
Price-based Controller for Quality-Fair HTTP Adaptive Streaming

Stefano D’Aronco, Pascal Frossard
LTS4

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Email: name.lastname@epfl.ch

Laura Toni
Electrical and Electronic Departement

University College London (UCL)
Email: l.toni@ucl.ac.uk

Abstract—HTTP adaptive streaming (HAS) has become the
universal technology for video streaming over the Internet.
Many HAS system designs aim at sharing the network band-
width in a rate-fair manner. However, rate fairness is in
general not equivalent to quality fairness as different video
sequences might have different characteristics and resource
requirements. In this work we focus on this limitation and
propose a novel controller for HAS clients that is able to reach
quality fairness while preserving the main characteristics of
HAS systems and with a limited support from the network
devices. In particular, we adopt a price-based mechanism in
order to build a controller that maximizes the aggregate video
quality for a set of HAS clients that share a common bottleneck.
When network resources are scarce, the clients with simple
video sequences reduce the requested bitrate in favor of users
that subscribe to more complex video sequences, leading to
a more efficient network usage. The proposed controller has
been implemented in a network simulator, and the simulation
results demonstrate its ability to share the available bandwidth
among the HAS users in a quality-fair manner.

Keywords-HAS, quality-fairness, price-based mechanisms

I. INTRODUCTION

HTTP adaptive streaming (HAS) has become the universal
client-driven streaming solution for video distribution over
the Internet, an example of this paradigm is given by the Dy-
namic Adaptive Streaming over HTTP [1] (DASH) standard.
In HAS, the video content is available at the main server
in different coded versions, namely representations, each
one with a given bitrate and resolution. The representations
are typically subdivided into chunks of few seconds, which
are then downloaded by clients using HTTP requests over
TCP. Each HAS client selects the best representation to
download independently from the other clients with the aim
of maximizing the downloaded bitrate while minimizing the
possibility of rebuffering events. Therefore HAS systems are
able to respond to the heterogeneous demands of several
HAS clients in a fully distributed and adaptive way.

One of the most challenging aspects in HAS systems is the
proper design of the adaptation logic (i.e., the selection of the
bitrate to request) at the client side. An intense research has
focused on designing HAS client controllers that guarantee
a stable and rate-fair utilization of the network resources
where each user aims at maximizing the downloaded bitrate.
Unfortunately, since video sequences generally have differ-
ent characteristics, rate fairness does not necessarily translate

into quality fairness. From this point of view, the selfish
bitrate maximization of the users reveals its drawback. To
overcome this main limitation, several works have been
recently proposed in order to offer a coordinated solution
for the rate allocation.

In this spirit and inspired by the Network Utility Max-
imization (NUM) framework commonly adopted in con-
gestion control algorithms [2], we design a price-based
distributed controller that maximizes the overall delivered
Quality of Service (QoS) and improves the QoS fairness
among users that share a common bottleneck. In order to
reach this quality-fair rate allocation, we introduce a coordi-
nation node, that evaluates the congestion level, i.e. the price,
of the network as a function of the downloading times of the
chunks that are gathered from the HAS clients. Exploiting
the computed price, the users can perform a proper bitrate
selection in a fully distributed way. Users with simple video
sequences, i.e., low bandwidth requirements, do not increase
the bitrate of the requested chunks in congested periods
in favor of users downloading more complex videos. We
test the proposed solution in a network simulator (NS3)
under different network conditions and we compare it with
other rate-fair controllers proposed in the literature. The
simulation results confirm that the achieved rate allocation
leads to a better quality fairness among the users with respect
to the baseline rate-fair HAS controllers.

The remaining of the paper is structured as follows.
In Section II, we report some related works on the QoS
enhancement in HAS systems. In Section III, we provide
a description of the considered framework. In Section IV,
we describe in detail the controller design. We present in
Section V the simulations results. Finally, conclusions are
provided in Section VI.

II. RELATED WORKS

Since a complete description of the whole literature in
adaptation algorithms for HAS would not possible due to
space limitations, with the following we discuss the works
that focus on quality-fairness in HAS.

