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Abstract 

 

The CO2 contribution of shipping to global emissions is about 3.1% and emission 

reductions are becoming urgent as part of global measures to combat air pollution. This 

study was the first to investigate the implementation of an algal photobioreactor (PBR) 

on a ship to treat its gas emissions and produce biomass for commercial purposes. 

The research examined various aspects of the challenges faced, focusing on the 

biomass cultivation process of the application. The target was to use the waste streams 

of the ship (i.e., flue gas, waste heat and wastewater) to fulfil the PBR’s material and 

energy needs.  

A PBR configuration is proposed and constructed, considering the additional 

complications of a shipboard system. Algae from natural surrounding water were 

cultivated in lab conditions to explore the potential of this approach in a shipboard PBR. 

A theoretical hydrodynamic model was developed to compute gas hold-up and liquid 

velocity in airlift PBRs. The different bubble sizes and drag coefficients used were 

shown to greatly impact the results, but the effect of bubbles is not easily distinguished 

in the experiments. A model of the effects of light intensity, nutrient concentration and 

temperature on microalgal growth kinetics was also developed, for use in optimising 

the operating conditions.  

Finally, practical aspects of integrating the PBR into the shipboard system were 

examined. Availability of space in the ballast tanks of tankers and ferries in the existing 

fleet to accommodate a PBR to treat their total emissions was estimated. The need for 

a large water mass limits this application, but the comparatively higher potential of 

tankers for this implementation was demonstrated. Maintaining the PBR’s temperature 

by sparging with hot flue gas was proven to be unfeasible and a novel heat exchanger 

design was suggested and modelled, using an input produced by the hydrodynamic 

model.  
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Glossary 

Absorptance  Absorptance of the surface of a material is its effectiveness in 
absorbing radiant energy. 

Algae – 
Microalgae  

Algae are aquatic photosynthetic organisms, and they may be 
microscopic and mostly unicellular (microalgae), or large and 
poses plant-like characteristics (macroalgae). Macroalgae are not 
relevant to the present work; the term “algae” is therefore generally 
used in the following to refer to microalgae.  

ANOVA Analysis of variance (ANOVA) is a procedure for comparing more 
than two groups and the effect of independent variables on 
dependent ones, as well as the interaction among the independent 
variables. It can be 1-way, where is one independent variable (one 
factor) with more than two conditions; or 2-way, where are two 
independent variables (factors) and can have multiple conditions.  

Broth Microalgal culture in water, including potential nutrient media, 
traces and impurities in liquid form.  

CH4 Methane 

Class – genus – 
species – strains 

In biological taxonomic classification, ranks in descending order of 
size are life, domain, kingdom, phylum, order, class, family, genus, 
and species. Class is a distinct rank of biological classification 
having its own distinctive name. A genus contains one or more 
species. Each named species of algae is referred to by 
its genus and species name. In a binomial algae name, the first 
part is the genera name, the second represents the species. A 
strain is an isolate that has been studied in the laboratory so that 
the details of the appearance and behaviour of the cells become 
known. For example, for the microalga Botryococcus braunii 
KMITL 2, Botryococcus is the genera, Botryococcus braunii is the 
species and KMITL 2 is the specific strain. 

CO2 Carbon dioxide 

Downcomer Airlift bioreactors are pneumatic gas-liquid contacting devices, in 
which gas injected into the bioreactor “riser” causes circulation of 
liquid via a linked “downcomer” where there is no sparging but 
smaller bubbles move downwards carried by the stream of the 
liquid which recirculates due to the density difference 

EEDI Energy Efficiency Design Index 

Exhaust gas – 
Flue gas 

The report mainly uses the term flue gas to describe the exhaust 
gas from combustion process. Exhaust gas is mentioned in the 
description of the “exhaust gas cleaning systems” of the ship, to 
keep consistency with the term used in the literature.   

Fixation Microalgal contribution to the reduction of CO2 contained in the 
flue gas, by using it as carbon source. This process is known as 
biofixation of CO2, but referred to simply as fixation in this study. 

Gas hold-up The ratio of gas phase volume to total volume 

HE Heat exchanger 

http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Name_of_a_biological_genus
http://en.wikipedia.org/wiki/Botryococcus_braunii
http://en.wikipedia.org/wiki/Botryococcus_braunii
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IMO International Maritime Organisation 

Mixture When not determined by the context, it implies the mixture of algal 
broth with bubbles flowing within the liquid.   

MV Sound Motor Vessel Sound. A ship owned by Octoply Ltd  

N Nitrogen (element) 

N2 Nitrogen (molecular) 

Net energy ratio Energy production divided by consumption, which is the 
combustion energy of the produced algae divided by the total 
energy demand of the reactor. Hence when being higher than 1 
the PBR is able to produce more energy than it consumes. 

NOx Nitrogen oxides (NOx and NO2) 

P Phosphorus (element) 

PAR Photosynthetic Active Radiation (measured in μmol/s/m2). 
Illumination on algae is measured in these units in this report. 

PBR Photobioreactor 

Petri dish A Petri dish is a cylindrical glass or plastic lidded dish used to 
culture cells in the lab. 

Productivity Refers to aerial, volumetric or daily biomass productivity and 
reported as grams of dry algae per square meter per littre, or per 
square meter per littre per day, respectively. When it refers to 
production of lipids, it is determined as lipid productivity. 

Pseudoreplication  Pseudoreplication involves treatments that are not replicated but 
are treated as the same in statistical testing, e.g., t-test or ANOVA. 
There are several types of pseudoreplication: simple, sacrificial, 
temporal and implicit. Sacrificial pseudoreplication (referred to 
simply as sacrificial in this study) uses a number of 
wells/bottles/Petri dishes per experimental unit equal to the 
number of samples that need to be taken over time. Temporal 
pseudoreplication (resampling in this study) uses only one 
well/bottle/Petri dish, which is repeatedly sampled over time (South 
& Somers, n.d.).  

P-value In relation to statistical testing, P-value refers to the probability of 
finding the observed, or more extreme, results when the null 
hypothesis of a study question is true. It either validates or refutes 
the null hypothesis. Null hypothesis refers to a general statement 
or default position that there is no relationship between two 
measured phenomena, or no association among groups. 

Response This term illustrates the changes of the characteristics or 
metabolites of an algal species to conditions or environmental 
changes. 

Riser See “Downcomer” 

Roll-on-roll-off Vessels designed to carry wheeled cargo without requirement for 
turning. 

R1, R2, R3 Reactor configuration 1, 2 and 3 (in Chapter 5) 

Salinity Salinity is defined as the dissolved salt content of various salts 
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such as sodium chloride (NaCl), magnesium and calcium 
sulphates and bicarbonates. In the Practical Salinity Scale, salinity 
is redefined as the conductivity ratio of a seawater sample to a 
standard KCl solution. Seawater contains predominantly NaCl, but 
other salts as well. The studies reviewed in this report have 
examined salinity of natural seawater or with artificial seawater 
made with introduction of NaCl and probably other additional salts. 
Salinity in the present report will refer to total salt concentration 
since most of the reports do not define the composition of the 
saltwater used, but it will state which studies have worked with 
salinity specifically caused by the introduction of NaCl. Salinity is 
reported in a variety of units, including 1 ppt (parts per thousand) = 
1 ‰ = 0.1 % = 1 psu (practical salinity unit) = 1 gL-1 ≈ 1/58 M. All of 
these have been converted to gL-1 for consistency. 

Scrubbing Scrubber systems are used to remove particulates or gas 
components from industrial flue gas. They use liquid or dry 
reagent, or slurry to absorb unwanted pollutants. The term 
scrubbing in the text is used to describe the removal of SOx, NOx, 
particulate matter, or CO2 by means other than algae (see fixation 
above).   

Sky temperature  For practical calculations in radiative heat transfer, it is often 
convenient to treat the sky as a black radiator having some 
appropriate temperature. This effective sky temperature usually 
lies between 5 and 30 K below the ground level air temperature. 
The sky temperature decreases as the amount of water vapour in 
the air goes down (Lienhard Iv & Lienhard, 2008).  

SOx Sulphur oxides 

S1, S2, S3 Spargers 1, 2 and 3 (refer to the spargers used in Chapter 5) 

Tolerance In the present report, this term refers to the limits below which a 
species can survive, though perhaps not optimally. 

t-test t-test is a statistical hypothesis test that allows for the comparison 
of two data populations and their means. It can be used to 
determine if two sets of data are significantly different from each 
other. A null hypothesis (defined in the P-value definition) can be 
created where the means of the returns of the two samples do not 
differ. t-test is well-suited for a small set of data.  

UV Ultraviolet light (UVA, UVB, UVC wavelengths) 

WHR Waste Heat Recovery 

Wild algae Algal strains harvested from natural waters. 

1st, 2nd, 3rd 
generation 
biofuels 

This classification is variously based on type of feedstock, 
conversion technology used, or properties of the fuel molecules 
produced. To overcome confusion, a more scientific definition can 
be described based on the carbon source from which the biofuel is 
derived. 1st generation are the conventional biofuels made from 
starch, sugar, or vegetable oil, directly extracted from a plant. 2nd 
generation are biofuels made from lignocellulosic biomass or 
woody crops (e.g., agricultural, forestry wastes or residues, or 
purpose-grown non-food feedstocks). 3rd generation biofuels are 
derived from aquatic autotrophic organism (e.g., algal biomass). 
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Nomenclature 

Symbols 

𝐴  Surface area of the tube [m
2
] 

𝐴1, 𝐴2  Preexponential factors [h
-1

] 

𝑎  Cross section area [m
2
]  

𝑎𝑖  Interphase area [m
2
]  

𝑎𝑠  Initial slope of light response curve [day
-1

]  

𝑎𝑑  Cross-sectional area of the downcomer [m
2
] 

𝑎𝑖  Cross-sectional area of a fitting with different diameter from the main tube [m
2
] 

𝑎𝑟  Cross-sectional area of the riser [m
2
] 

𝑎𝑠𝑜𝑙𝑎𝑟  Absorptance from the sun [dimensionless] 

𝐵  Regression coefficient for the Arrhenius-Eyring-Polanyi equation [K
-1

] 

𝑏  Factor in Tamiya light intensity model [dimensionless] 

𝐶𝑏  Biomass concentration [g/L] 

𝐶𝐶𝑂2   Gas CO2 concentration [L/L] 

𝐶𝐶𝑂2𝑙  Dissolved CO2 concentration in the liquid phase [L/L] 

𝐶𝐶𝑂2𝑙
∗   

Concentration of CO2 in the liquid phase that could equilibrate its measured partial 
pressure [L/L] 

𝐶𝑓  Carbon emission factor [g/g] 

𝐶𝑁  Extracellular nitrogen substrate concentration [g/L] 

𝐶𝑁,0  Extracellular nitrogen substrate concentration in the feed stream [g/L] 

𝐶𝑃  Extracellular phosphorus substrate concentration [g/L] 

𝐶𝑃,0  Extracellular phosphorus substrate concentration in the feed stream [g/L] 

𝐶𝑆  Substrate concentration [g/L] 

𝐶𝑆,0  Substrate concentration in the feed stream [g/L] 

𝐶𝑓  Carbon emission factor [tonnes CO2 / tonnes fuel] 

𝑐𝐷  Drag coefficient [dimensionless] 

𝑐𝑝𝑔  Specific heat capacity of the gas [JK
-1

kg
-1

] 

𝑐𝑝ℎ𝑓  Specific heat capacity of the heating fluid [JK
-1

kg
-1

] 

𝑐𝑝𝑙  Specific heat capacity of the liquid [JK
-1

kg
-1

] 

𝑐𝑝𝑚  Specific heat capacity of the mixture [JK
-1

kg
-1

] 

𝐷  Dilution rate [h
-1

] 

𝑑  Diameter or depth of the PBR [m] 

𝑑𝑏  Mean diameter of the bubbles [mm] 

𝑑𝑑  Diameter of the downcomer tube [m] 

𝑑𝑖  Inner diameter of the tube (equal to 𝑑𝑟) [m] 

𝑑𝑜  External diameter of the tube [m] 
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𝑑𝑟  Diameter of the riser tube [m] 

𝐸𝑎  Activation energy [kJ/mol] 

𝐸𝑎1, 𝐸𝑎2 Activation energy [kJ/mol] 

𝐹𝐵  Buoyancy force [N, or kgms
-2

] 

𝐹𝐶𝑂2   CO2 flow rate [tonnes/h] 

𝐹𝐷  Drag force [N, or kgms
-2

] 

𝐹𝐹  Wall friction force [N, or kgms
-2

] 

𝐹𝑓  Fuel flow rate [tonnes/h] 

𝐹𝑓𝑢𝑒𝑙  Fuel consumption [tonnes/day] 

𝐹𝑔  Flue gas flow rate into the heat exchanger [kg/s] 

𝐹𝑤,1  Water flow rate through valve 1 [kg/s] 

𝐹𝑤,1,𝑜  Threshold flow rate through valve 1 that leads to overflow of the storage tank [kg/s] 

𝐹𝑤,1,𝑝  
Threshold flow rate through valve 1 that leads to inadequate heating rate provision 
[kg/s] 

𝐹𝑤,2  Water flow rate through valve 2 [kg/s] 

𝐹𝑤,2,𝑏  
Threshold flow rate through valve 2 that leads to inadequate water in the storage 
tank [kg/s] 

𝑓  Darcy-Weisbach friction factor [dimensionless] 

𝑓𝑓𝑖𝑥  CO2 fixation factor [g/g of dry algae] 

𝑓𝑠𝑐𝑟  Percentage ratio of CO2 fixed [gCO2/gCO2] 

𝑔  
Gravitational acceleration [ms

-2
]. The value of 9.810 was used for this fixed 

parameter as a modelling input 

𝑔𝑟  
Regression coefficient [h

-1/2 
K

-1
]. The value of 9.810 was used for this fixed 

parameter as a modelling input 

𝐺𝑧  Graetz number [dimensionless] 

ℎ  Heat transfer coefficient [Wm
-2

K
-1

 or kgs
-3

K
-1

]  

ℎ𝐷  
Height of the liquid in the riser after gas entrance, hence height of the dispersion 
[m] 

ℎ𝑒  Heat transfer coefficient of the ambient air [Wm
-2

K
-1

 or kgs
-3

K
-1

] 

ℎ𝑓  Head due to sum of friction on the wall [m] 

ℎ𝑓𝑟  Head due to friction [m] 

ℎ𝐿  Height of the liquid in the riser before gas entrance [m] 

ℎ𝑚𝑓  Head due to friction in the fittings [m]  

ℎ𝑚  Heat transfer coefficient of the mixture in the PBR [Wm
-2

K
-1

 or kgs
-3

K
-1

]  

𝐼  Light intensity [μE/m
2
/sec] 

𝐼𝑎𝑣  Space averaged light intensity within the PBR [μE/m
2
/sec] 

𝐼𝑜𝑝𝑡 , 𝐼𝑚𝑎𝑥   Optimal light intensity [μE/m
2
/sec] 

𝐼0  Incident light intensity on the surface of the PBR [μE/m
2
/sec] 

𝐾𝐴  Acid dissociation constant [mol/L] 

𝐾𝑎  Biomass light absorption (extinction) coefficient [m
2
/g] 
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𝐾𝐶𝑂2  Half saturation constant for CO2 [L/L] 

𝐾𝑐𝑜𝑛𝑡  
Equivalent frictional velocity head loss coefficient due to contractions 
[dimensionless] 

𝐾𝑒𝑥𝑝  
Equivalent frictional velocity head loss coefficient due to expansions 
[dimensionless] 

𝐾𝑓𝑖𝑡  
Equivalent frictional velocity head loss coefficient from the fittings in the loop 
[dimensionless] 

𝐾𝐻𝐶𝑂2
  Henry’s constant [mol/L/atm] 

𝐾𝐼  
Bioenergetics efficiency of light utilisation (or irradiance necessary for half 
maximum photosynthesis rate) [μE/m

2
/sec] 

𝐾𝑖  Light inhibition constant [μE/m
2
/sec or g.s/L/μmol

2
/m

4
] 

𝐾𝑙  
Additional frictional loss coefficient, equivalent number of velocity heads 
[dimensionless] 

𝐾𝑁  Half saturation constant for nitrates [g/L] 

𝐾𝑃  Half saturation constant for phosphates [g/L] 

𝐾𝑆  Half saturation constant for substrate [g/L] 

𝑘  Thermal conductivity [Wm
-1

K
-1

 or kgms
-3

K
-1

] 

𝑘𝐵  
Frictional loss coefficient for the bottom connecting section of the PBR tubes 
[dimensionless]. The value of 5.0 was used for this fixed parameter as a modelling 
input 

𝑘𝑙  Liquid phase mass transfer coefficient  [mol/(s·m
2
)/(mol/m

3
)] 

𝑘𝑚  Thermal conductivity of the mixture in the tube [Wm
-1

K
-1

 or kgms
-3

K
-1

] 

𝑘𝑡  Thermal conductivity of the walls of the tube [Wm
-1

K
-1

 or kgms
-3

K
-1

] 

𝑘0  
Frequency factor or the total number of collisions between reacting species per unit 
time [s

-1
] 

𝑙  Total length of the PBR [m] 

𝑙𝑑  Length of the downcomer [m] 

𝑙𝐻𝐸  Length of the heat exchanger [m] 

𝑙𝑟  Length of the riser [m] 

𝐿𝐹𝑀𝐸  Load factor of the main engines [-] 

𝐿𝑀𝑇𝐷  Logarithmic Mean Temperature Difference [K] 

𝐿𝑃𝐷  Lag phase [days] 

𝑚  Exponent of the hyperbolic Monod model [dimensionless]  

𝑚𝑎  Specific maintenance rate [h
-1

] 

𝑚𝑆  Maintenance supply rate of minimum substrate consumption to maintain cells [h
-1

] 

𝑚𝑆/𝑁  Maintenance supply rate of minimum nitrates consumption to maintain cells [h
-1

] 

𝑚𝑆/𝑃  
Maintenance supply rate of minimum phosphates consumption to maintain cells [h

-

1
] 

𝑚̇  Mass flow rate [kgs
-1

] 

𝑁  Number of the bubbles in the tube [dimensionless] 

𝑛  
Factor in the Arrhenius equation of enzyme-mediated reactions response 
[dimensionless]  
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𝑁𝑢𝑑  Nusselt number based on the inner diameter of the tube [dimensionless] 

𝑁𝐶𝑂2  Mass transfer rate of CO2 to the liquid [mol/m
3
] 

𝑂𝐷  Optical density [-] 

𝑃  Perimeter of the tube [m] 

𝑃𝐵  Power generated from the buoyancy force [W] 

𝑃𝐶𝑂2   Partial pressure of CO2 [L/L] 

𝑃𝐹  Power consumed by the friction on the wall and the fittings [W] 

𝑃𝑀𝐸   Power of the main engines [hp] 

𝑃𝑉  Volumetric productivity [g/L/h] 

𝑃𝑟  Prandtl number [dimensionless] 

𝑃𝑟𝑃𝐵𝑅   Productivity of the PBR [g/L/day] 

𝑝  Pressure [Pa or kgm
-1

s
-2

] 

𝑞  Heat transferred [W] 

𝑞𝑔  Gas sparging rate [m
3
s

-1
] 

𝑞ℎ𝑓  Flow rate of the heating fluid [m
3
s

-1
] 

𝑞𝑙  Mean flow rate of the liquid [m
3
s

-1
] 

𝑞𝑙𝑜𝑠𝑠  Heat lost through a section of the wall to the environment [W] 

𝑞𝑚  Heat transferred in the mixture from its entrance to its exit of a selected system [W] 

𝑞𝑚𝑎𝑥  Maximum heating rate output from the heat exchanger at the exhaust [W] 

𝑞𝑟𝑎𝑑𝑖𝑎𝑙  Heat transferred through a section of the wall to the environment [W] 

𝑞𝑠𝑜𝑙𝑎𝑟  Average global sunlight intensity over year [W/m
2
] 

𝑅  Gas constant [J/K/mol] 

𝑅𝑡𝑐𝑜𝑛𝑑  Absolute thermal resistance by conduction [KW
-1

] 

𝑅𝑡𝑐𝑜𝑛𝑣  Absolute thermal resistance by convection [KW
-1

] 

Rtm  Absolute thermal resistance by convection in the mixture [KW
-1

] 

Rte  Absolute thermal resistance by convection in the ambient air [KW
-1

] 

Rtt  Absolute thermal resistance by conduction in the tube and [KW
-1

] 

𝑟  
Relative roughness of the pipe [m]. The value of 0.0000025 was used for this fixed 
parameter as a modelling input  

𝑟𝑡  Radial dimension of the tube [m]  

𝑟𝑒  External radius of the PBR tube [m] 

𝑟𝑖  Internal radius of the PBR tube [m] 

𝑟𝑜𝑝𝑒𝑟  Day operation ratio [dimensionless] 

𝑟𝑠  Slope of the linear regression [h
-1

K
-1

 ] 

𝑅𝑒  Reynolds number [dimensionless] 

𝑅𝑒𝑏  Reynolds number of the bubbles [dimensionless] 

𝑅𝑒𝑙  Reynolds number of the liquid [dimensionless] 

𝑆𝑓𝑝,𝑀𝐸  Specific fuel consumption per main engine power unit [tonnes/hp] 
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𝑠  Thickness of the wall [m] 

𝑇  Temperature [K] 

𝑇𝑒  Ambient temperature [K] 

𝑇𝑔𝑖𝑛  Temperature of the gas fed in the PBR [K] 

𝑇ℎ𝑓𝑖𝑛  Temperature of the heating fluid in the entrance [K] 

𝑇ℎ𝑓𝑜𝑢𝑡  Temperature of the heating fluid in the exit [K] 

𝑇𝑚  Temperature of the mixture [K] 

𝑇𝑚𝑖𝑛  
Temperature of the mixture at thermal quasi-equilibrium between the liquid in the 
entrance and the sparged gas [K] 

𝑇𝑚𝑜𝑢𝑡  
Temperature of the mixture at the end of the PBR and reintroduced in the entrance 
[K] 

𝑇𝑚𝑎𝑥   Maximum temperature allowed for growth [K] 

𝑇𝑚𝑖𝑛   Minimum temperature allowed for growth [K] 

𝑇𝑜𝑝𝑡   Optimal temperature where the maximum growth rate is obtained [K] 

𝑇𝑟𝑒𝑓  Reference temperature [K] 

𝑇𝑠𝑘𝑦  Sky temperature [K] 

𝑇𝑤  Temperature at the wall of the tube [K] 

𝑇𝑤𝑒𝑥  Temperature at the external diameter of the tube wall [K] 

𝑇𝑤𝑖𝑛  Temperature at the internal diameter of the tube wall [K] 

𝑇0  Conceptual temperature with no metabolic significance [K] 

𝑡  Time [h] 

𝑡𝑔  Residence time of the bubbles in the riser [s] 

𝑡𝑙  Residence time of the liquid in the riser [s] 

𝑡𝑝𝑑  Daily fuel consumption of ship engines [tonnes/day] 

𝑈  Overall heat transfer coefficient [Wm
-2

K
-1

 or kgs
-3

K
-1

] 

𝑢𝑏  Mean velocity of bubbles in the riser relative to the liquid [ms
-1

] 

𝑢𝑔  Superficial gas velocity in the riser [ms
-1

] 

𝑢𝑙  Superficial liquid velocity of the liquid mobilised by the bubbles in the riser [ms
-1

] 

𝑢𝑚  Velocity of the mixture [ms
-1

] 

𝑢̅𝑔  Gas rise velocity in the riser estimated according to the sum of 𝑢𝑏 and 𝑢̅𝑙 [ms
-1

] 

𝑢̅𝑙  Liquid circulation velocity in the riser [ms
-1

] 

𝑉𝑔  Volume of gas in the riser tube [m
3
] 

𝑉𝑙  Volume of liquid in the riser tube [m
3
] 

𝑉𝑃𝐵𝑅  Volume of the PBR [m
3
] 

𝑉𝑟𝑖𝑠𝑒𝑟  Volume of the riser [m
3
] 

𝑌𝑏/𝑁  Yield over nitrates [g of biomass/g of N] 

𝑌𝑏/𝑃  Yield over phosphates [g of biomass/g of P] 

𝑌𝐶/𝑆  Yield over substrate [g of biomass/g of substrate] 
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𝑧  Depth of light penetration in the PBR [m]  

 

Greek characters 

𝜀  relative roughness of the pipe [m] 

𝜀𝑑  Gas hold-up in the downcomer [dimensionless] 

𝜀𝐼𝑅  Emittance [dimensionless] 

𝜀𝑚𝑒𝑎𝑛  Mean gas hold-up in the PBR [dimensionless] 

𝜀𝑟  Gas hold-up in the riser [dimensionless] 

𝜃𝑗  j
th
  parameter to be estimated [dimensionless] 

𝜃𝑗
∗  Final value of that parameter to be estimated [dimensionless] 

𝜃𝑗
𝐿  Lower bound imposed on the parameter to be estimated [dimensionless] 

𝜃𝑗
𝑈  Upper bound imposed on the parameter to be estimated [dimensionless] 

𝜇  Dynamic viscosity [kgm
-1

s
-1

]. The value of 0.798 x 10
-3

 was used for the fixed 
parameter of the liquid in the PBR as a modelling input  

𝜇𝑟  Growth rate [1/h]  

𝜇𝑗  Lagrange multiplier that corresponds to the bound constraints imposed on the 
parameter [dimensionless] 

𝜇𝑚  Dynamic viscosity of the mixture in the PBR [kgm
-1

s
-1

] 

𝜇𝑚𝑎𝑥  Maximum growth rate [1/h] 

𝜇𝑜𝑝𝑡  optimal growth rate which can be reached at the optimal temperature [1/h] 

𝜇0  Specific growth rate at 0 C [1/h] 

𝜈  Kinematic viscosity of water [m
2
s

-1
]. The value of 0.801 x 10

-6
 was used for the 

fixed parameter of the liquid in the PBR as a modelling input 

𝜋  Ratio of circumference to diameter of a circle [dimensionless]. The value of 3.142 
was used for this fixed parameter as a modelling input 

𝜌  Density [kgm
-3

] 

𝜌𝑔  Density of the sparged gas [kgm
-3

]. The value of 1.225 was used for this fixed 
parameter as a modelling input 

𝜌ℎ𝑓  Density of the heating fluid [kgm
-3

]. The value of 1000 was used for this fixed 
parameter as a modelling input 

𝜌𝑙  Density of the liquid in the PBR [kgm
-3

]. The value of 1000 was used for this fixed 
parameter as a modelling input 

𝜌𝑚  Density of the mixture (gas and liquid) in the PBR [kgm
-3

] 

𝜎  Stefan-Boltzmann constant [5.6704ˣ10
-8

 W/m
2
/K

4
] 

𝜑  Utilisation factor [dimensionless]  

𝛷∗  Final value of the maximum likelihood objective function [dimensionless] 

 

Subscripts 

𝑏  Bubbles 
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𝑔  Gas 

ℎ𝑓  Heating fluid 

𝐼  Illumination 

𝑙  Liquid 

𝑚  Mixture   

𝑁  Nitrates   

𝑃  Phosphates   

𝑆  Substrate   

𝑇  Temperature   

𝑤  Water 
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1 Introduction 

 

1.1 Motivation and aim 

The Third International Maritime Organisation (IMO) Greenhouse Gas Study 

estimates that annual carbon dioxide (CO2) emissions from the shipping industry 

exceed 1 billion tonnes with projected growth by a factor of up to 2.5 by 2050. The CO2 

contribution of shipping to global emissions is about 3.1%. Currently there are no 

regulatory limits for CO2 emissions from shipping, but they are likely to soon become 

taxable and some existing schemes and mechanisms promote energy efficiency in 

shipping. The Energy Efficiency Design Index (EEDI), the Ship Energy Efficiency 

Management Plan,  the Maritime Emissions Trading Scheme and market-based 

measures (IMO - Marine Environmental Protection Committee, 2014; IMO, 2011; 

Psaraftis, 2012) incentivise reduction of both input fuel use and exhaust emissions. 

