	The	geographic	and	topological	affordances	of	both	regions	had	clear	impact	

on	growth	behaviour.	In	Barcelona,	the	inclusion	of	peri-urban	areas	in	the	distribution	plots	

distorted	the	aggregate	distribution	patterns	that	would	otherwise	settle	into	a	lognormal	

distribution.	In	Manhattan,	the	effect	of	geography	was	visible	in	all	sets	of	analyses.	The	physical	

boundary	constraint	was	marked	as	an	inflection	point	on	the	exponential	trend	that	a	system	

follows	as	new	segment	street	elements	are	added.	What	is	characterised	by	a	change	on	concavity	
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in	the	exponential	curve	is	also	marked	on	the	averaged	Integration	trends,	and	the	probability	

distributions	of	values	of	change	on	angular	Integration.	The	system	diverts	at	that	point	from	

growth	to	differentiation.	The	differentiation	process	is	probably	augmented	by	the	system’s	

tendency	to	react	to	the	imposition	of	the	uniform	grid,	where	weakly	integrated	local	structures	

are	pruned	to	give	rise	to	a	heterogeneous	structure.		

The	findings	at	hands	come	as	to	support	the	hypothesis	that	urban	growth	is	not	entirely	a	random	

process,	and	that	there	seems	to	be	some	inherent	organisation	that	governs	spatial	structures.	We	

might	even	go	further	with	that	to	claim	that	street	networks	exhibit	some	form	of	autonomy,	in	

the	way	they	adapt	back	to	their	original	patterns	of	growth	after	certain	periods	of	transition.	

Through	the	act	of	some	implicit	self-organisation	mechanism,	the	two	urban	regions	observed	in	

this	paper	appeared	to	retrieve	the	characteristics	of	their	macrostate	following	large-scale	

planning	interventions.	To	expose	the	mechanisms	that	contribute	to	this	behaviour,	there	is	a	need	

to	go	further	with	our	analytical	investigation	to	observe	how	elements	change	locally	and	how	they	

settle	into	certain	hierarchies.		
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Appendix	1	

Historical	street	maps	of	Manhattan	and	Barcelona	

New	York	City	1642	[Map	overlays	streets	as	of	1880]	From	Report	on	the	Social	Statistics	of	Cities,	

Compiled	by	George	E.	Waring,	Jr.,	United	States.	Census	Office,	Part	I,	1886.		

New	York	City	1661	[Map	overlays	streets	as	of	1880]	From	Report	on	the	Social	Statistics	of	Cities,	

Compiled	by	George	E.	Waring,	Jr.,	United	States.	Census	Office,	Part	I,	1886.		

New	York	City	1695	From	Manual	of	the	Corporation	of	the	City	of	New	York	for	1852	by	D.T.	

Valentine,	1852	

New	York	City	1728	[Map	overlays	streets	as	of	1880]	From	Report	on	the	Social	Statistics	of	Cities,	

Compiled	by	George	E.	Waring,	Jr.,	United	States.	Census	Office,	Part	I,	1886.		

New	York	City	1755	[Map	overlays	streets	as	of	1880]	From	Report	on	the	Social	Statistics	of	Cities,	

Compiled	by	George	E.	Waring,	Jr.,	United	States.	Census	Office,	Part	I,	1886.		

New	York	City	1767	From	A	History	of	the	American	People,	Woodrow	Wilson,	Harper	and	Brothers	

Publishers,	New	York	and	London,	(c)1902,	Vol	II	
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New	York	City	1775	A	plan	of	the	city	of	New-York	&	its	environs	:	to	Greenwich,	on	the	North	or	

Hudsons	River,	and	to	Crown	Point,	on	the	East	or	Sound	River,	showing	the	several	streets,	public	

buildings,	docks,	fort	&	battery,	with	the	true	form	&	course	of	the	commanding	grounds,	with	and	

without	the	town	:	From	John	Montresor,	engineer	;	P.	Andrews,	sculp	

New	York	City	1782	[Map	overlays	streets	as	of	1880]	From	Report	on	the	Social	Statistics	of	Cities,	

Compiled	by	George	E.	Waring,	Jr.,	United	States.	Census	Office,	Part	I,	1886.		

New	York	City	1808	From	D.	Longworth's	map	of	1808	for	D.T.	Valentine's	Manual	for	1852,	by	G.	

Hayward,	lithr.	

New	York	City	1817	From	Thos.	H.	Poppleton,	city	surveyor	;	P.	Maverick	sc.	Newark.	

Topographical	map	of	the	city	and	county	of	New-York,	and	the	adjacent	country	1836:	Published	by	

J.H.	Colton	&	Co.,	No.	4	Spruce	St.,	1836	(New-York	:	Engraved	&	printed	by	S.	Stiles	&	Co.)	

New	York	City	1842	"New-York"	From	Tanner,	H.S.	The	American	Traveller;	or	Guide	Through	the	

United	States.	Eighth	Edition.	New	York,	1842.		

New	York	City	1850	From	Mitchell	Sr.,	S.	A.,		A	New	Universal	Atlas	Containing	Maps	of	the	various	

Empires,	Kingdoms,	States	and	Republics	Of	The	World.	

