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1 Introduction

In [1], Vasiliev’s four-dimensional higher-spin gravities [2–4], including the minimal bosonic

models [5], have been equipped with action principles of generalized-Hamiltonian type. The

properties of Vasiliev’s theory that underlie the construction of the actions hold true in

general models with Lorentzian signature and negative cosmological constant, including

models with Yang-Mills sectors and supersymmetries. The off-shell formulation of [1] com-

bine the principle of unfolding [2, 6–9], which lies at the heart of Vasiliev’s equations, with

a natural extension of the generalized Poisson sigma model from graded-commutative to

graded-associative differential algebras.1

In the graded-commutative case, the generalized Poisson sigma model was first stud-

ied within the two-dimensional context [10–12] whose Batalin-Vilkovisky (BV) formu-

lation [13, 14] was geometrized by Alexandrov-Kontsevish-Schwarz-Zaboronski (AKSZ)

in [15], later used for a perturbative path-integral derivation [12, 16, 17] of Kontsevish’s

star-product [18] on Poisson manifolds. These models are closely related to topological BF

models (see the review [19] and refs. therein); interestingly, the BF model without Poisson

structure on a non- commutative manifold was studied in [20, 21]. Further developments

of the AKSZ formalism can be found in [22–24] and [25–33], and its close ties to unfolded

dynamics have been stressed in [34–39]. For related treatments of more general dynamical

systems, not necessarily based on differential algebras, see [40, 41] and references therein.

The two main results of this paper are:

1Preliminary investigations indicate a further natural extension to homotopy-associative differential al-

gebras.
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• a set of conditions on the couplings in the generalized Hamiltonian (see eq. (2.39)

and (2.61)) and on the boundary values of certain fields and gauge parameters (see

eq. (2.60)), that together assure the existence of a globally-defined action principle

of fiber-bundle type on a base manifold with non-trivial atlas and boundaries;

• an extension of the AKSZ formalism to unfolded systems on non-commutative base

manifolds, in such a way as to construct a minimal BV-AKSZ master action for

Vasiliev’s four-dimensional higher spin gravities (see eqs. (3.66) and (3.67)).

In all types of generalized Poisson sigma models, whether on commutative or non-

commutative base manifolds, the physical degrees of freedom are contained in boundary

vertex operators [12, 23]. The boundary lives in a graded target-space manifold equipped

with a nilpotent vector field of degree 1, referred to as theQ-structure, and compatible poly-

vector fields of suitable degrees depending on the dimension of the base manifold, whose

mutual Schouten brackets vanish, thus defining a generalized Poisson structure referred to

as a QP -structure in the bi-vector case;2 see [42] and refs. therein. The bulk lives in a

suitably parity-shifted phase space of the boundary target space such that each boundary

field becomes paired with a momentum in its turn constrained on the boundary, which thus

breaks the group of canonical transformations. Assuming a single boundary, the classical

limit is thus determined by the Q-structure and the choice of global formulation used to

construct the boundary observables, e.g. formulation on a fiber bundle with structure group

corresponding to the manifest gauge symmetries off shell, as we shall discuss more below;

for a related analysis, see [43, 44].

In the AKSZ quantization scheme, the free theory consists only of the kinetic bulk

terms, which do not depend on the physical vielbein and hence remain well-defined in

limits where the metric vanishes. The latter can be gauge-fixed using an auxiliary metric

and the physical states can be defined by means of a BRST operator [45–48] whose existence

is guaranteed, at least semi-classically, by a vectorial supersymmetry that implies that the

AKSZ master action obeys classical as well as quantum BV master equations, as we shall

discuss below.

The unfolded framework may thus provide a bridge between deformation quantization

and quantum field theories in their metric phases. The idea is that the latter phase may

arise within the former in suitable global formulations allowing combinations of nontriv-

ial P structures and boundary vertex operators depending algebraically on the physical

vielbein. It may then be possible to draw Feynman diagrams, with propagators only in

the bulk and vertices in both bulk and boundary, describing quantum fluctuations for dy-

namical boundary fields such as scalars, vectors, metrics and higher-spin fields in higher-

spin gravities in nontrivial metric backgrounds, unlike the case of bulk actions without

P -structures. Another intriguing feature of the AKSZ approach is the cancellation of all

vacuum bubbles in flat auxiliary background metrics, which suggests that the Poisson

sigma model can be summed over bulk topologies, defining a third-quantization on top

2Which is equivalent to a pure Poisson structure by means of a large graded canonical transformation

that exchanges zero-forms and one-forms.
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of the second-quantization, that may thus be of importance for addressing the vacuum

problem in generally covariant quantum field theory.

1.1 Plan of paper

The plan of the paper is as follows: In section 2 we review off-shell formulations of unfolded

systems on commutative base manifold, paying attention to global issues that we have not

seen being treated elsewhere to the same level of completeness. In section 3 we extend

the AKSZ formalism to unfolded systems on non-commutative base manifolds in such

a way as to construct a minimal master action for Vasiliev’s theory. We conclude in

section 4. The appendix details the usage of vector fields and functional derivatives on

non-commutative manifolds.

2 Action principles for unfolded systems on commutative manifolds

2.1 General ideas

Unfolded dynamics. Unfolded dynamics concerns the formulation of field theory in

terms of differential algebras. In their basic setting, referred to as graded-commutative

free differential algebras, these are sets of differential forms on ordinary commutative (su-

per)manifolds that remain invariant under exterior differentiation and wedging. Their

generating elements, denoted by Xα below, are locally-defined forms whose exterior deriva-

tives are completely constrained in a Cartan-integrable fashion, amounting to generalized

curvature constraints written dXα +Qα(X) ≈ 0 below.

Various moduli spaces, consisting of gauge orbits subject to boundary conditions, in-

cluding transitions between charts in the interior of the base manifold, are then described

by different types of classical observables as follows. As the observables are dual pairings

between elements in the differential algebra and geometric structures on the base manifold,

such as points, curves and cycles, they possess two key invariance properties: i) invari-

ance on-shell under small diffeomorphisms, preserving the geometric structures; and ii)

invariance off-shell under the generalized structure group containing a subset of all Cartan

gauge symmetries.

We wish to stress that as for the off-shell gauge structure, i.e. structure group and the

off-shell resolutions of the corresponding set of observables, there exist multiple, physically

inequivalent choices. This leads to the notion of a large moduli space of an unfolded

system containing physically distinct phases, such as for example unbroken and metric-like

phases of a theory of higher-spin gravity. The analysis of phase transitions thus requires a

framework for computing partition functions in different ensembles in which the generators

of the differential algebra play the role of fundamental fields entering directly into the path

integral measure.

BV-AKSZ implementation. Unfolded dynamics, on commutative as well as non-

commutative manifolds, admits a natural off-shell formulation of the generalized Hamilto-

nian type: the bulk action consists of kinetic terms ∼
∫
P ∧ dX, where thus X and P may

– 3 –
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have form degrees greater than one, plus a Hamiltonian H (X,P ) containing all interac-

tions; the latter are subject to integrability conditions assuring that the gauge symmetries

of the kinetic terms are deformed smoothly3 into non-abelian gauge symmetries that need

not close off-shell. The generalized curvature constraints arise on boundaries of bulk man-

ifolds — on which the momenta variables vanish — upon extremizing the action, and the

aforementioned ensembles arise upon perturbing the action by various generalized Poisson

structures coupling to the bulk and topological vertex operators inserted at the boundaries,

which one may think of as third- quantized analogs of closed- and open-string states, respec-

tively. These key features of the generalized Hamiltonian action can be incorporated into

quantization schemes based on the BV field-anti-field formalism or generalizations thereof,

which also lends itself to topological summation, master-field descriptions of (topological)

vertex operators ensembles and other “third-quantized” concepts, which one may view as

being defined in this fashion. Its precise relation to standard “second-quantized” ampli-

tudes remains to be established, however, though proposals for how these may arise — in

a suitable metric phase — have been made in the case of higher-spin gravity [51].

As found by AKSZ, the BV formalism can be implemented in the generalized- Hamil-

tonian case by extending each differential form into a “vectorial” superfield of fixed total

degree given by the sum of form degrees, ranging from zero to the top-form degree, and

ghost numbers belonging to the integers. This construction manifests the fact that the

(canonical) Poisson bracket in target (super)space induces the BV anti-bracket on the space

of maps. As a result, substituting each field in the classical action by its corresponding

superfield and projecting to zero ghost number yields a master action obeying the classical

BV master equation and reducing to the classical action when all anti-fields vanish. More-

over, the corresponding BV Laplacian annihilates any local super-functional, and hence in

particular the AKSZ master action, which thus obeys the classical as well as the quantum

master equations. The BRST transformations thus remain canonical at the quantum level,

and hence, in the absence of anomalies, the quantum field theory will possess a BRST

operator acting as a differential within a suitable homotopy associative algebra.

In what follows we shall describe the BV-AKSZ formalism in more detail, after which

we shall adapt it in the next section to the case of Vasiliev’s 4D higher-spin gravity theory,

which is based on a graded-noncommutative and associative free differential algebras.

2.2 Classical sigma model

Classical unfolded dynamics on commutative manifolds. At the classical level, an

unfolded system on a commutative base manifold B is a graded-commutative free differ-

ential algebra A on B. Decomposing the base manifold into charts, say B =
⋃

ξ Bξ, the

3As usual, the term “smooth” refers to constancy of the number of gauge parameters. However, the

“number” of physical degrees of freedom, as measured by classical observables, may change as non-abelian

gauge interactions change physical-observable conditions abruptly; secondly, the phase-space volume ele-

ments themselves depend on strengths of couplings, that may induce critical phenomena. In the case of

higher-spin gravities, the free fields are characterized by point-wise defined Weyl tensors (polarization ten-

sors), while for fully non- linear solutions, the physical content in the Weyl tensors is captured by non-local

observables [49] such as the eigenvalues of a certain Weyl zero-form operator [50]. In addition, the full

solution space exhibits an interesting phase structure with critical “electric” fields [50].
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free differential algebras decomposes into sub-algebras, say A =
⊕

ξ Aξ that are invariant

under the wedge product and the action of the exterior derivative d. The generators {Xα
ξ }

of Aξ are thus differential forms of degrees pα := deg(Xα
ξ ) > 0, defined locally on Bξ

and valued in some finite-dimensional real spaces Θα, referred to as types, and obeying

generalized curvature constraints, viz.

Rα
ξ := dXα

ξ +Qα(Xβ
ξ ) ≈ 0 , (2.1)

where Qα are wedge functions obeying the structure equations

Qβ∂βQ
α ≡ 0 , (2.2)

with ∂α denoting the left-derivative with respect to Xα. These identities imply generalized

Bianchi identities (the chart index ξ will be omitted from now on whenever ambiguity

cannot arise)

dRα −Rβ∂βQ
α ≡ 0 , (2.3)

such that the constraints are universally Cartan integrable, i.e. compatible with d2 ≡ 0 in

arbitrary dimensions. It follows that the generalized curvatures transform into each other

under Cartan gauge transformations, viz.