Route optimisation and modifications to the engine or the fuel (Harrould-Kolieb & 

Savitz, 2010; The International Council on Clean Transportation, 2011) can also 

decrease CO2 emissions, and there is a further potential to treat emissions by 

scrubbing. Other emissions in shipping flue gas, such as sulphur and nitrogen oxides 

(SOx and NOx), are controlled by the IMO Scheme B and are reduced by modifications 

to the fuel, the engine, or scrubbing (Entec, 2010; IMO, 2009).  

CO2 capture with algal photobioreactors (PBR) of various configurations (Carvalho 

et al., 2006) is a biologically-based fixation method that has been implemented for the 

treatment of CO2 emissions from on-shore smokestacks (Borkenstein et al., 2011; 

Myer, 2006). PBRs grow algal biomass in water, using heat, light, CO2 and other 

macronutrients. Algal biomass production not only ties up CO2, but can be used to 

produce chemicals, biofuels and supplements for human and animal foods (Ugwu et 

al., 2008). The use of algal cultivation systems to generate third generation biofuels 

avoids problems faced by first and second generation biofuels, such as high water 

consumption and the use of land needed for food cultivation (Brennan & Owende, 

2010). 

The idea of using a shipboard PBR to capture CO2 emissions from ship engines 

was conceived by Dr Nithin Rai, the industrial supervisor of the present project who 

sponsored it through his company, Octoply. The company’s concept is to use 

waterways to develop novel products and services whereby transport could be utilised 

for the provision of social, health and educational activities (its vessels are presented in 
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3.2 and Appendix II). The literature does not show any evidence of previous 

implementation of a shipboard PBR for cultivation of algae. The aim of this study was 

to investigate important aspects of the technical challenges and basic sustainability of 

using a PBR to treat the ship engine’s CO2 emissions and produce biomass in a 

commercially viable way. The goal is to use waste streams of the ship (i.e., flue gas, 

waste heat and wastewater, as shown in Figure 1.1) to provide system independence 

and reduce operating costs in future implementation of the system.  

 

Figure 1.1. Overall system for the use of the flue gas, the wastewater and the waste 
heat produced in the ship to feed the photobioreactor. 

 

1.2 Structure of the thesis 

This thesis is organised into nine chapters. Chapter 2 reports on review of the 

literature related to: 1) ship emissions, ship emission reduction and ship heat exchange 

systems and 2) algal cultivation systems. This leads to an examination of the 

challenges and opportunities of a shipboard PBR.   

Chapter 3 articulates the research questions arising from this examination, which 

will be addressed by this thesis, and the overall approach adopted. Each of Chapters 4 

to 7 describes a separate aspect of the feasibility of a shipboard algal PBR, with a 

separate introduction, method, results, discussion and conclusions section for each. 

Chapter 4 examines some other practical aspects of the shipboard PBR 

implementation. Specifically, it suggests a PBR design and reports on experiments to 
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study the performance of gas bubble flow. It then considers the effects of the NOx and 

SOx present in flue gas, as well as the fluctuations in salinity due to shipping route 

transitions from riverine, through estuarine and marine environments, on algal growth. 

Also, lab cultivation of various wild algae samples around London was investigated, to 

assess the potential for using local water for algae production. Part of this work was 

presented at a conference (Koutita et al., 2013a). 

Chapter 5 focuses on the hydrodynamics of PBR designs of the same group as the 

airlift design suggested in Chapter 4. A model developed from physical first principles 

estimates the liquid velocity induced in the selected reactor design. The model was 

successfully validated by a number of laboratory scale experiments. This work has 

been published as a journal paper (Koutita et al., 2015).  

A model of algal growth kinetics is developed in Chapter 6, which takes into 

account the simultaneous effects of several factors that influence growth, to predict the 

productivity under different conditions. Part of this work was presented at a conference 

(Koutita et al., 2014). An attempt to calibrate the model used data produced from lab 

experiments to estimate model parameters. The model is used to examine the 

conditions for semi-continuous operation of the PBR that would be beneficial for the 

growth of wild algae, which grow more slowly than most commercial varieties (Chapter 

4). Different objective functions were dynamically simulated as case studies for 

potential optimisation and the variety of the control variables needed in each case were 

discussed.  

Chapter 7 examines the availability of suitable space in different ship types and 

sizes, to accommodate the treatment of the total flue gas emissions with an algal PBR 

system. It includes a fundamental model developed using Clarkson’s World Fleet 

Register database (Clarkson Research Services Limited, 2011). The reactor could be 

supported by either partitioning the reactor between the deck and the ballast tanks, or 

just by artificial illumination in the tanks. This work was presented at conference 

(Koutita et al., 2013b). This chapter also describes a waste heat recovery system, 

which stores the heat recovered from the flue gas in the ballast tanks when the engines 

are off, to provide an uninterrupted source of heat for the PBR. A way to integrate a 

heat exchanger (HE) with the PBR without adding significant mass or affecting its 

photosynthetic efficiency is suggested. The heat transfer model uses the liquid velocity 

computed by the model developed in Chapter 5 as an input.   
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The overall conclusions of the research are summarized in Chapter 8, whereby 

these represent the contributions to knowledge of this project, and lead to 

recommendations for further work. 

  



34 

 

2 Literature review   

 

2.1 Introduction 

The research presented in this thesis has been undertaken at the intersection of 

two very different subject areas: 1) control of emissions and waste streams from 

shipping, and 2) cultivation of algae.  This literature review, therefore, summarises the 

main background understanding in these areas, which is relevant to the development 

of the research.  

The main flue gas components from ship engines are examined to evaluate the 

composition of the gas feed stream to the PBR (Figure 1.1). The regulations being 

developed for the emissions control are then summarised, which provides evidence 

that installations to capture CO2 are likely to be unavoidable in the future. Other waste 

streams relevant to the shipboard algal PBR are the ballast water and the sewage. 

Existing methods used to reduce the different emissions and waste streams are then 

briefly reviewed, including an overview of the Waste Heat Recovery (WHR) methods 

and the HE systems on ships that need to provide the heating and cooling for algal 

cultivation. 

CO2 sequestration by cultivation of algae in a PBR requires knowledge of algal cell 

biology. Thus algal physiology is briefly introduced and the most important factors that 

determine algal composition and growth for CO2 sequestration and biofuels are 

discussed. The most significant factors that would affect the sequestration process in 

shipboard algal PBRs are temperature, pH, SOx and NOx concentration, light 

distribution and mixing, culture species, culture density, critical CO2 concentration and 

CO2 mass transfer (Juneja et al., 2013). The applicability and characteristics of different 

types of PBRs for algae-based CO2 sequestration are then compared. A suitable PBR 

vessel was identified to be designed, to better understand the operational aspects of 

carbon capture onboard a vessel. The choice of a PBR design depends on several 

factors, including energy requirements and the location onboard a ship.  

Typical existing land-based algal systems and their CO2 capturing efficiency are 

then discussed, along with other potential uses of a PBR onboard a ship, including 

biogas conditioning and wastewater treatment.  Modelling approaches that describe the 

influence of PBR parameters on productivity on board are reviewed for application to 

dimensioning of the shipboard PBR and optimization of productivity. The findings of the 
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literature review are synthesized into a consideration of the challenges and 

opportunities associated with the proposed shipboard algal PBR. 

 

2.2 Shipping waste streams 

2.2.1 Gas emissions from shipping   

2.2.1.1 Flue gas  

Ship engines burn either heavy fuel oil, marine gas oil, or their blend, marine diesel 

oil (Moreno-Gutierrez et al., 2007). Marine diesel oil is less carbon intensive than heavy 

fuel oil (Harrould-Kolieb & Savitz, 2010), as marine gas oil contains pure distillates of 

crude oil (MAN Diesel, 2008), whereas heavy fuel oil is normally a mixture of residual 

fuel oil (RO) and distillates and its viscosity varies a lot depending on the crude oil used 

and the process (MAN Diesel, 2008).  

The carbon-containing emissions from combustion of marine fuels in a ship engine 

include the main gases associated with climate change, CO2, carbon monoxide, volatile 

organic compounds and particulate matter. The amount of CO2 emitted per vessel 

tonne in a year depends mainly on the dead weight tonnage and type of ship, as well 

as its operation time and mode (David Cooper, 2002; Defra, 2010; IMO, 2009), rather 

than the type of fuel or engine (Psaraftis & Kontovas, 2008). Carbon monoxide and 

volatile organic compounds are toxic products of imperfect combustion. Carbon-based 

particulate matter generation is related to the consumption of the engine lubricant oil 

(IMO, 2009). Land-based particulate matter emissions are associated with respiratory 

and toxic effects (Schlesinger et al., 2006) and marine emissions of particulate matter 

raise the same concerns when weather patterns result in their landfall; their impact on 

the marine environment and algae is not well understood and needs further exploration 

(Van Den Hende et al., 2012). Volatile organic compounds and carbon monoxide are 

also associated with serious health issues (Jones, 1999; Schlink et al., 2010). 

Other main flue gas emissions include SOx (95 – 97% SO2 and 3 – 5% SO3, 

depending on the combustion temperature, pressure, excess air and fuel sulphur 

content), NOx (NO and NO2), and heavy metals. Sulphur is present in most fuels and 

the amount oxidized to SOx depends on the fuel type. A typical sulphur level in residual 

marine fuel oil in 2009 was a little over 3% w/w (Psaraftis & Kontovas, 2008). A small 

part of nitrogen (N2) in the charge air and the majority in the fuel is also oxidised in the 

fuel combustion to form nitric oxide (NO) and ground level ozone. The total amount of 
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NOx emissions is therefore mainly related to the design and operation of an engine, the 

combustion temperature and the amount of excess air, rather than the nitrate content 

of the fuel (DNV, 2008). The main problem with both SOx and NOx emissions is that, 

dissolved in water, they are converted to sulphuric and nitric acids and ground level 

ozone, causing acid precipitation, respiratory problems, eutrophication and oxygen (O2) 

depletion of natural waters (West, 2009). Finally, toxic heavy metals, such as lead, 

cadmium and arsenic, are vaporized at the high temperature of the combustion system 

(Hutto, 2001). 

Table 2.1 shows the main inputs and outputs of a two-stroke diesel engine – which 

is a popular main propulsion ship engine (Anish, 2011) – and the quantities of the 

different pollutants. A more comprehensive table that summarises gas emissions 

quantities from different engine types and operations is shown in Appendix I. The main 

difference between ship emissions and other automotive emissions is the high SOx 

concentration of the former, as sulphur in residual marine fuel oil has been measured 

to be 2.7%, whereas it is only 10 mg/kg in automotive diesel fuels (IMO, 2009).  

 

Table 2.1. Summary of typical emissions from a slow speed 2-stroke diesel engine 
burning heavy fuel oil (West, 2009).  

 Source Components (w/w) Amount consumed or emitted  

Input 
streams 

Air 
21 % O2 

79 % N2 

8,500 g/kWh 

Fuel 
97 % HC* 

3 % S 
175 g/kWh 

Lube 

97 % HC 

2.5 % Ca 

0.5 % S 

1 g/kWh 

Output 
stream 

Flue gas 

13 % O2 

76 % N2 

5.2 % CO2 

5.4 % H2O 

1500 mg/kg NOx 

600 mg/kg SOx 

60 mg/kg CO** 

180 mg/kg VOCs*** 

120 mg/Nm
3
 PM**** 

8,676 g/kWh 

(mass balance) 

*HC is hydrocarbons, **CO is carbon monoxide, ***VOC the volatile organic compounds and 
****PM is particulate matter. 
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2.2.1.2 Regulation of ship flue gas emissions 

Since shipping is an international activity, international regulators, such as the 

IMO, have the authority to regulate emissions, as global measures are more effective 

for emissions control. Apart from the regulations, other schemes and mechanisms may 

control shipping emissions. Although shipping transport is often touted for its low CO2 

emissions per unit of mass and distance travelled relative to aviation, it is an important 

emissions contributor (Chapter 1) and some regulations for their reduction have been 

implemented in some areas. The measures are applied on the carbon intensity of the 

ships and they use metrics such as gCO2/t.km. Therefore, they incentivise reduction of 

both the input fuel and the flue gas emissions (IMO, 2013). 

Currently there are no fixed thresholds for CO2 emissions, but some schemes and 

mechanisms exist that promote energy efficiency in shipping:  

 EEDI international agreement requirements demand that new ships over 400 

tonnes have a low fuel consumption divided by speed and deadweight tonnage per 

tonne-mile (IMO, 2011). Specifically, ships built after 2015 have to improve their 

efficiency by 10%, ships built between 2020 and 2024 by 15% and those built after 

2024 by 30%. EEDI are currently not applied to ships in developing countries 

(European Federation for Transport and Environment, 2011). According to the IMO, 

the EEDI deal could reduce emissions by 45 to 50 million tonnes a year by 2020 

(Pearce, 2011). 

 Ship Energy Efficiency Management Plan is a mechanism to monitor 

performance against a benchmark (e.g., the Energy Efficiency Operational Indicator) 

and improve energy efficiency of ship operations. The ship owner and operator are 

also recommended to review and consider operational practices and technology 

upgrades to optimise the performance at each stage of the operation of the ship.  

Apart from the mandatory measures mentioned, there are a couple of candidate 

future regulations that do not apply at the moment. These are the market-based 

measures and the Maritime Emissions Trading Scheme. They allow the shipping sector 

to buy allowances from other sectors and they take technical and operational measures 

regarding fuel consumption and emissions, aiming to improve the 400 gross registered 

tonnage to submit CO2 allowances or credits matching its fuel consumption in order to 

be allowed to load and unload at ports. The Maritime Emissions Trading Scheme is 

becoming a net buyer of emission allowances and emission credits by setting a 

threshold for permissible emissions (Goulielmos et al., 2011; Kageson, 2009). The 
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most recent EU-wide regulation proposed by the European Commission requires 

Monitoring, Reporting and Verification (MRV) of CO2 emissions for ships of 5,000 gross 

registered tonnage. This will not only provide insight into the changing status of CO2 

emissions from shipping, but will also stimulate investments to improve performance of 

ships, and reduce the capital cost of the implementation of carbon capture systems, as 

the measuring sensors will already be installed. MRV is therefore expected to cut 2% of 

the emissions (MarineLog, 2013).  

Regulations for NOx and SOx started being applied many years ago and are stricter 

than those for CO2 in shipping. Scheme B from the IMO exhaust gas cleaning system 

Guidelines require the SO2/CO2 ratio to be continuously recorded. Regulation 14 

MARPOL (Marine Pollution) Annex VI sets limits for maximum sulphur content in fuels 

burnt within the Emission Control Areas (ECA) (Defra, 2010; Pedersen, 2011; 

Resolution MEPC.184(59) Annex 9, 2009). Continuous monitoring of NOx emissions is 

not required, but there are Tiers (emission standards) since 2000 that set limits to their 

emissions (Defra, 2010; Pedersen, 2011; Resolution MEPC.184(59) Annex 9, 2009; 

West, 2009). There is no particular effort to reduce heavy metals (Lloyd & Veritas, 

2006), carbon monoxide and volatile organic compounds, but particulate matter is 

required to be greatly reduced within the ECA and globally (IMO, 2009).  

 

2.2.1.3 Existing methods to reduce ship flue gas emissions 

This section focuses on mitigation of the emissions, which are associated with or 

would affect an algal PBR system. Table 2.2 summarises the treatment methods for 

the main polluting flue gases, CO2 and NOx and SOx. CO2 reduction methods have not 

been developed as much as those for other pollutants due to the current lack of strict 

regulation. Most studies to reduce CO2 emissions are through route or speed 

optimization, aiming mainly to increase cost efficiency (Chang et al., 2013; Smith, 

2014), and other technological measures to produce energy such as kites and solar 

power generated on deck  (De Rosa & Holtshausen, 2011; The International Council 

on Clean Transportation, 2011). Studies have recently started proposing solutions for 

CO2 capture on ships (Zhou & Wang, 2014), however, complex modification of the 

engines would be required and the whole design of ships would need to be adapted, to 

ensure the technical feasibility of the implementation.  

Land-based CO2 capture and storage techniques are categorised according to the 

process and to the technology used. The first criterion divides them into three main 
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capture processes, depending on the processed stream (Florin & Fennell, 2010;  

Hillebrand et al., 2016; Kunze & Spliethoff, 2012; Mondal et al., 2012):  

 Post-combustion, where CO2 is separated from the flue gas after the 

combustion chamber.  

 Pre-combustion, where the fuel is converted into hydrogen and CO2 prior to 

the combustion and the hydrogen is used as the new fuel.  

 Oxy-fuel combustion, where the fuel is combusted with pure oxygen 

making the flue gas to contain high CO2 concentration and allowing its 

direct storage.   

Depending on the process, various methods for CO2 capture can be used, 

including absorption, adsorption, membranes, and hybrid applications of these (Liang 

et al., 2015). For instance, post combustion processes use monoethanolamine or 

amine solvent scrubbing, solid sorbent, ionic liquids, membrane separation for CO2 and 

algal-biological capture. The main pre-combustion processes include integrated 

gasification combined cycle systems, sorbent enhanced reforming using carbonate 

looping and membrane separation for hydrogen. Oxy-fuel processes include an oxy-

fuel boiler by cryogenic air separation, chemical looping combustion using solid metal 

O2 carriers, and membrane separation of O2 (Florin & Fennell, 2010).   

Reviews in the literature use various criteria (e.g., impact on climate change, 

health impact, cost, impact on other technologies, leakage of captured CO2, public 

perception, technology readiness) to compare the above capture methods, making it 

difficult to distinguish which criteria are best to use for method selection (Choptiany et 

al., 2014). Also, the optimal method for each case and the economic performance of 

each method depends on the location, the size of the plant, and the diverse operating 

conditions (Choptiany et al., 2014; Kuramochi et al., 2012).  

Based on patents and articles, post-combustion is the only industrial CO2 capture 

process being demonstrated at full commercial scale (Liang et al., 2015). The most 

frequently applied process in post-combustion is amine sorbents (Kunze, Splliethof). A 

post-combustion capture facility is a conceptually simple upgrade for the existing 

technology (Hillebrand 2016, Quintella 2011) and can be retrofitted (Figueroa 2008) 

with minor impact on the power conversion process  (Kunze & Spliethoff, 2012). Some 

concerns with this method are the low CO2 concentration in the flue gas which limits 

the process efficiency, the intense solvent regeneration energy (Figueroa et al., 2008; 

Kunze & Spliethoff, 2012), corrosion of equipment in the presence of O2 and other 
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impurities, high solvent degradation rates, potential emissions of solvent to the 

environment, cost of materials, low capture capacity and very large equipment 

requirements (Figueroa et al., 2008, Florin & Fennell, 2010, Kunze & Spliethoff, 2012).  

Pre-combustion CO2 capture is used in integrated gasification combined cycle 

plant. Although it has a higher driving force for separation due to the high CO2 partial 

concentration (Figueroa et al., 2008), it is not feasible in conventional steam power 

plants (Kunze & Spliethoff, 2012). Its main drawback is that it requires a chemical plant 

in front of the turbine and it is therefore applicable mainly to new power plants 

(Figueroa et al., 2008; Mondal et al., 2012). Its complicated chemical processes also 

cause extra shut-downs of the plant, which can result in a lower power output (Mondal 

et al., 2012). Other disadvantages are cost of equipment and difficulty in 

commercialisation (Figueroa et al., 2008; Florin & Fennell, 2010).  

The oxy-fuel approach has the advantage of avoiding NOx formation and of a high 

CO2 concentration in the flue gas which makes it more efficient in absorbing. However, 

recycle of cooled CO2 is required which would decrease efficiency (Figueroa et al., 

2008). It is also costly, energy intensive, associated with degradation of oxygen carriers 

(Florin & Fennell, 2010). and it has a higher impact on the power plant process, which 

complicates retrofitting (Kunze & Spliethoff, 2012; Mondal et al., 2012).  

Most non-algal land-based CO2 capture and storage techniques are based on 

absorption and adsorption (Florin & Fennell, 2010; Mondal et al., 2012; Quintella et al., 

2011), with monoethanolamine being the most promising absorption method (Aaron & 

Tsouris, 2005). Absorption is a mature and retrofitable method with easy application 

and a low energy penalty, suggesting investment in further research and improvement 

(Aaron & Tsouris, 2005; Mondal et al., 2012). While this method is currently most 

promising, the development of ceramic and metallic membranes for membrane 

diffusion should produce membranes significantly more efficient at separation than 

liquid absorption (Aaron & Tsouris, 2005). Literature supports that the energy 

requirements of the four technologies are highest for the cryogenic, followed by 

absorption, adsorption and membrane methods, whereas the CO2 recovery is highest 

for the cryogenic, decreasing for the absorption, membrane and adsorption methods 

(Mondal et al., 2012).  

The lack of information and the small number capture units, implemented at large 

scale, most of which are pilot projects, imply that it is early to extrapolate outcomes 

from the obtained data for each technology and to identify the future dominating 

technology, as admitted by the available reviews (Choptiany et al., 2014; Kuramochi et 
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al., 2012). For instance, although oxy-fuel was mentioned earlier to be energy intensive 

and difficult to retrofit, other review studies and modelling research support opposite 

statements (Figueroa et al., 2008; Vatopoulos & Tzimas, 2012).  

Summarising, the issues with non-algal land-based CO2 capture and storage 

techniques that would make them problematic for a shipboard implementation are their 

significant energy penalties, high costs, immaturity as technologies, and low capacities. 

Also, they consist of inflexible operations that cannot be easily retrofitted, and they are 

linked to corrosion and require waste absorbent disposal (Van Den Hende et al., 2012). 

There are additional limitations in shipboard CO2 capture, though preliminary studies 

using chemical absorption examine how to overcome them (Zhou & Wang, 2014). 

Chemical and physical CO2 treatment technologies are relatively costly (Van Den 

Hende et al., 2012). Biological processes, including algal-based capture, are further 

from commercialisation (Figueroa et al., 2008), but it can be achieved through 

continued research, development, and demonstration.  

NOx reduction methods tend to increase the volatile organic compounds and 

carbon monoxide emissions and fuel consumption, but SOx scrubbers are able to 

reduce particulate matter as well. SOx scrubbers are the systems that are most similar 

to a PBR in terms of the process and are analysed further. Exhaust gas cleaning 

systems allow the use of conventional high sulphur fuels and are cheaper over their 

lifetime than the use of low sulphur fuels. SO2 can be removed from the flue gas by wet 

scrubbers or dry scrubbers using lime. Such technologies have been in use for several 

decades in oil tankers (Leigh-Jones, 1998). According to chief Shipping Analyst at 

BIMCO, Peter Sand, “for a ship with 10 years of commercial life left, the vessel should 

sail in an Emission Control Area 33% of the time for a scrubber to break even” (Fathom 

Shipping, 2013b). The process is energy consuming, as wet scrubbers require 10 – 30 

kW per MW of the engine (Fathom, 2011). Many flue gas cleaning systems companies 

offer pilot systems but only a few are in commercial operation (e.g., Hamworthy 

Krystallon) (West, 2009).  

The wet scrubber system may be an “open” type, where seawater is taken from 

the sea, used for scrubbing, treated and discharged back to sea. Otherwise, it is a 

“closed” type, where freshwater is treated with an alkaline chemical for buffering and 

scrubbing. The two systems are shown in Figure 2.1. The pH of the wash water from 

an exhaust gas cleaning system can be as low as 3. Typically, open seawater systems 

use 45 m3/MWh water, whereas closed freshwater systems have a water discharge 

rate 0.1 – 0.3 m3/MWh (West, 2009). As a result, closed systems do not need an 
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Environmental Impact Assessment by a local Environmental Protection Agency 

(Knudsen, 2010), but the IMO requires a specific assessment and applies additional 

wash water discharge criteria for systems that use chemicals (West, 2009).  

 

Figure 2.1. Marine wet scrubber systems operating with seawater and recirculating 

freshwater respectively. Figure reproduced from West (2009). 