New	York	City	1880	[Map	overlays	streets	as	of	1880]	"The	Original	Topography	of	Manhattan	

Island	from	the	Battery	to	155th	Street"	From	Report	on	the	Social	Statistics	of	Cities,	Compiled	by	

George	E.	Waring,	Jr.,	United	States.	Census	Office,	Part	I,	1886.		

New	York	City	1891	From	Bromley,	G.	W.	and	Bromley,	W.	S.,	Atlas	of	the	city	of	New	York	/	

Manhattan	island	from	actual	surveys	and	official	plans.	Philadelphia:	G.	W.	Bromley	&	Co.,	1891.	

[web:	rumsey]	

New	York	City	(Lower	Manhattan)	1920	"Chief	Points	of	Interest	in	Lower	Manhattan"	From	

Automobile	Blue	Book	1920		

New	York	City	(Upper	Manhattan)	1920	"Chief	Points	of	Interest	in	Upper	Manhattan"	From	

Automobile	Blue	Book	1920	

Barcelona	1200-1300	From	Bensch,	S.	P.	(1995)	Barcelona	and	Its	Rulers,	1096-1291.	Cambridge	\	

New	York	\	Melbourne:	Cambridge	University	Press.	pp.	27	

Barcelona	1260	From	Planta	de	la	ciutat	romana	amb	l’hipòtesi	de	situació	dels	elements	

distribuïdors	d’aigua,	From	segons	C.	Miró	i	H.	Orengo	

Barcelona	1494-1495	From	Hieronymus	Münzer	account	

Barcelona	1698	French	map	from	1698	of	the	city	of	Barcelona	with	indications	for	a	siege.	Title:	

Plan	du	Siège	de	la	ville	de	Barcelonne	:	Avec	la	Carte	de	la	côte	de	la	Mer	depuis	le	Cap	de	Cervera	

jusqu'aux	environs	de	Llobregat.	
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Barcelona	1706	Plan	de	la	Ville	de	Barcelone	et	Chateau	de	Mont	Iuy	(Plan	of	the	City	of	Barcelona	

and	Castle	of	Montjuic)	From	Anna	Beeck	

Barcelona	1711	From	Nicholas	De	Fer,	published	in	1711	in	Paris.	

Barcelona	1745	From	I.	BASIRE	1745.	prepared	for	Mr	Tindal’s	continuation	of	Mr	Rapin’s	History	of	

England.		

Barcelona	1751	From	Bodenehr's	Curioses	Staats	und	Kriegs	Theatrum.	

Barcelona	1806	The	walled	city	of	Barcelona	and	the	Citadel	1806.	Plan	of	the	City	and	Port	of	

Barcelona.	From:	"Voyage	de	l'Espagne"	by	Alexandre	de	Laborde.	-	Paris,	1806-1820	arrow	oriented	

with	the	north	to	the	northeast	of	the	map.	

Barcelona	1851		From		G	Heck	

Barcelona	1860	published	by	J	&	C	Walker	for	the	British	Admiralty.	

Barcelona	1862	From	Coronel,	Teniente-Coronel	de	Ingenieros	D.	Francisco	Coello.	Aided	by	D.	

Pascual	Madoz	author	of	the	statistics	and	historical	notes	Madrid	1862.	

Barcelona	1890		Plano	de	Barcelona	y	sus	Alrededores	en	1890.	From	D.	J.	M.	Serra.	by	Gerona;	S.	

by	the	Mediterranean	Sea;	S.W.	by	Tarragona;	and	W.	and	N.W.	by	Lrida.			

Barcelona	1914	From	Plànol	general	de	Barcelona.	La	febre	tifoide	a	Barcelona:	gràfic	de	l’epidèmia	

de	l’any	1914	

Barcelona	1929	From	Wagner	&	Debes,	Leipzig,		

Barcelona	1943	From	[http://www.lib.utexas.edu/maps/ams/spain_city_plans/txu-pclmaps-oclc-

6478271-barcelona.jpg]	

Barcelona	1970	From	the	David	Williams	collection	

Barcelona	Field	Studies	Centre.	Source:	De	Barcino	a	Barcelona	1992	Barcelona	Contemporary	

Culture	Centre	[online]	Available	from	<http://geographyfieldwork.com/Poll2.htm>	[Date	accessed:	

14	October	 2012]	

Appendix	2	

Box	Counting	method	

The	fractal	D	dimension	might	be	obtained	using	the	following	method.	A	square	mesh	of	various	

sizes	s	is	laid	over	an	image	(containing	the	object	that	we	want	to	compute	its	fractal	dimension).	

The	number	of	mesh	boxes	N(s)	that	contain	part	of	the	image	are	counted.	The	fractal	(box)	

dimension	D	is	given	by	the	slope	of	the	linear	portion	of	a	log(N(s))	vs	log(1/s)	graph.		

log 𝑁 𝑠 = 𝐷 log(
1
𝑠
)	 (2)	
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Since	there	is	no	preferred	origin	for	the	boxes	with	respect	to	the	pixels	in	the	image,	multiple	

measures	N(s)	can	be	computed	for	different	mesh	origins.	The	graphed	value	of	N(s)	is	usually	the	

average	of	N(s)	from	different	mesh	origins.	

The	range	of	box	sizes	used	here	are;	2,3,4,6,8,12,16,32,64.	

	