δǫX
α := dǫα − ǫβ∂βQ

α ⇒ δǫR
α = (−1)βǫβRγ∂γ∂βQ

α , (2.4)

where ǫα are unconstrained gauge parameters of degrees deg(ǫα) = pα − 1 (hence ǫα ≡ 0

if pα = 0) valued in Θα and defined on Bξ . The locally-defined solution spaces consist of

gauge orbits

Xα
C;λ = GλX

α|Xα=Cα (2.5)

labeled by zero-form integration constants Cα = δpα,0C
α obeying dCα = 0 and generated

by finite Cartan gauge transformations

Gλ := exp
(
(dλβ − λγ∂γQ

β(X))∂β

)
, (2.6)

where λα are gauge functions of degrees deg(λα) = pα − 1 (and hence λα ≡ 0 if pα = 0).

The locally-defined solution spaces can be glued together into globally-defined solution

spaces via gauge transitions, viz.

Xα
ξ = G

t
ξ′

ξ

Xα

∣∣∣∣
Xα=Xα

ξ′

, (2.7)

using suitable locally-defined parameters tα,ξ
′

ξ defined on the overlaps Bξ ∩Bξ′ . The choice

of the structure group leaves room for various physically distinct possibilities depending

on the Q-structure (for a discussion, see e.g. [1, 51]). In particular, one may seek global

formulations that are direct generalizations of fiber bundles with classical observables that

are invariant off-shell under gauge transformations with parameters belonging to the struc-

ture algebra, and on-shell under the complete Cartan gauge algebra. For more general

geometric formulations, see e.g. [43, 44].
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Classical generalized Hamiltonian action. Classical unfolded systems can be embed-

ded into on-shell configurations of generalized Poisson sigma models, namely as boundary

configurations in formulations on open base manifolds of fixed dimension. To this end, one

assumes that

dim(B) = p̂+ 1 , ∂B = ∪λB
′
λ , (2.8)

where each B′
λ is a connected boundary component (which may in itself be covered by an

atlas inherited from the bulk), and considers sigma-model maps

φ : T [1]B → M (2.9)

of vanishing intrinsic degree from the parity-shifted tangent bundle T [1]B to a target space

M given by an N-graded symplectic Q-manifold. The latter consists of charts,

M = ∪IMI , (2.10)

with locally-defined coordinates

Zi
I : MI → θi[pi] , deg(Zi

I) = pi ∈ N , (2.11)

where θi[pi] denote pi-suspended types. It carries two compatible geometric structures:

a symplectic two-form O of degree p̂ + 2 and a Hamiltonian function H of degree p̂ + 1

obeying the structure equation

{H ,H }[−p̂] ≡ 0 , deg(H ) = p̂+ 1 . (2.12)

The canonical Poisson bracket, which has intrinsic degree −p̂ and is graded in such a way

that {H ,H }[−p̂] does not vanish trivially, is given by

{A,B}[−p̂] = (−1)p̂+(p̂+i+1)A ∂iA P ik ∂jB (2.13)

where we use the conventions

O = 1
2 dZ

idZjÕij ≡
1
2 dZ

iOij dZ
j , P ikOkj = (−1)p̂δij . (2.14)

In particular, the structure equation reads

(−1)i(p̂+1) ∂iH P ij∂jH ≡ 0 . (2.15)

Locally in target space, one can introduce pre-symplectic forms

O|MI
= dϑI , deg(ϑI) = p̂+ 1 , (2.16)

defined modulo ϑ ∼ ϑ+ dE , and consider the generalized Hamiltonian bulk action

Scl
bulk[φ|B] =

∑

ξ

∫

Bξ

L cl
ξ =

∑

ξ

∫

Bξ

π φ∗
ξ(ϑ− H ) , (2.17)

– 6 –
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where φξ ≡ φ|Bξ
and π : Ω(T [1]B) → Ω(B) is a degree-preserving canonical homomorphism

that takes k-forms on T [1]B of degree p to p-forms on B, viz.

π : Ω[k|p](T [1]B) → Ω[p](B) , (2.18)

and that intertwines the actions of the exterior derivative d in Ω(B) and the Lie derivative

Lq = iq ◦ d− d ◦ iq in Ω(T [1]B) along the canonical Q-structure on T [1]B as follows:

d ◦ π = π ◦ d = π ◦ Lq , q := θµ∂µ . (2.19)

Equipping T [1]B with coordinates

(xµ, θµ) , deg(xµ, θµ) = (0, 1) , (2.20)

one has

π(f(xµ, θµ; dxµ, dθµ)) = f(xµ, dxµ; dxµ, 0) . (2.21)

Thus the exterior differential d , which has form-degree one, has degree one, i.e.

deg(d) = deg(q) = 1 . (2.22)

The assumption that the sigma-model maps φ have vanishing intrinsic degree implies

Ω[k|p](M)
φ∗

→ Ω[k|p](T [1]B)
π
→ Ω[p](B) , (2.23)

that is, the pull-back φ∗ of a k-form of N-degree p on M is a ditto on T [1]B, in its turn

sent by π to a p-form on B; the condition that M is N-graded (instead of Z-graded) and

deg(d) = 1 implies that p > k . Thus, since

O = dϑ ∈ Ω[2|p̂+2](M) , ϑ ∈ Ω[1|p̂+1](M) , H ∈ Ω[0|p̂+1](M) , (2.24)

it follows that

πφ∗(ϑ− H ) ∈ Ω[p̂+1](B) , (2.25)

which can then be integrated by decomposing B into charts Bξ.

Total variation and gauge variation. The total variation of the action can be obtained

from the Lie derivative

{
d, i−→

δZ

}
(ϑ− H ) = i−→

δZ
(O − dH ) + d

(
i−→
δZ
ϑ
)
, (2.26)

where the target space vector field
−→
δZ = δZi ~∂i . Writing

ϑ = dZiϑi , (2.27)

one has

δL cl
bulk = δZiRjÕij + d

(
δZiϑi

)
, (2.28)

– 7 –
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with generalized curvatures and Hamiltonian vector field
−→
Q defined by

Ri = dZi + Qi , Qi = (−1)p̂+1P ij∂jH ,
−→
Q = Qi ~∂i , deg(

−→
Q) = 1 . (2.29)

Demanding the generalized Bianchi identities

dRi − Rj∂jQ
i ≡ 0 , (2.30)

requires
−→
Q to be a Hamiltonian Q-structure, viz.

L−→
Q

−→
Q = {

−→
Q,

−→
Q}S.B. ≡ 0 ⇔ Qj∂jQ

i ≡ 0 ⇔ ∂i{H ,H }[−p̂] ≡ 0 , (2.31)

which is equivalent to the structure equation assuming there are no constants of total

degree p̂+ 2 . The structure equation also implies

d(ϑ− H ) ≡ 1
2 RiRjÕij ≡

1
2 RiOijR

j . (2.32)

Under the chart-wise defined Cartan gauge transformations

δεZ
i := dεi − εj∂jQ

i + 1
2 ε

kRl ∂lÕkj Pji , (2.33)

the Lagrangian transforms into a total derivative as follows:

δεL
cl
bulk ≡ dKε , Kε := εiRjÕij + δεZ

iϑi + dΥǫ , (2.34)

where Υǫ is defined on Bξ and the cancellation of Rk-terms requires that Qi := OijQj

obeys ∂iQj ≡ (−1)ij∂jQi which holds as a consequence of d2H ≡ 0 . The gauge transfor-

mations close as follows [1]:

[δε1 , δε2 ]Z
i ≡ δε12Z

i −
−→
Rεi12 , (2.35)

εi12 ≡ [ε1, ε2]
i := −−→ε 1

−→ε 2 Qi ≡ −→ε 2
−→ε 1 Qi ,

−→
R ≡ Ri∂i , (2.36)

where
−→
Rεi12 generates a trivial gauge transformation δ−→

Rε12
as can be seen from

δ−→
Rε12

L cl
bulk(p

′) ≡

∫

p∈B
(
−→
Rεi12)(p)

δL (p′)

δZi(p)
≡ d

[
(
−→
Rεi12)ϑi

]
(p′) , (2.37)

which follows from (2.28).

Global base-manifold formulation of fiber-bundle type. The action is well-

defined, i.e.

δεS
cl
bulk ≡

∑

ξ

∮

∂Bξ

Kǫξ = 0 , (2.38)

provided that the locally-defined fields Zi
ξ and gauge parameters ǫiξ are subject to suitable

conditions at ∂Bξ — and we note that
∮
∂Bξ

dΥǫξ = 0 since Υǫξ is defined on Bξ and hence

– 8 –
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Zi
ξ

δεξ
//

δ̂t

��

Zi
ξ + δεξZ

i
ξ

δ̂t̃

��

Zi
ξ + δ

t
ξ

ξ′
Zi
ξ

δε
ξ′

// (2.41) and (2.42)

Figure 1. Compatibility condition for the fiber bundle.

globally on ∂Bξ. Under certain extra assumptions4 on ϑ and H , the latter amount to

conditions at ∂B together with rules for gauge transitions δ̂
t
ξ

ξ′
across chart boundaries with

parameters ti,ξξ′ defined on overlaps. The assumptions are

(i) δ̂tKε ≡ 0 , (ii) ∂j∂k
−→
t Qi ≡ 0 , (iii) Kt ≡ 0 . (2.39)

Assumption (i), which states that Kε is defined globally, implies the cancellation of contri-

butions to δεS
cl
bulk from chart boundaries in the interior of the bulk manifold, leaving

Kε|∂B ≡ 0 , (2.40)

as conditions on fields and gauge parameters off shell. Assumptions (ii) and (iii) ensure

compatibility between having, on the one hand, gauge transformations δ̂εξ on charts acting

on fields Zi
ξ and gauge transition parameters ti,ξξ′ and, on the other hand, gauge transitions

δ̂
t
ξ

ξ′
between adjacent charts acting acting on fields Zi

ξ and gauge parameters εξ . As for

(ii), the commutativity of the diagram in figure 1 requires

Zi
ξ + δεξZ

i
ξ + δ̂

t̃
ξ

ξ′
(Zi

ξ + δεξZ
i
ξ) = Zi

ξ + δ
t
ξ

ξ′
Zi
ξ + δεξ′ (Z

i
ξ + δ

t
ξ

ξ′
Zi
ξ) , (2.41)

where δεξ′ only acts on fields and

t̃
ξ
ξ′ := t

ξ
ξ′ + δ̂εξt

ξ
ξ′ . (2.42)

As δ̂
t
ξ

ξ′
εξ drops out, the above condition is equivalent to

δ
δ̂εξ t

ξ

ξ′
Zi
ξ =

(
δ
t
ξ

ξ′
δεξ′ − δεξδtξ

ξ′

)
Zi
ξ , (2.43)

whose consistency requires (ii) and one identifies

δ̂εξt
ξ
ξ′ = [tξξ′ , εξ] . (2.44)

The transformation δ̂
t
ξ

ξ′
εξ is instead fixed by the third assumption (iii) which ensures the

commutativity between (i) and δεL ≡dKε; acting with δ̂t on the latter identity using

δ̂tδεL ≡ δtδεL + δ
δ̂tε

L and (ii) yields

d
(
K

δ̂tε+[t,ε] + δεKt

)
= 0 (2.45)

4For a more general treatment, based on geometrical concepts beyond those of the standard theory of

fiber bundles which are used in the present paper, see [43, 44].
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from which one deduces that

δ̂
t
ξ

ξ′
εξ = [εξ, t

ξ
ξ′ ] ≡ −δ̂εξt

ξ′

ξ (2.46)

provided that (iii) holds.