SO2 solubility increases with decreasing temperature. Therefore, hot flue gas, 

typically in excess of 300 C, benefits from passing through a cooling system within the 

exhaust gas cleaning system unit. In general, a demister removes condensed droplets 

(West, 2009). 

 

2.2.2 Waste emissions from shipping 

Ship operation generates four main types of liquid and solid waste streams that are 

relevant to the concept of the shipboard algal PBR:  

1. Sewage from washing and use of toilets by the crew, which contains 

phosphorus, nitrogen, potassium, sulphur and organic contamination 

(measured in biochemical oxygen demand – BOD) and traces of various metals 

such as zinc, copper and nickel.  

2. Food waste, which also contains the macronutrients present in the sewage.  

3. Bilge water collected at the lower parts of the ship containing a mixture of fuel, 

detergents and lubricants.  

4. Wash water, which is the used water from gas scrubbing emissions and 

contains sulphuric acid. 

5. Ballast water used to maintain ship stability, containing biological organisms 

present in natural waters which may be considered as pollutants if discharged 

in different natural waters. 
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The quantity of each stream is dependent on the type and size of the ship. The 

main environmental impact faced regarding sewage and food waste is eutrophication 

(Han et al., 2006). Bilge water and wash water affect the pH, polycyclic aromatic 

hydrocarbon concentrations and turbidity of the water; they need to be monitored and 

their dumping is allowed only when their pH is over 6.5 (Resolution MEPC.184(59) 

Annex 9, 2009). 

Monitoring of transfer of harmful aquatic organisms and pathogens with ballast 

water is rarely undertaken. There is a lack of international standards for ballast 

management, but the IMO prepared the Ballast Water Management Convention in 

2004 for national ballast water management. The comprehensive test program 

evaluates the performance and suitability of ballast water management systems, which 

includes large scale land-based and shipboard tests. Apart from this, risk assessments 

are also suggested to be crucial (David & Gollasch, 2015). Table 2.2 includes some 

common ballast water treatment methods used. 
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Table 2.2. Key abatement techniques for main pollutant sources, CO2, NOx, SOx and 
ballast water (and their corresponding evaluated reduction efficiencies). Data taken 
from Balland & Ntnu (n.d.); IMO (2009); Chang et al. (2013); David & Gollasch (2015); 
Jalkanen et al. (2009); Smith et al. (2013). 

Pollutant Abatement technique  Reduction 
efficiency 

CO2 

 

Logistics (e.g., route optimisation) 

Engine modification 

Wind assistance 

N/A 

N/A 

N/A 

SOx  Fuel switch seawater scrubbing 

Cylinder lubrication 

44 – 81% 

75 – 98% 

NOx Slide valves  

Water injection  

Humid air  

Selective catalytic reduction  

Exhaust gas recirculation  

Emulsion combustion  

High scavenge pressure and compression Ratio 

20% 

50% 

70% 

90% 

35% 

10% 

N/A 

Ballast 
water 
organisms 

Chemical (e.g., chlorination, ozonation) 

Physical (e.g., ultraviolet, radiation, deoxygenation, filtration, 
heat)  

Biological (bioaugmentation) 

N/A 

N/A 

N/A 

 

 

2.2.3 Waste heat and waste heat recovery in ships 

Marine diesel engines are classified according to their speed (slow, medium and 

high speed), their operating cycle (the strokes completed by the piston in each engine 

cycle; two-stroke and four-stroke) and their construction (crosshead and trunk) (Ayub, 

2009). Their emissions concentrations differ as shown for some examples in Table I.1 

of Appendix I. Two-stroke engines are the most powerful, reaching the highest 

attainable efficiency of piston engines of 55% (Bosch Gmbh, 2003). Apart from the 

main engines, ships also use auxiliary engines for the operations and boilers for heat 

generation. Auxiliary engines typically represent a 5% of the installed power, but run at 

lower load than the main engines (around 50%), with great variety across the different 

ship types.  
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The non-adiabatic compression and expansion, and mechanical losses due to 

friction, along with other lost heat, reduce the thermal efficiency of the engine (i.e. heat 

energy obtained by the combustion) to around 40% of a diesel cycle. The various main 

losses during the operation of a diesel engine are shown in Figure 2.2. However, some 

losses depend on the engine type and the whole system. Heat lost in the flue gas, 

conducted through the piston, cylinder and cylinder head, leads to very high 

temperatures generated in the propulsion engines with diesel temperatures ranging 

from 120 – 720 C (Zheng, 2004) and an average flue gas temperature of 

approximately 380 °C with a pressure of 220 kPa (Maersk, n.d.). 

 

Figure 2.2. Heat balance for a ship propulsion engine. Data provided in Ayub (2009). 

 

The engine cooling system absorbs heat in cool water or oil, to avoid unsafe heat 

accumulation and thermal stresses in the engine. Modern engines increasingly use oil 

for cooling the piston as it requires simpler piston design due to the lower thermal 

stresses developed, and it does not require a separate cooling system and chemical 

treatment to prevent corrosion and scaling. On the other hand, use of oil removes less 

heat per volume than water, requires a large oil purification plant, and may cause oil 

carbonisation at high temperatures. Medium speed engines use freshwater circulated 

through cylinder heads for cooling, usually connected to the main engine jacket cooling 

water system (Ayub, 2009). The jacket cooling water temperature at the inlet of the 

main engine is maintained at 55 °C and at the outlet 80 – 85 °C, in order to maintain 

the liner temperature between 150 °C and 220 °C. An independent cooling system 

circulates coolant in the inner spaces of the piston crown, as its temperature is higher 

than in the cylinder line (Ayub, 2009). 
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In seawater circulation systems, seawater is used as a medium to cool the various 

components, the lube oil, the charge air to air compressors and to generate freshwater 

(Ayub, 2009). An alternative system is the central cooling that supplies seawater only 

to cool freshwater, which is the coolant medium in the various HEs. This system has 

the benefit of minimising maintenance work. In both cases, the heated seawater is 

discharged overboard. The heat lost through cooling represents an energy loss in the 

system (Ayub, 2009). The latter system is commonly found on smaller vessels as it 

minimises maintenance work, i.e., limiting the effect of sea water corrosion to the 

various ship components that require cooling.  

WHR systems manage and utilize the two major energy losses that together 

account for approximately half of the energy produced by the combustion: 1) the heat 

conducted to the engine components, and 2) the heat lost from the flue gas stream. 

The high temperature and pressure of the flue gas is utilised with turbochargers and 

sometimes with steam turbines or combined heat and power hybrid systems. 

Turbochargers can utilise approximately 65% of this energy, supplying charge air to the 

engine with higher density causing more efficient combustion of the fuel (Fathom 

Shipping, 2013). The steam turbine hybrid system produces useful steam from the 

exhaust heat for on board heating, and to drive a steam turbine for extra electricity 

generation (Maersk, n.d.). Apart from the heating uses, tri-generation, or a power-heat-

refrigeration-coupling system, could produce cooled water and air with thermal-driven 

chillers. This would be useful for cargo that needs refrigeration, or for air-conditioning 

generally (Fischer, 2011).  

The engines also require heating during start-up and there are also fuel handling 

systems which heat the fuel to temperatures as high as 160 C to reduce viscosity 

(Bosch Gmbh, 2003). Also, heating is required for passenger ships types, for the 

operation of radiators.   

All of the above options reduce fuel utilisation and consequently carbon footprint. 

The best option will depend on the electricity needs and operational profile of the ship, 

as well as how much complexity is accepted by the owner and the shipyard. Several 

engine manufacturers (Wartsila, Mitsubishi Heavy Industries, ManDiesel&Turbo) state 

that their high-efficiency WHR systems can obtain fuel savings of 4 – 12% with a return 

on investment of less than 5 years (Fathom Shipping, 2013). 
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2.3  Algal systems 

2.3.1 Physiology of algae 

Microalgae are unicellular or multicellular microorganisms; most of those identified 

are eukaryotic. They are grouped according to their pigment composition, 

ultrastructure, life cycle and biochemical constituents. According to the Aquatic Species 

Program, the main physiologically similar algae classes are (Borowitzka & Borowitzka, 

1988; Borowitzka, n.d.; Sheehan et al., 1998):  

- diatoms (Bacillariophyceae class)  

- green algae (Chlorophyceae class)  

- golden-brown algae (Chrysophyceae class)   

- prymnesiophytes (Prymnesiophyceae class)  

- eustigmatophytes (Eustigmatophyceae class) and  

- the prokaryotic blue-green algae, or cyanobacteria (Cyanophyceae class) 

(Sheehan et al., 1998).  

Microalgae can be photoautotrophic (photosynthesizing inorganic compounds), 

heterotrophic (consuming  organic compounds), mixotrophic (photosynthesizing but 

also using organic compounds), auxotrophic (form of heterotrophy where only small 

amounts of organic compounds are required), photoheterotrophic (light is required to 

use organic carbon sources for growth) or phagotrophic (consuming solid food 

particles) (Borowitzka, n.d.; Schaechter, 2009). Photoautotrophic algae are relevant in 

the present context, as they are capable of absorbing CO2 when light is provided and 

producing organic compounds and O2. Figure 2.3 shows the photosynthetic reactions. 

Algae not only sequester CO2 from flue gas, but other compounds, such as NOx (Chiu 

et al., 2011; Gardner, 2011; Kumar et al., 2010), which is produced in diesel 

combustion. The gross content of  carbohydrates, proteins and lipids among algal 

species of one group may vary as much as among different algae genera, according to 

the compositions listed for some algae types in Sialve et al. (2009).  Other metabolic 

characteristics of the cells include growth rate, chlorophyll, proline, glycine and 

carotene contents, as well as metal accumulation. Growth rate is the combination of 

photosynthesis and respiration, and is usually estimated from cell counts, cell density, 

or on a chlorophyll basis (Kirst, 1989) 
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Figure 2.3. Major products of the light and dark reactions of photosynthesis with the 
use of adenosine triphosphate (ATP) energy and consumption of the enzyme NADPH2 
for the sugars production. Figure adapted from Richmond (2004). 

 

 

2.3.2 Factors affecting growth and carbon sequestration 

2.3.2.1 Species selection 

According to The Algal Industry Survey (Edwards, 2009), species selection is the 

most critical variable for successful mitigation of CO2, followed by light penetration, 

temperature and pH (weight factors are shown in Table I.2 of Appendix I). The most 

usual criteria for deciding a species’ suitability for CO2 fixation include growth rate, 

temperature range, resistance to shear stress (hydrodynamic stress parallel to the cell 

wall), product value, robustness to potential contamination, and/or content of important 

biological molecules (González López et al., 2009). Apart from this, the harvesting 

energy requirements, which are affected by the lipid content, need to be considered 

(Becker, 1994). Optimisation of one characteristic might negatively affect another 

desirable characteristic and any individual strain cannot exhibit all the desired traits. 

Therefore, different algal species may be the most suitable solution depending on the 

specific requirements for each case and each PBR design. For example, if algae are 

grown for CO2 capture, then high overall algal productivity would be desired, whereas 

for production of biodiesel, high lipid productivity would be the most desired, rather than 

carbohydrates or proteins. However, algae with high oil content may show slower 

growth and hence have low lipid productivity. This would mean that it is less difficult to 

extract the given amount of lipids from the amount of biomass produced, but a larger 

facility is required to produce the same amount of lipid products per time. Therefore, 

the selection of an algal species must optimise lipid content together with growth rates, 

for optimisation of CO2 fixation. According to Becker (1994), Chlamydomonas, 

Chlorella, Dunaliella and Nannochloropsis are genera with species that can produce a 

high proportion of lipids and are also widely cultivated for various applications. 

However, the literature is inconsistent about the benefits of some species, e.g., 

according to other studies Chlamydomonas genus does not accumulate  lipids 

(Sheehan et al., 1998). Chlorella seems to be a most common genus that been widely 
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used (Sheehan et al., 1998), and is very tolerant to higher CO2 concentrations (Ono & 

Cuello, 2001; Westerhoff et al., 2010). Therefore, this genus will be examined as a 

potential candidate for the application of this study. Figure 2.4 shows lipid content and 

productivity for a variety of species. 

There is evidence that thermophilic strains (see also 2.3.2.3) can tolerate higher 

CO2 concentration. For instance, when cyanobacterium Synechococcus elongates was 

bubbled with various concentrations of CO2 at different temperatures, the drop in pH at 

52 °C with 60% CO2 was comparable to the drop in pH at 25 C with 20% CO2 (Miyairi, 

1995).  

Algae can grow in fresh potable water, saline or brackish water, or municipal and 

industrial wastewaters (Mallick, 2002; Muñoz & Guieysse, 2006). Different microalgal 

species prefer different salinities and some halotolerant species can grow well in both 

environments (Araújo et al., 2009). Salinity level is reported to influence not only the 

growth, but also the harvesting efficiency of microalgae and the CO2 quantity stripped 

from the water (Borgvang, 2011; Sukenik et al., 1988). The most important cell 

characteristics that have been reported to be influenced by salt levels are growth rate, 

lipid, chlorophyll, carbohydrates, proteins, proline, glycine and carotene contents, as 

well as metal accumulation. 
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Figure 2.4. Total lipid contents and lipid productivities for some marine and freshwater 
species and for various microalgal species. Data taken from Rodolfi et al. ( 2009) and 
Mata et al. (2010). 
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2.3.2.2 Light – cell density – mixing 

Light is one of the most important factors for the growth of the photoautotrophic 

algae strains, and below the optimal light intensity, it becomes a limiting factor. Light 

affects cell growth through its wavelength and its intensity, which are determined by the 

light source, the broth mixing and the cell concentration. In addition, there is also 

intensive research on the beneficial effect of light and dark cycles of specific ratios on 

the growth, caused by static mixers or the operation cycles of lamps (Barbosa et al., 

2003; Gonçalves et al., 2014; Huang et al., 2014; Liu et al., 2007), which could be 

crucial for a shipboard PBR divided within the deck and the ballast (4.1).  

Algae grow best in the visible light spectrum (390 – 750 nm). Near-ultraviolet light 

has a detrimental effect on algal growth, and infrared light, on the other side of the 

spectrum, primarily causes overheating of the culture (Asenjo, 1995). Blue and red light 

wavelengths are best utilised by the microalgae. Fluorescent lamps are used to 

enhance productivity (Araújo et al., 2009a; Solovchenko et al., 2007).  

Saturation light intensity (𝐼𝑆) is a crucial parameter, which, together with incident 

light intensity (𝐼0), determines light utilisation efficiency. Overload of the system with the 

incoming light results in the production of reactive O2 species, causing photoinhibition 

and/or photooxidative death. 𝐼0 has to be lower than 𝐼𝑆, but not much, as it would be 

insufficient for optimal productivity. Therefore, selection of algal species having high 𝐼𝑆, 

or approaches to decrease 𝐼0 below 𝐼𝑆, are advisable (Kumar et al., 2011). Proper 

mixing minimises time of each cell being exposed to I0. It also creates a flashing light 

effect, which can increase the productivity in tubular PBRs by up to 40% (Ugwu et al., 

2002). However, the mixing rate and technique should be chosen to prevent the 

detrimental effect of high shear stress on algae viability.   

Proper geometry of PBRs can reduce the weakening of light with depth in the algal 

suspension (Kumar et al., 2011). Many special light systems have been tried on PBRs 

to evenly distribute 𝐼0, through splitting of light sources among many parts of the PBR, 

and consequently increase CO2 sequestration (Lee et al., 1995; Morita et al., 2000). 

Some other special sunlight-harnessing devices have been reported to providing high 

algal productivity, by focusing visible light into a fiber optic cable, or by filling columns 

with tubular fiber optic light radiators (Asenjo, 1995). Cell concentration affects 

productivity and light utilization efficiency. Below the optimal concentration, the light is 

only partially captured by the cells while above the optimum concentration many cells 
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are left in the dark zone (Zhang et al., 2001). On the other hand, a high cell 

concentration makes algae more tolerant to higher CO2 concentrations (Chiu et al., 

2008).  

 

2.3.2.3 Temperature – Heating requirements  

The temperature range tolerated by most algal cultures is 15 – 40 C (Konopkat & 

Brock, 1978; Maeda et al., 1995; Shang et al., 2010). Levin et al. (1962) support that 

the optimal temperature for Chlorella sp. is 39 C. Photosynthesis is an endothermic 

reaction, but a substantial part of the light energy absorbed in the photic zone is 

transformed to heat because the capacity of algae to fix light energy is limited (Janssen 

et al., 1999). Hence, outdoor tubular PBRs are expected to require cooling during hot 

periods (Chisti, 2007; Stephenson et al., 2010) to prevent the culture temperature from 

rising above the maximum temperature tolerated. Also, indoor cultivation with the use 

of fluorescent lighting (other than cool white) produces additional heat for removal 

(Chiu et al., 2008).  

A shipboard facility has two additional variables that affect heat requirements: the 

potentially low ambient temperatures that cause great heat loss, and the high 

temperature of the flue gas. All heat gains and losses must be taken into account to 

determine whether a specific PBR needs heating or cooling at any given time of 

operation. Therefore, it seems likely that algal CO2 fixation onboard a ship can only be 

feasible with installation of a heat exchange system.  

Temperature control methods used in algal PBRs, either for cooling or for heating, 

are water baths, immersed coils or tubes, water spraying and shading tubes. 

Temperature regulation of the feeding or recirculating stream has also been examined 

(Kumar et al., 2011). The case of controlling the temperature by adjusting the 

temperature of the sparged gas has not been investigated. Evaporative cooling has 

shown to be favoured economically over the use of HE (Kumar et al., 2011). All heating 

and cooling systems add operating costs. Specifically, water baths add significant 

weight to the system and decrease light absorption, important parameters for the case 

of a shipboard application.  

Significant energy and heat would also be required during shipboard harvesting 

too. For instance, one way to vaporise the water from the microalgal slurry is by 

contacting it with superheated steam, which is energy intensively produced. Also, filters 

with biomass need to be dried at 105 °C and allowed to cool (Janssen et al., 1999). 
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Froth flotation is a more efficient harvesting technique, but the addition of chemicals 

leads to downstream problems (Christenson & Sims, 2011).  

 

2.3.2.4 Macronutrients 

The most important inorganic macronutrients for photosynthesizing microalgae 

are:  

a. nitrogen (N), which is absorbed mainly in the form of ammonium and nitrates 

(NH4
+, NO3

-, NO2
-) to synthesize aminoacids (Martinez et al., 1999); 

b. phosphorus (P), which is absorbed mainly as inorganic salts, sodium or 

potassium phosphates, and is used in the cellular processes related to energy 

transfer and nucleic-acid synthesis (Martinez et al., 1999); 

c. carbon (C), which is absorbed through CO2, and sometimes through HCO3
- to 

produce the cell mass (Borowitzka & Borowitzka, 1988).  

Other required macronutrients are sulphur, calcium, magnesium, sodium, 

potassium, chlorine, silicon, iron (Borowitzka & Borowitzka, 1988; Borowitzka, n.d.). In 

addition to macronutrients, microalgae are able to not only scrub, but increase their 

lipid accumulation as well when fed with heavy metals from the media solution (Kalesh 

& Nair, 2005; Yang, Cao, Xing, & Yuan, 2014), and thereby with the flue gas that is 

being fed to it. The effects of nitrate and phosphate concentrations on growth, and their 

optimal values for various conditions and species have been extensively examined 

both experimentally and numerically (Ruiz et al., 2011; Xin et al., 2010). Again, finding 

an optimal value is not a straightforward process and depends on whether the 

objectives are to maximise lipid content, growth rate, or lipid productivity. For instance, 

nitrate deficiency has been reported to benefit lipid accumulation in certain green algal 

species (Sheehan et al., 1998). Its concentration affects the lipid content of different 

species differently, as shown in Table 2.3, so general conclusions are difficult. 
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Table 2.3. Lipid content (% dry weight) of a variety of freshwater (f) and marine (m) 
microalgal species, chosen from references related to CO2 fixation or biofuel 
production under different nitrogen (N) conditions.  

Species N starvation N deficiency N sufficiency 

Chlorella vulgaris (f) 

 

18 
[1]

  40 
[1]

 27 
[2] 

Chlorella protothecoides (f) 11 
[1] 

23 
[1] 

14 
[4] 

Chlorella emersonii (f) 29 
[1]

 63 
[1]

 - 

Neochloropsis oleoabundans(f) 56 
[6]

  38 
[7] 

- 

Nannochloropsis sp. (m) 60 
[8] 

- 29 
[9] 

Data taken from: [1] (Illman et al., 2000), [2] (Francisco et al., 2010), [3] (Liang et al., 
2009), [4] (Sieg, 2008), [5] (Xiong et al., 2008), [6] (Olguín, 2012), [7] (Li et al., 2008a), 
[8] (Rodolfi et al., 2009), [9] (Gouveia & Oliveira, 2009). Empty cells indicate data not 
available. 

 

The dissolved CO2 is computed from using its partial pressure as given by Henry’s 

Law (Buhr & Miller, 1983) in Eq.1 and Eq.2. In an aqueous environment, dissolved CO2 

exists in different carbonate forms in equilibrium; as carbonate (CO3
2−), bicarbonate 

(HCO3
−), CO2 and carbonic acid (H2CO3), and the partitioning between these species 

depends on pH and temperature (Baird & Cann, 2012). The equilibrium is shown in 

Eq.4.  

𝐶𝑂2(𝑔) +𝐻2𝑂 ⟷ 𝐶𝑂2(𝑎𝑞) (1) 

𝐶𝐶𝑂2𝑙 = 𝐾𝐻𝐶𝑂2𝑃𝐶𝑂2 (2) 

where 𝐾𝐻𝐶𝑂2
 is a function of temperature: 

𝐾𝐻𝐶𝑂2
= 𝑒𝑥𝑝 [−8.1403 +

842.9

(𝑇 + 151.5)
] 

(3) 

𝐶𝑂2(𝑎𝑞) +𝐻2𝑂 ⟷ 𝐻2𝐶𝑂3⟷𝐻+ + 𝐻𝐶𝑂3
−⟷𝐻+ + 𝐶𝑂3

2− (4) 

The equilibrium is not affected by algal fixation, due to the fast reaction kinetics. 

Microalgal cells preferentially take up HCO3
- over CO2 (Carvalho et al., 2006). The 

mass transfer of CO2 from the gas into the algal cell includes the following steps; (i) 

transport from the main body of gas to the thin gaseous film immediately adjacent to 

the gas/liquid interface; (ii) diffusion through the thin gas film; (iii) transition of the 

gas/liquid interface; (iv) diffusion into the adjacent thin liquid film; (v) transport to the 

main body of the liquid phase; (vi) diffusion into the thin liquid film in the vicinity of the 
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cell wall; (vii) free diffusion through the outer cell liquid film (Carvalho et al., 2006). The 

slow step that controls the process is reported to be the gas-liquid transport resistance 

(Markl, 1977). A smaller bubble size increases the interface area and mixing maintains 

maximum driving force for diffusion (Carvalho et al., 2006). The rate of mass transfer of 

CO2 to the liquid, NCO2, is given by the following formula (Carvalho et al., 2006). 

𝑁𝐶𝑂2 = 𝑘𝐿𝑎𝑖(𝐶𝐶𝑂2𝐿
∗ − 𝐶𝐶𝑂2𝐿) (5) 

where 𝑘𝐿 is the liquid phase mass transfer coefficient, 𝑎𝑖 the interphase area, 𝐶𝐶𝑂2𝐿
∗  the 

concentration of CO2 in the culture broth that would equilibrate with its measured partial 

pressure on the gas side, and 𝐶𝐶𝑂2𝐿 is the concentration of CO2 in the bulk of culture 

broth. The opposite process is CO2 desorption from the liquid to the air, either 

spontaneously (outgassing), or deliberately (degassing) (Weissman et al., 1988). 

Many algal cultivation experiments have been executed with control gas (ambient 

air), or simulated flue gas, fewer with flue gas from on-shore plants (Borkenstein et al., 

2011; Chiu et al., 2011; Douskova et al., 2009; Koberg et al., 2011; Kumar et al., 2010; 

Rosenberg et al., 2011; Zeng et al., 2011). Most of the existing integrated algal 

cultivation systems are fed with flue gas, either cleaned or not, with a CO2 

concentration of more than 10% (Chiu et al., 2011; Douskova et al., 2009; Koberg et 

al., 2011). Flue gas of land-based engines and industrial smokestacks usually contains 

a concentration of CO2 of the range 20 – 25% and the growth potential of the algae 

types has been also evaluated when aerated directly with flue gas of this concentration 

(Chiu et al., 2011). The growth rates of Chlorella sp. and its mutant strain, Chlorella sp. 

MTF-7, were 48% higher when they were aerated with flue gas from the coke oven of a 

steel plant (containing 25% CO2, 4% O2, 80 mg/kg NO and 90 mg/kg SO2), than with 

air enriched with CO2 (2%, 10%, or 25%). Although the lipid content was slightly lower 

for the flue gas case, the overall lipid productivity was higher due to the higher growth 

rate. It was not clear whether the improved growth observed with the flue gas aeration 

was because of the nutrients included in it, such as NO and SOx (which may also have 

a detrimental effect on algae, see 2.3.2.4 and 4.3), or because of the low O2 

concentration.    

High CO2 concentrations become toxic for algae (Nagaich et al., 2014) as it 

reduces pH (according to the equilibrium shown in 2.3.2.4 and as discussed in 2.3.2.5). 

However, several species have been tested under high CO2 concentrations and many 

of them have adaptation techniques which enable them to tolerate very high 

concentrations. For instance, Kodama et al. (1993) showed that Chlorococcum littorale 
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could grow with a feed of 60% CO2 by feeding in a series of distinct stages (stepwise 

adaptation technique).  However, the maximum growth rate for this tolerant species is 

under lower CO2 concentrations (Ono & Cuello, 2001). Since growth conditions vary 

among different experiments, a direct comparison of the tolerance of various species to 

CO2 is difficult. Kumar et al. (2011) have summarised some CO2 fixation rates of 

various species from different studies, using influent CO2 concentration from 2 to 60% 

and showing a 16 to 63% sequestration approximately and up to 2 g/L/day fixation rate.   