In [3], the authors optimize the bitrate selection in order
to maximize the Quality of Experience (QoE) among a set
of HAS users on a wireless link. In this case the base station
carries out the optimization according to the different video

characteristics. Though this system is able to effectively
allocate the available bandwidth it has some drawbacks
in terms of deployability, it requires to modify a network
element that lies on the delivery path, and scalability, the
base station has to collect all the information about the users’
videos and solve the optimization problem. In our proposed
system the coordinator is not responsible for solving the
optimization problem and it does not need to hold any per
user information, thus preserving system scalability.

Several works [4]–[6] have proposed solutions for im-
proving DASH QoS based on Software Defined Networking
(SDN). The common feature of these solution is the presence
of a central network controller that controls the video flows
that are currently active in the network. While SDN is a
promising technology to improve Internet performance, it is
not currently deployed on a wide scale, therefore solutions
based on this technology are not suited for many of the
nowadays networks. In this work, we rather aim at improving
the QoS in HAS with an algorithm that exclusively works
at the application level and does not assume any particular
technology about the inner network nodes.

In [7], the authors propose a Q-learning multi-agent
system for HAS users sharing a common bottleneck in
order to maximize a global QoS metric. The problem is
formulated as a reinforcement learning problem where the
HAS user represents the learning agents. Although this
method ultimately achieves the optimal bitrate selection, it
requires a very long training phase to learn the optimal
solution, making the deployability of this system in realistic
environments problematic. In our case we use a model-based
formulation therefore we do not require any learning phase
and we quickly converge to the optimal bitrate selection.

III. SYSTEM MODEL

We now describe in detail the framework studied in this
paper. We consider a HAS system with N users sharing a
bottleneck link with an unknown available capacity C. This
scenario reflects many realistic cases, for example a group
of users sharing the same access link or connecting to the
same server. The clients download video chunks of time
duration Tck by sending HTTP requests to the server. The
clients store the received video data in the playout buffer,
which can accomodate up to M chunks. After a download
is over the next chunk is requested immediately if a free slot
is available in the buffer, otherwise the client waits until a
chunk is played and a slot becomes free. Therefore, when
the buffer is full, requests are made every Tck.

Let r = [r1, r2, . . . , rN] be the rate vector, with ri being
the last bitrate requested by user i. We then denote by
τi(r) the downloading time for client i, defined as the
time necessary for user i to download a chunk encoded
at rate ri. We say that the rate vector r as sustainable if
τi(r) ≤ Tck, ∀i, i.e., all users download their chunks in an
amount of time that is sufficient to avoid buffer underruns.

Note that, since the bottleneck is shared by all users, τi(r)
depends on the entire vector r, and implicitly also on the
capacity value C. In realistic environments the value of the
downloading times depend also on the starting time of the
downloads, as well as on the random fluctuations of the
TCP rate due to packet losses. For the sake of simplicity,
we assume in the theoretical design an ideal TCP behavior,
which means that: i) the bandwidth is always equally shared
among the active connections, ii) the channel is fully utilized
when at least one connection is active. Note that these
are the ideal characteristics of every rate-fair congestion
control algorithm. To evaluate the proposed controller we
then use, in the conducted simulations, a realistic packet
level implementation of the TCP.

We define Ui(ri) to be a strictly increasing concave utility
function that represents the quality experienced by user i
when the video is downloaded at bitrate ri. Users have
different utility functions in order to model the different
bandwidth requirements. We finally define the overall QoS
of the system as the sum of the individual utility functions
of every user: U(r) =

∑N
i=1 Ui(ri).

IV. QUALITY-FAIR HAS CONGESTION CONTROLLER

In this section we describe in detail the proposed con-
troller.

A. Theoretical Foundations

We now focus on the bitrate selection of the users
at regime. In this phase users must exhibit an average
downloading time smaller than Tck in order to avoid buffer
underruns, and consequently request one chunk every Tck.
The goal is to find a rate vector r that is sustainable and
yet maximizes the aggregate utility. This can be achieved
by solving the classical NUM problem:

maximize
r

N∑
i=1

Ui(ri) s. t.
N∑
i=1

ri ≤ C. (1)

The problem consists in maximizing a concave objective
function of utilities subject to a linear inequality constraint
on the cumulative bitrate.