Equations of motion. Applying the variational principle to the action yields the fol-

lowing equations of motion and boundary conditions:

Ri ≈ 0 , δZiϑi

∣∣
∂B

≈ 0 . (2.47)

We recall that Kε|∂B ≡ 0 holds off shell as to assure the gauge-invariance of the action and

hence the gauge-covariance of the above equations of motion as well as the cancellation of

boundary terms in the interior of B in δS, i.e.

δt(δZ
iϑi) ≡ 0 . (2.48)

Canonical coordinates. We assume5 that the target manifold has the structure of a

p̂-suspended cotangent space M ∼= T ∗[p̂]N with canonical coordinates

Zi = (Xα, Pα) , deg(Xα) + deg(Pα) = p̂ , deg(Xα) , deg(Pα) ∈ N . (2.49)

Moreover, the pre-symplectic form can be chosen to be given by6

ϑ = dXαPα , O = (−1)α+1dXαdPα , P = 1
2

(
(−1)p̂α∂α∂

α+(−1)α+p̂+1∂α∂α

)
,

(2.50)

Oij = Õij =

[
0 (−1)α+1δα

β

(−1)p̂(α+1)δαβ 0

]
, P ij =

[
0 (−1)p̂αδαβ

(−1)α+p̂+1δα
β 0

]
. (2.51)

The equations of motion and structure equation now read

Rα = dXα + Qα ≈ 0 , Rα = dPα + Qα ≈ 0 , (2.52)

Qα = (−1)p̂(α+1)+1∂αH , Qα = (−1)α∂αH , (2.53)

(−1)α∂αH ∂αH ≡ 0 , d(ϑ− H ) ≡ (−1)α+1RαRα . (2.54)

5This assumption implies no loss of generality provided the starting point is the classical unfolded

systems on ∂B (with target space N). It does lead to restrictions, however, starting from systems on

B (with target space M) where it excludes models with p̂ = 2(2n + 1) and coordinates in Zi′ of degree

pi′ = 2n + 1 contributing 1
2
dZi′dZj′ki′j′ to O where ki′j′ is positive definite, such as three-dimensional

Chern-Simons theories with compact gauge algebra gk. The latter instead admit formulations as four-

dimensional BF-models with action
∫
B
tr(TF − 1

2k
T 2) where F := dA + A2 , which is locally on-shell

equivalent to k
2

∮
∂B

tr(A dA + 2
3
A3) . On the other hand, certain non-compact cases admit formulations

as three-dimensional BF-models. For example, for the gauge algebra gk ⊕ g−k, which is of relevance for

three-dimensional vacuum higher-spin gravities, one has k
2

∫
B
tr(A dA + 2

3
A2 − ÃdÃ − Ã3 + d(AÃ)) ≡

k
∫
B
tr(ER+ 1

12
E3) where now dim(B) = 3 and E := A− Ã, R := dΓ + Γ2 and Γ := 1

2
(A+ Ã) — and the

total derivative yields manifest invariance under diagonal gauge transformations.
6This choice is equivalent to using ϑalt = 1

2
ZidZjOij = 1

2

(
dXαPα − (−1)α(p̂+1)dPαX

α
)

and adding

Gibbons-Hawking-type boundary terms of the form 1
2

∑
ξ

∮
∂Bξ

XαPα.
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The power-series expansion of H in Pα yields rank-n poly-vector fields Π(n) on N of

degrees 1 + (1− n)p̂ whose mutual Schouten brackets vanish, viz.

{Π(n1),Π(n2)}S.B. ≡ 0 for all n1, n2 > 0 . (2.55)

Using the notation εi = (ǫα, ηα) and choosing Υε = −ǫαPα , the gauge variation of

Scl
bulk[X,P |B] reads

δεL
cl
bulk = dKε , Kε = (−1)p̂(α+1)ηαRα +

(
(
−→
P − 1)−→ǫ +

−→
P −→η

)
H , (2.56)

where we have defined

−→
P := Pα

∂

∂Pα
, −→ǫ = ǫα

∂

∂Xα
, −→η = ηα

∂

∂Pα
. (2.57)

Globally-defined formulations of fiber-bundle type, as discussed above, thus arise by using

transition functions with parameters tξ
′

ξ = (tα, 0)ξξ′ obeying
7

(
−→
P − 1)

−→
t H = 0 ⇔

−→
t Π(n) = 0 for n 6= 1 , (2.58)

and imposing the boundary conditions

Kε|∂B ≡ 0 . (2.59)

The latter can be implemented by the following Dirichlet conditions:

ηα|∂B ≡ 0 , Pα|∂B ≡ 0 , (2.60)

provided that the function

Π(0) ≡ H |Pα=0 ≡ 0 . (2.61)

For these globally-defined models, the resulting integrable structures in the target space

encompass

(i) a vector field Q := Π(1) of degree 1 that is nilpotent in the sense that LQQ =

2{Q,Q} ≡ 0, referred to as the Q-structure;

(ii) a tower of generalized Poisson structures Π(n) with n > 2 that are compatible with

Q in the sense that LQΠ(n) ≡ 0;

(iii) if in addition Π(n) = 0 for n > 3 then Π(2) is a Poisson structure equipping N

with a Poisson bracket of intrinsic degree −p̂ + 1 , referred to together with Q as a

QP -structure.

7As for (2.48), it can be checked that δt(δX
αPα) =

−→
δX(

−→
P − 1)

−→
t H = 0 .
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Transition amplitudes. Proceeding by assuming that ∂B = ∪λB
′
λ , where B′

λ are con-

nected boundary components, the space M of saddle points consists of gauge-equivalence

classes of maps φ : T [1]B → T ∗[p̂]N obeying Rα ≈ 0 ≈ Rα on B and Pα|∂B ≡ 0 .

Conversely, a set {φλ : T [1]B′
λ → N} of boundary configurations obeying

Rα|B′
λ
≈ 0 , Rα := dXα +Qα , (2.62)

may be referred to as being (classically) compatible with (ϑ,H ) provided there exists an

extrapolating bulk manifold B with ∂B = ∪λB
′
λ and a map φ : T [1]B → T ∗[p̂]N obeying

Rα ≈ 0 ≈ Rα on B and φ|B′
λ
= φλ , which requires generalized Poisson structures in the

non-trivial case. Semi-classically, the corresponding “third-quantized” transition amplitude

A [φλ] ∼
∑

B

J(B) exp

(
i

~
Scl
bulk[φ|B]

)
, where φ|B′

λ
= φλ , (2.63)

where J(B) comprises functional determinants — combining into finite topological invari-

ants once contributions from gauge-fixing sectors are included.

Generalized action-angles. Modified amplitudes arise upon perturbing Scl
bulk by topo-

logical vertex operators which are functionals
∮
C

V (X, dX) obeying

δV (X, dX) = δXαMαβ(X, dX)Rβ + d(δXαPα(X, dX)) , (2.64)

for some matrices Mαβ . Adding such perturbations with C ⊆ ∂B to Scl
bulk yields a modi-

fied action

Scl
tot[X,P ;µi|B;Ci] := Scl

bulk[X,P |B] +
∑

r

µr

∫

Cr

V r , Cr ⊆ ∂B , (2.65)

where µr are parameters. The total variation of the action now consists of bulk terms,

which impose Rα ≈ 0 ≈ Rα , plus boundary terms that all vanish on-shell due to the

boundary condition Pα|∂B ≡ 0 (which holds off-shell and that implies Rα|∂B ≈ 0). Hence

δ

∫

Cr

V r ≈ 0 , (2.66)

that is, the on-shell values of the perturbations are classical observables

Or[X|Cr] :=

∫

Cr

J r(X) , J r := V r(Xα,−Qα) , (2.67)

that are defined intrinsically in the sense that if δCr denotes a small variation of Cr then

dJ r ≈ 0 ⇒ δCrO
r ≈ 0 . (2.68)

On general grounds, such functionals are locally-defined functions on M as their finiteness

requires further boundary conditions on Xα|B′
λ
. Perturbatively, in weak-field expansions,

the latter amount to taking linearized boundary zero-form integration constants and gauge-

functions in suitable representations RΣ of the underlying Cartan gauge algebra; for related
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analyses in the case of higher-spin gravity, see [50]. In other words, finiteness of Or holds in

a super-selection sector given by a region of M labelled by a set {RΣ} of representations of

the gauge algebra. One may refer to a set {
∫
Cr

V r} of topological vertex operators as being

complete if {Or} is a set of (locally-defined) coordinates on (a super-selection sector of) M .

Treating µr as generalized chemical potentials leads to the notion of a grand canonical

ensemble with partition function

Z{µr;w} =

〈
∏

r

e
iµr
~

∫
Cr

V r

〉

B

, (2.69)

where w denotes the moduli hidden in the transition functions and

〈(·)〉B ∼

∫
DXDP (·)e

i
~
Scl
bulk[X,P |B] , (2.70)

denotes a suitably regularized path integral measure (to be out-lined below). Micro-

canonical ensembles with fixed
∫
Cr

V r = qr are then described by partition functions

Z̃{qr;w} =
∏

r

∫
dµr

2π
e−

iqrµr
~ Z{µr;w} , (2.71)

given by path integrals with fixed boundary conditions, viz.

Z̃{qr} ∼

〈
∏

r

δ

(∫

Cr

V r − qr
)〉

B

. (2.72)

The open Poisson sigma model can be made closed by filling in the boundary components

B′
λ with open bulk manifolds Bλ obeying ∂Bλ = −B′

λ , which may require additional

transition functions introducing further moduli that we denote by w′, and considering the

partition function

Z{µr;w,w
′} :=

〈
∏

r

e
iµr
~

∫
Cr

V r

〉

B

, B := B ∪
⋃

λ

Bλ . (2.73)

In the semi-classical limit, the filled-in bulk actions Scl
bulk[X,P |B] become total derivatives

(depending on w′) which may play the role of counter-terms possibly along the lines of the

recent work in [52].

2.3 BV master action

AKSZ quantization. The path integral measure (2.70) can be defined using the BV

field-anti-field formalism following the AKSZ approach — see e.g. [31] for a review and

references. To this end, the first step is to extend the classical sigma model by introducing

layers of ghosts in correspondence with the classical gauge structure. The first layer of

ghosts, which have the same form degree as the gauge parameters, have their own gauge

symmetries, corresponding to gauge-for-gauge symmetries, which induce a second layer of

ghosts, or ghost-for-ghosts, with one unit less of form degree, and so on. Proceeding this
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way, via a canonical procedure to be reviewed below, yields a minimal quantum sigma model

in which all fields have non-negative ghost numbers and which exhibits the complete gauge

structure. As for the second step, which is the actual gauge-fixing procedure, involving the

pairing of ghosts with suitable ghost-momenta and the introduction of Lagrange multipliers,

it need not be unique, as various gauge-fixing schemes may refer to different additional

special structures in target space over and above the generalized Poisson structures going

into the (unique) minimal model. We shall not enter any further into these details but

simply note the existence of a canonical (maximal) gauge-fixing scheme, that does not refer

to any special target-space structures, with the salient features of a (classically) conserved

BRST current and vacuum-bubble cancellation [33].