Although studies have been optimising the growth conditions in order to enhance 

CO2 retention time in the PBR and thereby increase its removal efficiency (Chiang et 

al., 2011), only a small portion of around 38% v/v of the CO2 contained in the flue gas 

is sequestered by algae and there are many losses, as shown in Figure 2.5. 

 

Figure 2.5. Scheme for CO2 mass balance for an algal PBR fed with flue gas of 8% v/v 
CO2. Figure adapted from Doucha et al. (2005). 

 

 

2.3.2.5 pH 

Algae optimally grow under a pH range of 5 to 9 (Weisse & Stadler, 2003).The 

dissolved CO2 and SOx from the flue gas influence the pH of the culture broth. 

Specifically, pH can drop down to 5 with elevated CO2 concentrations (due to formation 

of carbonic acid, see equation Eq.4), and high SOx concentrations can even drop it to 

pH 2.6 (due to formation of sulphuric acid) (Maeda et al., 1995; Westerhoff et al., 

2010). Compared to the pH change caused by CO2 concentration, the pH drop due to 

the SOx has been reported to have a great influence on the algal growth and even 

completely inhibit growth. If a detrimental pH drop is prevented by suitable buffers, 
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growth rates can exceed those at lower SOx concentrations (Kumar et al., 2011; Maeda 

et al., 1995). This indicates that the growth is not directly influenced by SOx 

concentration, but mainly by the resulting pH change.   

 

2.3.2.6 Oxygen accumulation 

Photosynthetic efficiency is decreased by trapped O2 in the culture, as it causes 

toxic effects such as photo-bleaching. Hence, efficient degassing systems are required 

in order to remove O2 from the system (Kumar et al., 2011). 

 

2.3.3 Microalgal cultivation systems 

2.3.3.1 Open pond raceways versus photobioreactors 

Various systems are used for algal cultivation, including open ponds (inclined, 

circular and raceway) and the main different types of PBRs: vertical tubular (bubble 

columns, airlifts and annular), helical, flat panels, horizontal tubular, stirred tanks, 

plastic bags, hollow fibre membranes and hybrid designs of these types (Wolkers et al., 

2011). The main cultivation systems are shown in Figure 2.6. Commercial cultivation of 

algae is mostly carried out in open systems and natural ponds due to their low cost. 

However, open ponds usually occupy a larger footprint and it is difficult to monitor and 

control their conditions, e.g., temperature, compared to closed systems, and they are 

susceptible to contamination (by fungi, bacteria, protozoa or other algae) and water 

evaporation (Carvalho et al., 2006). 

PBRs are easier to control and have higher yields than open systems. Sparging of 

gas bubbles at the bottom of the PBRs provides mixing, mass transfer of CO2 and 

removal of O2 produced by photosynthesis. PBRs regularly produce biomass of the 

order of 5 g L-1, compared to the 0.5 – 1.5 g L-1 produced by raceway ponds (Chiu et 

al., 2009; Rosenberg et al., 2011). However, they have higher energy costs because of 

the gas sparging to circulate liquid suspension and of the materials construction. PBRs 

may be constructed of glass, transparent polyvinyl chloride, acrylic (e.g., Plexiglas) or 

polycarbonate (e.g., Lexan), or polymethyl methacrylate, to allow light penetration 

(Tredici & Zittelli, 1998). The information presented in the next section on the PBRs 

characteristics has been systematically collected in Table I.3 of Appendix I.  
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Figure 2.6. Photobioreactor types. Figures adapted from: (a)(Wolkers et al., 2011), (b) 
(Oneal, 2015), (c) (Chisti, 1989), (d) (Wiscombe, 2010), (e) (Bochum, n.d.), (f) 
(Wolkers et al., 2011), (g) (Sieg, 2008), (h) (“Indiamart,” 2015), (i) (Dubyne, 2015), (j) 
(Electric, 2013). 

 

2.3.3.2 Photobioreactors 

2.3.3.2.1 Vertical tubular photobioreactors 

Vertical tubular PBRs might be either bubble columns, or airlift PBRs based on 

their mode of liquid flow. The main parts of the bubble columns are a tube containing 

the algal broth and a sparger immersed inside the algal broth, providing a supply and 

mixing of gas for the photosynthesis reaction. Bubble columns’ advantages compared 

to the other PBR types are low capital costs, high surface-to-volume ratio, lack of 

moving parts, satisfactory heat and mass transfer and efficient O2 release and residual 

gas mixture produced by the reactions (Kumar et al., 2011). The liquid flow in this PBR 

type is stated as independent of the gas flow, while large liquid transport is impossible 

without significant recycle rates inside the tube (Chisti, 1989). Photosynthetic efficiency 

depends mainly on gas flow rate; increased flow rate increases light and dark cycles’ 
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frequency (Kumar et al., 2011), which have been reported to influence the 

photosynthesis rate (Barbosa et al., 2003).  

Airlift bioreactors encompass a broad family of pneumatic gas-liquid contacting 

devices, in which gas injected into the bioreactor “riser” causes circulation of liquid via 

a linked “downcomer” where there is no sparging but smaller bubbles move downwards 

carried by the stream of the liquid which recirculates due to the density difference. The 

circulatory patterns are a function of the geometry and velocity within the system and 

differ from the flow in a bubble column (Shah et al., 1982). Airlift bioreactors have a 

wide range of applications in bioprocessing, chemical processing and wastewater 

treatment (Merchuk & Siegel 1988; Moo-Young & Chisti 1994). In particular, they have 

a variety of operational benefits for cultivation of algae in relation to other PBR types, 

including high gas and mass transfer, increased exposure to light due to uniform 

turbulent mixing, low hydrodynamic stress and ease of control, particularly of liquid 

velocity (Kumar et al., 2011). They also display flatter dissolved O2 profiles compared 

to bubble columns (Chisti, 1989), with the circulation velocity and O2 removal 

characteristics reported to be closely linked (Molina et al., 2001). Figure 2.7 illustrates 

common airlift bioreactor configurations, with either an internal or external loop. Internal 

loop airlifts separate their riser and downcomer either with a draft tube or a split-

cylinder. In external loop airlifts the two areas are separated physically, as two 

separate interconnected tubes (Kumar et al., 2011). External loop airlifts are found to 

give lower mass transfer coefficient for given gas velocities, compared to bubble 

columns and internal loop airlifts (Chisti, 1989). Another type of vertical column is the 

draught tube type which includes an inner tube that either serves as an airlift (Kumar et 

al., 2011), or as a chamber for the illumination from the inside in an annular PBR type 

(Loubiere et al., 2011).   
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Figure 2.7. Types of airlift bioreactors with internal (a, b, c) and external loop (d). 
Figure adapted from Chisti (1989). 

 

2.3.3.2.2 Helical photobioreactors 

Helical PBRs consist of coiled transparent and usually flexible tubes with a 

degassing unit, which may be attached to the top of the tube or separate as a part of a 

manifold, to remove the accumulated O2 and the residual gas (significant quantities in 

this type of PBR due to their low inclination). The culture is driven to the degassing unit 

by a centrifugal pump (Kumar et al., 2011). The gas mixture can be circulated from 

either direction, but it has been proven that injection from the bottom gives better 

photosynthetic efficiency (Morita et al., 2000). Rigid vertical structures are used to 

support the coiled flexible tube at the minimum inclination that will avoid bubble 

coalescence.  

Advantages of helical PBRs are the small footprint occupied by long tubes to 

enable a longer residence time for better CO2 transfer from gas to liquid phase 



61 

 

(Watanabe et al., 1995). One disadvantage of this type of PBRs is the bubble 

coalescence appearing at low inclinations, which strictly define the angle and height of 

the tube of the conical helical system and impede scaling-up. Therefore, scale-out can 

be realised by using a larger number of helical units. However, the energy required by 

the centrifugal pump to recirculate the culture, which also causes high shear stress, as 

well as the high O2 accumulation over the high gas residence time, limit their 

commercial use. Also, fouling in the inside of the PBR is a common disadvantage, as 

they are more difficult to clean (Kumar et al., 2011).  

The configuration of the conical helical PBR results in a lower centre of gravity, 

adding stability for the case of its implementation on ships (Watanabe et al., 1995). 

This type of PBR gives relatively high photosynthetic efficiency for given energy input, 

which is reported to be able to increase by a factor of 2 relative to the non-conical 

helical PBR, due to higher exposure to the light (Morita et al., 2000).  

 

2.3.3.2.3 Flat panel, horizontal, stirred tank, bags, membrane and hybrid 

photobioreactors 

Flat panels (or flat plate) PBRs are either vertical or inclined panels. They are 

described to be the most productive, avoiding the problem of O2 accumulation due to 

their high surface-to-volume ratio and open gas disengagement systems, but they have 

many disadvantages such as high energy requirements for mixing, and complexities in 

adding concentrated CO2 and scaling up (Wolkers et al., 2011). Mixing is provided 

either by sparged gas though a perforated tube, or by mechanical rotation through 

motor. There have also been applied modifications such as addition of baffles to 

improve mixing (Zhang et al., 2001), or V shape PBRs to improve agitation and 

minimize shear stress and cell adhesion to the walls. Scale-out is carried out by placing 

several plates over an area. The highest productivity of green algae achieved so far is 

12.2 gL-1d-1, in a continuous culture of Chlorella sorokiniana in a flat panel with short 

path length under over-saturating light conditions (2,100 μmol/m2/s) (Cuaresma et al., 

2009).  

Horizontal PBRs are advantageous for outdoor cultures due to their orientation 

and may achieve volumetric productivity and photosynthetic efficiency higher than a flat 

panel PBR Tredici and Zittelli (1998). Their design can be parallel set of tubes, loop 

shape, ‘a’ shape, that have either near horizontal or horizontal orientation. Gas mixture 

is introduced into the tube connection via a gas exchange system, where bubbles exist 
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for a particular time to transfer gas mass into the liquid. Horizontal PBRs drawbacks 

are large ground footprint, high O2 accumulation efficiency  (Kumar et al., 2011) and 

the high energy consumption to reach high linear liquid velocities (Posten, 2009). 

However, on a ship installation, footprint of the horizontal shapes might not be a 

problem as it can provide more efficient packing, by being run along the hull occupying 

spaces that would otherwise not be utilised by other ship systems, provided there is 

sufficient exposure to artificial light.  

Stirred tanks are the most conventional and cheap PBR type. Agitation is 

delivered by impellers. Illumination is mostly provided externally via fluorescent lamps 

or optical fibres. They include large disengagement zones to separate O2 produced 

and residual gas from the liquid. The main disadvantage of these PBRs is the low 

surface-to-volume ratio, which decreases the light harvesting efficiency, and the high 

shear stress due to energy intensive mechanical agitation (Kumar et al., 2011). 

Plastic bag PBRs are inexpensively built, compact, with low energy 

consumption and low shear stress. However, they have a short life and relatively low 

surface-to-volume ratio for light harvesting (Christenson & Sims, 2011). They are also 

prone to growth of algae on the inside walls (Li et al., 2013) due to the less uniform 

mixing obtained compared to vertical columns.  

The greater mass transfer area of the hollow fibre membranes cultures have 

shown improved CO2 and NOx sequestration, overcoming one of the most important 

challenges of the PBR systems, the gas transfer and residence time. However, they 

show higher pressure drop (Gardner, 2011; Kumar et al., 2010).  

When it comes to applications with specific characteristics and requirements, 

hybrid PBRs may be advantageous because they exploit the advantages of more than 

one PBR type to overcome the individual disadvantages.   

 

2.3.3.3 Comparison of the photobioreactor types 

Photos of the main cultivation systems are shown in Figure 2.6. A comparison of 

all the PBR types in the literature is difficult, because there are many variables involved 

and there is a lack of information about the operating conditions in some references. 

Table I.4 in Appendix I summarises the literature productivity values for different PBR 

designs. It has been claimed (Asenjo, 1995) that surface-to-volume ratio controls 

production potential; given otherwise comparable conditions, both volumetric 

productivity and areal productivity increase as surface-to-volume ratio increases. 



63 

 

However, the collection of literature data of the past decade and older shows significant 

variation in the productivities of each design (summarised in Figure 2.8), due to the 

variety of species and operating conditions used among the different studies. Overall, it 

is not clear that any reactor types are definitively associated with better performance. 

Another important parameter to be taken into consideration for the shipboard 

application is the net energy ratio (energy production divided by consumption, whereby 

a value higher than 1 indicates that the PBR is able to produce more energy than it 

consumes). Girdhari (2011) estimated a net energy ratio of 0.36 for the flat plate PBR, 

1.3 for the tubular PBR and 6.27 for the open pond PBR.  

 

 

Figure 2.8. Ranges of productivities found in the literature for the main PBR designs. 
Data taken from Table I.4.  

 

 

2.3.4 Photobioreactor design characteristics required for shipboard 

application 

2.3.3 covers some of the design variables to consider when selecting an 

appropriate PBR design for a particular application. The importance of these variables 

within land-based algal carbon capture systems is shown in Table I.2 of Appendix I. For 

the case of a shipboard PBR to treat the emissions from fuel combustion, the main 

requirements are related either to the algal productivity or to the net energy ratio, as 

algal productivity is linked to the quantity of CO2 captured, and the energy requirements 

imply additional emissions generated. The following specific design requirements were 
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taken into account and were considered to be the most important for a shipboard PBR 

that captures CO2 from combustion as the primary feedstock:   

 high surface-to-volume ratio to increase light harvesting 

 high gas retention time to increase mass transfer of CO2 from the flue gas to the 

liquid  

 good mixing of the broth to increase nutrient delivery and prevent fouling  

 minimal maintenance and easy control of design parameters (e.g., temperature, 

pH) to reduce handling requirements for the crew  

 high physical stability of the PBR to reduce the effect of movements (e.g., ship 

movements from waves) 

 low pumping or mixing energy requirements  

 low ground footprint for a given volume to avoid space issues inside the ship 

 low O2 accumulation to prevent oxidation.  

 

An attempt to compare the characteristics of the different designs by using data 

from Table I.3 of Appendix I is shown in the bar chart of Figure 2.9. The figures used 

for the production of this diagram are the integers 1, 2 and 3 representing, 

low/poor/difficult, medium and high/good/easy, respectively, for the characteristics light 

utilisation, gas retention, mixing, maintenance, control stability and oxygen release; 

while integers 1 and 3 represent high/big and low/small, respectively, for the 

characteristics of energy requirement and ground footprint. Therefore, integers 1, 2 and 

3 are used to represent an inconvenient, a neutral (medium) and a convenient 

characteristic.  
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Figure 2.9. Illustrative comparison of the characteristics (plot A: light utilisation, gas 
retention, mixing, energy requirements; plot B: maintenance, stability, ground footprint) 
of different algal cultivation systems. Data taken from: Scott et al., (2010), Kumar et al. 
(2011), Chisti (1989), Molina et al. (2001), Morita et al. (2000), Watanabe et al. (1995), 
Wolkers et al. (2011), Tredici and Zittelli (1998), Posten 2009), Lee et al. (1995), 
Christenson and Sims (2011), Gardner (2011), as well as Brennan and Owende, 2010; 
Carvalho et al., 2006; Girdhari, 2011), as summarised in Table I.3 of Appendix I. 

 

None of the PBRs presented addresses all of the required design characteristics. 

The largest sum, indicative of more advantageous characteristics, was obtained by 

airlift, the hollow fibre membrane and helical PBR types. However, other 

characteristics, such as cost and ease of scale-out were not taken into account due to 
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difficulties in comparing the available information in the literature. It should be 

emphasized that the comparison in the graph was made with respect to the specific 

shipboard application. Although its method might be different when considering other 

applications, it gives similar outcomes to the statements in the literature. For example, 

airlift systems are reported in (Kumar et al., 2011) as the most suitable PBRs for CO2 

sequestration since they combine high gas transfer, uniform mixing, low stress on 

algae cell walls and ease of control. Also, vertical tubular, helical tubular and flat panel 

PBRs are stated to be more advantageous to most of these characteristics than the 

other types discussed (Carvalho et al., 2006), which is roughly verified by the 

interpretation of different literature studies produced in Figure 2.9.  

 

2.3.5 Application of algal cultivation systems  

2.3.5.1 Description of generic algal carbon capture systems 

The overall facilities of systems that cultivate algae for carbon sequestration 

consist of four processes; preparation, culturing, harvesting, dewatering and 

processing/biorefining. They require the integration of other processes in the system, 

such as connected detectors of the environmental conditions, in order to produce a 

valuable product. In the preparation stage of seawater systems such as the system in 

this study, seawater is recommended to be collected, filtered and buffered with anti-

chlorine solution to be tolerable by algae. At the end of the cultivation cycle, the water 

is then treated and recycled (Alwi, Algaetech Group of Companies, Rahman, & 

Norsham Bin Che Yahya, 2010). The CO2 provision to the system includes the steps 

shown in Figure 2.10. The flue gas collected has to pass through a HE (cooling 

system) (Alwi et al., 2010; Brennan & Owende, 2010), is pressurized by a blower, 

collected and compressed in a flue gas chamber before being fed to the algae.  

 

Figure 2.10. Process diagram for the supply of CO2 in an algae-based sequestration 
unit. Figure reproduced from Oilgae (2011b). 

 

The harvesting techniques that are used for the separation of the algal suspension 

from the media are centrifugation, flotation with flocculation, and the comparatively less 

expensive techniques of sedimentation with flocculation and filtration extraction of the 

biomass (Borowitzka & Borowitzka, 1988). 
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2.3.5.2 Land-based algal carbon capture systems 

The main purpose for the implementation of a PBR onboard a ship is considered in 

this study to be the flue gas carbon capture. Several land-based applications 

demonstrate the use of algae for CO2 fixation, either integrated industrially, or at pilot 

scale, where the flue gas treated originates directly from an industrial smokestack. 

They are able to remove up to 85% CO2, 73% NOx and 55% SOx (Chiu et al., 2011; 

Kumar et al., 2010) and exhibit fixation rates of up to 4.4 g CO2 L
-1 24 h-1 (Douskova et 

al., 2009). Different algal species have been used in these facilities, including Chlorella 

vulgaris, Chlorella emersonii, Chlorella sp., Scenedesmus obliquus, Dunaliella salina, 

Spirulina platensis and Anabaena sp, in various systems including flat panels, 

raceways, airlifts, hollow fibre membranes and vertical thin films (Borkenstein et al., 

2011; Chiang et al., 2011; Chiu et al., 2011; Douskova et al., 2009; Gardner, 2011; 

Kastánek et al., 2010; Koberg et al., 2011; Kumar et al., 2010; Rosenberg et al., 2011; 

Tesař & Bandalusena, 2010; Zeng et al., 2011). These facilities fix the flue gas 

produced by biorefineries, coal power stations, cement plants, coke ovens of steel 

plants but none has been applied to a ship engine. Open-loop “raceway” ponds are 

used for treating gases from bigger plants or greater emission quantities and ultimately 

achieve greater than 90% utilization of sequestered CO2 (Atkins, 2010; Koberg et al., 

2011; Rosenberg et al., 2011). 

Research to decrease the biomass production costs in microalgal facilities that fix 

the CO2 in coal-fired plant emissions began in 1978, when the U.S. Department of 

Energy’s Office of Fuels Development funded the Aquatic Species Program to grow 

algae-based fuel (Sheehan et al., 1998). Over 3,000 species of algae were tested and 

contributed to the current biofuels state of the art. Many PBR applications have been 

tested too for integration to emission treatment from smokestacks (Borkenstein et al., 

2011, Chiu et al., 2011; Douskova et al., 2009; Tesař & Bandalusena, 2010; Zeng et 

al., 2011).  

The costs of the systems for emissions treatment and biomass production from 

algae differ in the various studies depending on the assumptions taken. Capital costs of 

PBRs range between $60 – 100/m2 (Oilgae, 2011b). Algal carbon capture is much 

more costly than chemical scrubbing of CO2, with estimated costs of up to 

$1,500/tonne CO2, but under optimal conditions the costs are offset by the revenues 

generated from biodiesel or other products (Oilgae, n.d.-a; Chisti, 2007).  
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2.3.5.3 Considerations for shipboard algal carbon capture systems 

2.3.5.3.1 Overall concept 

In the case of the shipboard application, the utilisation of water around the ship for 

the PBR arises as an opportunity. However, water pre-treatment, such as sterilisation 

with antibiotics or ultraviolet (UV) light, if used, would increase the operation costs. The 

continuous or semi-continuous operation of the PBR might then be required in order to 

maintain a high concentration of the selected algal species and decrease acclimation 

times. However, the continuous operation of the PBR would give rise to the 

complication of increasing salinity due to evaporation. By starting with a wild algae 

mixture and maintaining a continuous process, each ship could acclimate the species 

that benefit most from the given specific conditions under which they operate. Salt 

accumulation would also be a problem with the use of local water. These aspects are 

further analysed in 2.4.1.  

Regarding the flue gas of the ship, its high concentration in sulphur oxides (SOx) of 

around 600 mg/kg (as shown in Table 2.1) (Ayub, 2009) would make it intolerable to 

the culture. Therefore, a SOx scrubber is potentially required before the flue gas enters 

the PBR.  

Flue gas temperature is around 300 C and exiting the SOx scrubbers it is 60 – 100 

C (Oilgae, 2011a). Cooling of the flue gas before its entry to the PBR is essential, as 

its temperature is not tolerable to algae and would also cause plastic materials 

commonly used in PBRs to fail, while also reducing the efficiency of the SOx scrubber.  

PBRs that are integrated with smokestacks of plants require prior cooling of the flue 

gas to approximately 30 C (Kastánek et al., 2010). Even if an SOx scrubber is used 

before the PBR, the gas exit temperature from SOx scrubbers is 60 – 100 C, which is 

too high for the PBR materials.  

Provision of sunlight to a PBR in the ballast tanks could be facilitated by a system 

to concentrate sunlight with lenses (Mori et al., 1987). Alternatively, the algal broth 

could be circulated from the deck to the ballast, obtaining light and dark cycles ideally 

in specific ratios that would have a beneficial effect on the growth (2.3.2.2), although 

the influence of medium-duration light/dark cycles (of the order of a few minutes) is not 

clear (Janssen, 2002). Finally, it may be possible to use the motion of the ship to mix 

the algal broth for more even exposure of the algae to light, though such a system may 

be difficult to control. For a combined light and dark set-up, the external installation 



69 

 

could be on the deck and/or along the topsides. The advantage of deck mounting is 

ease of installation and accessibility. The PBR would be less likely to get damaged by 

waves or when mooring alongside another structure. One of the advantages of 

mounting along the topsides is that it could offer a shorter piping run to the ballast tank 

and more area for light penetration and less crowding on the deck.   

Regarding the shipboard PBR design, the three largest sums of performance with 

regard to the characteristics examined in 2.3.4 were obtained by the airlifts, the hollow 

fibre membranes and the helical types. A hybrid conical helical airlift PBR could 

combine the advantages of several different reactor types for shipboard 

implementation. For instance, apart from the characteristics summarised in Table I.3, a 

helical PBR has also lower pumping requirements, compared to vertical tubes of the 

same volume due to its inclination. Also, it is as robust as a tubular PBR and not prone 

to breaking, as in the case of flat panels and plastic bags. Moreover, the conical shape 

could harvest sunlight for more hours during the day and, by lowering the centre of 

gravity, it is more stable, requiring less securing to the vessel. The main disadvantage 

of the helical PBR, which is O2 accumulation (2.3.3.2.2), could be overcome by 

integrating a degassing zone at the top of the structure. Different configurations of 

various dimensions could be examined by adjusting the flexible tubing. 

2.3.5.3.2 Waste streams  

On ships, the ready availability of the surrounding water and the nutrients (as 

mentioned in 2.2) contained within and sourced from ship waste, such as that found in 

grey and black water could make maintaining the algal growth medium more cost 

effective. Since algae metabolise inorganic nitrate and phosphate, they can be used for 

tertiary treatment (i.e., removal of ammonium, nitrate and phosphate) of wastewater 

and quinary treatment (i.e., removal of inorganic salts and heavy metals). The PBR 

could potentially treat the wastewater stream of the ship (indicated in the schematic of 

Figure 1.1), as algae have been successfully used for wastewater treatment 

(Christenson & Sims, 2011). They also require relatively lower energy input compared 

to other wastewater treatment processes, but one drawback is that they fail to meet 

suspended solids limits (Noüe et al., 1992; Oilgae, 2010).  

In addition, ships, especially passenger ships, produce food waste which cannot 

be offloaded in the sea. Food waste can be processed in anaerobic digesters to 

produce biogas, digestate and solid sludge. Biogas is a valuable fuel, which could be 

used in fuel cells or simply onboard combustion with lower CO2 emissions. Its main 

components are methane (CH4), CO2, and hydrogen sulphide, (Abatzoglou & Boivin, 
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2009). It has to undergo a process of purification to increase the CH4 concentration and 

remove hydrogen sulphide. 

Currently, the methods for CO2 removal from biogas include several 

physicochemical techniques and biological methods, or their combinations (Abatzoglou 

& Sherbrooke, 2009;  Chung et al., 2003; Kapdi et al., 2005). Most of the 

physicochemical methods are now developed commercially by companies, but the 

conditioning effect is suboptimal (Mann et al., 2009). The application of algae could 

avoid the use and disposal of expensive chemicals. However, it may be uneconomical 

due to high energy needs and low productivity of PBRs (Mann et al., 2009). The 

studies that examined algal fixation of CO2 from biogas used synthetic biogas made of 

CO2 and N2 (Mandeno et al., 2005), synthetic biogas from CH4 and CO2 (Mandeno et 

al., 2005), or raw biogas (Conde et al., 1993;  Mann et al.. 2009). With biogas, the 

resulting biomass was almost 5 times higher than that for the same media without 

biogas (Conde et al., 1993) and the CO2 concentration was reduced from 40% to <5% 

Mandeno et al. (2005). However, productivity under biogas feeding greatly depends on 

experimental conditions and the algal species used. Mann et al. (2009) reduced the 

hydrogen sulphide concentration by more than 50%, due to its high solubility in water 

and partial uptake by algae as a source of sulphur. On the other hand, photosynthesis 

in blue-green algae is stated to be inhibited by sulphide (Castenholz & Utkilen, 1984). 