If we consider a continuous bitrate selection, the optimiza-
tion problem in (1) can be solved distributively using dual
decomposition (see [2], [8]) obtaining the following iterative
system of discrete dynamic equations:

rk+1
i =

[
U ′i(λ

k)
]−1

i = 1...N (2a)

λk+1 =

(
λk + β

(
N∑
i=1

rk+1
i − C

))
+

. (2b)

Where λ is the dual variable, or price, associated to
the bottleneck capacity constraint, [U ′i(·)]−1 represents the
inverse of the derivative of the utility function of user i, ()+
denotes the projection onto the positive orthant, β is a simple
parameter to control the step length of the dual variable

update and k simply denotes the iteration number which can
be seen as a time stamp index. To evaluate the price update
in Eq. (2b), the value of the capacity C needs to be known.
However this quantity cannot be determined handily since
its value depends on protocols overheads and prospective
cross traffic (which cannot be known in advance).

We therefore modify the second step of the iterative
algorithm in order to avoid the explicit use of the capacity
value. Following the assumptions made in the previous
section about an ideal TCP behavior (a single active TCP
connection is sufficient to fully utilized the channel and users
request at least one chunk every Tck in order to avoid buffer
underruns) and the definition of sustainability, we can map
the sum rate constraint into a downloading time constraint:

N∑
i=1

ri ≤ C ⇐⇒ τMAX(r) ≤ Tck (3)

where τMAX = maxi=1...N τi. In a more realistic scenario
the equivalence has to be considered in terms of time-
averaged values due to the random behavior of the packet
transmission. By using the above equivalency we modify the
dynamic system in (2) as follows:

rk+1
i =

[
U ′i(λ

k)
]−1

i = 1...N (4a)

λk+1 =
(
λk + β(τMAX(rk+1)− Tck)

)
+
. (4b)

The second step of Eq. (4b) can now be easily com-
puted since every user knows the downloading time of the
requested chunks, and the maximum value can easily be
extracted.

We give now a brief discussion about how the iterative
steps of system (4) can be computed in reality. In the first
step of Eq. (4a), which corresponds to the adaptation logic,
all the users independently compute the optimal bitrate and
request the chunks to download at the next iteration. After a
chunk download every user sends to the coordinator node the
measured downloading time. The coordinator then performs
a maximum pooling operation on the received downloading
times and updates the dual variable λ using Eq. (4b). The
value of λ is then sent to the users for the next bitrate
selection. By performing these steps iteratively, the system
converges to the optimal equilibrium point.

B. Controller Implementation

We now show how to adjust the iterative solution in (4)
for it to be used in HAS systems in practice. In particular we
take into account the discrete rate selection and the playout
buffer management.

1) Coordinator Node: In Algorithm 1, we present the op-
erations that are executed by the coordinator node to update
the price λ at every iteration step. For each downloading
time measurement τi, received from client i, the coordinator
updates the current maximum downloading time (line 2) and
returns the last updated value of the price to user i.

Algorithm 1 Coordinator Algorithm
1: if New downloading time received from user then
2: τMAX ← max(τMAX , τi)
3: Send most recent λ to the user
4:
5: loop . executed every Tck
6: ê := τMAX − γTck
7: e← αee+ (1− αe)ê . LPF
8: eI ← max(0, eI + e)
9: λ← max(0,KP e+KIeI) . Update price

10: τMAX ← 0 . Reset τMAX

The price update is executed every Tck. In order to
compute the error signal, ê, the coordinator node needs a
reference signal γTck, which expresses the value of the
maximum downloading time that the users must have at
equilibrium1. The error between the maximum downloading
time and the reference value is filtered by a Low Pass Filter
(LPF) (line 7) with αe = 0.75. The filter is necessary to
reduce the noise caused by the random TCP fluctuation. The
error is integrated according to Eq. (4b) (line 8). The value of
the final price λ is then calculated by combining the integral
error and the proportional error (line 9), where KP = 1
and KI = 0.25 represent the proportional and integral gain
respectively. Note that λ, as in Eq. (4b), is restricted to be
positive since negative prices have no meaning.