In order to arrive at the minimal quantum model, the classical map φ : T [1]B → M is

extended into

φ : T [1]B → M , (2.74)

where M is a bi-graded symplectic manifold containing M as a sub-manifold. As observed

by AKSZ, the symplectic structure on M induces dittos on M and Maps [T [1]B,M ] with

the graded Poisson bracket of the latter being the BV bracket (·, ·) ≡ (·, ·)BV , the basic

geometric structure underlying the BV field-anti-field formalism. Thus, in a certain space of

local and ultra-local superfunctionals, based on a suitable extension of Ω(M) into Ω(M) ,

the BV bracket is equivalent to the graded Poisson bracket on M . Moreover, the BV

bracket-adjoint action of the integral of the pre-symplectic form onM over T [1]B generates

the exterior derivative. Taken together, these two lemmas imply that the classical BV

master equation (S, S) = 0 , subject to the functional boundary condition that S reduces

to Scl as all anti-fields are set to zero, has a simple and elegant solution given by the AKSZ

action S , which then also solves the quantum master equation, as we shall review next.

Vectorial superfields. Each classical coordinate Zi ≡ Z
i 〈0〉
[pi]

on M is extended into a

tower of coordinates and conjugated anti-coordinates on M as follows:
{
Z

i 〈g〉
[pi−g] , Z

〈−1−g〉
i[p̂+1−pi+g] :=

(
Z

i 〈g〉
[pi−g]

)+}
, g = 0, . . . , pi , (2.75)

|Z
i 〈g〉
[pi−g]| = pi , |Z

〈−1−g〉
i[p̂+1−pi+g]| = p̂− pi , (2.76)

where O
〈g〉
[p] denotes a component with distinct ghost number g and form degree p . The

total degree and Grassmann parity (for classical theories consisting of only bosonic fields)

are defined, respectively, by

| · | := deg(·) + gh(·) , Gr(·) = | · | mod 2 . (2.77)

Given a differential form L ∈ Ω(M) of fixed total degree |L| , described locally on M by

a function L(Z,Z+, dZ, dZ+) , with pull-back πφ∗(L) ≡
∑p̂+1

p=0 [πφ
∗(L)]

〈|L|−p〉
[p] ∈ Ω(B) and

a p-cycle C ⊆ B , the integral

I(L|C) ≡
∑

ξ

∫

Bξ∩C
πφ∗

ξ(L) :=
∑

ξ

∫

Bξ∩C
[πφ∗L]

〈|L|−p〉
[p] i.e. gh(I(L|C)) = |L|−p . (2.78)
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The canonical coordinates Zi = (Xα, Pα) of M induce supercoordinates Zi = (Xα,Pα) of

M of fixed total degree as follows:

Xα =X
α 〈pα〉
[0] +X

α 〈pα−1〉
[1] + . . .+X

α 〈0〉
[pα]︸ ︷︷ ︸

fields

+P
α 〈−1〉
[pα+1] + P

α 〈−2〉
[pα+2] + . . .+ P

α 〈pα−p̂−1〉
[p̂+1]︸ ︷︷ ︸

anti-fields

, (2.79)

Pα = P
〈p̂−pα〉
α [0] +P

〈p̂−pα−1〉
α [1] + . . .+P

〈0〉
α [p̂−pα]︸ ︷︷ ︸

fields

+X
〈−1〉
α [p̂−pα+1]+X

〈−2〉
α [p̂−pα+2] + . . .+X

〈−pα−1〉
α [p̂+1]︸ ︷︷ ︸

anti-fields

.

(2.80)

In these coordinates, the symplectic and pre-symplectic forms O and ϑ, respectively, on

M read

O =
[
(−1)α+1dXαdPα

]〈0〉
[p̂+2]

= dϑ , ϑ = [dXαPα]
〈0〉
[p̂+1] , (2.81)

and we denote the corresponding graded Poisson bracket on M by

{·, ·} ≡ {·, ·}
〈0〉
[−p̂] , (2.82)

which thus has intrinsic quantum numbers gh ({·, ·}) = 0 and deg ({·, ·}) = −p̂ . The

evaluation maps Zi(p) : φ ∈ Maps [T [1]B,M ] 7→ (φ∗Zi)(p) for fixed p ∈ T [1]B (see

appendix A) define canonical coordinates on Maps [T [1]B,M ] in which its symplectic form

Ω(δZ1, δZ2) = I
(
(−1)α+1δXα

1 δP2α|B
)
− (1 ↔ 2) , gh (Ω) = −1 , (2.83)

where δZ denotes a vector field on Maps [T [1]B,M ] of total degree zero with compo-

nent expansion

δZ|φ =

∫

p∈T [1]B

p̂+1∑

k=0


π
(
φ∗
(
δZ

i〈pi−k〉
[k]

)
(p)
) δ

δZ
i〈pi−k〉
[k] (p)

∣∣∣∣∣∣
φ

+π
(
φ∗
(
δZ

+〈p̂−pi−k〉
i[k]

)
(p)
) δ

δZ
+〈p̂−pi−k〉
i[k] (p)

∣∣∣∣∣∣
φ


 . (2.84)

The corresponding graded Poisson bracket on Maps [T [1]B,M ] , referred to as the BV

bracket, is denoted by

(·, ·) ≡ (·, ·)
〈1〉
[0] , (2.85)

which thus has intrinsic quantum numbers gh ((·, ·)) = 1 and deg ((·, ·)) = 0 .

BV bracket induced from Poisson bracket. As observed by AKSZ, the BV bracket

(·, ·) on Maps [T [1]B,M ] is induced from the graded Poisson bracket {·, ·} on Ω[0](M) via

the formula

(
I(F |B) , φ∗(F ′)

)
≡ φ∗({F, F ′}) , (2.86)
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for F, F ′ ∈ Ω[0](M) . It follows that the BV-adjoint action of the pre-symplectic form is

related to the exterior derivative as follows:

( I(dXαPα|B) , φ∗(L) ) ≡ dφ∗(L) ≡ φ∗(dL) , (2.87)

for L ∈ Ω(M) . We note that φ∗(L) is an ultra-local functional, i.e. a function on

Maps [T [1]B,M ], idem F, F ′ ∈ Ω[0](M) , and that since deg(d) = 1 and gh(d) = 0 one has(
I(dXαPα|B),φ∗(L

〈g〉
[p] )
)
≡ φ∗(dL

〈g+1〉
[p−1] ) .

Superfunctionals: are functionals built from ultra-local superfunctionals φ∗(G) where

G ∈ Ω(M) have local representatives of the form G = G(Zi, dZi) where G ∈ Ω(M). In

particular, if F ,F ′ are superfunctions it follows that

{F ,F ′} =
(
{F, F ′}[−p̂](Z

i)
)∣∣

Zi→Zi , (2.88)

where {F, F ′}[−p̂] denotes the Poisson bracket evaluated in the classical target space M .

The AKSZ action: is given by the superfunctional

Sbulk[φ|B] := I (L|B) =
∑

ξ

∫

Bξ

πφ∗
ξ (L) , L := dXαPα − H (X,P ) , (2.89)

with H being a solution to the classical structure equation (2.15) obeying H |Pα=0 = 0 .

Defining

s(·) := (Sbulk, (·)) , (2.90)

one has

sZi = Ri , (2.91)

where the generalized supercurvatures

Ri := dZi +Qi , Qi := Qi(Zj) = (−1)p̂+1P ij∂jH (Zi) , (2.92)

with Qi being the superfield extension of the classical Hamiltonian Q-structure in (2.29).

The locally-defined field configurations form equivalence classes modulo gauge transfor-

mations

δεZ
i := dεi − εj∂jQ

i , (2.93)

where the parameters have total degree |εi| = |Zi| − 1 and expansions into components

with fixed ghost numbers and form degrees given by the suspension of eqs. (2.79) and (2.80)

with one unit of form degree, and zero units of ghost number. As in the classical case, it

follows from

δεSbulk ≡
∑

ξ

∮

∂Bξ

Kε , Kε = (−1)p̂(α+1)ηαR
α +

(
(
−→
P − 1)−→ǫ +

−→
P−→η

)
H , (2.94)

that the AKSZ action can be defined globally using fiber-bundle type geometries in which
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(i) the local representatives Zi
ξ are glued together using transition functions with pa-

rameters ti,ξξ′ = (tα, 0)ξξ′ obeying

(
−→
P − 1)

−→
t H ≡ 0 i.e.

−→
t Π(n) ≡ 0 for n 6= 1 , (2.95)

and

(ii) the following Dirichlet conditions are imposed:

ηα|∂B = 0 , Pα|∂B = 0 . (2.96)

The AKSZ relation between the BV bracket and the Poisson bracket given above

implies that

(Sbulk,Sbulk) = (−1)p̂
∑

ξ

∮

∂Bξ

πφ∗
ξ (R

αPα − 2L) = 0 , (2.97)

where the latter equality follows from (2.96) and the facts that δtL ≡ Kt ≡ 0 and that

δtPα = −(−1)α
−→
t ∂αH , δtR

α = (−1)p̂(α+1)−→RX
−→
t ∂αH , (2.98)

where we have defined
−→
RX := Rα∂α , which implies

δt(R
αPα) ≡

−→
RX

−→
t (

−→
P − 1)H ≡ 0 . (2.99)

In other words, the AKSZ action Sbulk solves the classical BV master equation

(Sbulk,Sbulk) = 0 ⇔ s2 = 0 , (2.100)

subject to the functional boundary condition

Sbulk[φ|B]|φ=φ = Scl
bulk[φ|B] . (2.101)

Quantum master equation. A remarkable property of the AKSZ formalism is that

any local super-functional L obeys

∆L = 0 , (2.102)

where ∆ is the BV-Laplacian. It follows that Sbulk obeys both classical and quantum

master equations (see e.g. [33] and refs. therein), viz.

(Sbulk,Sbulk) = 0 = ∆Sbulk . (2.103)

Hence DZ exp( i
~
Sbulk) defines a BRST-invariant path-integral measure (on suitable La-

grangian submanifolds): The classical BRST transformation δBRSTO := ǫ s(O), with con-

stant fermionic parameter ǫ with gh(ǫ) = −1, leaves both gauge-fixed action and DZ

invariant; the former invariance requires the classical master equation while the latter in-

variance requires8 ∆Sbulk = 0. The quantization thus deforms the classical differential

8More generally, it follows from (2.102) that any canonical transformation, viz. δEO := (E,O) with

gh(E) = −1, leaves DZ invariant.
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algebra with differential d and Q-structure Q, which one may view as a first-quantized

algebra, into a second-quantized operator algebra with BRST current jBRST (which is con-

served on shell barring anomalies) and differential adq where q :=
∮
jBRST. Thus, acting on

second-quantized ultra-local superfunctionals F , one has adqF = dF +ρ(Q)F where ρ(Q)

denotes the realization of Q in the second-quantized algebra, that, on general grounds,

carries the structure of a graded homotopy-associative differential algebra.

Deformed master action. The BRST cohomology at ghost number zero consists of on-

shell gauge-invariant observables [53].9 Although the latter can be extended into off-shell

functionals in various ways, the super-field framework leads to a unique extension: Given

a set of classical observables, {Or} say, with super-field extensions Or = Or[Z] obeying

sOr = 0, one seeks further off-shell extensions

Ôr := Or +

∫

Cr

RrLr , sLr = 0 , (Ôr, Ôr) = 0 , (2.104)

i.e. Ôr = Or + s
(∫

Cr
ZrLr

)
. The total master action

Stot := Sbulk +
∑

r

µrÔ
r (2.105)

then obeys the classical master equation. As for boundary conditions [24], the undeformed

ones (2.96) (imposed off shell in order to have a globally-defined bulk action) are com-

patible with those following the variational principle provided that the off-shell extensions

are super-field extensions V r = V r(X, dX) of topological vertex operators as defined

in (2.64), i.e.