Excessive O2 levels are considered a problem, but explosive CH4/O2 mixture 

concentrations could be avoided, as CH4 ignition limits (concentrations between which 

a gas or a vapour in air is capable of producing a flash of fire in presence of an ignition 

source) are 5 – 60% and biogas that is being cleaned contains 60% or more CH4 

(Mandeno et al., 2005; Mann et al., 2009).   

Moreover, an improvement in growth rates (up to 4.8-fold) and biomass production 

(up to 8.7-fold) has also been shown for various cultures after their adaption to the 

nutrient rich effluent digestate from anaerobic digestion (Wahal, 2010). A lot of studies 

examine the use of grown algae as a biomass feedstock for biogas production and the 

process was reported to be economically feasible and sustainable (Sialve et al., 2009). 

 

2.3.5.3.3 Use of ballast tanks 

As discussed in 2.4 and 7.2, ballast is one promising place to locate the algal PBR. 

Although algae grown in PBRs can reuse the water involved (Aitken, 2012), they still 

generate liquid waste volume that would need to be processed (2.2.2). Besides, the 
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water volume to be disposed does not only depend on the operation of the PBR, but 

the stability requirements of the ship at any given time. In addition to the general ballast 

water management processes, harvesting techniques would have to be incorporated to 

separate the algal broth, or else the total broth volume would have to be transported to 

a plant on-shore. 

Ballast tanks exist in many ship types to provide balance, depending on dynamic 

factors such as the ship load and sea conditions. They can be loaded with the local 

natural water (e.g., seawater) to provide additional weight and to eliminate increased 

buoyancy that can result in lack of propeller immersion, inadequate inclination, stresses 

on the hull and instability (David & Gollasch, 2015). Ballast tanks are important for the 

implementation of a PBR and the system integrated with it, as their space can 

contribute significantly to the accommodation of the large water mass required for algal 

growth.  

The ballast tanks occupy approximately 37% of the deadweight tonnage of the 

ship, depending on the ship type (Table I.5 in Appendix I). They have various positions 

in different ship types, such as in the vessel’s double bottom (double bottom tanks), 

port and starboard along the sides, in the bow (forepeak tank), in the stern (after peak 

tank), port and starboard underneath the main deck (topside tanks or upper wing tanks) 

(David & Gollasch, 2015). After peak and forepeak tanks exist in almost all ships, often 

in combination with other tanks (Figure 2.11). The fact that one tank can be divided into 

different compartments could facilitate the accommodation of water mass dedicated to 

different aspects of the PBR system. Nevertheless, direct implementation of the PBR 

with storzge of the broth in the ballast place would not be a simple consideration of 

even more complex modification of the whole design of the ships would be required to 

ensure the technical feasibility, instead of taking a simple decision to directly storage 

the PBR or the broth in ballast space.  

 

Figure 2.11. Cross sections of common ballast tank positions in some ship types. 

Figure reproduced from David and Gollasch (2015). 
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2.3.6 Photobioreactor performance modelling needs and approaches  

2.3.6.1 Introduction 

Carbon capture needs the study of numerical hydrodynamic models, which are 

useful in optimising PBR design and operation for carbon capture without expensive 

experimentation. Additionally, models of algal growth kinetics are important for study of 

the influence of operating conditions on the productivity and consequently the carbon 

capture rate. In both cases, there are many experimentally validated models for 

individual algal PBRs, but there is no standardised approach to modelling and models 

cannot be generalised for wide use and reproduction (Costache et al., 2013; 

Derakhshan et al., 2014; Gonçalves et al., 2014; Vunjak-Novakovic et al., 2005).  

Building validated models to the requirements of each application is important, as 

operating conditions could be highly variable due to weather, sea state, latitude, engine 

load, etc. A new approach for validation of a generic algal growth kinetics model and 

the gradual addition of layers of complexity would ensure more valid predictions for 

such a complex system.  

 

2.3.6.2 Hydrodynamic models 

Bitog et al. (2011), Merchuk (2003) and Petersen and Margaritis (2001) have 

reviewed fluid dynamic models for airlift PBRs. Discrepancies in literature relationships 

between gas hold-up, superficial gas velocity, effect of any solid phase, and column 

diameter were attributed to different measuring techniques. Review of two- and three-

phase system models by Merchuk (2003) showed discrepancies in model predictions 

to be due to the use of different drag coefficients and frictional loss estimates, as well 

as the fact that many models are configuration specific. They emphasised the lack of a 

generalised equation with wide range validity and requirements for massive data to 

validate the empirical correlations proposed by some studies. Bitog et al. (2011) 

showed the progress in computational fluid dynamics studies, mostly of bubble 

columns employing the Eulerian-Eulerian mixture model. They confirmed the lack of a 

systematic method for scale-out and highlighted the importance of drag coefficient 

estimation for algal systems.   

Only a few studies have examined the effect of bubble size, gas flow rate and 

reactor dimensions on flow characteristics: Law & Battaglia (2013) and Zhang et al. 
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(2005) examined gas hold-up and liquid velocity dependence for bubbles with the same 

average size but different distributions; Camarasa et al. (2001) studied the effect of 

bubble size on the gas hold-up and the pressure but the range of bubble diameters 

was small (2 – 2.5 mm); Saez et al. (1998) introduced  the buoyancy force in the model 

by Young et al. (1991) for computationally intensive modelling of the effect of bubble 

size on the gas hold-up and the liquid velocity, but validated it for only one size;  

Marquez et al. (1999) further introduced a differential equation to estimate the phase 

change due to reaction in this model but their experimental results are restricted to one 

gas flow rate.  

The existing studies for external loop reactors are based on two parallel 

approaches, either using continuity and momentum balance equations (Camarasa et 

al. 2001; Young et al. 1991), or power balance equations (Chisti, 1989; García-Calvo et 

al. 1999).  

The well-known model by Chisti (1989) incorporates an empirical correlation to 

estimate gas hold-up and has been widely validated for a great range of sizes and 

configurations of algal airlift reactors. Chisti’s model assumes dependence of the liquid 

velocity mainly on the geometric configuration of the circulation loop, and the difference 

in gas hold-up in the riser and the downcomer zones (Chisti, 1989; Molina et al., 2001). 

This method is based on the principle of energy conservation, taking into account the 

energy input due to isothermal gas expansion and energy lost due to wakes, friction 

and stagnant gas in the downcomer (Chisti, 1989). For an external-loop airlift, where 

the top and bottom connections are very similar in geometry, the superficial liquid 

velocity is estimated according to the model as: 

ul=√

2ghD(εr-εd)

kB (
1

(1-εr)
2 + (

ar
ad
)
2 1
(1-εd)

2)
 

(6) 

where ul is the superficial liquid velocity, hD is the dispersion height, εd is the gas 

hold-up in the downcomer, kB is the friction loss coefficient for the bottom connecting 

section of the PBR tubes, ar and ad are the cross-sectional areas of the riser and 

downcomer, respectively. The values for εr and εd  are estimated from the following 

empirical formulae: 

𝜀𝑟 =
𝑢𝑔

0.24 + 1.35(𝑢𝑔 + 𝑢𝑙)
0.93

 (7) 
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εd = 0.79εr − 0.057 (8) 

Also, hD is described as the height of the liquid with no gas displacement and is 

found from the following equations: 

𝜀𝑚𝑒𝑎𝑛 =
𝑎𝑟𝜀𝑟 + 𝑎𝑑𝜀𝑑
𝑎𝑟 + 𝑎𝑑

 (9) 

ℎ𝐷 =
ℎ𝐿

(1 − 𝜀𝑚𝑒𝑎𝑛)
 (10) 

where εmean is the mean gas hold-up in the PBR and hL is the height of the liquid. 

The superficial gas velocity and the liquid circulation velocity are given respectively as: 

𝑢𝑔 =
𝑞𝑔

𝜋
𝑑𝑟
2

4

 
(11) 

𝑢̅𝑙 =
𝑢𝑙

(1 − 𝜀𝑟)
 (12) 

Finally, the frictional loss coefficient for the connecting section in the present study is 

assumed to have a mean value of kB=5 (Chisti, 1989). Eq. 6 – 12 are solved by 

iteration with assumed superficial liquid velocity values, allowing determination of the 

liquid circulation velocity and gas hold-up.  

 

2.3.6.3 Models of algal growth kinetics  

2.3.6.3.1 Specific growth rate and productivity 

Several models for algal growth simulation are based on the first order reaction 

equation developed by Prokop and Erickson in Asenjo (1995) and used in different 

studies (Huesemann et al., 2013; Cheenkachorn et al., 2011; Molina Grima et al., 

1994). This generic equation represents the dynamic behaviour of the biomass 

concentration (Cb) over time, 𝑡, where 𝜇 is the specific growth rate (referred to simply 

as growth rate in this study) and takes the form of Eq.13 when the specific 

maintenance rate (ma) and dilution rate (𝐷) are considered as part of the process. The 

specific maintenance rate is defined as a negative relative growth rate, which, 

multiplied by the microbial biomass, equals the loss of cell material through 

maintenance (van Bodegom, 2007). 
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𝑑𝐶𝑏
𝑑𝑡
= 𝐶𝑏(𝜇 −𝑚𝑎 − 𝐷) 

(13) 

Under optimal growth conditions, where none of the independent variables 

(temperature, light, nutrients) are limited, the growth rate takes a constant maximum 

value and growth increases exponentially. However, in reality, at least one of the 

affecting variables will be limited at some point and thus growth rate is multiplied by a 

utilisation factor, which changes for different growth phases. A typical growth curve 

involves the six phases indicated in Figure 2.12.  

 

Figure 2.12. Stages of a typical microbial growth curve. Figure adapted from Monod 
(1949). 

 

2.3.6.3.2 Light utilisation and growth under light limited conditions 

Most of the reaction schemes that have been suggested to estimate the growth rate 

when light is a limiting factor are empirical, although loosely based on enzymatic 

kinetics. Kinetic models include rectangular hyperbolic (similar to the Monod model and 

Michaelis-Menten enzyme kinetics) (He, Subramanian, & Tang, 2012), generalised 

hyperbolic (Bannister model), inverted exponential (Van Oorschot) and other 

modifications like the Aiba model. All of the models consist of the maximum growth 

rate, μmax,I, at the saturated light intensity multiplied by a light utilisation factor φ(I). 

The formulae for light utilisation factor are summarised in Table 2.4 and some of the 

curves are shown in relation to experimental data in Figure 2.13. The first-order linear 

model and the rectangular hyperbolic and generalised hyperbolic models give similar 

results and are widely used. There is no indication of which is the most appropriate, 

although Monod’s model is the one most frequently used (Asenjo, 1995). On the other 

hand, an inverted exponential has been reported to give better fit than the three models 

mentioned to experimental data for photosynthesis-irradiance curves, but is criticised 

for being insufficiently based on a mechanistic understanding (Zonneveld, 1998). 

Aiba’s model is an extension of Monod’s model (Table 2.4), where Kl is the 
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bioenergetics efficiency of light utilization, for the case when light inhibition is present 

and, therefore, deviates from the other models above threshold light intensity.  

The hyperbolic model was modified by Molina Grima who added an exponent 

describing the abruptness of the transition from weakly to strongly illuminated regions 

(Acien Fernandez et al., 1998;  Fernandez et al., 2001; Fernandez et al., 1998; Molina 

Grima et al., 1994). It has been widely used (Brindley et al., 2011), but there are also 

other less common representations of the effect of light on algae when the considered 

irradiance range is not orders of magnitude lower than the optimal one, such as the 

Jessby and Platt model, the Peeters and Eilers model and the Haldane expression 

based on polynomial rational fraction (Bernard & Rémond, 2010; Pereira et al., 2014; 

Molina Grima et al., 1999). In dilute cultures with minimum self-shading effect, the 

growth rate increases to its maximum when the light intensity reaches the saturation 

value and sometimes it decreases after that point due to photoinhibition.  

 

Table 2.4. Models used for the estimation of the light utilisation factor, φ(Iav). 

Model Equation for 𝝋(𝑰𝒂𝒗) Eq. 
number 

Reference 

Monod 𝐼𝑎𝑣
𝐾𝐼 + 𝐼𝑎𝑣

 
(14) (Asenjo, 1995) 

Monod with overall 
integration ∫

𝐼(𝑧)

𝐾𝐼 + 𝐼𝑎𝑣

𝑧=𝑑

𝑧=0

 
(15) (Huesemann et al., 2013) 

Banister 𝐼𝑎𝑣
(𝐾𝐼

𝑚 + 𝐼𝑎𝑣
𝑚 )1/𝑚

 
(16) (Asenjo, 1995) 

Van Oorschot 
1 − 𝑒

−
𝐼𝑎𝑣
𝐾𝐼  

(17) (Acién Fernández et al., 2013; 
Geider et al., 1997)  

Aiba Iav

KI+Iav+
Iav
2

Ki

 
(18) (Asenjo, 1995; Molina Grima et al., 

1999) 

Molina Grima  𝐼𝑎𝑣
𝑚

𝐾𝐼
𝑚 + 𝐼𝑎𝑣

𝑚
 

(19) (Molina Grima et al., 1994) 

Jassby and Platt 
𝑡𝑎𝑛ℎ (

𝑎𝐼𝑎𝑣
𝜇𝑚𝑎𝑥

) 
(20) (Van Wagenen et al., 2014) 

Bernard 𝐼𝑎𝑣

𝐼𝑎𝑣 +
𝜇𝑚𝑎𝑥
𝑎𝑠

(
𝐼𝑎𝑣
𝐼𝑜𝑝𝑡

− 1)
2 

(21) (Bernard & Rémond, 2010) 

Steele 𝐼𝑎𝑣
𝐼𝑚𝑎𝑥

𝑒
(1−

𝐼𝑎𝑣
𝐼𝑚𝑎𝑥

)
 

(22) (Molina Grima et al., 1999) 

Tamiya 𝑏𝐼𝑎𝑣

1 +
𝑏𝐼𝑎𝑣
𝜇𝑚𝑎𝑥

 
(23) (Molina Grima et al., 1999) 
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Figure 2.13. Comparison of experimental data relating average specific growth rate to 
average light intensity for biomass concentration 0.04 g/L. Figure adapted from Asenjo 
(1995).     

 

In optically dense cultures, the light intensity cannot be described as a uniform light 

condition because it changes with depth in the PBR, so the photosynthesis rate is 

different in different regions within the PBR. Scattering is an important consideration 

when determining local light intensities. Light attenuation at a specific point of the PBR 

has generally been described by Beer-Lambert’s law (Eq.24), which has been used in 

numerous studies from the literature (Acién Fernández et al., 2013; Acien Fernandez et 

al., 1998; Asenjo, 1995; Huesemann et al., 2013; Jean, 2013; Kim, Nag-Jong, Suh, 

Hur, & Lee, 2002; Molina Grima, Garcia Camacho, Sgnchez Perez, Acien Fernandez, 

& Fernandez Sevilla, 1997; Molina Grima, Sanchez Perez, Garcia Camacho, 

Fernandez Sevilla, & Acien Fernandez, 1996; Molina Grima et al., 1994; Quinn, de 

Winter, & Bradley, 2011):  

𝐼(𝑧) = 𝐼0𝑒𝑥𝑝 (−𝐾𝑎𝐶𝑏𝑧) (24) 
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where I0 is the incident light on the surface of the PBR and z is PBR depth or radius. 

Ka is the biomass light absorption (extinction) coefficient which varies with pigment 

concentration, under the assumption that the light is monochromatic. For polychromatic 

light, the wavelength dependence on Ka must be considered or an average value is 

used (Asenjo, 1995). Molina Grima et al. (1994) have proposed determination of Ka by 

means of two parameters, the total pigment absorption and pigment free biomass 

(Molina Grima et al., 1994). Other existing representations, such as the photon flux 

divided by the biomass concentration and the PBR depth, are more empirical and not 

widely used (Zijffers et al., 2010). Substituting Eq.24 into Monod’s equation from Table 

2.4 gives Eq.25. 

𝜇𝑟 =
𝜇𝑚𝑎𝑥,𝐼𝐼0𝑒𝑥𝑝 (−𝐾𝑎𝐶𝑏𝑧)

𝐾𝐼 + 𝐼0𝑒𝑥𝑝 (−𝐾𝑎𝐶𝑏𝑧)
 

(25) 

Mixing has an important effect on growth in dense cultures by increasing the 

frequency of light to dark periods of the cells (Quinn et al., 2011). A space-averaged 

irradiance is, therefore, needed to describe the system at any time. The simplicity of 

the rectangular hyperbolic type model is preferably used for the integration within the 

PBR’s geometry (Asenjo, 1995). The estimation of the growth rate for a specific time 

interval consequently takes the form of Eq.26. 

𝜇𝑟 =
𝜇𝑚𝑎𝑥,𝐼 ∫ 𝐼(𝑧)𝑑𝑧

𝑧=𝑑

𝑧=0

𝐾𝐼 + ∫ 𝐼(𝑧)𝑑𝑧
𝑧=𝑑

𝑧=0

 
(26) 

Eq.26 assumes a constant supply of the incident light on the surface of the PBR, 

which happens only with artificial illumination. Some studies, though, have estimated 

the fluctuation of natural light supplied outdoors and have transformed it to the space-

averaged intensity for cylindrical PBRs (Brindley et al., 2011; Ribeiro et al., 2008). 

 

2.3.6.3.3 Growth under nutrient depletion  

Most models focus on light-inhibited growth, but some others have examined growth 

under nutrient limitation (Zonneveld, 1998). The synthesis of chlorophyll may be 

restricted in nutrient-limited growth, so nutrients are implicitly accounted for models 

which use the chlorophyll to carbon ratio as an input, and can be applied to both light- 

and nutrient-limited growth. On the other hand, if the chlorophyll to carbon ratio is 

considered as a state variable, then the maximum carbon specific rate of 

photosynthesis has to be described as a function of the nutrient availability. The 

second type of model is more common, as the chlorophyll to carbon ratio is usually 
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difficult to measure. An example of this type of model based on the Monod equation 

has been described by Geider et al. (1997). Monod’s model has often been used to 

describe growth under nutrient-limited conditions (Cheenkachorn et al., 2011; Quinn et 

al., 2011; Xin et al., 2010). When there is more than one nutrient component present, 

often only the most limiting nutrient is modelled (Arrigo & Sullivan, 1994). Aiba’s model, 

with an inhibition factor, has been used for cases where the nutrient becomes toxic 

above certain concentrations (He et al., 2012). The efficiency factor φ(S) this time 

refers to the uptake of nutrients, which could represent nitrate (Quinn et al., 2011), 

phosphate (Xin et al., 2010), or the CO2 concentration (Cheenkachorn et al., 2011), 

depending on which component is the growth-limiting factor. The maximum growth rate 

μmax,S is also the value that the growth rate takes at the saturation nutrient 

concentration. Monod’s generic model for substrate utilisation takes the form of Eq.27. 

𝜇𝑟 = 𝜇𝑚𝑎𝑥,𝑆𝜑(𝑆) =
𝜇𝑚𝑎𝑥,𝑆𝑆

𝐾𝑠 + 𝑆
 

(27) 

here S is the substrate extracellular concentration at a given time and KS is the half 

velocity or saturation constant for the growth. In cases where the concentration of the 

growth-limiting nutrient exceeds the saturation concentration, another formula is used 

and an inhibition constant is introduced as is the case for CO2 above certain 

concentrations (Cheenkachorn et al., 2011; Lian He et al., 2012). In reality, the 

concentration in the model should be the internal concentration in the cell, as nutrients 

are not directly absorbed and utilised by the cells, and rather pass through a metabolic 

pathway (Aníbal et al., 2014) 

The dynamic behaviour of the substrate is given by Eq.28, where YC/S is the yield 

over substrate, ms the maintenance supply rate of minimum substrate consumption to 

maintain cells and S0 is the substrate concentration fed in by the dilution mixture 

(Nyholm and Biochemistry, 1977; Ruiz et al., 2011; van Bodegom, 2007).  

−𝑑𝑆

𝑑𝑡
=
1

𝑌𝐶/𝑆

𝑑𝐶𝑏
𝑑𝑡
+ 𝑚𝑠𝐶𝑏 −

1

𝑌𝐶/𝑆
𝐷(𝑆0 − 𝑆) 

(28) 

 

In contrast to Martinez et al. (1999) study, this study assumes Y to be stable and 

independent of the nutrient concentrations. The equation for dynamic substrate 

behaviour equation is useful as the nutrient concentration can be measured in real time 

to validate Eq.28 and predict the maximum growth rate.  
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2.3.6.3.4 Temperature effect on growth  

The effect of temperature on microorganisms has been summarised 

comprehensively by Swinnen et al. (2004), but there are a minor number of studies that 

actually model its effect on algal kinetics. It is a very important parameter, as it is the 

environmental factor responsible for the largest part of the variance in growth (Geider 

et al., 1997; Quinn et al., 2011). In particular, excessively high temperatures reached in 

PBRs are reported to strongly reduce the growth rate (Bernard & Rémond, 2010).  

Contrary to light (the average absorbed intensity through the algae that grow with 

time) and nutrients, which are time variant resources, temperature is a modulating 

factor and is not exhaustible (Zonneveld, 1998). It is described to affect cell growth in 

two ways. The first is to affect the metabolism by changing the rates of the processes 

occurring (thus all rate parameters can be assumed to be temperature dependent) and 

some other parameters such as the half-saturation constant (Zonneveld, 1998). The 

second way it to affect the maximum growth rate (Geider et al., 1997) and contribute to 

a lag phase in a culture’s growth, which is defined as the reciprocal of the adaptation 

rate of the microorganisms (Giannuzzi et al., 1998). Lag phase is also affected by 

culture history and pH (Swinnen et al., 2004). There are two levels of models 

developed to describe the lag phase, regarding their structure; primary and secondary 

(Swinnen et al., 2004). Primary models describe evolution of the microbial numbers 

with time at a constant rate, and can be either stochastic or deterministic (e.g., 

Koutsoumanis et al., 2000). Secondary models link the primary model parameters to 

environmental factors, such as temperature, through the lag phase (Swinnen et al., 

2004).  

The effect of temperature on the maximum growth rate in biological systems has 

been described in several ways; by different modifications of the Arrhenius equation, by 

square root equation, by linear models, as listed in (Giannuzzi et al., 1998), and by 

cardinal temperature values with inflection (Bernard & Rémond, 2010; Pereira et al., 

2014). The effect of temperature is represented by an efficiency factor, φ(T), which in 

most algae models is described by modifications of the generalised Arrhenius equation 

(Eq.29) (Giannuzzi et al., 1998): 

𝜇𝑚𝑎𝑥 = 𝜇𝑜𝑝𝑡𝜑(𝑇) = 𝑘0𝑒
(−
𝐸𝑎
𝑅𝑇
)
 

(29) 

In this equation, k0, the frequency factor or the total number of collisions between 

reacting species per unit time, could be replaced by another exponential term that 

includes a reference temperature to normalise the equation, as shown in Geider et al. 
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(1997). Also, Costache et al. (2013) have added another identical term with pre-

exponential factor and activation energy in order to normalise the photosynthesis rate. 

Alexandrov and Yamagata (2007) have suggested another alteration of the Arrhenius 

equation to make it applicable to enzyme-mediated reactions response to temperature 

as shown in Table 2.5, where 𝑛 is 2 for photosynthesis reactions. Finally, Huang et al. 

(2011) have used a modified Arrhenius-Eyring-Polanyi equation derived from the 

transition state theory, to give a better fit to the non-linear data of microbial growth 

measurements. The Arrhenius equation has been gradually built up with modifications 

and addition of parameters in order to better simulate the unique nature of the 

temperature dependence of microorganisms, but is has not found a wider application in 

predictive microbiology (Huang et al., 2011). 

Table 2.5. Models used for the estimation of the maximum growth rate with 
temperature as the limiting factor. 

Model Equation for 𝜇𝑚𝑎𝑥(𝑇) Eq. 
number 

Reference 

Arrhenius 
type 

1 𝐿𝑃𝐷⁄ = 𝑘0𝑒𝑥𝑝(−𝐸𝑎/𝑅𝑇) (30) (Giannuzzi et 
al., 1998) 

Linear model 𝜇0𝑟𝑠𝑇 (31) (Giannuzzi et 
al., 1998) 

Square root  [𝑔𝑟(𝑇 − 𝑇0)]
2 (32) (Giannuzzi et 

al., 1998) 

Cardinal 
temperature {

0 𝑓𝑜𝑟 𝑇 < 𝑇𝑚𝑖𝑛
𝜇𝑜𝑝𝑡𝜑(𝛵) 𝑓𝑜𝑟 𝑇𝑚𝑖𝑛 < 𝑇 < 𝑇𝑚𝑎𝑥  

0 𝑓𝑜𝑟 𝑇 > 𝑇𝑚𝑎𝑥

 

(33) (Bernard & 
Rémond, 
2010) 

                  where, 𝜇𝑜𝑝𝑡𝜑(𝛵) = 𝜇𝑜𝑝𝑡
(𝑇−𝑇𝑚𝑎𝑥)(𝑇−𝑇𝑚𝑖𝑛)

2

(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)[(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑜𝑝𝑡)−(𝑇𝑜𝑝𝑡−𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡+𝑇𝑚𝑖𝑛−2𝑇)]
 

(Bernard & Rémond, 2010) 

Normalised 
Arrhenius  𝜇𝑜𝑝𝑡𝑒𝑥𝑝 [−

𝐸𝑎
𝑅
(
1

𝑇
−
1

𝑇𝑟𝑒𝑓
)] 

(34) (Geider et al., 
1997) 

Normalised 
Arrhenius 
with 
additional 
factor 

𝐴1𝑒𝑥𝑝(−𝐸𝑎1/𝑅𝑇) − 𝐴2𝑒𝑥𝑝(−𝐸𝑎2/𝑅𝑇) (35) (Costache et 
al., 2013) 

Arrhenius 
applicable to 
enzyme-
mediated 
reactions 

𝜑(𝑇) =

𝑛 ∙ 𝑒𝑥𝑝 [
𝐸𝑎
𝑅𝑇
(𝑇 − 𝑇𝑜𝑝𝑡)
𝑇𝑜𝑝𝑡

]

(𝑛 − 1) + 𝑒𝑥𝑝𝑛 [
𝐸𝑎
𝑅𝑇
(𝑇 − 𝑇𝑜𝑝𝑡)
𝑇𝑜𝑝𝑡

]

 

(36) (Alexandrov 
and 
Yamagata, 
2007) 

modified 
Arrhenius-
Eyring-
Polanyi 

𝑘0𝑒𝑥𝑝(−𝐸𝑎/𝑅𝑇)[1 − exp (𝐵(𝑇 − 𝑇𝑚𝑎𝑥))] (37) (Huang et al., 
2011) 
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2.4 Key challenges and opportunities associated with the shipboard 

photobioreactor implementation and upstream process 

 

2.4.1 Challenges 

As presented in 2.3.2, the PBR system requirements that need to be considered to 

allow its operation are water and algal culture (2.3.2.1), light (2.3.2.2), heat (2.3.2.3) 

and CO2 and other nutrients (2.3.2.4). To these should be added the question of space 

and location in the PBR. These challenges can be addressed by taking advantage of 

the system of the ship and the marine environment, as discussed below, always 

acknowledging the fact that a more complex modification of the engines and the whole 

ship design would need to be considered, to ensure the technical feasibility of the 

implementation.  