2) Client Controller: We now describe the main steps
of the HAS client controller. The behavior of the controller
is strongly based on Eq. (4a). However, we cannot simply
use the aforementioned equation since buffer level variations
as well as the discrete set of available bitrates need to be
taken into account in practice. The full client algorithm,
provided in Algorithm 2, is executed every time a chunk
can be downloaded, i.e., anytime a download is finished and
the playback buffer is not full (line 1-2).

As a first step, the client controller calculates the value
of the ideal bitrate rcoord from the last received price value
λ according to Eq. (4a). The coefficient κ is necessary to
normalize the value of the price accordingly to the shape of
the utility function and to assure the stability of the system.
The controller estimates the TCP throughput as described
in [9] (lines 4-6) and selects which rate to use between the
TCP throughput, rTCP , and the ideal rate, rcoord. The TCP
throughput estimation is selected only if rTCP < rcoord and
the video buffer level is below a defined threshold (lines 7-9).
This is done in order to reduce the occurrence of rebuffering
events. The controller calculates a discounted rate rδ, where
the discount factor δ depends on the buffer level occupancy
B. The discount factor reduces the requested bitrate during

1Ideally the value of γ should be set to 1. In practical systems, however,
we observed that using γ = 0.95 provides less noisy results at the cost of
marginal channel under-utilization.

Algorithm 2 Client Controller Algorithm
1: if Buffer full or download active then
2: return
3: rcoord := [U ′(λ/κ)]

−1

4: r̂TCP := last chunk TCP throughput
5: α̂TCP := αTCP (now - last TCP throughput update)/Tck
6: rTCP ← α̂TCP rTCP + (1− α̂TCP)r̂TCP . LPF
7: r := rcoord
8: if (rTCP < rcoord) and (B < Tck(0.6M)) then
9: r ← rTCP

10: B := BufferLevel()
11: δ := max

(
1.0,min

(
0.25, B

Tck(0.7M)

))
12: l← arg maxb(l′)<rδ b(l

′)
13: if l < lold then
14: l← max(lold − 1, lmin)

15: if l > lold then
16: l← min(lold + 1, lMAX)

17: τ̂ := min(last downloading time, 1.25Tck)
18: τ ← αττ + (1− ατ)τ̂ . LPF
19: q̂ := max(1.0, rcoord,old/b(lold))
20: q ← αqq + (1− αq)q̂ . LPF
21: send the chunk request for bitrate b(l)
22: send the corrected downloading time to coordinator qτ

re-buffering phases in order to refill the buffer faster. It
then selects the chunk with the largest bitrate b(l) that is
smaller than rδ, limiting the variation with respect to the
previous chunk to one quality level (lines 10-16). Due to the
bitrate discretization we cannot always guarantee an average
maximum downloading time that matches exactly γTck, and
this can possibly lead to frequent oscillations in the bitrates
selection. To overcome this problem, we introduce a new
variable q, which keeps track of the mismatch between
the ideal rate and the actual requested bitrate (line 19-20)
(αq = 0.75). The key point is to perform an upscaling of
the measured downloading time based on the experienced
quantization step in order to decrease the difference between
the average downloading time and the reference signal
γTck. Finally, the controller sends to the video server the
request for a chunk of bitrate equal to b(l) and sends to
the coordinator the scaled downloading time signal equal to
qτ , where the downloading time τ is filterd by a LPF (line
17-18) (ατ = 0.75).

V. SYSTEM EVALUATION

We now provide simulation results of the proposed system
implemented in the NS3 network simulator and evaluate it
in different representative scenarios.

A. Experimental Setup

In order to evaluate the proposed algorithm we use
the well-known Structural Similarity (SSIM) metric [10]

0 2000 4000 6000
bitrate [kbps]

0.6

0.8

1

s
s
im

Sport

0 2000 4000 6000
bitrate [kbps]

0.8

0.9

1

s
s
im

Cartoon

0 2000 4000 6000
bitrate [kbps]

0.8

0.9

1

s
s
im

Documentary

0 2000 4000 6000
bitrate [kbps]

0.9

0.95

1

s
s
im

Lecture

0 5000
0.60.81

s
s
im

ssim 1920x1080 (1080)
ssim 1280x720 (720)
ssim 960x540 (540)
ssim 640x360 (360)