Stot[X,P ;µi|B;Ci] := Sbulk[X,P |B] +
∑

r

µr

∫

Cr

V r(X, dX) , (2.106)

where Cr ⊆ ∂B .

3 Vasiliev’s theory: a graded-associative non-commutative case

In this section we begin by reviewing selected features of the action principle for Vasiliev’s

theory in four dimensions given in [1]. We then construct a minimal classical BV master

action using a natural generalization of the AZSZ formalism to the case of graded as-

sociative differential algebras. In addition, we shall refine the analysis of [1] concerning

compatibility conditions for globally-defined formulations of fiber-bundle type at the level

of classical action as well as classical BV master actions.

Before turning to the details, we wish to emphasize that while the BV anti-bracket gen-

eralizes straightforwardly to the non-commutative case, the corresponding generalization

9At the level of locally-defined densities, one has that H〈g〉(s) ∼= H〈g〉(γ,H(δ)) where γ generates the

classical gauge symmetries and δ is the Koszul-Tate differential implementing the equations of motion [54].

The construction of H〈0〉(s) then passes via globally-defined formulations distinguishing between manifest

off-shell gauge symmetries and non-manifest Cartan gauge symmetries on shell [1, 51].
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of the BV Laplacian requires the introduction of distributive two-point functions (delta

functions) on non-commutative manifold, that we defer to a future work together with the

analysis of the quantum BV master equation. It is natural, however, to expect that the clas-

sical BV master action principle presented here also solves the quantum master equation.

3.1 Classical theory

Correspondence space. Vasiliev’s formulation of higher-spin gravities is in terms of

associative differential algebras on non-commutative correspondence spaces C ∼= T ∗M in-

troducing the following basic notions:

• the differential algebra Ω(C) with differential d and compatible graded-associative

product ⋆ , i.e. if f, g ∈ Ω(C) then d(f ⋆ g) = (df) ⋆ g+(−1)deg(f)f ⋆ (dg) . These two

operations are assumed to be real in the sense that there exists an anti-linear anti-

automorphism † obeying (f ⋆ g)† = (g†) ⋆ (f †) and (df)† = d(f †) for all f, g ∈ Ω(C) ;

• a graded cyclic trace operation Tr: Ω(C) → C obeying Tr[d(·)] ≡ 0 (modulo boundary

terms), given essentially by the integral over C, that defines a non-degenerate bi-linear

form compatible with d and ⋆;

• a subalgebra consisting of d-closed central elements Jr, i.e. dJr = 0 and Jr⋆f = f ⋆Jr

for all f ∈ Ω(C) ;

In the case of four-dimensional bosonic higher-spin gravities, including the minimal bosonic

models, the differential forms take their values in the algebra Z2 × Z2 generated by two

outer Kleinians (k, k̄) obeying

k ⋆ k = 1 , [k, d]⋆ = 0 , k† = k̄ . (3.1)

The subalgebra of d-closed central elements is generated by various projections of the

symplectic form on C together with the elements

(JI
[2])I=1,2 = − i

4 (1 , kκ) ⋆ P+ ⋆ d2z ,

(J Ī
[2])Ī=1̄,2̄ = − i

4 (1 , k̄κ̄) ⋆ P+ ⋆ d2z̄ ,

P+ = 1
2 (1 + kk̄) , (3.2)

where the two inner Kleinians

κ := (2π)2δ2(y) ⋆ δ2(z) , κ̄ := (κ)† = (2π)2δ2(ȳ) ⋆ δ2(z̄) , (3.3)

using Weyl-ordered symbols, and (yα, ȳα̇; zα, z̄α̇) (with α, α̇ = 1, 2) are local coordinates

on the doubled twistor space Zξ ×Yξ ⊂ C obeying

{k, yα}⋆ = {k, zα}⋆ = 0 = [k, ȳα̇]⋆ = [k, z̄α̇]⋆ , (3.4)

[yα, yβ ]⋆ = 2iǫαβ , [zα, zβ ]⋆ = −2iǫαβ , (3.5)

and the reality conditions

(yα)† = ȳα̇ , (zα)† = z̄α̇ . (3.6)
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The inner Kleinian obey κ ⋆ κ = 1 and

κ ⋆ f ⋆ κ = (−1)degy×z(f)π(f) , π(f) := k ⋆ f ⋆ k , (3.7)

where degy×z(f) denotes the holomorphic form degree of f , idem κ̄ and π̄(f) := k̄ ⋆ f ⋆ k̄ .

The full correspondence space is thus of the form

C =
⋃

ξ

Cξ , Cξ = T ∗Mξ × Zξ ×Yξ , (3.8)

where T ∗Mξ has real canonical coordinates (XM , PM ) obeying

[
XM , PM

]
⋆
= iδMN . (3.9)

Requiring (XM , PM ; yα, ȳα̇; zα, z̄α̇) to commute with the line-elements

(dXM , dPM ; dyα, dȳα̇; dzα, dz̄α̇) it follows that the latter generate a graded commu-

tative algebra.

Chiral trace operation. The basic chiral trace operation is defined by

Tr[f ] :=
∑

ξ

∫

T ∗Mξ×Y×Z

f |k=0=k̄ , (3.10)

where the integral projects onto the top form degree; the integrand should be understood

as the symbol of f in a suitable order;10 and the twistor variables are integrated along

independent real contours. This trace operation is graded cyclic, i.e.

Tr[f ⋆ g] = (−1)deg(f)deg(g)Tr[g ⋆ f ] . (3.11)

Various other graded-cyclic trace operations can be obtained by projecting Tr. Inserting

P± =
1

2
(1± kk̄) , (3.12)

yields a trace that is graded cyclic and non-degenerate on the bosonic subalgebras

A± := {f ∈ Ω(C)× Z2 × Z2 : f = ππ̄(f) = P+ ⋆ f } . (3.13)

Inserting ΩY := d2y d2ȳ
(2π)2

yields a trace that is non-degenerate on Ω(T ∗M × Z) ⊗ Ω[0](Y) .

Inserting also ΠM := 1
n!ǫ

M1···MndPM1 · · · dPMnδ
n(PN ), defined using Weyl order, we obtain

a reduced trace operation that remains non-degenerate on Ω(M× Z)⊗ Ω[0](Y), viz.

Ťr[f ] := Tr[ΠM ⋆ ΩY ⋆ f ] ≡
∑

ξ

∫

Mξ

Tr′[f ] , (3.14)

where the twistor-space trace operation

Tr′[f ] :=

∫

Y×Z

[
ΩY ⋆ f |k=k̄=0 ; dPM=0 ;PM=0

]
. (3.15)

10If the trace is well-defined, it does not depend on the choice of order.
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The reduced trace remains graded cyclic, i.e.

Ťr[f ⋆ g] = (−1)deg(f)deg(g)Ťr[g ⋆ f ] . (3.16)

In order to make contact with the previous section, one thus treats

M× Z ≡ B , (3.17)

as the bulk manifold, hence

p̂ = dim(M) + 3 , (3.18)

and Y as a fiber manifold, i.e. all quantities are expanded in sets {Tλ(y
α, ȳα̇)} of func-

tions on Y treated as types forming a basis for an associative ⋆- product algebra with

coefficients in Ω(B) that remains closed under ⋆-product composition with κ and κ̄ ; for a

concrete example of this separation of variables, see [50]. The choice of types is adapted to

the boundary conditions on B and may hence manifest various symmetry algebras, such

as generalized Lorentz algebras or compact algebras, leading to the notion of (inverse)

harmonic expansions [55, 56]. In what follows, for the purpose of setting up the AKSZ

formalism, it suffices, however, to treat the Y-dependence formally.

Classical action: odd-dimensional bulk. If dim(M) = 2n + 1 with n > 0 , that

is p̂ = 2n + 4 , a duality extension of Vasiliev’s equations of motion for four-dimensional

higher-spin gravities, which is locally equivalent to Vasiliev’s original equations, follows

from the variational principle based on the generalized Hamiltonian bulk action

Scl
bulk[{A,B,U, V }ξ] =

∑

ξ

∫

Mξ

Tr′
[
U ⋆ DB + V ⋆

(
F + G (B,U ; JI , J Ī , JIĪ)

)]
ξ
, (3.19)

where the locally-defined master fields have decompositions under total form degree into

A = A[1] +A[3] + · · ·+A[2n+3] , B = B[0] +B[2] + · · ·+B[2n+2] , (3.20)

U = U[2] + U[4] + · · ·+ U[2n+4] , V = V[1] + V[3] + · · ·+ V[2n+3] . (3.21)

The interaction freedom in G needs to be constrained in order for the action to be gauge

invariant. Making the ansatz11

G = F (B; JI , J Ī , JIĪ) + F̃ (U ; JI , J Ī , JIĪ) , (3.22)

F = F0(B) + FI(B) ⋆ JI
[2] + FĪ(B) ⋆ J Ī

[2] + FIĪ(B) ⋆ JIĪ
[4] , (3.23)

F̃ = F̃0(U) + F̃I(U) ⋆ JI
[2] + F̃Ī(U) ⋆ J Ī

[2] + F̃IĪ(U) ⋆ JIĪ
[4] , (3.24)

the following two cases yields integrable equations of motion:

bilinear Q-structure : F = B ⋆ J , J = J[2] + J[4] , (3.25)

bilinear P -structure : F̃ = U ⋆ J ′ , J ′ = J ′
[2] + J ′

[4] , (3.26)

11The coupling f̃ := ∂UF̃0|U=0 determines whether the target space is a symplectic manifold (f̃ 6= 0) or

a proper Poisson manifold (f̃ = 0). In the symplectic case the U and V variables can be integrated out

after which the action becomes a boundary term while this is no longer possible in the proper Poisson case.
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where the central elements are defined via

B ⋆ J[2] ≡ FI ⋆ J
I
[2] + FĪ ⋆ J

Ī
[2] , B ⋆ J[4] ≡ FIĪ ⋆ J

IĪ
[4] , (3.27)

J[2] = − i
4

[
dz2(b1 + b2 k κ) + dz̄2(b1̄ + b2̄ k̄ κ̄)

]
⋆ P+ , (3.28)

J[4] = − i
4 dz

2dz̄2
[
c11̄ + c21̄ k κ+ c12̄ k̄ κ̄+ c22̄ κ κ̄

]
⋆ P+ . (3.29)

Indeed, letting Zi = (A,B,U, V ) , the general variation of the action reads

δScl
bulk =

∑

ξ

∫

Mξ

Tr′
[
δZi ⋆ RjÕij

]
+
∑

ξ

∫

∂Mξ

Tr′ [U ⋆ δB − V ⋆ δA] , (3.30)

where Oij is a constant non-degenerate matrix defining the symplectic form of degree p̂+2

on the target space and the generalized curvatures

RA = F + F + F̃ , RB = DB + (V ∂U ) ⋆ F̃ , (3.31)

RU = DU − (V ∂B) ⋆ F , RV = DV + [B,U ]⋆ , (3.32)

and the bulk equations of motion Ri ≈ 0 are Cartan integrable for the above choices of F

and F̃ . As shown in [1], the on-shell Cartan gauge transformations

δǫ,ηA = DǫA − (ǫB∂B) ⋆ F − (η U∂U ) ⋆ F̃ , (3.33)

δǫ,ηB = DǫB − [ǫA, B]⋆ − (η V ∂U ) ⋆ F̃ − (η U∂U ) ⋆ (V ∂U ) ⋆ F̃ , (3.34)

δǫ,ηU = Dη U − [ǫA, U ]⋆ + (η V ∂B) ⋆ F + (ǫB∂B) ⋆ (V ∂B) ⋆ F , (3.35)

δǫ,ηV = Dη V − [ǫA, V ]⋆ − [ǫB, U ]⋆ + [η U , B]⋆ , (3.36)

remain symmetries off shell modulo boundary terms, viz.