1. Water: Since the use of freshwater supplies is a major concern, especially for 

ships, the ability to cultivate algae using the seawater or river water around the 

ship reduces this constraint on algae production. Not all areas, however, can 

provide a water quality which promotes the fast growth of contained algae. 

Some might need dilution of their salinity and some might require the injection of 

a concentrated algal culture. It should be added that a water treatment unit for 

the discharge from the PBR might also be required, together with a residue 

collection tank, due to biodiversity and biosecurity concerns (2.3.5.3.1).     

2. Algal species: Selection of culture strain is one of the most important steps for 

successful mitigation of CO2 (2.3.2.1). While the use of a commercial algae 

strain would guarantee the system’s quality (i.e., the product characteristics 

would not vary under given grow conditions), expenses would be added (Sieg, 

2008). On the other hand, using algae sourced from the shipping route might 

make it easier to maintain and resistant to invasion by other organisms; but 

strain identification might be difficult and the strains present locally might not 

have high lipid productivity. Also, wild algal species existing in the seawater are 

exposed to more microorganisms that might compete with the growth of the 

chosen algal species. Another issue is that the variety and quantity of the 

microorganisms fluctuate during the course of the year and across different 

areas (analysed in 2.3.5.3.1 and 4.4.7), hence, the dominating species in the 

PBR might be different on each journey of a specific ship and frequent tests for 

the water quality are needed. The comparative costs nevertheless could favour 

the use of wild algae.  
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3. Light: Sunlight provision on deck would save illumination energy requirements, 

but as mentioned above, ship stability requires the PBR to be positioned close 

to the waterline where light is limited. Some solutions were proposed in 

2.3.5.3.1.  

4. Heat: A PBR placed on a ship, either on the deck or in the ballast and operating 

in a cold climate, would face significant heat loss and require heating in order to 

maintain its temperature within the range tolerated by algal cultures (20 – 40 C) 

(Konopkat & Brock, 1978; Maeda et al., 1995). The opportunity thus arises to 

taking advantage of the waste heat from combustion (Figure 2.2), carried by the 

flue gas or the cooling fluid of the engine. The use of the hot flue gas (2.3.5.3.1) 

would require minimal modifications to be retrofitted.  

However, the operating hours of the engines depend on the ship type and most 

of them do not operate full time; they either work for some hours during the day 

or operate for a number of days and then stay anchored. Therefore, it is of vital 

priority to determine a solution for the operation of the PBR when flue gas and 

heat are not supplied from the engines, since the biological nature of the PBR 

requires a more or less continuous supply of heat as well as light and air. 

5. CO2: The engine provides an unlimited supply of CO2 during its working hours 

but it is not always operating. Therefore, an algal species or consortium capable 

of growth under a wide range of CO2 concentrations is required (2.3.2.4). 

Moreover, the growth potential of some species is reported to be higher when 

aerated with flue gas compared to being aerated with control gas enriched with 

CO2. However, the concentration and the temperature of the compounds in the 

flue gas of the ship may not be optimal for biomass growth. In particular, the 

high concentration of flue gas of the ship in sulphur oxides (SOx) of around 600 

mg/kg (as shown in Table 2.1) (Ayub, 2009) would make it intolerable to the 

culture.  

PBR performance needs to be optimised to maximise the CO2 quantity captured 

with one pass through the PBR and reduce pumping requirements from 

potential recirculation of the gas back to the PBR. Considering the low 

residence time in the PBR and the high volumes of flue gas emitted from the 

engines, the optimisation of the gas rate is crucial for the minimisation of the 

energy required for its cooling, transfer and sparging, and for the maximisation 

of the CO2 absorption and fixation. The higher the gas flow rate, the higher the 

energy required for the compressions and the higher the CO2 quantity passed 
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through the PBR without being absorbed. On the other hand, a very low gas 

flow rate may result in an underperformance of the PBR and hence the fixation 

of a smaller quantity of flue gas than the maximum potential anticipated. 

6. Location: Given the considerable water mass required for the emissions 

treatment, the PBR units need to be placed in appropriate positions taking into 

consideration the ship’s stability requirements, which are dynamic, depending 

on weather conditions and cargo transported. On this basis, It would be 

tempting to place a high volume PBR low down within the hull either adjacent to 

or within the ballast tank (2.3.5.3.3). However, the purpose of the ballast load is 

to stabilise the ship depending on the cargo mass (2.2.2) and there would be a 

requirement for either artificial lighting or light tunnels. Therefore, at each 

loading and unloading, volumes of the biomass might have to be diluted, or 

harvested and replenished. Also, the PBR needs to be either robust enough to 

cope with the flushing and refilling, or placed in a separate compartment in the 

ballast area. 

 

Affecting all the above issues and their solutions are questions of cost as well as 

the need to ensure that the solution does not have a greater carbon footprint than the 

CO2 it manages to reduce. Thus the key risks of this project are the commercial viability 

and the energy penalty of implementation. Some additional challenges are the 

following:  

- Freight costs also have to be considered, given the large volume of water 

needed to be transported. This could be optimised by maximising the 

concentration of the algal broth in the PBR. 

- While new vessels can be designed to incorporate the spatial requirements of 

the PBR system and SOx scrubber, the retrofitting of existing ships may be 

very costly and represents a limiting factor. 

- Dealing with engine exhaust emissions, hot gas and water streams requires 

many crew safety considerations, and the operation of the whole facility will 

need to be constantly monitored. Training, maintenance and managerial 

issues will be time consuming for the crew. System controls, however, 

could eliminate the need for manual PBR operation. 

- Finally, the overall sustainability of the proposal is an issue. The R&D 

challenges suggested by the National Algal Biofuels Technology Roadmap 

(Fishman et al., 2010) include the environmental risks and impacts of algal 
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cultivation. An integrated estimation of the sustainability of algal PBR 

implementation will contribute to a critical evaluation of the overall CO2 

reduction and sustainable biomass production, this being the main purpose 

of this implementation.  

 

2.4.2 Opportunities 

Although there are many challenges in implementation of a shipboard algal PBR, 

there are arguments on the other side that support this project:  

1.  Regulations. Business opportunities in carbon capture and biofuel 

production exist for CO2 emitters, such as regulations and carbon prices to 

be imposed (2.2.1.2). The high costs of PBR systems may well be 

surpassed in the near future by the imposition of high carbon taxes. For 

instance, if CO2 limits are implemented for ships (2.2.1.2), then ships which 

exceed those limits will have to either buy costly permits for their excess 

emissions or install on board carbon capture and storage. The carbon 

capture system may be sized to capture only the excessive emissions 

(beyond the limit) rather than the whole amount. A PBR system would have 

the added advantage of being able to reduce the NOx emissions (2.3.2.4).  

2.  Know-how on scrubbers. Existing know-how of HEs required for SOx 

scrubbers (2.2.1.3) is an opportunity for the successful development of a 

PBR.  

3.  Waste streams utilisation. Treatment of wastewater or food waste 

products of the ships, including biogas and digestate (2.2.2) could provide 

considerable potential for the operation of the PBR during the hours that 

the main engines are not working and not providing CO2.  

4.  Biomass utilisation. The production of a valuable product, either for use 

on board (e.g., emulsified biomass in the fuel) or for treatment on-shore for 

more valuable products (2.3.2.4), would counter-balance the extra costs of 

operating the PBR.   

5.  Integration of HE with water provision system. It is vital, not only for the 

bioremediation system, but also for the sustainability of the ship, to design 

an integrated heat exchange system. It could take advantage of a novel 

fresh-water-from-brackish provision system and would provide low cost 

freshwater for the PBR and the needs of the ship, as well as cooling to the 
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flue gas to enter the PBR and heating the water of the PBR (2.3.2.3) when 

the ambient temperature is not adequate.   



87 

 

3 Research questions and approach 

 

3.1 Research questions 

The aim of the project was to analyse and investigate technical challenges 

associated with developing a commercially viable shipboard algal PBR system, for the 

treatment of flue gas emissions from the engine. The literature review in Chapter 2 has 

identified the key challenges associated with the implementation of a shipboard algal 

bioreactor. The questions addressed by the research are:   

Research question 1 (addressed in Chapter 4): How can a PBR be customised for 

shipboard carbon capture (see 2.4, challenges 1, 2, 3 and 5 )? Three subquestions 

were addressed as part of this question:  

 Which PBR designs are suitable for shipboard carbon capture (2.4, 

challenges 3 and 5)?  

 What is the effect of high concentrations of NOx and SOx in the flue gas and 

water salinity variations, which are typical marine conditions, on the PBR 

(2.4, challenges 1 and 5)?  

 Is it feasible to cultivate wild algae samples for use in a PBR (2.4, challenge 

2)?  

Research question 2 (addressed in Chapter 5):  How does the PBR design affect 

the hydrodynamics of the PBR and its efficiency (2.4, challenge 5)? Subquestions 

were: 

 How does bubble size affect the gas hold-up and liquid velocity in the 

selected airlift-type PBR? 

 How can the effect of the bubble size help in dimensioning of the PBR to 

attain desired gas hold-up and liquid velocity levels?   

Research question 3 (addressed in Chapter 6):  How could algal growth be 

predicted in a system with multiple growth-limiting factors and the model be used to 

improve productivity and water volume requirements (2.4, challenges 3 and 5)? There 

were two subquestions:  

 How can an algal growth kinetics model, taking into account various factors 

affecting the algal growth, be developed and validated?  



88 

 

 Can the model be used to control concentration of nutrients and optimise 

biomass production and water volume requirements?   

Research question 4 (addressed in Chapter 7): What are the practical aspects of 

the shipboard integration of the PBR (2.4, challenge 1, 4 and 6)? Four subquestions 

were considered: 

 Can the water requirements of an algal PBR to fully treat ship CO2 emissions 

be accommodated in the ballast tanks of typical ships that are currently part 

of the global fleet (2.4 challenge 1 and 6)?  

 How can the PBR HE be integrated into a flue gas cooling system for the 

provision of heating during engine non-operating hours at a reduced 

operating cost (2.4, challenges 4 and 6)?  

 How do the flue gas flow rate and the liquid velocity affect the heat loss from 

the PBR (2.4, challenge 4)?   

 How can the temperature of the PBR be controlled (2.4 challenge 4)? Is 

adjusting the temperature of the sparged flue gas adequate for heating the 

PBR or is there a better alternative?  

 

3.2 Approach 

This study is the first to examine PBR implementation on a ship for carbon capture 

and the research was approached by discretising it based on the research questions, 

which cover different aspects of the challenges. 

The PBR design was investigated in relation to a future small scale implementation 

on the deck of Octoply’s vessel MV Sound (Figure II.1 to Figure II.3 of Appendix II), 

thus providing easy access for experiments to examine the effect of exhaust on the 

PBR and of the PBR on the ship performance. Two test PBRs were constructed, one at 

the Camley Street Park pilot microanaerobic digestion site (in collaboration with 

Community by Design; LEAP, n.d.), and the other on the vessel Tamesis in the 

Thames (in collaboration with Octoply). The Tamesis is a former Dutch cargo barge 

that is currently used as a bar and is permanently moored on the Thames (in Vauxhall 

area), with ready access to shore services including water and electricity. It is easily 

accessible and secured to two piles, making it a practical site to test out some of the 

design aspects being investigated.  

In Chapter 4 the effects of the NOx and SOx in the flue gas, as well as the water 

salinity, on algae were approached through a literature review, concluding with a 
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number of points for further research. The cultivation of wild algae samples obtained 

from London’s waterways (the example city of this case study) was examined in a short 

series of experiments. Their productivity was compared with that of commercial algae 

and results led to a conclusion on the advisability of using algae from local waters in 

the PBR.  

In relation to the PBR design suggested in Chapter 4, the following three chapters 

then present three models developed to simulate different aspects of this design, 

though they can be extended to be applied to modified designs too. The hydrodynamic 

model from first principles was coded in the MATLAB environment and takes into 

account the effect of bubble size, which is known to be an important variable for 

optimising gas absorption and energy input. It estimates the gas hold-up and liquid 

velocity for use in the dimensioning of the PBR. The liquid velocity will also be an input 

variable for the estimation of the PBR temperature when it is integrated with the 

proposed heat exchanger design.  

The next model, on algal growth kinetics, taking into account various factors 

affecting algae growth, is built in the gPROMS environment with the purpose of 

optimising productivity by controlling the operating conditions of the system. It 

incorporated the effect of three different factors and its calibration proved to be difficult 

due to its complexity. It was therefore simplified using parameter values from the 

literature.   

A rough estimation of the space requirements was computed. Ballast capacities of 

ships were considered as potential space to locate the PBRs, using data for tankers 

and ferries from the Clarkson’s World Fleet Register database. This led to overall 

conclusions about the ship types that are most appropriate for the implementation, 

based on their emissions, size and style of operation. 

The final model simulates a heat exchanger design suggested for the PBR. The 

flow rate of the broth fluid is computed from the liquid velocity estimated in Chapter 5. 

The practical aspects of PBR integration to the ship are investigated. A flow sheet 

model of potential integration of the heat exchanger into a WHR system is designed in 

gPROMS, to provide an overall idea of the effect of the flow rates selected on the 

effectiveness of PBR heating during the engine’s non-operating hours.  
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4 Photobioreactor design modifications for 

shipboard carbon capture 

 

4.1 Introduction  

Regarding the first set of research questions (3.1), this chapter identifies a suitable 

PBR design to implement onboard a ship for future use in practical carbon capture 

experiments. It also examines the effect of the conditions within the ship and the 

surrounding marine environment that would affect the PBR. In detail, the chapter 

explores the following issues:  

i) The design considered practical aspects related to the effectiveness of CO2 

capture. As an initial attempt, a prototype PBR system was designed and 

installed at the site of the Camley Street Park, and a deck mounted copy of 

it was installed on Tamesis (3.2). This approach aims to first test the design 

on land and to later try it on a small stable vessel, to understand and map 

the complexity of the system, in order to allow future work for the test of a 

vessel that moves. The purpose of building the reactor on board was to 

allow experiments to be conducted and future examination of the effect of 

the flue gas on the PBR, and the effect of the PBR on the operation of the 

ship.  

ii) The effect of tube inclination on bubble size was studied to identify the 

desired angle for the helical bioreactor and flue gas flow rates to facilitate 

mass transfer between the gas CO2 and the liquid. Tube inclination is a 

characteristic of not only different helical PBR design modifications, but 

also the ship movements due to sea conditions. 

iii) Also, the effects of the high SOx and NOx in the flue gas on the algal growth 

are considered and algae’s tolerance limits are studied by examining 

previous literature.  

iv) The effect of the water salinity on the algal growth and products is discussed 

to assess the feasibility of using surrounding water from the ships voyage 

waters for the algal cultivation.  

v) Samples of natural waters from several sites in London were obtained and 

naturally occurring algae in them were cultivated in the lab to examine the 

potential for the onboard PBR to use wild algae from the surrounding water 

of the ship. The responses of the wild algae in the different water samples 
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towards different combinations of CO2 concentration and gas flow rates 

were studied. Some of the species grown in the different experiments were 

isolated and identified, as knowledge on the species grown in London’s 

waterways is limited. 

 

4.2 Proposed photobioreactor design  

4.2.1 Photobioreactor design concept  

As concluded in 2.3.5.3.1, the tubular helical airlift design was chosen as a 

concept that would be suited for a small vessel with deck space, and that could have 

aesthetic appeal (which is important in relation to Octoply’s business). It was used for 

the pilot PBR onboard Tamesis (design is shown in Figure 4.1), though that one was 

not conical shape (as suggested in 2.3.5.3.1), as this would have complicated its 

construction. The PBR was installed on an available part of the deck to increase 

photosynthetic efficiency and decrease lighting needs. Figure III.1 and Figure III.2 of 

Appendix III demonstrate the PBRs installed at Camley Street Park and onboard 

Tamesis. The two reactors constructed were identical, with minor variations of the 

inclination and turn degrees of the helix close to the fittings.  

The PBR helices were made of flexible polyvinyl chloride tubing, their downcomers 

and degassers were rigid clear polyvinyl chloride-u (resistant to degradation by 

ultraviolet light), as were the fittings. Ambient air was inserted by an air compressor 

(Hailea AC0-009E 112W), of maximum output 140 L/min and minimum pressure output 

0.035 MPa, via a gas flow meter and a 35 mm x 50 mm ceramic air stone sparger 

connected by 5 mm diameter piping. The treated gas outlets were at the top of the riser 

and via a hole drilled at the top of the degasser. The PBR dimensions listed in Table 

4.1 were chosen to provide a volume of 10 L with a small enough tube diameter for 

adequate light penetration. An 1.3 m downcomer was selected, which corresponds to a 

moderate hydrostatic pressure (approximately 30 kPa lower compared to the same 

volume placed vertically). The inclination was chosen as 40 from the horizontal, to 

provide 3 loops of the helix for the given height. The degasser diameter was twice that 

of the downcomer, to decrease the linear liquid velocity and allow the liquid more time 

to release its accumulated O2. 
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Figure 4.1.Hybrid helical airlift design for the pilot-scale PBR. 
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Table 4.1. Dimensions of the two pilot hybrid helical airlift photobioreactors. 

 Dimensions (m) of the PBRs constructed 

Helix length ~3.00 

Downcomer length 1.30 

Degasser length 0.30 

Total length ~4.60 

Helix tube inner diameter 0.05 

Downcomer inner diameter 0.05 

Degasser inner diameter 0.09 

Number of helix turns 2.5 

Elevation from horizontal 40 

 

Both pilot PBRs leaked, necessitating water to be added periodically into the 

system, mainly due to the connection of the flexible inclined tube to the fittings. This 

would be possible to be fixed with proper construction work. On running the system, 

gas bubbles were found to coalesce at the end of the first loop of the PBR as shown in 

Figure III.1 of Appendix III. The coalescence was due to the low inclination of the tubing 

from the horizontal, as the wall became an obstacle to the vertical rise of the bubbles, 

causing them to merge. Although bubbles coalesced in the first loop of the helix, they 

were able to induce recirculation to the liquid. The time taken for the liquid recirculation 

was measured by observing circulation of food dye added at the top of the riser. One 

recirculation took approximately 50 seconds which corresponds to a recirculation 

velocity of 0.092 m/s. Nevertheless, bubble coalescence reduces the surface area for 

mass transfer between the gas and liquid, and therefore reduces the efficiency of CO2 

fixation.  

 

4.2.2 Examination of the effect of inclination on the bubble coalescence 

4.2.2.1 Method 

A series of experiments were conducted with the help of an MSc student (He, 

2014), to determine the inclination of the PBR above which the bubbles stopped 

coalescing. To simplify these experiments, a straight rigid bubble column was used. 

The 0.5 m long transparent polyvinyl chloride-u column tube with inner diameter 0.045 

m and approximate thickness of 0.005 m was supported by a metal clamp holder and 

tested at the inclinations 20, 30, 40, 50 and 60 from the horizontal, as shown in 

Figure 4.2. The bubble sizes were measured at various flow rates ranging from 0.1 
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L/min, which was the minimum flow rate regulated by the flow meter, up to 1.5 L/min, 

above which bubbles had a spherical cap shape (values shown in Table III.1 of 

Appendix III and Figure 4.3). The bubbles were measured by photographing them with 

a Canon camera, first placed 1 cm above the sparger (to measure the bubbles at the 

bottom of the column) and near the surface of the water, in approximately 0.4 m 

distance from the first camera (to measure the bubbles at the top of the column). The 

effect of refraction was less than 10% based on comparative measurements using a 

ruler as a reference. Bubble size was taken as the average diameter of the bubbles 

taken in each photo.  

  

 

Figure 4.2. Bubble column apparatus tested at different inclinations. 

 

4.2.2.2 Results and Discussion 

The average sizes of the bubbles photographed at each inclination and area of the 

column for various gas flow rates are shown in Figure 4.3 (data taken from Table III.1 

of Appendix III). Example photo representing the bubble measuring method is shown in 

Figure 5.6 of the next chapter.  
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Figure 4.3. Bubble size (primary ordinate) at the bottom of the tube, and difference in 
bubble size (secondary ordinate) between the top and bottom of the column, as a 

function of gas flow rates for five different inclinations () from the horizontal. Lines 
joining points are for visual clarity and do not represent a known physical reality. 

 

In general, bubble size increased with the gas flow rate for all inclinations. The 

bubble size difference between the top and bottom of the column decreases with gas 

flow rate increase, which could be attributed either to the greater number of bubbles 

being detached from the sparger at increased turbulence, or to the splitting of the large 

bubbles produced at high flow rates after obtaining a potential maximum size allowed 

for each turbulence. 2-way analysis of variance (ANOVA) P-values showed significant 

effect of both the gas flow rates (P-values 2.2ˣ10-11 and 0.00027, respectively) and the 

inclinations (P-values 8.2ˣ10-5 and 9.4ˣ10-6) on both the bottom bubble sizes and their 

difference from the top bubble sizes. In conclusion, the increase in average bubble size 

between the bottom and top of the column is similar for inclinations greater than 40, 

implying that beyond this limit major coalescence due to inclination stops being 

significant for the given reactor length. However, significant coalescence was actually 

observed in the actual helical PBR constructed with 40 inclination (4.2.1) for all flow 

rates below 1.5 L/min. Verification of the results could be done with the use a helical 

airlift apparatus, as coalescence might behave differently under the different liquid 

velocities induced in the two designs. Also, continuous captures of the bubbles with a 

high-speed camera would allow – in addition to the bubble size measurement – 
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verification of not only whether there are coalesced bubbles at inclinations above 40, 

but also the reason for the decrease in bubble size difference at the high flow rates 

(hence, if there are bubbles being split along the tube). 

Average bubble size increased by up to 100% at the 20 inclination at low flow 

rates. This increase is translated as a 57% decrease in surface area (320 mm2 and 60 

mm2 bubble surface for inclination 20 and 50, respectively, at 0.6 L/min) of a given 

gas volume. This increase of the bubble size difference and its decrease at higher flow 

rates, suggests that bubble coalescence starts only above a flow rate that produces 

enough bubbles that they find each other during their travel; any bubble size difference 

occurring below this flow rate could just be a gas expansion effect. Coalescence would 

imply wasted energy in compression of the gas to form small bubbles which end by 

coalescing. On the other hand, increasing the inclination with a given PBR volume 

increases the compression energy required to counter the high hydrostatic pressure, 

plus it moves the centre of gravity of the PBR higher which could create stability issues 

for a shipboard application. This confirms the statement in 2.3.3.2.2 that bubble 

coalescence is one of the main problems with the conical helical systems. Therefore, 

scale-out would require an increase in the number of harvesting units, perhaps by 

adding more helices on the same frame connected in parallel to a bigger manifold to 

save space.  

Further analysis of the effect of coalescence, bubble size and inclination on the 

hydrodynamics of a PBR, and of the CO2 mass transfer from the gas to the liquid, are 

needed. Also, a better measuring technique for bubble volume is required, as a 

limitation with using only photographic techniques is known. A more sophisticated 

approach involves laser illumination of a plane of liquid containing fluorescent dye, to 

revealing the bubbles within that plane. This, coupled with image processing, offers a 

more automated and potentially more accurate approach to bubble sizing and counting 

(Busciglio et al., 2013). The effect of bubble size on the fluid dynamics of an airlift PBR 

is studied in Chapter 5.   
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4.3 Tolerance of algae to nitrogen and sulphur oxides  

4.3.1 Introduction 

The tolerance to CO2, NOx and SOx exhaust is particularly important for the 

shipboard implementation of a PBR for emissions fixation, considering the higher 

concentrations emitted from ships (1500 mg/kg and 600 mg/kg NOx and SOx) as 

compared with land-based power plants (2.2.1.1). Algal species tested by Zeiler et al. 

(1995) and Nagase et al. (1998) were found not to tolerate NOx and SOx 

concentrations exceeding 1,000 mg/kg and 200 mg/kg respectively (Chiu et al., 2011; 

Lee et al., 2000;  Matsumoto et al., 1995; Ono & Cuello, 2001; Zeiler et al., 1995). 

There is a lack of work on the effect of the different flue gas toxic compounds on 

different algal species and the operating conditions, such as gas flow rates, media 

initial concentration, controlled pH in the broth (Lee et al., 2000). CO2 and NOx are 

included in the nutrients of algae (2.3.2.4), however, excessive CO2, NOx and SOx are 

found to have a toxic effect on the growth (tolerance of various species is summarised 

in Table III.2 of Appendix III).  