0 5000
0.80.91

s
s
im

fit ssim 1920x1080 (1080)
fit ssim 1280x720 (720)
fit ssim 960x540 (540)
fit ssim 640x360 (360)

Figure 1. Quality-rate utility functions for the video sequences under
consideration. Solid lines represent the continuous model while symbols
are experimental measurements.

as utility function. We consider four types of video with
different properties: a high motion sport video, two medium
complexity videos, a cartoon and a documentary, and a low
complexity lecture video. The original videos have been
encoded at different bitrates and resolutions using h264
codec [11]. We then fit the experimental SSIM points in
order to have a continuous utility function model (The
experimental SSIM data points and the fitting curves are
depicted in Fig. 1). In our simulations we identify each user
with a single video at a given resolution. The utility curve
associated to the video is then used in the adaptation logic.
We assume that each user knows the utility function of the
requested video. This information can easily be known in
advance and transmitted from the server to the clients.

The length of the chunks is Tck = 2 s and the avail-
able bitrates correspond to [0.4 0.64 0.88 1.2 1.68 2.24
2.8 3.6 4.4 6] Mbps. All the parameters of the proposed
controller are set as specified to Section IV, while κ is set
equal to 1e6. We compare our algorithm with three HAS
controllers proposed in the literature, namely a conventional
HAS controller as described and implemented in [9], the
Probe and Adapt (PANDA) algorithm also proposed in [9],
and the ELASTIC algorithm proposed in [12]. To have a
fair comparison among the different controllers, we fix the
maximum buffer size of all algorithms to M = 10, which
corresponds to having a Bmin = 6Tck for PANDA and
qT = 6Tck for ELASTIC.

Finally, the proposed controller as well as the baseline
algorithms are tested over the network topology depicted in
Fig. 2, where all users share the same bottleneck link.

B. Simulation Results

In the first test case three HAS clients share a common
bottleneck link that has a physical capacity of 5 Mbps.
The Users 2 and 3 download the cartoon and lecture video
respectively, and are active for the entire simulation, while

Cross -traffic

Bottleneck C

DASH
clients

Coordinator
Node

Video Server

Figure 2. Topology used in the different simulated scenarios.

0 100 200 300 400 500 600 700

video time [s]

400
640
880

1200

1680

2240

2800

3600

b
it
ra

te
 [

k
b

p
s
]

ideal rate user 1

selected bitrate user 1

ideal rate user 2

selected bitrate user 2

ideal rate user 3

selected bitrate user 3

0 100 200 300 400 500 600 700

time [s]

0

5

10

15

20

b
u

ff
e

re
d

 v
id

e
o

 t
im

e
 [

s
]

user 1

user 2

user 3

a)

b)

0 100 200 300 400 500 600 700 800

time [s]

0

1000

2000

3000

4000

5000

d
o

w
n

la
o

d
 r

a
te

 [
k
b

p
s
]

total download rate

total capacity

c)

Figure 3. Three HAS users implementing our algorithm compete for the
same bottleneck channel. The three plots respectively show the selected
and ideal bitrates, the buffer occupancy and the channel utilization.

user 1 downloads the sport video (which is the most complex
one) between 250s and 600s. The results are depicted in
Fig. 3. In Fig. 3a, we provide both the video bitrate selected
by the users and the ideal bitrates (rcoord) as described in
Section IV. This plot shows the ability of the algorithm
to allocate the available bandwidth consistently with the
different utilities: user 1, being the one with the most com-
plex video sequence, gets the largest amount of bandwidth
when active. Fig. 3b further shows the buffer level of the
users. The playout buffers of all the three users have an
occupancy level close to the maximum value. The channel
utilization, depicted in Fig. 3c, is also satisfactory. In fact,
the cumulative download rate of the users settles to a value
that is close to the physical channel capacity.