δǫ,ηS
cl
bulk[A,B,U, V ] =

∑

ξ

∫

∂Mξ

Kη , (3.37)

where

Kη = Tr′
[
ηU ⋆ DB + ηV ⋆ (F + F + (1− U∂U ) ⋆ F̃ )

]
. (3.38)

As found in [1], the closure formula for Cartan gauge transformations generalized straight-

forwardly from the commutative to the non-commutative case, i.e.

[δε, δε]Z
i = δε12Z

i −
−→
R ⋆ εi12 , (3.39)

with composite parameters

εi12 = −−→ε 1 ⋆
−→ε 2 ⋆ Qi , (3.40)

which can be used to construct globally-defined bulk actions within the context of fiber

bundles. Thus, the contributions to δǫ,ηS
cl
bulk from the chart boundaries in the interior of
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M can be made to cancel by gluing together the locally-defined field configurations and

broken η-gauge parameters using gauge transitions δ̂tZ
i = δtZ

i and

δ̂tη
U = −[tA, ηU ]− (tB∂B) ⋆ (η

V ∂B)F , (3.41)

δ̂tη
V = −[tA, ηV ] + {ηU , tB} , (3.42)

i.e.

δ̂tKη = 0 , (3.43)

where, moreover, the compatibility conditions on {tA, tB} read as follows:

−→
R ⋆ [

−→
t ,−→ǫ ]⋆ ⋆ Qi = 0 for all i,

−→
R and −→ǫ . (3.44)

The conditions on tA hold for all F while those for tB hold only if F is at most bi-linear.

Thus, if F is at least tri-linear then tB-transitions must be discarded.

Classical action: even-dimensional bulk. If dim(M) = 2n with n > 0 , that is

p̂ = 2n− 1, the duality-extended equations of motion follow from the variational principle

based on the generalized Hamiltonian bulk action

Scl
bulk[A,B;S, T ] =

∑

ξ

∫

Mξ

Tr′
[
S ⋆ DB + T ⋆ (F + F + F̃ (S; JI , J Ī , JIJ̄))

]
ξ
, (3.45)

where the interaction function obeys

F̃ (−S) = F̃ (S) , F̃ |S=0 = 0 , (3.46)

and the fields are assigned form degrees as follows:

A = A[1] +A[3] + · · ·+A[2n−1] , B = B[0] +B[2] + · · ·+B[2n−2] , (3.47)

S = S[1] + S[3] + · · ·+ S[2n−1] , V = T[1] + T[2] + · · ·+ T[2n−2] . (3.48)

From the variation one obtains

RA = F + F + F̃ (S) , RB = DB − (T∂S) ⋆ F̃ (S) , (3.49)

RS = DS + (T∂B) ⋆ F , RT = DT + [S,B]⋆ . (3.50)

and the integrability of the equation of motion DRI − (RJ∂J) ⋆ Z
I ≡ 0 requires

DRA − (RB∂B) ⋆ F − (RS∂S) ⋆ F̃

= ((T∂S) ⋆ F̃∂B) ⋆ F − ((T∂B) ⋆ F∂S) ⋆ F̃ ≡ 0 , (3.51)

DRB − [RA, B] + (RT∂T ) ⋆ F̃ + (RS∂S) ⋆ ((T∂S) ⋆ F̃ )

= ((T∂B) ⋆ F∂S) ⋆ ((T∂S) ⋆ F̃ ) ≡ 0 , (3.52)

DRS − [RA, S]− (RT∂B) ⋆ F − (RB∂B) ⋆ ((T∂B) ⋆ F )

= ((T∂S) ⋆ F̃∂B) ⋆ ((T∂B) ⋆ F ) ≡ 0 , (3.53)
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whereas

DRT − [RA, T ]− [RS , B] + {RB, S} ≡ 0 , (3.54)

as follows from the even functions F̃ obey

{S, (T∂S) ⋆ F̃}⋆ ≡ [T, F̃ ]⋆ . (3.55)

The remaining conditions are satisfied in two cases:

F = B ⋆ f(JI , J Ī , JIJ̄) , F̃ =
∑

n

S⋆2n ⋆ wn(J
I , J Ī , JIJ̄) (3.56)

or

F =
∑

n

B⋆n ⋆ fn(J
I , J Ī , JIJ̄) , F̃ = 0. (3.57)

where fn, wn are arbitrary functions of the central terms JI , J Ī , JIJ̄ . This choice makes

the action invariant under the gauge transformations

δǫ,ηA = DǫA − (ǫB∂B) ⋆ F − (η S∂S) ⋆ F̃ , (3.58)

δǫ,ηB = DǫB − [ǫA, B]⋆ + (η T∂S) ⋆ F̃ + (η S∂S) ⋆ (T∂S) ⋆ F̃ , (3.59)

δǫ,ηS = Dη S − [ǫA, S]⋆ + (η T∂B) ⋆ F + (ǫB∂B) ⋆ (T∂B) ⋆ F , (3.60)

δǫ,ηT = Dη T − [ǫA, T ]⋆ + {ǫB, S}⋆ − [η S , B]⋆ , (3.61)

up to the boundary terms

δǫ,ηS
cl
bulk =

∑

ξ

∫

∂Mξ

Tr
[
ηS ⋆ DB + ηT ⋆ (F + F + (1− S∂S) ⋆ F̃ )

]
. (3.62)

The construction of a globally-defined action and the required compatibility conditions are

analogous to the case of even p̂ using

δ̂tη
S = −[tA, η S ]⋆ + (tB∂B) ⋆ (η

T∂B) ⋆ F , (3.63)

δ̂tη
T = −[tA, η T ]⋆ − [tB, η S ]⋆ . (3.64)

3.2 AKSZ master action

The bulk action. In this section we give the minimal solutions S of the classical master

equation corresponding to the classical action principles given in the previous sections.

The classical fields Zi become coordinates Zi of a supermanifold and contain all

the ghosts and antifields of the BRST-BV spectrum similarly to what is explained be-

low (2.79) and (2.80). The AKSZ master actions are obtained by taking the classical bulk

actions (3.19) and (3.45); replacing Zi by Zi therein; integrating as in (2.78) so as to se-

lect only the top form component of the resulting Lagrangian density; and projecting onto

ghost number zero, viz.

S = Scl
bulk[Z

i]
∣∣∣
〈0〉

≡
∑

ξ

∫

Bξ

Tr′Lξ

∣∣∣∣∣

〈0〉

, (3.65)
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that is

Even p̂: L = U ⋆DB + V ⋆
(
F + F (B; Jr) + F̃ (U ; Jr)

)
, (3.66)

Odd p̂: L = S ⋆DB + T ⋆
(
F + F (B; Jr) + F̃ (S; Jr)

)
. (3.67)

As for the BV bracket (·, ·) in non-commutative space, it is defined analogously to (2.83)

and defines a derivation in the sense that for any local star-functional F and ultra local

star-functionals A(p) and B(p) , evaluated on p ∈ C , it satisfies

(F,A(p) ⋆ B(p)) = (F,A(p)) ⋆ B(p) + (−1)A(F+1)A(p) ⋆ (F,B(p)) . (3.68)

Thus, similarly to the commutative case, we have the following basic BV brackets:

(S,Zi) = Ri , Ri = dZi +Qi , (3.69)

and where Qi = Qi(Zi) .

It is then a direct computation to verify that the master equation (S,S) = 0 is satisfied

up to boundary terms as follows:

Even p̂ : (S,S) =−

∮

∂B

Tr′
[
U ⋆DB + V ⋆ (F + F (B; J)) + V ⋆ (1−U∂U ) ⋆ F̃ (U ; J)

]
,

(3.70)

Odd p̂ : (S,S) =

∮

∂B

Tr′
[
S⋆DB + T ⋆(F + F (B; J)) + T ⋆(1−S∂S) ⋆ F̃ (S; J)

]
(3.71)

which one indeed identifies as the non-commutative generalization of (2.97), i.e.

(S,S) = (−1)p̂
∑

ξ

∮

∂Bξ

Tr′ [(Rα ⋆ Pα − 2L]ξ , (3.72)

which vanishes upon imposing

Pα|∂B = 0 , (3.73)

and using gauge transitions between charts, acting as follows:

δtA = DtA − (tB∂B) ⋆ F , (3.74)

δtB = DtB − [tA, B]⋆ , (3.75)

δtU = −[tA,U ]⋆ + (tB∂B) ⋆ (V ∂B) ⋆ F , (3.76)

δtV = −[tA,V ]⋆ − [tB,U ]⋆ , (3.77)

δtS = −[tA,S]⋆ + (tB∂B) ⋆ (T ∂B) ⋆ F , (3.78)

δtT = −[tA,T ]⋆ + {tB,S}⋆ , (3.79)

with parameters (tA, tB) obeying the super-field extension of (3.44).
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Some boundary deformations. An example of a set of boundary deformations of min-

imal bosonic models [51] (for the corresponding projection of the off-shell system, see [1])

is given by topological vertex operators of the form [51]12

V
−→m
[2(m+n)] = Tr′

[
d4Zκ ⋆

(
n∏

i=1

(
R ⋆ E2mi

)
− (−1)nm

(m+n) E⋆2(m+n)

)]
, (3.80)

where −→m = (m1, . . . ,mn) ≡ (m2, . . . ,mn,m1) with mi > 0 and
∑n

i=1mi = m denotes a

cyclic order, and

E := 1
2 (1− π)A[1]|M , R := dΓ + Γ ⋆ Γ , Γ = 1

2 (1 + π)A[1]|M , (3.81)

obeying

∇E ≈ 0 , R+ E ⋆ E ≈ 0 , (3.82)

with ∇ = (d+adΓ)|M . It follows that V
−→m
[2(m+n)] obeys (2.64) (with total derivatives on M)

and that

V
−→m
[2(m+n)] ≈ J

−→m
[2(m+n)] :=

(−1)nn
(m+n) Tr

′
[
d4Zκ ⋆ E⋆2(m+n)

]
, (3.83)

which is indeed a non-trivial element of the on-shell de Rham cohomology on M (and hence

∂M) assuming a globally-defined formulation of fiber-bundle type with structure group

containing π-even but not π-odd gauge parameters in form degree zero. In other words, the

insertion of V
−→m
[2(m+n)] at ∂M deforms the unbroken phase into a broken phase with smaller

structure group and hence additional observables; the broken gauge symmetries instead

resurface on shell with π-odd parameters ξ := 1
2(1− π)ǫA[0] forming a section together with

the soldering one-form E on a fiber bundle with π-even structure group in degree zero.