  

4.3.2 Nitrogen oxides 

It is reported that gaseous NO dissolves in the algal broth and can diffuse across 

the cell membrane (Chiu et al., 2011). NO absorbed by the medium can then be 

transformed to NO2
− and be further oxidised to NO3

− and utilised as a nitrate source, as 

verified by Nagase et al. (2001) using Dunaliella tertiolecta. Some algal species are 

able to grow well under a concentration of 100 mg/kg NO, including Nannochloris sp. 

and Dunaliella tertiolecta, which was able to remove 51 – 96% of NO, when fed with 

15% CO2 (Nagase et al., 1998; Oilgae, n.d.-a). Tetraselmis sp. is reported to grow 

under conditions of 125 mg/kg NOx, 185 mg/kg SOx and 14.1% CO2 (Matsumoto et al., 

1995). The removal efficiency of NO by Chlorella sp. MTF-7 cultures of 2 gL-1 biomass 

cultivation with flue gas can range from 60 – 100% (Chiu et al., 2011). 

High density cultures outweigh the toxic effect of NO, and then NO can contribute 

as a nitrate source (Chiu et al., 2011). For instance, Yoshihara (1996) found that strain 

NOA-113 with a cell concentration of 1.5 g∙L-1, grew and retained almost 50% NO when 

fed by a simulated flue gas containing up to 300 mg/kg NOx at flow rates lower than 

300 mL/min. Change in media pH is suggested as the fundamental cause of the 

toxicity. Controlling media pH is a reported way to overcome toxic effects. For instance, 

Lee et al. (2000) found that productivity of a culture fed with NOx-free gas was 
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equivalent to that of a culture fed with 300 mg/kg NOx gas when the pH was adjusted to 

within tolerable limits (2.3.2.5) with NaOH. 

 

4.3.3 Sulphur oxides 

The main form of SOx found in the flue gas is SO2. If the flue gas is directly 

introduced to the culture, SOx forms sulphurous acid and can decrease the pH to 2 or 1 

(Kumar et al., 2011; Packer, 2009). Oxidative traces of bisulphite (HSO3
−), sulphite 

(SO3
2−) and sulphate (SO4

2−) formed from SO2 can lead to peroxidation of membrane 

lipids and bleaching of chlorophyll (Chiu et al., 2011). Different Chlorella species show 

different tolerance levels to this gas compound. For example, it has been reported that 

the growth of Chlorella HA-1 is completely inhibited by SO2 concentrations higher than 

50 mg/kg, whereas isolated mutant strain Chlorella sp. MTF-7, with initial biomass 

concentration 0.5 g L-1, grew well in indoor cultures in presence of gas containing 90 

mg/kg SO2 (Chiu et al., 2011).  

Similarly to the case of NOx, suppressed growth of the Chlorella KR-1 strain at SO2 

concentration higher than 150 mg/kg was found to be overcome by a five-fold increase 

in initial biomass concentration (Chiu et al., 2011). Also, controlling pH by adding 

NaOH solution achieved approximately the same productivity as for feeding with SO2-

free gas (Lee et al., 2000). Also, acidophilic algae are resistant to SO2, e.g., Cyanidium 

caladrium, which shows growth for the first 20 h under 200 mg/kg SO2 (Kurano et al., 

1995). 

Removal efficiency of SO2 by Chlorella sp. MTF-7 cultures of 2 gL-1 biomass 

cultivation under flue gas aeration can range from 40 to 80% (Chiu et al., 2011). Most 

land-based power stations are equipped with a desulphurisation unit to control SOx 

below 100 mg/kg, although some algal species seem to be able to capture the three 

components from raw flue gas (Chiu et al., 2011). However, concentrations close to 

600 mg/kg have not been widely tested (Chiu et al., 2011; Lee et al., 2000;  Matsumoto 

et al., 1995; Ono & Cuello, 2001; Zeiler et al., 1995). The ship exhaust which is 

characterised by even higher SOx concentration would have to pass through a SOx 

scrubber before its entry to the PBR in order to ensure good continuous algal growth. 
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4.4 Effect of salinity conditions on algal growth   

4.4.1 Introduction 

Algae can grow in fresh water, saline or brackish water (2.3.2.1). The growth, CO2 

sequestration rate and harvesting of different species is affected by salinity, which will 

affect the potential for cultivation of algae in a shipboard PBR (2.3.2.1). Different algal 

species and strains differ in their responses to salinity and other stress conditions 

(2.3.2.1). Adaptive mechanisms that make cells survive under the influence of 

environmental stresses include changes in morphological form as well as in metabolic 

processes (Borgvang, 2011; Hiremath & Mathad, 2010; Kirst, 1989; Ruangsomboon, 

2011).  

The effect of salinity is important even in land-based algal PBRs, in which salinity 

increases due to evaporative water loss, and the use of freshwater supplies is a major 

concern for biofuel production. However, it is particularly important in relation to 

operation of an algal PBR on a ship since freshwater becomes an even more valuable 

resource off-shore. The ability to cultivate algae in ocean water gives a big advantage. 

The algae industry recently revealed a study by the University of California at San 

Diego, has shown that marine algae can be as capable as freshwater algae for biofuel 

production (Algal Biomass Organisation, 2012).  

The most important cell characteristics that have been reported to be influenced by 

salt levels are mentioned in 2.3.2.1. The impact of salt concentration on algae growth 

could be either detrimental or beneficial (for example some freshwater species 

maximize some of their growth parameters with slight increase of salinity), depending 

on the algal preferences, as shown in the following sections. In addition to the direct 

effects on algal growth, there are other indirect impacts that mostly affect the cost of 

the process. For instance, if algae are grown in saltwater, the need to wash the salt off 

the biomass and to pass it through a filter press or centrifuge for a second time is costly 

and energy consuming (Alabi et al., 2009).  

To understand the influence of salinity on algal growth, the following section 

reviews experimental data from the some species, focusing on both marine and 

freshwater species of the Chlorella genera, many of which show high levels of lipid 

content (2.3.2.1). This study summarises the effects reported for these response of 

compounds and also includes effects on CO2 and O2 concentrations of the water. 

  



100 

 

4.4.2 Tolerance of algae to salinity  

Microalgal species can generally be divided into two categories based on whether 

they grow optimally in freshwater or saltwater. Salt levels affect the productivity and the 

individual production rates of lipids and carbohydrates in each strain of algae (Kunjapur 

& Eldridge, 2010). However, algae have shown several other responses to salinity 

changes. Marine microalgae are very tolerant to changes in salt concentration, but 

most species are cultured in diluted seawater because they grow best at a salt 

concentration that is slightly lower than that of their native habitat (Lavens & Sorgeloos, 

1996).  

The reason why algae are affected by salinity in the media is controversial.  Some, 

such as Alyabyev et al. (2007), support that the influence is based on the Na+ and Cl- 

ions and others base it on the osmotic pressure effect (Greenway & Setter, 1979). 

Irrespective of the osmotic substance used, either NaCl or raffinose osmotica (non-

ionic), a similar growth reduction was shown (Setter & Kuo, 1982). Kirst (1989) 

examined the effect of two forms of osmotic stress, dehydration and salinity, on 

photosynthesis of various species. Both stresses reduce water potential within the cell, 

resulting in an increase in the cellular ionic strength. However, during desiccation, the 

ion proportions remained constant, whereas under salinity stress there were changes 

in ion ratios owing to selective uptake. Kirst assumed that osmotic stress increases 

algae permeability to ions and observations with Dunaliella showed that ionic stress is 

a greater inhibitor of growth than osmotic stress (osmotic substances can sometimes 

be non-ionic as reported in Lloret et al., 1995). Thus, the explanation for growth 

reductions under high salinity might be species specific, and there is a lack of 

understanding of the reaction mechanisms. 

Generally, the optimal salinity range for most algal species, including marine and 

freshwater, is 12 – 40 gL-1 and a more specific salinity range of 20 – 24 gL-1 has been 

proposed to be optimal by Lavens and Sorgeloos (1996). However, the range is 

species specific (some optimal salinities for maximum productivity and salinities 

tolerated for various species are shown in Table III.3 of Appendix III), and sometimes 

strain specific, as there are genera such as Chlorella and Chlamydomonas, which have 

both freshwater and marine species (Wetherell, 1961). Consequently, the variance in 

the ranges might either be attributed to the tolerance of the different strains of each 

species, or hide the influence of the environmental conditions to the tolerance levels of 

the strains. Indeed, the limits of tolerance have been reported to change with changes 

in environmental conditions. For instance, tests of 13 species cultured in dilutions with 
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freshwater, made by Wetherell et al. (1961), showed that when seawater was enriched 

with appropriate concentrations of nitrate, phosphate and iron salts and when pH was 

reduced in order to prevent precipitation of the nutrients, algae culture had grown 

satisfactorily. However, the addition of a variety of organic substances was reported not 

to alter the tolerance limits (Wetherell, 1961).  

The most successful commercially used genera are Dunaliella, Spirulina and 

Chlorella, because they can all tolerate and bloom in extreme environments and inhibit 

competition. These genera are shown to grow in environments with raised salinity, 

alkalinity and nutrients, respectively, conditions which would be intolerable for other 

species (Aitken & Antizar-Ladislao, 2012; Kunjapur & Eldridge, 2010).  

 

4.4.3 Response of algae to salinity changes  

The response of the algae to changes in salinity is a controlled two-phase osmotic 

acclimation process, where water fluxes cause pressure and volume changes to the 

cells and then osmolytes are adjusted to a new steady state (Kirst, 1989). An important 

characteristic of the salt-tolerant microorganisms is their adaption to NaCl stresses 

without using all their energy capabilities to maintain their structural-functional integrity. 

This can be illustrated by the change in heat production of algae in different salinities, 

which, for instance, increased in the salt-tolerant Dunaliella cells in conditions up to 116 

g/L salt in the medium (Alyabyev et al., 2007).  

The parameters that have been repeatedly reported to respond to salinity changes 

include: (a) growth rate, (b) photosynthesis-respiration and (c) concentration of various 

compounds in the cells, such as the lipid content. The first two are related, as growth 

rate is the combination of photosynthesis and respiration, as mentioned in 2.3.2. 

Further:  

a. Growth rate is affected because the availability of certain ions, such as K+ and 

Ca2+ may govern or affect growth. The presence of Ca2+ has been found to 

increase the salinity tolerance limits (Kirst, 1989).  

b. Photosynthesis in species with strong cell walls has appeared to be less 

sensitive to extensive hypoosmotic shocks (e.g., Stichococcus bacillaris) 

according to Kirst (1989), while most wall-less species appear to be more 

sensitive.  

c. The effect on the fine structure of the cell due to osmotic stress mainly causes 

compartmentation by the development of vacuoles (Kirst, 1989). Increase in 
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salt content increases carotenogenesis and enhances metal assimilation 

(Kalesh & Nair, 2005), which would also mean higher heavy metal scrubbing 

from the flue gas. Also the lipid content is influenced by salinity, but the impact 

varies with the cultures. For example, an increase in salinity may result in a 

slight increase in lipid content of Botryococcus braunii, but, Botryococcus 

braunii KMITL 2 cultured in Chlorella broth showed higher lipid content with no 

salinity, compared to salinities of 5, 10, 15 and 20 gL-1 (Ruangsomboon, 2011). 

Thus, salinity stress does not increase lipid yield in all algal strains and there is 

no overall correlation between lipid content and growth in a fresh or salt water 

environment.  

 

4.4.4 Special tolerant algae types 

Some algal species are able to adapt to higher salinities and tolerate wider ranges 

and are called halotolerant (such as Dunaliella salina tolerating from 3 gL-1 to over 280 

gL-1 NaCl). According to Alyabyev et al. (2007), this might be due to the ability of those 

cells to pump out Na+ ions more effectively, or to the mechanism of regulation of 

osmotic pressure (Araújo et al., 2009).  

Under physiological stresses that retard cell growth, such as high light intensities, 

high salinities, high temperatures and high nutrient deficiencies (sulphate or nitrate 

limitation), b-carotene accumulation was shown to be induced, resulting in an increase 

of up to 14% of the alga dry weight (Araújo et al., 2009). Halotolerant Dunaliella 

maritime adapts to high salinity; with NaCl concentration increase, the O2 uptake rate 

and heat production from this species increased as well (Alyabyev et al., 2007).  

However, the influence of the salt concentration on halotolerant species depends 

on other factors as well. For instance, the salinity range of 58 – 174 gL-1 affected 

Dunaliella salina‘s specific growth rate for only one of two different light intensities, 

which could imply that the other intensity used was a more important limiting factor 

than the salinity. Similar effects were observed for two different temperatures and three 

different salinities on the photochemical yield of Dunaliella species (Araújo et al., 2009). 

Also, lower thermal inhibition under salinity increase was observed in Henley et al.'s 

(2002) study on photochemical yield of the halotolerant species Dunaliella sp. 

Teodoresco and Nannochloris sp. Naumann. Although analysis becomes very complex 

with additional growth affecting factors, Henley’s et al. results could explain the 

observations of Araújo et al. (2009) for Dunaliella which shows a two-fold increase in 
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the specific growth rate with salinity and irradiance increase, since the increased 

irradiance may result in higher temperature.   

Algae grown in polar regions are also noteworthy, since they tolerate very harsh 

conditions, including variation in salt levels in the surface, interior and bottom of ice 

assemblages, and during the seasons (Kirst, 1989). The salinity conditions in the 

seawater-snow-ice interface and the pools on the ice surface vary from hyperosmotic 

seawater levels in winter down to about 3 gL-1 when ice melts. Conditions in interior 

assemblages show temperatures as low as -5 °C resulting in more than 100 gL-1 NaCl. 

Bottom assemblages grow between ice crystals and platelets, where salinity is about 

29 gL-1 to 34 gL-1 (close to seawater). Despite the increased salinity, the low 

temperatures and the reduced volume in brines due to freezing in all those areas, they 

are densely populated with algae. This might be due to enrichment in nutrients during 

freezing, and to antifreezing properties of antiosmotic compounds such as proline and 

glycerol (Kirst, 1989). 

 

4.4.5 Effects of salinity on Chlorella  

The effect of salt levels on the growth rate, photosynthesis rate, heat production 

and content of other compounds of the specific algae genera of interest, Chlorella sp. 

(explained in 2.3.2.1), is different for the different species. Cho et al. (2007) found that 

among the salinities they used in their experiments, the lowest one, 10 gL-1, was the 

optimal salinity for Chlorella ellipsoidea, but also observed its tolerance to higher 

temperatures and salinities. Other studies on Chlorella sp. and Chlorella virginica 

showed optimal biomass growth for salinities of 14 and 15 gL-1, respectively, for a 

tested range of 0 to 40 gL-1 (Alias, 1988; Makarevičienė et al., 2011; Shah et al., 2003). 

Regarding the CO2 sequestration efficiency, which roughly corresponds to the growth 

rate, it can be provisionally concluded that an average optimal salinity is 14 gL-1. This 

could indicate good growth under the shipboard PBR conditions, with heating provided 

by high temperature flue gas and use of seawater as the medium. 

The total chlorophyll content – hence, the photosynthetic rate – is also reported to 

benefit from similar salinity levels (Hiremath & Mathad, 2010). Comparison of Chlorella 

sp. XQ-200419 and Chlorella marina NJ-016 at a salinity increase from 0 to 34.8 gL-1 

has shown that net photosynthetic O2 evolution decreased for the former, while it 

increased for the latter (Zheng-Rong et al., 2010). Alyabyev et al. (2007) determined 

the effect of NaCl level on the respiration of Chlorella vulgaris, by measuring the O2 
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uptake. At low salt concentrations down to 2.9 gL-1, there was some increase of the O2 

uptake rate by the cells which decreased with salinity increase of up to 58 gL-1.  

Decrease in chlorophyll and protein content with cultivation in high saline 

concentrations was observed, whereas b-carotene, carbohydrates and the compound 

of defense – glycine betaine (glucogenic amino acid that triggers chloride ion influx) – 

showed a maximum at 30.7 gL-1 (Hiremath & Mathad, 2010). Apparently, the 

concentrations of such compounds are higher in Chlorella strains that are more tolerant 

to salinity (Kalinkina & Naumova, 1992; Li & Li, 2011). The preference of Chlorella 

species for low salinity was confirmed by an investigation of the heat production by 

Chlorella vulgaris. Alyabyev et al. (2007) found that heat production of the species at a 

NaCl concentration of 29 gL-1, was lower than that at 2.9 gL-1. Combined Na+ and Ca2+ 

addition increases photosynthetic rate in this species under salinity stress but reduces 

respiration and proline content, compared to net NaCl addition (Abdel-Basset, 1993). 

Therefore, addition of Ca2+ could control the growth of the shipboard PBR, to maximize 

CO2 absorption at potential salinity increase after evaporation losses.   

There is great quantity of experimental results on the response of various 

Chlorella’s compounds to salt changes, but there is a lack of information about the lipid 

content changes with salinity increase, which is important for the evaluation of the 

potential for biofuel production from the species. Table 4.2 shows the changes in 

physiology and metabolism that occur as a result of salinity stress on some commonly 

studied algal species. Different organisms have a different response, which could 

possibly be due to an inhibition to metabolic reactions that are helpful for the survival 

(Alyabyev et al., 2007). The missing characteristics from some rows presenting each 

species just imply a gap in the literature search rather than an absent response to 

salinity changes. Some of these changes are either common responses or are 

generated under different conditions that might have affected the outcome; thus, it is 

difficult to summarise results. The table is to be treated as a source for looking further 

into this subject as opposed to being a summary of stress response. Chlorella has also 

been singled out because of its wide use and tolerance to CO2 (2.3.2.1). Its response 

to salinity changes is summarised in Figure 4.4. Thus, the studies referenced in this 

table offer a good starting point for the selection of the best salt concentration from the 

chart below, for a given application.   

 

 

https://pubchem.ncbi.nlm.nih.gov/compound/chloride%20ion
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Table 4.2. Responses of algal strains and Chlorella to high salinity stress, obtained 
from the literature. 

Species Response 
Response 
at high 
salinity  

Reference 

Most strains 

Carbohydrates  
(Kalinkina & Naumova, 1992; Li & Li, 
2011) 

Proline  
(Hiremath & Mathad, 2010;  Kalinkina & 
Naumova, 1992; Li & Li, 2011) 

Glycine  
(Kalinkina & Naumova, 1992; Li & Li, 
2011) 

Carotenoids  (Araújo et al., 2009) 

Lipid content 
Depends 
on strain 

(Borgvang, 2011) 

Fine structure Shrinkage (Kirst, 1989) 

Metal assimilation Enhanced (Kalesh & Nair, 2005) 

CO2 solubility  (Weissman et al., 1988) 

Cell lysis  (Zemke et al., 2010) 

Flocculation 
performance 

 
(Sukenik et al., 1988) 

Most 
freshwater 
Chlorella 
species 

b-Carotene  (Hiremath & Mathad, 2010) 

O2 uptake  (Alyabyev et al., 2007) 

Growth rate  (Makarevičienė et al., 2011) 

Chlorophyll content  (Hiremath & Mathad, 2010) 

Heat production  (Alyabyev et al., 2007) 

Protein content  (Hiremath & Mathad, 2010) 

Halotolerant 
species 

Heat tolerance  (Henley et al., 2002)  

O2 uptake  (Alyabyev et al., 2007) 
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Figure 4.4. Response of Chlorella sp. growth characteristics to different salinity levels. 

 

4.4.6 Effects of water salinity on carbon dioxide solubility, fixation and 

harvesting 

In addition to the direct influence of salinity on algal metabolism and consequently 

on its ability to absorb CO2, salinity has an impact on the Henry’s Law constant for the 

solubility of CO2 in water. The decrease of CO2 in the solution with salinity increase can 

be calculated as a function of temperature as reported in Valdes et al. study (Valdés et 

al., 2012). Thus, salinity partially controls dissolution and outgassing rate (2.3.2.4), 

which determines the CO2 desorption rate from the media. A study using Chlorella sp., 

reported that outgassing is less in high salinity than in freshwater at a given pH, due to 

the ionic strength effects on the carbonate equilibrium. However, this was not found to 

happen at very low CO2 concentrations, when the outgassing is proportional to 

alkalinity (Weissman et al., 1988). Therefore, it is difficult to conclude on the exact 

impact of salinity on the CO2 fixation by PBRs, since it does not influence solely the 

algal growth rate, but also dissolution and outgassing rate from the water.   
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Apart from the CO2 fixation ability of the PBRs, which is determined by the cells 

metabolism, gas dissolution and outgassing rate, salinity affects harvesting efficiency 

too (2.3.2.1). Therefore, there is an indirect factor to consider for an integrated 

evaluation of the effectiveness of a PBR operation, since harvesting costs and energy 

consumption might overcome the benefits of high CO2 fixation. The impact of salt on 

harvesting might be either beneficial or detrimental. For instance, salt water is 

sometimes used to wash algae to prevent cell lysis (Zemke et al., 2010), but removing 

salt from harvested algae might be energy and water intensive, depending on the level 

of desalting required by the product specifications. Another detrimental impact is that 

salinity reduces the performance of flocculation with polyesterolytes and requires either 

high flocculant dosages (5 to 10 times more than in freshwater), or combination of 

polyesterolytes with inorganic flocculants, or ozone oxidation pretreatment followed by 

flocculation with inorganic flocculants (Sukenik et al., 1988).  

 

4.4.7 Salinity and wild algae in the Thames 

Given that initial implementation of the ship-board PBR is intended for the Thames, 

the salinity levels along different areas of the river Thames are presented in Table III.4 

in Appendix III.  As shown, the range along the Thames varies from 0.35 to 32 gL-1, 

with a salinity of 1.06 gL-1 at Woolwich where MV Sound (presented in 3.2 and 

Appendix II) is based. Daily variations can be attributed to the strong tidal flow of the 

river which can reach 3 knots. As shown in 4.4.5, the 14 gL-1 optimal salinity level for 

Chlorella species is found in brackish water, therefore the Thames water could be used 

as the water medium of the shipboard PBR.  

However, there is also the potential to use wild algae in a shipboard PBR 

(introduced in 2.3.5.3.1 and 2.4.1). The main phytoplankton group in rivers is diatoms. 

Small-celled species also dominate when nutrient concentrations increase. A time 

series study of phosphorus, nitrate, dissolved reactive silicon and abundance of 

phytoplankton (measured as chlorophyll-a) of the Thames by Bowes et al. (2012), 

shows that there is a great fluctuation not only among the years, but during the 

seasons of a year as well. Another study has used generalized linear modeling (GLM) 

to predict the response of phytoplankton taxa in the Thames to variation in mean daily 

discharge rate from the river and during the seasons of the year (Ruse & Love, 1997). 

The classes that exist in the Thames include Chlorophycae, Cyanobacteria, Centric 

and Pennate Bacillariophycae and Chryptophycae. Some of the species found growing 

in the Thames between Inglesham to Windsor have included Centric, Chlorella oval 
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small and medium, Chlorella round small, Monoraphidium Contrortum, Ankistrodesmus 

gracilis, Chlamydomonas round and oval small, Cocconeis placentula, Pennate diatom 

spp., Nintzschia acicularis, Melosira varians, Diatoma vulgare, Blue-green sp.2, 

Gomphonema spp., Koliella longiseta, Monoraphidium minutum, Cryptomonas sp.2, 

Spermatozopsis exsultans, Rhodomonas minuta and Phormidium spp. (Ruse & Love, 

1997).  In addition, enteromorpha might play a contributing role in the Thames flora 

because they are salt tolerant green algae usually found throughout brackish and 

marine zones (Thames Estuary Partnership Biodiversity Action Group, n.d.). 

 

4.4.8 Discussion 

The water supply choice is important for the operation of the PBR and CO2 uptake 

rate, if freshwater Chlorella species is to be used for cultivation. Chlorella species exist 

in the Thames, alternatively other halotolerant species could better adapt to changes in 

salinity due to evaporation from the continuous operation of the onboard PBR. Almost 

all osmolytes and regulating components concentrations in Chlorella continue to 

increase until the increase of salinity to 17 gL-1 (4.4.5). If the value of 10 – 15 gL-1 is 

exceeded then dilution with freshwater may be required. This poses an economic 

issue, as it requires – more often than in the case of freshwater – freshwater pumped 

and treated for desalination, or supplied from on-shore.  

The data for spatial salt concentration along the river Thames have indicated that 

the area where MV Sound is based in Woolwich is much lower than the highest level 

tolerated by Chlorella species. Salinity levels along the Thames are suitable for 

cultivation of most algal species. However, salt concentration in the tidal river changes 

during the day and the seasons, so the suitability of local water for the PBR operation 

needs to be carefully considered. The PBR could be loaded with water from the 

Thames up to an area close to Littlebrook where salinity is close to the optimal level. 

However, other microorganisms and components of the Thames water might affect the 

growth of the chosen algal species. Water from the river Thames would need to be 

frequently tested for quality parameters, and possibly pre-treated, for use in the PBR.   
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4.5 Cultivation of wild algae from natural waters around London 

4.5.1 Introduction 

The objective of this experiment was to examine the feasibility of cultivating wild 

algae samples, taken from sites in London’s inland waterways to compare growth and 

adaptation with lab grown cultures. The results are needed to observe the potential for 

the onboard PBR operating conditions to use algae sourced directly from the local 

environment.  

 

4.5.2 Methods 

These experiments were conducted with the help of 3rd year students (Wu & Lee, 

2014) and an MSc student (He, 2014). Water samples were taken from the surface of 

five natural waters in London (Regent’s Canal near Camley Street Natural Park, 

Camley Street Natural Park pond, Boating Lake at Regent’s Park, St James’s Park 

Lake and Serpentine Lake at Hyde Park) and a domestic potted plant. The origin and 

labelling of the samples is shown in Table 4.3. The water quality of all the samples is 

shown in Table III.5 of Appendix III. Samples RC20/2 – RC20/5 were taken from the 

same area as RC22/1, but at a different time. 20 mL/L of Bold Modified Basal 

Freshwater Nutrient Solution (specification in Table III.6 of Appendix III) were added to 

each sample in cultivation bottles.  