We now consider the performance of our algorithm for
different number of N users sharing a bottleneck link.
We consider 10 different realizations of random utility-
user assignments and we average every metric over these
realizations. In this scenario, all the users are simultaneously
active for 460 seconds and we evaluate the time-average

SSIM value over the user population at regime. We also
compute the average SSIM variation per downloaded chunk
(∆SSIM), which corresponds to the average absolute value
of the SSIM difference between consecutive chunks. The
last computed metric is to the capacity usage, which is the
time average cumulative downloaded bitrate of the users
divided by the total capacity. The three metrics above are
evaluated in scenarios with a different number of users,
i.e., N = [2 4 8 12 25 50 100], with C = N · 1.25
Mbps. The corresponding results are depicted in Fig. 4. The
box-plot shows the minimum, the first and third quartile
divided by the median and the maximum of the time-average
SSIM value among the user population. We can notice that
our algorithm is in general able to achieve better average
quality compared with the rate-fair controllers. In particular
the minimum average SSIM for the proposed algorithm is
remarkably higher than the one of the rate-fair controllers.
By looking at the numerical values, our method achieves
a gain up to 0.05 points for the minimum SSIM score for
large N . Beyond increasing the average SSIM, the proposed
algorithm also reduces the average SSIM variations, see the
second column of Fig. 4. From the third column of Fig 4,
we can also notice that the proposed algorithm is the one
achieving the lowest bandwidth utilization. Nevertheless, the
efficient usage of the bandwidth permits to the proposed
algorithm to have better performances in the other metrics.
The low bandwidth utilization is caused by the policy of
selecting always a bitrate that is lower than the ideal bitrate.
One way to improve this metric is by targeting a bitrate
selection that is equal on average to the ideal rate, however,
in this case the value of ∆SSIM would also increase.

We further analyze the performance of our algorithm
when the bottleneck capacity is shared with TCP cross-
traffic for different amounts of TCP connections. We set
the number of HAS users to N = 16 and then add different
numbers of TCP connections, i.e., NTCP = [2 4 8 16].
The capacity is set to C = (N + NTCP) · 1.25 Mbps.
We then compute the same metrics of the previous test, the
results are shown in Fig. 5. The average SSIM shows that
the different algorithms are able to achieve approximatively
the same performance. However, the proposed algorithm
achieves higher values of minimum SSIM with respect to
the rate-fair controllers. From the second column in Fig. 5,
we see that the proposed method achieves the lowest SSIM
variations, confirming the behavior of Fig. 4. In terms of
channel utilization, ELASTIC is the algorithm that has the
highest utilization ratio. Our algorithm instead has the lowest
channel utilization together with the PANDA algorithm.

VI. CONCLUSIONS

In this paper, we propose a price-based HAS controller
that is able to enhance the overall QoS and to improve
the quality fairness among HAS clients sharing a common
bottleneck link. Based on the experienced downloading

2 4 8 12 25 50 100

Total number of users

0.8

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 12 25 50 100

Total number of users

0

0.005

0.01

0.015

∆
 S

S
IM

ck

2 4 8 12 25 50 100

Total number of users

0.6

0.7

0.8

0.9

1

C
a
p
a
ci

ty
 u

sa
g
e

2 4 8 12 25 50 100

Total number of users

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 12 25 50 100

Total number of users

0

0.005

0.01

∆
 S

S
IM

ck

2 4 8 12 25 50 100

Total number of users

0.7

0.8

0.9

1

C
a
p
a
ci

ty
 u

sa
g
e

2 4 8 12 25 50 100

Total number of users

0.9

0.95

1

S
S

IM

Mean value

2 4 8 12 25 50 100

Total number of users

0

2

4

6

8

∆
 S

S
IM

ck

×10-3

2 4 8 12 25 50 100

Total number of users

0.7

0.8

0.9

1

C
a
p
a
ci

ty
 u

sa
g
e

2 4 8 16

0

0.5

1

Proposed algorithm

Conventional

PANDA

ELASTIC

Figure 4. SSIM statistics, SSIM variations and channel utilization for the four implemented controllers for different numbers of users N , with C = N ·1.25
Mbps.