Indeed, under the gauge transformations δξ , the variation δξJ
−→m
[2(m+n)] consists of total

derivatives that cancel across chart boundaries provided (ξ, E) forms a section. Clearly,

the on-shell values of V
−→m
[2(m+n)] are non-trivial only on submanifolds of ∂M where E is non-

degenerate, which is also where the parameter ξ can be converted into diffeomorphisms.

In other words, perturbing the action by
∫
C

V
−→m
[2(m+n)] on 2(m + 2)-cycles C ⊆ ∂M, and

imposing non-trivial on-shell values for
∫
C

J
−→m
[2(m+n)] leads to a metric phase on C .

Turning to the total AKSZ master action, it is straightforward to check using the

BRST transformations

sE = DE , sΓ = R+E ⋆E (3.84)

that the BRST transformations of each one of the two terms making up V
−→m
[2(m+n)] :=

V
−→m
[2(m+n)](Z, dZ) transforms into a total derivative such that

sV
−→m
[2(m+n)] = dW

−→m
[2(m+n)] , (3.85)

independently of the relative coefficient in V
−→m
[2(m+n)], which is instead fixed by demanding

the super-field analog of (2.64).

12For manifestly Lorentz-covariant vertex operators, see [51].
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4 Conclusions

In this paper we have taken the first steps of the BV-AKSZ quantization of four-dimensional

higher-spin gravity based on the classical action proposed in [1] by constructing the cor-

responding minimal AKSZ master action obeying the classical BV master equation. We

have also given the details of the global formulation within the framework of fiber bundles,

which was described only briefly given in [1].

Besides the gauge-fixing procedure, which may require non-minimal sectors containing

ghost-momenta and Nakanishi-Laudrup auxiliary fields, there are several lines of develop-

ments that present themselves at the present stage of which some are:

(i) the classification of the bulk Hamiltonians consistent with Vasiliev’s theory on the

boundary and corresponding globally-defined formulations, that may extend beyond

the realm of fiber bundles;

(ii) the classification of possible deformations of the bulk action, which in general depend

on the choice of global formulation in (i);

(iii) to forgo the associativity of the star-product on the correspondence by considering

more general homotopy-associative differential algebras.

Finally, it remains an open problem whether contact can be made with the perturba-

tive Fronsdal program. The natural procedure is to add a deformation four-form within a

suitable global formulation to be identified as the generating function of holographic corre-

lation functions, possibly in accordance with the various observations and conjectures made

in [57–60]. In the latter respect, the four-form proposed by [51], that is, the quantity V
(2)
[4]

given in eq. (3.80) (for m = n = 1), which depends only on zero-forms and one-forms on

∂M, is an interesting candidate: Assuming that p̂ = 8 so that dim(M) = 5, and that ∂M

is non-compact with non-trivial external states on ∂2M, it follows that V
(2)
[4] is non-trivial

on-shell (constructed from boundary-to-bulk propagators) and hence a candidate for an on-

shell action. Its vertices, on the other hand, cannot be used to close any loops as follows

from conservation of form degree on M (bulk vertices of the form Tr′ [Jr ⋆ U⋆n ⋆ V ]degM=5

cannot yield correlation functions on ∂M between forms Xα|∂M if all degrees pα 6 1) .

Hence, it appears treating V
(2)
[4] as a deformation four-form may give rise to non-trivial

tree diagrams and trivial loop corrections, in accordance with the general pattern expected

from free conformal field theories.

On-shell equivalence to Fronsdal approach. Concerning the correspondence with

the free O(N) vector model [57] and Gross-Neveu model [61], we make the following ob-

servations:

• for any H (U, V ;B) and applying perturbation theory in which
∫
M
Tr′[dXα ⋆ Pα] is

treated as the kinetic term, it follows from the fact that the vertices in H (U, V ;B) are

built from exterior (star-) products that boundary correlation functions that involve

only zero-forms and one-forms are given by their semi-classical limits (as vacuum
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bubbles cancel), viz.

〈B[0](p1) · · ·B[0](pn)A[1](pn+1) · · ·A[1](pn+m)〉|pi∈∂M

= 〈B[0](p1)〉 · · · 〈B[0](pn)〉〈A[1](pn+1)〉 · · · 〈A[1](pn+m)〉 ; (4.1)

• assuming the existence of a perturbative completion
∫
∂M

VFV(B[0], dB[0];A[1], dA[1])

of the Fradkin-Vasiliev action,13 it can be added as a topological vertex operator and

treated as an interaction, including its kinetic terms;

• it follows that the expectation value of the Fradkin-Vasiliev action is tree-level ex-

act, i.e.

Z(µ) :=

〈
exp(

iµ

~

∫

∂M

VFV)

〉
= exp(

iµ

~

∫

∂M

VFV)

∣∣∣∣
B[0]=〈B[0]〉;A[1]=〈A[1]〉

, (4.2)

with expectation values 〈B[0]〉 and 〈A[1]〉 obeying the Vasiliev equations of mo-

tion subject to boundary conditions at the three-dimensional conformal boundary

∂̄∂M of ∂M;

• thus, assuming a suitable topology for ∂M and that 〈B[0]〉 and 〈A[1]〉 are asymptotic

to AdS4, hence built from the boundary data using boundary-to-bulk propagators, we

expect that Z(µ) with µN = ~ is equal to the generating functional of the free O(N)

model in the case of the Type A model with scalar field obeying ∆ = 1 boundary

conditions, and to the generating functional of the free Gross-Neveu model (with

N free fermions) in the case of the Type B model with scalar field obeying ∆ = 2

boundary conditions.

We wish to stress the fact that both of the latter higher-spin gravity models are manifestly

tree-level unitary: by the very nature of the perturbative treatment of the Poisson sigma

models (with kinetic PdX-terms on M), the partition function Z(µ) is completely free

from loop corrections in the Fradkin-Vasiliev sector, in perfect agreement with free three-

dimensional CFTs. In other words, Z(µ) is given by the sum of tree Witten-diagrams in

AdS4 with external boundary-to-bulk and internal bulk-to-bulk Green’s functions arising

as the result of solving classical equations of motion subject to boundary sources (and

not of performing any Gaussian integrals starting from the Fronsdal kinetic terms in the

Fradkin-Vasiliev action).

In the case of the strongly-coupled fixed points of the O(N) vector model [58] and

the Gross-Neveu model [61], reached by suitable double-trace deformations, the Fradkin-

Vasiliev action needs to be modified with a Gibbons-Hawking term
∫

∂̄∂M

VGH =

∫

∂̄∂M

φ∂nφ+ · · · , (4.3)

where the · · · contain a non-linear completion achieving higher-spin gauge invariance.

13Whether the completion is given in the standard Fronsdal formulation or in the frame-like formulation

is immaterial as in both cases the dynamical field content can be obtained by applying projections to the

Vasiliev master fields.
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In the standard perturbative approach, in which the kinetic terms are taken from∫
∂M

VFV , this modification induces a shift in the scalar two-point function G∆=1 as follows

(for a recent treatment, see [62]):

G∆=1(p; r, r
′) + |p|K∆=1(p; r)K∆=1(p; r

′) ≡ G∆=2(p; r, r
′) . (4.4)

In the Poisson sigma model, on the other hand, the Gibbons-Hawking modification

is instead treated as an additional vertex. As a result, pairs of external scalar legs of the

tree diagrams are sewn together leading to additional scalar loops that are restricted in

the configuration space as to touch the boundary. Likewise, the non-linear completion

of
∫
∂̄∂M

VGH may induce loop-corrections involving higher-spin fields running in similar

boundary loops.
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A Vector fields and functional derivatives on non-commutative manifold

Star-vector fields. A graded-associative quasi-free differential algebra on a non-

commutative base manifold B consists of local representatives Rξ (ξ labels charts Bξ ⊂ B)

generated by sets {Zi
ξ}i∈S of locally-defined differential forms subject to generalized cur-

vature constraints

Ri
ξ := dZi

ξ + Qi(Zξ, J) ≈ 0 , (A.1)

where
−→
Q := Qi ∂i (with ∂i ≡

−→
∂ i) is a composite ⋆-vector field of total degree one subject

to the Cartan integrability condition

−→
Q ⋆ Qi ≡ 0 . (A.2)

A composite ⋆-vector field
−→
X (see appendix B of [1] for more details) is a graded inner

derivation of the graded associative ⋆-product algebra R := Env[Zi]⊗J where J is a space

of central and d-closed elements (including the identity), i.e. if F ,F ′ ∈ R then

−→
X ⋆ (F ⋆ F ′) = (

−→
X ⋆ F ) ⋆ F ′ + (−1)deg(

−→
X )deg(F )F ⋆ (

−→
X ⋆ F ′) , (A.3)

provided that
−→
X and F have fixed degrees. In components, one writes

−→
X := X i(Zj)∂i

where X i :=
−→
X ⋆ Zi . The graded bracket between two composite ⋆-vector fields is

defined by

[
−→
X ,

−→
X ′]⋆ ⋆ F :=

−→
X ⋆ (

−→
X ′ ⋆ F )− (−1)deg(

−→
X )deg(

−→
X ′)−→X ′ ⋆ (

−→
X ⋆ F ) , (A.4)
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is a degree-preserving graded Lie bracket, i.e. [
−→
X ,

−→
X ′]⋆ is a graded inner derivation obeying

the graded Jacobi identity [[
−→
X ,

−→
X ′]⋆,

−→
X ′′]⋆ + graded cyclic ≡ 0 . In components, one has

[
−→
X ,

−→
X ′]⋆ =

(−→
X ⋆ X ′i − (−1)

−→
deg(X )deg(

−→
X ′)−→X ′ ⋆ X i

)
∂i . (A.5)

The Cartan integrability condition (A.2), that can be rewritten [
−→
Q,

−→
Q]⋆ ≡ 0 , amounts

to that
−→
Q is a nilpotent composite ⋆-vector field of degree one. This condition ensures

that the generalized curvature constraints Ri
ξ ≈ 0 are compatible with d2 ≡ 0 without

further algebraic constraints on the generating elements Zi
ξ . One can also show [1] that

the nilpotency of
−→
Q is separately equivalent to that the generalized curvatures Ri obey

the generalized Bianchi identities

dRi −
−→
R ⋆ Qi ≡ 0 , where

−→
R := Ri ∂i , (A.6)

and transform into each other under the following Cartan gauge transformations

δεZ
i ≡ T i

ε := dεi −−→ε ⋆ Qi , where −→ε := εi ∂i (A.7)

and where εi is considered infinitesimal and independent of Zi , viz.

δεR
i = −

−→
R ⋆

(
(−→ε ⋆ Qi)

)
. (A.8)

Functional derivative on commutative manifold. We define the variational func-

tional left derivative δf(p)F [f ] ≡ δL

δf(p)F [f ] at p ∈ B of a functional F [f ] with respect to a

differential form f via the relation
∫

p∈B
δf(p) δf(p)F [f ] = F [f + δf ]− F [f ] +O((δf)2) . (A.9)

We assign a total degree and a Grassmann parity, respectively, to variables, operations and

maps as follows:

| · | := deg(·) + gh(·) , Gr(·) = | · | mod 2 , (A.10)

which implies that the total exterior derivative d anti-commutes with the BRST operator.

We refer to a functional F [f ] as being ultra-local if F [f ] = L(f, df) where L is an algebraic

function of f and df , and as being local if F [f ] =
∫
B

L (f, df) where L is ultra-local. We

refer to a functional as being intrinsically defined on B if it does not refer to any auxiliary

frame on B . The functional derivatives of local functionals are intrinsically defined and

ultra-local, viz.

δf(p)

∫

B

L (f, df) =
(
∂fL − (−1)|f |d(∂dfL )

)
(p)

def.
=

δL (f, df)

δf
(p) , (A.11)

where throughout the paper all the derivatives are left-derivatives, so that ∂fL = ∂L

∂f
L

and ∂dfL = ∂L

∂df L . The functional derivatives of ultra-local functionals are given by

δf(p)
(
L(f, df)(p′)

)
= [δf(p)f(p

′)] (∂fL) (p
′)+(−1)p̂+1+|f |

(
dp′ [δf(p)f(p

′)]
)
(∂dfL)(p

′), (A.12)
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and refers to an auxiliary frame hA via the distribution (taking f to be a q-form):

δf(p)

δf(p′)
≡ δf(p)f(p

′) = (−1)p̂|f |+gh(f) hA[p̂+1−q](p) hB[q](p′) ǫA[p̂+1−q]B[q] δ(p, p
′) , (A.13)

where the Dirac function is the zero-form defined by

∫

p∈B
h(p)ϕ(p)δ(p, p′) = ϕ(p′) , ϕ ∈ Ω[0](B) , (A.14)

where we use the definitions and conventions

hA[n] =
1

n!
hA1 · · ·hAn , h = hA[p̂+1]ǫA[p̂+1] , (A.15)

ǫA[n]C[p̂+1−n]ǫB[n]C[p̂+1−n] = (−1)ηABn!(p̂+ 1− n)!δ
A[n]
B[n] . (A.16)

Then, the functional derivative of an ultra-local functional F (f, df) is such that one has

∫

p∈B
δf(p)

[
δf(p)

(
F (f, df)(p′)

)]
= δf(p′)

δF

δf
(p′) + dp′

[
δf(p′) (∂dfF ) (p′)

]
(A.17)

using the notation and definition of (A.11). Therefore, expanding the total derivative on

the right-hand side of the above equation, one has

F (f + δf, d(f + δf))(p′)− F (f, df)(p′) = (dp′δf(p
′)) ∂dfF (p′) + δf(p′) ∂fF (p′) . (A.18)

Functional variations in the non-commutative case. In the case of a non-

commutative graded manifold one defines the functional variation δF
δZi of a functional

F [Z] by

F [Z + δF ]− F [Z] = δF =

∫

p∈B

(
δZi(p) ⋆

δF [Z]

δZi(p)

)
+ O((δZ)2) . (A.19)

Starting from the functional F [Z] =
∫
B
L⋆(Z, dZ) where L⋆(Z, dZ) is a star-function

of (Z, dZ), one has

δF [Z]

δZi(p)
= ∂i

cyclL⋆(p)− (−1)i d(∂cycl

dZiL⋆)(p) =:
δL⋆(Z, dZ)

δZi
(p) (A.20)

where, for P⋆(Z) = fi1,...,in Zi1 ⋆ . . . ⋆ Zin ≡ (−1)i1(i2+...+in)fi2,...,in,i1 Zi1 ⋆ . . . ⋆ Zi1 , the

cyclic derivative

∂
cycl
i P⋆(Z) = n fi,i2,...,in Zi2 ⋆ . . . ⋆ Zin . (A.21)

One then defines

δ

δZi(p)

[
L⋆(Z, dZ)(p′)

]
=

δZj(p′)

δZi(p)
⋆
∂cyclL⋆

∂Zj
(p′)+(−1)p̂+i+1

(
dp′

δZj(p′)

δZi(p)

)
⋆
∂cyclL⋆

∂dZj
(p′)

(A.22)
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where δZj(p′)
δZi(p)

has total degree j − i− p̂− 1 and is such that

∫

p∈M
Tr

[
δZi(p) ⋆

δZj(p′)

δZi(p)
⋆
∂cyclL⋆

∂Zj
(p′)

]
= δZi(p′) ⋆

∂cyclL⋆

∂Zi
(p′) . (A.23)

As a result, the action of δ =
∫
p∈B δZi(p)⋆ δ

δZi(p)
on the ultra-local functional L⋆(Z, dZ)(p′)

yields

δL⋆(Z, dZ)(p′) = δZi(p′) ⋆
δL⋆

δZi
(p′) + dp′

[
δZi(p′) ⋆

∂cyclL⋆

∂dZi
(p′)

]

= δZi(p′) ⋆
∂cyclL⋆

∂Zi
(p′) + δ(dZi)(p′) ⋆

∂cyclL⋆

∂dZi
(p′) , (A.24)

as it should.

References

[1] N. Boulanger and P. Sundell, An action principle for Vasiliev’s four-dimensional higher-spin

gravity, J. Phys. A 44 (2011) 495402 [arXiv:1102.2219] [INSPIRE].

[2] M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in

(3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

[3] M.A. Vasiliev, Properties of equations of motion of interacting gauge fields of all spins in

(3 + 1)-dimensions, Class. Quant. Grav. 8 (1991) 1387 [INSPIRE].

[4] M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in

(3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

[5] E. Sezgin and P. Sundell, Analysis of higher spin field equations in four-dimensions,

JHEP 07 (2002) 055 [hep-th/0205132] [INSPIRE].

[6] M.A. Vasiliev, Equations of motion of interacting massless fields of all spins as a free

differential algebra, Phys. Lett. B 209 (1988) 491 [INSPIRE].

[7] M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first

order in curvatures, Annals Phys. 190 (1989) 59 [INSPIRE].

[8] M.A. Vasiliev, Unfolded representation for relativistic equations in (2 + 1) anti-de Sitter

space, Class. Quant. Grav. 11 (1994) 649 [INSPIRE].

[9] M. Vasiliev, Actions, charges and off-shell fields in the unfolded dynamics approach,

Int. J. Geom. Meth. Mod. Phys. 3 (2006) 37 [hep-th/0504090] [INSPIRE].

[10] N. Ikeda, Two-dimensional gravity and nonlinear gauge theory, Annals Phys. 235 (1994) 435

[hep-th/9312059] [INSPIRE].

[11] P. Schaller and T. Strobl, Poisson structure induced (topological) field theories,

Mod. Phys. Lett. A 9 (1994) 3129 [hep-th/9405110] [INSPIRE].

[12] A.S. Cattaneo and G. Felder, On the AKSZ formulation of the Poisson σ-model,

Lett. Math. Phys. 56 (2001) 163 [math/0102108] [INSPIRE].

[13] I. Batalin and G. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27

[INSPIRE].

– 32 –

http://dx.doi.org/10.1088/1751-8113/44/49/495402
http://arxiv.org/abs/1102.2219
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2219
http://dx.doi.org/10.1016/0370-2693(90)91400-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B243,378
http://dx.doi.org/10.1088/0264-9381/8/7/014
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,8,1387
http://dx.doi.org/10.1016/0370-2693(92)91457-K
http://inspirehep.net/search?p=find+J+Phys.Lett.,B285,225
http://dx.doi.org/10.1088/1126-6708/2002/07/055
http://arxiv.org/abs/hep-th/0205132
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205132
http://dx.doi.org/10.1016/0370-2693(88)91179-3
http://inspirehep.net/search?p=find+J+Phys.Lett.,B209,491
http://dx.doi.org/10.1016/0003-4916(89)90261-3
http://inspirehep.net/search?p=find+J+AnnalsPhys.,190,59
http://dx.doi.org/10.1088/0264-9381/11/3/015
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,11,649
http://dx.doi.org/10.1142/S0219887806001016
http://arxiv.org/abs/hep-th/0504090
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504090
http://dx.doi.org/10.1006/aphy.1994.1104
http://arxiv.org/abs/hep-th/9312059
http://inspirehep.net/search?p=find+EPRINT+hep-th/9312059
http://dx.doi.org/10.1142/S0217732394002951
http://arxiv.org/abs/hep-th/9405110
http://inspirehep.net/search?p=find+EPRINT+hep-th/9405110
http://dx.doi.org/10.1023/A:1010963926853
http://arxiv.org/abs/math/0102108
http://inspirehep.net/search?p=find+EPRINT+math/0102108
http://dx.doi.org/10.1016/0370-2693(81)90205-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B102,27


J
H
E
P
1
0
(
2
0
1
2
)
0
4
3

[14] I. Batalin and G. Vilkovisky, Quantization of gauge theories with linearly dependent

generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE].

[15] M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky, The geometry of the master

equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405

[hep-th/9502010] [INSPIRE].

[16] A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization

formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].

[17] A.S. Cattaneo and G. Felder, Poisson σ-models and deformation quantization,

Mod. Phys. Lett. A 16 (2001) 179 [hep-th/0102208] [INSPIRE].

[18] M. Kontsevich, Deformation quantization of Poisson manifolds. 1,

Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040].

[19] D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological field theory,

Phys. Rept. 209 (1991) 129 [INSPIRE].

[20] A. Blasi, N. Maggiore and M. Montobbio, Noncommutative two dimensional BF model,

Nucl. Phys. B 740 (2006) 281 [hep-th/0512006] [INSPIRE].

[21] L. Vilar, O. Ventura, R. Amaral, V. Lemes and L. Buffon, Seiberg-Witten map for the 4D

noncommutative BF theory, J. Phys. A 41 (2008) 425203 [arXiv:0710.3954] [INSPIRE].

[22] M. Grigoriev and P. Damgaard, Superfield BRST charge and the master action,

Phys. Lett. B 474 (2000) 323 [hep-th/9911092] [INSPIRE].

[23] J.-S. Park, Topological open p-branes, hep-th/0012141 [INSPIRE].

[24] C. Hofman and J.-S. Park, Topological open membranes, hep-th/0209148 [INSPIRE].

[25] N. Ikeda, A deformation of three-dimensional BF theory, JHEP 11 (2000) 009

[hep-th/0010096] [INSPIRE].

[26] N. Ikeda, Deformation of BF theories, topological open membrane and a generalization of the

star deformation, JHEP 07 (2001) 037 [hep-th/0105286] [INSPIRE].

[27] D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,

in Contemp. Math. Vol. 3315: Quantization, Poisson brackets and beyond, AMS Publishing,

Providence U.S.A. (2002) [math/0203110] [INSPIRE].

[28] C. Hofman and J.-S. Park, BV quantization of topological open membranes,

Commun. Math. Phys. 249 (2004) 249 [hep-th/0209214] [INSPIRE].

[29] N. Ikeda, Chern-Simons gauge theory coupled with BF theory,

Int. J. Mod. Phys. A 18 (2003) 2689 [hep-th/0203043] [INSPIRE].

[30] N. Ikeda, Deformation of Batalin-Vilkovisky structures, math/0604157 [INSPIRE].

[31] D. Roytenberg, AKSZ-BV formalism and courant algebroid-induced topological field theories,

Lett. Math. Phys. 79 (2007) 143 [hep-th/0608150] [INSPIRE].

[32] G. Barnich and M. Grigoriev, A Poincaré lemma for σ-models of AKSZ type,
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