2 4 8 16

TCP cross-traffic users

0.8

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 16

TCP cross-traffic users

0

0.005

0.01

∆
 S

S
IM

ck

2 4 8 16

TCP cross-traffic users

0

0.5

1

C
a
p
a
ci

ty
 u

sa
g
e

2 4 8 16

TCP cross-traffic users

0.8

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 16

TCP cross-traffic users

0

2

4

6

8

∆
 S

S
IM

ck

×10-3

2 4 8 16

TCP cross-traffic users

0

0.5

1

C
a
p
a
ci

ty
 u

sa
g
e

2 4 8 16

TCP cross-traffic users

0.85

0.9

0.95

1

S
S

IM

Mean value

2 4 8 16

TCP cross-traffic users

0

2

4

6

8

∆
 S

S
IM

ck

×10-3

2 4 8 16

TCP cross-traffic users

0

0.5

1

C
a
p
a
ci

ty
 u

sa
g
e

2 4 8 16

0

0.5

1

Proposed algorithm

Conventional

PANDA

ELASTIC

Total TCP vs

Proposed algorithm
Total TCP vs

Conventional

Total TCP vs PANDA

Total TCP vs ELASTIC

Figure 5. SSIM statistics, SSIM variations and channel utilization for the four implemented controllers for a set 16 HAS users sharing the bottleneck
with a varying number of TCP flows, with C = (N +NTCP) · 1.25 Mbps.

times, a coordinator node evaluates the bottleneck price
that reflects the congestion level of the network. The users
then perform a quality-fair bitrate selection based on this
price information. The simulation results show the ability
of the proposed algorithm to work under different network
conditions and for a large number of clients, and yet to
improve the quality fairness of the users when compared
to classical rate-fair controllers. As future work, we plan
to extend the proposed algorithm to multiple bottlenecks
scenarios and to the case of dynamic utility functions, e.g.,
time varying video complexity.

ACKNOWLEDGMENT

This work has been supported by the Swiss National
Science Foundation under grant CHISTERA FNS 20CH21
151569.

REFERENCES

[1] T. Stockhammer, “Dynamic adaptive streaming over HTTP–
: standards and design principles,” in Second annual ACM
conference on Multimedia systems. ACM, 2011.

[2] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control
for communication networks: shadow prices, proportional
fairness and stability,” Journal of the Operational Research
society, 1998.

[3] A. El Essaili, D. Schroeder et al., “QoE-based traffic and
resource management for adaptive HTTP video delivery in
LTE,” Transactions on Circuits and Systems for Video Tech-
nology, vol. 25, no. 6, 2015.

[4] P. Georgopoulos, Y. Elkhatib et al., “Towards network-wide
qoe fairness using openflow-assisted adaptive video stream-
ing,” in Proceedings of the 2013 ACM SIGCOMM Workshop
on Future Human-centric Multimedia Networking, 2013.

[5] G. Cofano, L. De Cicco et al., “Design and experimental
evaluation of network-assisted strategies for HTTP adaptive
streaming,” in Proceedings of the 7th International Confer-
ence on Multimedia Systems, ser. MMSys ’16. ACM, 2016.

[6] J. W. Kleinrouweler, S. Cabrero, and P. Cesar, “Delivering
stable high-quality video: An SDN architecture with dash
assisting network elements,” in Proceedings of the 7th In-
ternational Conference on Multimedia Systems, ser. MMSys
’16. ACM, 2016.

[7] S. Petrangeli, M. Claeys et al., “A multi-agent Q-learning-
based framework for achieving fairness in HTTP adaptive
streaming,” in Network Operations and Management Sympo-
sium. IEEE, 2014.

[8] D. P. Palomar and M. Chiang, “A tutorial on decomposition
methods for network utility maximization,” Journal on Se-
lected Areas in Communications, vol. 24, no. 8, 2006.

[9] Z. Li, X. Zhu et al., “Probe and adapt: Rate adaptation for
HTTP video streaming at scale,” Journal on Selected Areas
in Communications, vol. 32, no. 4, 2014.

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: from error visibility to structural
similarity,” Transactions on Image Processing, vol. 13, no. 4,
2004.

[11] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H. 264/AVC video coding standard,” Trans-
actions on Circuits and Systems for Video Technology, vol. 13,
no. 7, 2003.

[12] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo,
“ELASTIC: a client-side controller for dynamic adaptive
streaming over HTTP (DASH),” in International Packet Video
Workshop. IEEE, 2013.