Three different main experiments were conducted using the wild algae samples; 

their cultivation under air sparging, treatment of some of them with UV light and 

cultivation of some of them under various CO2 in air flow rates sparged. The bottles 

used had different volumes, depending on the experiment. Air and CO2 were sparged 

at the bottom of each sample directly by an airline pipe for samples RC22/1, RC5/1A – 

RC5/1D, RC24, PP, CSP, RP, SJP and HP and ceramic airstone spargers for samples 

RC20/2 – RC20/5, with the gas flow rates and compositions shown in Table 4.3. The 

illumination was delivered by a fluorescent lamp providing 14 μmol/m2/s on the surface 

of the bottles. The temperature during the cultivation was 25 (± 2) C (set-up shown in 

Figure III.3 of Appendix III).  

Since there was a concern about the effect of bacteria in the natural water samples 

on the algae, an experiment was conducted using UV light. UV radiation is reported to 

induce damage to bacterial cells and has been used to remove bacteria from algae 

cultures (Mehta & Hawxby, 1977). Its effectiveness depends on its intensity, 

wavelength and exposure time (Solomon et al., 1998). 6 W lamps of different 
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wavelengths, UV-A (λ = 315 – 400 nm), UV-B (λ = 280 – 315 nm), and UV-C (λ = 200 – 

280 nm), were immersed into bottles of samples RC5/1A – RC5/1D for exposure times 

of 0, 15, 30 and 60 min. At each exposure time, two 15 mL samples were taken from 

each bottle and placed on bacteria and algae agar plates (18.1 g/L CM0906 R2A agar 

powder and 15 g/L Fluka 05039 agar powder with 20 mL/L Bold medium were the agar 

compositions, respectively) for inoculation. Cultivation of the bottles was continued 

after the final exposure time, and 500 mL were taken from the bottle treated with the 

most enhancing UV light condition (UVA) for the experiments of the different flow rates 

of air and CO2-enhanced air (Table 4.3).  

Table 4.3. Cultivation bottles using wild algae from the different locations and their 
allocated name. 

Sample Source  Initial Volume 
Cultivation 
period 

Gas type 
Gas flow 
rate 

RC22/1 
Regent’s Canal near 
Camley Street 
Natural Park 

1000 mL 
22/01/14–
03/02/14  

air 0.1 L/min 

RC5/1A “ “ 

200 mL from 
sample RC22/1 
diluted to 1000 
mL 

05/02/14–
19/02/14 

“ “ “ “ 

RC5/1B “ “ “ “ “ “ “ “ “ “ 

RC5/1C “ “ “ “ “ “ “ “ “ “ 

RC5/1D “ “ “ “ “ “ “ “ “ “ 

RC24/1D1 “ “ 

100 mL from 
sample RC5/1D 
diluted to 500 
mL 

24/02/14–
03/03/14 

air 0.2 L/min 

RC24/1D2 “ “ “ “ “ “ 10% CO2 0.2 L/min 

RC24/1D3 “ “ “ “ “ “ 10% CO2 0.6 L/min 

RC20/2 

Regent’s Canal near 
Camley Street 
Natural Park, close 
to Granary Sq. 

200 mL diluted 
to 1000 mL 

20/06/14–
22/08/14  

air 0.6 L/min 

RC20/3 “ “ “ “ “ “ “ “ “ “ 

RC20/4 “ “ “ “ “ “ “ “ “ “ 

RC20/5 “ “ “ “ “ “ “ “ “ “ 

PP Indoor potted plant 
200 mL diluted 
to 1000 mL 

22/01/14–
19/02/14 

air 0.1 L/min 

CSP 
Camley Street 
Natural Park pond 

500 mL “ “ “ “ “ “ 

RP 
Boating Lake, 
Regent’s Park 

“ “ “ “ “ “ “ “ 

SJP 
St James’s Park 
Lake 

“ “ “ “ “ “ “ “ 

HP 
Serpentine Lake, 
Hyde Park 

“ “ “ “ “ “ “ “ 
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Biomass concentration was measured with the UV/Vis Spectrophotometer 

Camspec M550 Double Beam at 750 nm, with a sampling time/growth time ratio lower 

than 1/48. The calibration curve for these sample measurements was determined for 

five 200 mL samples from sample RC22/1 diluted with deionised water. In parallel with 

the spectrophotometer readings, the samples were vacuum filtered using a 0.45 μm 

pore-sized filter, and then oven dried at 105 C to constant mass. The data and the 

calibration curve are shown in Table III.7 and Figure III.4 of Appendix III. The 

calibration curve should show a linear trend, as predicted by the Lambert-Beer Law for 

the absorbance measurements (Myers et al., 2013) (discussed further in 6.3). 

However, a 2nd order polynomial curve had a better fit, possibly due to inaccuracy of 

the optical density measurements caused by the omission in diluting the higher 

concentration samples (discussed in 6.5.1 and Appendix V). It should be noted that the 

present study used directly the produced concentration data for samples RC20/2 – 

RC20/5, as computed from the calibration curve produced by He (2014); thus, using 10 

mL samples for the filtration instead of 200 mL. One limitation of this calibration method 

is that the dry biomass could have minor quantities of other microorganisms such as 

bacteria, due to contamination during cultivation.   

The algal species were identified by microscopy, as described in Delwiche et al., 

(1995). Isolation of the colonies after the UV treatment required use of the antibiotic 

ampicillin, due to competition between the growth of algae and remaining bacteria.  

P-values of the three experiments were computed with:  

a. A 2-way ANOVA on the effect of time and different sampling sites among the 

samples taken in the winter (samples RC22/1, PP, CSP, RP, SJP and HP). 

b. Similarly a 2-way ANOVA for the samples taken in the summer (RC20/2 – 

RC20/5).  

c. A 1-way ANOVA for the effect of the period (summer and winter) on the 

productivity of the samples. Since the samples for the two different periods 

were taken at different times of the cultivation progress, this was accomplished 

by first analysing the overall productivities of the samples at the peak growth of 

each. Then the productivities of the samples were analysed at 29 h, which was 

the longest mutual cultivation duration for all samples (except samples 

RC22/1). For the purpose of comparing samples of equal size, the ANOVA 

tests used samples that had the same measurement frequencies; hence, the 
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first 1-way ANOVA excluded samples PP and CSP which were from pond sites 

and the second 1-way ANOVA excluded samples RC22/1 and CSP. 

d. A 2-way ANOVA for the effect of time and UV wavelength on the growth of 

samples RC5/1A – RC5/1D. 

e. A 2-way ANOVA for the effect of time and gas sparging conditions on the 

growth of samples RC5/1D1 – RC5/1D3.  

 

4.5.3 Results and discussion 

The growth curves for the wild algae samples from the different sites are shown in 

Figure 4.5 (data taken from Table III.8 in Appendix III). pH ranged from 7 to 9 at all 

times. All four typical growth phases (2.3.6.3.1) can be identified in the growth curves 

of the samples RC20/2 – RC20/5 taken from different points of the Regent’s Canal. On 

the other hand, growth of algae in samples RC22/1, PP, CSP, RP, SJP and HP lagged 

and did not reach a peak, which is possibly attributable to fact that these samples were 

taken in the winter, whereas RC20/2 – RC20/5 were collected in the summer. The 

average productivity of all the summer-cultivated samples during their growth period 

(before the peak for RC20/2 to RC20/5) was 0.021 g/L/day. This is much lower than the 

average productivities reported for PBRs using commercial algae (Table I.2 of 

Appendix I).  

Statistical analysis showed that the effect of time was significant only for the 

samples RC20/2 – RC20/5 (P-values 4.1ˣ10-6 and 0.18 for the samples RC22/1, PP, 

CSP, RP, SJP and HP), confirming that the samples collected in the winter remained in 

a lag phase throughout the experiment. Nevertheless, the effect of the sampling site on 

the samples at each testing period (winter and summer) was always significant, while 

comparatively more significant for the winter samples (P-value was 1.5ˣ10-11 for 

samples RC22/1, PP, CSP, RP, SJP and HP and 0.00374 for samples RC20/2 – 

RC20/5). However, conclusions for this cannot be made, as samples RC20/2 – RC20/5 

were obtained from close points of the same area. The effect of the testing period on 

the maximum productivities of the samples was significant only when productivities 

were measured for just the first 29 hours (P-value 0.008). In general, the summer 

samples obtain significantly higher concentrations than the winter samples.   
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Figure 4.5. Growth of the samples obtained from the different sites. Lines joining 
points are for visual clarity and do not represent a known physical reality.  

 

The effect of UV light on the growth of algae in the bottles and bacteria in the petri 

dishes is shown in Figure 4.6 and Figure III.5 of Appendix III, respectively. The effects 

of UVB, UVC and exposure time on extermination of the bacteria and retardation of 

algal growth were much stronger than that of UVA and the control sample. Specifically, 

this effect was more significant with increased exposure duration and with shorter 

wavelengths (UV-C) than with longer ones (UV-A) (pictures of the bottles at the end of 

their post-treatment growth shown in Figure III. 6 Appendix III). P-values of the 

influence of UV light and time were 0.039 and 0.010, respectively, indicating their 

significant effect on the growth.  

Algal growth as a function of the various CO2 concentrations and flow rates fed to 

the cultures is shown in Figure 4.7. Sparging 10% v/v CO2 in the air apparently had the 

best effect on algal growth, amongst the various concentrations tested. However, two-

way ANOVA showed that effects were statistically insignificant (P-values were 0.05 and 

0.21 for time and the different gas sparging sets of measurements, respectively). The 

data used for the production of both figures are shown in Table III.9 of Appendix III.  
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Figure 4.6. Algal growth after UV treatment of samples RC5/1A – RC5/1D using UVA, 
UVB, UVC and the control, respectively. Lines joining points are for visual clarity and 
do not represent a known physical reality.  

 

Figure 4.7. Biomass growth in samples RC24/1D1 – RC24/1D3 under different gas 
sparging conditions. Lines joining points are for visual clarity and do not represent a 
known physical reality. 

 

Some of the colonies isolated from samples RC22/1, PP, CSP, RP, SJP and HP 

were observed using a microscope and 12 species in total were identified. Their 

possible identities are shown in Table III.10 of Appendix III. The species of Chlorella 

vulgaris, Scenedesmus genera and Chlamydomonas genera were identified and 

several genera of green algae, cyanophyta and bacillariophyta were visually 

recognised. Many of the species identified are included are those present in the 

Thames according to the literature (4.4.7). 
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4.6 Conclusions 

The four different topics that were examined in this chapter, regarding the PBR 

requirements for modifications on board, showed some difficulties. The experiments on 

the photobioreactor design showed that bubble size significantly increased with gas 

flow rate, while the difference in bubble size between the top and bottom of the column 

decreased. Although coalescence was observed for all flow rates in the pilot helical 

PBR constructed with 40 inclination, the design experiments suggested that no major 

coalescence would be observed at inclinations higher than 40. Coalescence at lower 

inclinations increased the average bubble size by up to 100%, which would reduce the 

area for mass transfer of CO2 into the medium and waste energy used for the bubble 

production. On the other hand, increased inclination is coupled with higher hydrostatic 

pressure, hence, an optimal angle and height are anticipated to exist for every helical 

system. Scale-out would therefore require an increase in the number of harvesting 

units. In larger ships applications, where large volumes of gas need to be treated, a 

different PBR design with less material requirements and able to be placed below the 

ships waterline, could be more beneficial for commercialisation.   

Regarding the effect of NOx and SOx, experimental work on how actual marine 

emissions using live algal cultures would benefit from scrubbing or similar form of pre-

processing technology is crucial. Although experimental conditions vary among 

different studies, some quantitative information is presented in this section and it is 

shown that the flue gas may likely require pre-treatment for better algal growth. 

Water supply is important for the efficient operation of the PBR and effective CO2 

uptake. Chlorella species can exist in the Thames water, the salinity of which is 

suitable for most algal species, but if its value exceeds 10 – 15 gL-1 then dilution with 

freshwater may be required. While using local algae might make the system cost 

effective and resistant to local parasites, strain identification may be difficult and the 

existing strains might not have high lipid productivity. On the other hand, using a 

commercial algae strain for a more predictable product quality (see 2.4.1) is likely to 

add expenses. The need for a water source is also affected by the top up requirements 

due to accumulating salinity from evaporation. Therefore, supply of freshwater from on-

shore might be needed. 

Wild algae samples from various waterways around London were successfully 

grown in lab conditions and growth appeared to be better under enhanced CO2 air with 
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10% concentration, compared to ambient air, though this effect could not be statistically 

proven. However, a relatively longer lag phase, which could be attributed to the season 

in which the sample was taken and the time needed to adapt to the lab conditions, 

resulted in a slower growth rate than that for commercial algae, although further 

experimental work would be required to prove whether this was the case. Treatments 

of the wild algae samples with UV light to reduce bacteria inhibited algal growth as well 

as bacteria. A continuous operation of the PBR under exponential growth could limit 

population growth from competing bacteria.  
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5 Hydrodynamics in the airlift photobioreactor 

 

5.1 Introduction 

2.3.2.4 discussed the importance of understanding the hydrodynamics of the 

proposed design for the improvement of mass transfer and gas absorption. The effect 

of the bubble size on the PBR hydrodynamics is examined in this chapter for a straight 

vertical airlift PBR. Bubble size is known as an important variable for optimising gas 

absorption and energy input. This chapter demonstrates a new simplified mathematical 

model developed for an external loop vertical airlift PBR, derived from established 

chemical engineering formulae, with the minimum possible reliance on empirical 

correlations with adjustable parameters (Koutita et al., 2015). Bubble slip velocity, liquid 

circulation velocity and gas hold-up are simply estimated based on bubble diameter, 

gas flow rate, riser diameter and riser height.  The model reveals the contribution of 

bubble diameter to gas hold-up and liquid circulation velocity, filling a gap in the 

literature. The model was validated using experimental data measured in the lab (with 

the help of the fellow doctoral student Alessandro Marco Lizzul) and taken from the 

literature. The current model was found to provide a better estimate of gas hold-up than 

the literature model it was compared with, but liquid velocity was overestimated. The 

impact of using various drag coefficient correlations was also revealed.  

In contrast with the models discussed in 2.3.6.1, the proposed model is macroscopic 

and uses a mean bubble size within the reactor, which allows the momentum balance 

to be omitted and only an overall mechanical power balance to be used instead. This 

work resolves some of the literature deficiencies by using a simple generalised 

equation, validating the model for several reactor sizes and bubble sizes, and by 

examining whether existing drag coefficient correlations can sufficiently describe the 

behaviour of the examined bubble size range. Results for the estimation of liquid 

circulation velocity support the design of airlift reactors, i.e., liquid circulation velocity 

determines allowable riser tube length, depending on the gas flow rate and riser 

diameter. 
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5.2 Model development 

5.2.1 Power balance approach 

The developed approach uses equilibrium of forces applied on the bubbles to 

estimate their relative velocity. The model then uses the power conservation principle 

on the gas/liquid mixture in the PBR to estimate the liquid circulation velocity and the 

gas hold-up in the riser. As shown in Figure 5.1, the buoyancy force acting upon 

individual bubbles is opposed by the counteracting drag force from the water. As the 

bubbles enter the PBR, they reach their equilibrium slip velocity in very short time, 

implying that the buoyancy force is balanced by the drag. When considering a small 

fraction of the mixture (bubbles with liquid); the power provided by the buoyancy force 

is balanced by the power consumed by the frictional forces of the walls and the 

connections.  

 

Figure 5.1. Section of the riser tube. The relative velocities of the bubbles and the 
liquid are shown, alongside the forces acting on each according to the power balance 
approach.   

 

The buoyancy force acting on a bubble and the interfacial drag force imposed by the 

surrounding liquid upon each bubble are described respectively by the following 

equations (Kuiper, 2010):  

𝐹𝐵 = (𝜌𝑙 − 𝜌𝑔)𝑔
𝜋𝑑𝑏

3

6
 (38) 
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𝐹𝐷 =
1

2
𝑐𝐷𝜌𝑙𝑢𝑏

2𝜋
𝑑𝑏
2

4
 (39) 

where 𝐹𝐵 is the buoyancy force, 𝜌𝑙 and 𝜌𝑔 are the liquid and gas densities, 

respectively, 𝑑𝑏 is the bubble diameter, 𝐹𝐷 is the drag force, 𝑢𝑏 is the bubble slip 

velocity, and cD is the drag coefficient calculated from Ishii and Zuber (1979) formula 

for the particles in the viscous flow regime:   

𝑐𝐷 =
24

𝑅𝑒𝑏
(1 + 0.1𝑅𝑒𝑏

0.75)  for 𝑅𝑒𝑏 < 2 ∙ 10
5 (40) 

 where 𝑅𝑒𝑏 =
𝑢𝑏𝑑𝑏

𝜈𝑙
 (41) 

where νl is the kinematic viscosity of the liquid. This drag coefficient correlation is a 

classical one used extensively in the literature, including similar experiments (Sáez et 

al., 1998); the impact on the model of using other common formulae (Karamanev & 

Nikolov 1992; McCabe et al. 1956; Morisson 2013; Sáez et al. 1998) for the drag 

coefficient is discussed in 5.4.4. Buoyancy and drag forces are applied to the total riser 

height. The number of bubbles is calculated using the following expression: 

𝑁 =
𝑉𝑔
1
6𝜋𝑑𝑏

3
=

𝑞𝑔
1
6𝜋𝑑𝑏

3
𝑡𝑔 =

𝑞𝑔
1
6𝜋𝑑𝑏

3

𝑙𝑟
𝑢𝑏 + 𝑢̅𝑙  

 (42) 

where 𝑁 is the number of bubbles, 𝑉𝑔  is the volume of the gas, 𝑞𝑔 is the gas flow rate, 

𝑡𝑔 is the gas residence time in the riser, 𝑙𝑟 is the riser height (i.e. vertical length) and 𝑢̅𝑙 

is the liquid circulation velocity.   

Considering the force components along the longitudinal axis of the riser, the 

buoyancy forces should be equal to the sum of the drag forces for the total riser height 

(Chisti, 1989).  

∑𝐹𝐵𝑥 =∑𝐹𝐷𝑥  
⇒𝑁(𝜌𝑙 − 𝜌𝑔)𝑔

𝜋𝑑𝑏
3

6
= 𝑁

1

2
𝑐𝐷𝜌𝑙𝑢𝑏

2𝜋
𝑑𝑏
2

4
 (43) 

Using the formulae in Eq.40, 41 and 43, the expression for the bubble slip velocity 

is:  
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ub=√
4gdb (ρl

-ρ
g
)

3ρ
l
𝑐𝐷

 (44) 

The residence times of the gas and the liquid, the gas hold-up in the riser, and the 

density of the mixture, are calculated from the following formulae, respectively:  

tg=
lr

ub+𝑢̅𝑙  
=

Vg

q
g

 (45) 

tl=
lr

𝑢̅𝑙  
=

Vl

q
l

 (46) 

εr=
Vg

Vriser

=

lrqg
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πdr
2
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g

πdr
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 (47) 
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where tl is the residence time of the liquid during recirculation in the riser, 𝑉𝑙 is the 

volume of the liquid in the PBR, 𝑞𝑙 is the liquid flow rate, 𝜀𝑟 is the gas hold-up in the 

riser, 𝑉𝑟𝑖𝑠𝑒𝑟 is the riser volume, 𝑑𝑟 is the riser diameter and 𝜌𝑚 is the mixture density.   

Additionally, the gas rise velocity and the superficial gas velocity are respectively 

estimated from the following formulae:  

𝑢̅𝑔=𝑢̅𝑙+ub (49) 

ug=𝑢̅𝑔εr (50) 

where 𝑢̅𝑔 is the gas rise velocity and 𝑢𝑔 the superficial gas velocity. 

Considering the force components along the longitudinal axis in Figure 5.1 under 

steady conditions, the supplied buoyancy power must overcome the wall friction of the 

mobilised fluid (with upward circulation velocity) and the local resistive forces. 

Therefore, the power provided by the buoyancy force in the riser tube must be equal to 
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the power consumed by the friction loss along the PBR. This balance of powers defines 

the steady flow velocity of the liquid-gas mixture. The two balancing powers are given 

as:  

PB=(ρ
l
-ρ

g
)g

πdb
3

6
Nub (51) 

PF=∆p∙q
l
=ρ

l
gq

l
ℎ𝑓𝑟 (52) 

where 𝑃𝐵 is the power provided by buoyancy, 𝑃𝐹 is the power lost to friction, 𝛥𝑝 is the 

pressure difference and ℎ𝑓𝑟 is the head due to friction, given as:  

ℎ𝑓𝑟=hf+hmf=f
l

dr

𝑢̅l
2

2g
+Kl

𝑢̅l
2

2g
 (53) 

where ℎ𝑓 and ℎ𝑚𝑓 are the head losses due to wall friction and fitting friction, 

respectively. 𝐾𝑙 is the additional local frictional loss coefficient, and  f =
64

Re
  for Reynolds 

number of the liquid 𝑅𝑒𝑙 < 2100. For 𝑅𝑒𝑙 ≥ 2100, f is calculated from the Churchill 

formula (Perry et al., 1999):  

𝑓 = {−4𝑙𝑜𝑔 [0.27
𝑟

𝑑𝑟
+ (

7

𝑅𝑒𝑙
)
0.9

]}

2

 (54) 

With the Reynolds number found by the Blasius equation (for Re < 80,000) (Perry et 

al., 1999):  

Rel=
𝑢̅ldr

𝜈l

 (55) 

The term coupled with Kl in Eq.53 is the sum of the frictional losses expressed as 

the frictional velocity head losses due to expansions, 𝐾𝑒𝑥𝑝, contractions, 𝐾𝑐𝑜𝑛𝑡𝑟, and 

fittings, 𝐾𝑓𝑖𝑡, in the loop.   

By equating the power input with the power consumed, the model is simplified to 

give the liquid velocity and can be solved by iteration, for given parameters of the fluid 

characteristics, including PBR diameter, riser and PBR length (which is the sum of the 

riser and downcomer heights plus the connection lengths), bubble diameter and gas 

flow rate, after solving first Eq.44: 
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𝑢̅𝑙
3(𝑢̅𝑙 + 𝑢𝑏) =

8𝑔(𝜌𝑙 − 𝜌𝑔)𝑢𝑏𝑞𝑔𝑙𝑟

𝜋𝑑𝑟𝜌𝑙 [𝐾𝑙𝑑𝑟 + 𝑙 {−4𝑙𝑜𝑔 [0.27
𝑟
𝑑𝑟
+ (

7𝑢̅𝑙
𝑣𝑙𝑑𝑟

)
0.9

]}

−2

]

 
(56) 

The following assumptions were made in developing the model: 

For the estimation of the bubble slip velocity from Eq.44, an average bubble size 

along the tube was used. This does not mean that the isothermal gas expansion of the 

bubble along its propagation is not considered, as the use of the buoyancy force in the 

equations implies that density is different at different PBR heights. 

1.  Bubbles are considered spherical; bubbles have been reported to be spherical 

for a 𝑑𝑏< 1 mm and ellipsoid for 1 mm < 𝑑𝑏< 1 cm (Clift et al., 1978). 

2.  The Reynolds number of the bubbles’ slip in the liquid is always below the 

threshold required in Eq.40, based on estimates of 𝑅𝑒𝑏=170 – 2,200 in the 

experiments.  

3.  Bubbles have negligible weight compared to the drag and buoyancy forces.  

4.  The gas flow rate is constant. 

5.  Flow is at steady state. 

6.  Flow is turbulent.   

7.  The drag force is uniform over the cross-section of the tube as bubbles are 

assumed to be spread evenly after a short distance from their entrance into the 

PBR. 

8.  There is negligible bubble recirculation (Chisti, 1989).  

9.  Bubbles wake friction is negligible. 

10.  The gas is assumed to instantly obtain the temperature of the liquid by the time 

it is sparged into it, so compression due to temperature difference of the two 

phases is not accounted. 

The following assumptions were applied in comparing the predictions from Chisti’s 

model (2.3.6.1) with the model developed: 

a. The riser of the airlift device is simply a continuous smooth pipe and 𝑅𝑒 is 

always between 2.5×103 and 105. 

b. Pipes have smooth walls with negligible friction. 

c. The gas hold-up in the downcomer is negligible, leading to a value of zero for 

Eq.8. 
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5.2.2 Computational algorithms and parameters  

Figure 5.2 illustrates the interrelation of the parameters in the two approaches and 

Figure 5.3 shows the computational algorithm referring to the equations used to 

estimate the liquid circulation velocity in each of the two approaches.  The models were 

solved using MathWorks MATLAB Version 7.11.0.584 (R2010b). The whole simulation 

ran in less than a minute with MATLAB 7.11.0(R2010b) on a 32-bit Intel(R) Core(TM) i5 

CPU (code attached in Appendix IV). 

Although the two approaches follow the same path, there is a difference in the 

energy inputs and outputs used. The energy input from the bubble inflow is expressed 

in the model developed as the power from the buoyancy force, whereas in Chisti’s 

model it as the isothermal gas expansion. The energy outputs considered in the 

developed power balance approach are due to the wall and fitting friction loss, whereas 

Chisti’s model considers the energy dissipation due to wakes behind the bubbles, 

energy loss due to stagnant gas and to fluid turn-around friction. Secondly, in its 

present form, the model developed applies to riser and downcomer tubes of identical 

diameters and would need modification to describe other systems. Finally, Chisti’s 

model uses empirical formulae for riser and downcomer gas hold-up, which may be 

configuration dependent (e.g., 𝜀𝑟 in Eq.8 has to be higher than 0.07 in order to give a 

rational positive 𝜀𝑑 figure. Thus, 𝜀𝑑 was assumed to be zero for the calculations in Eq.8 

and Eq.9).  

 

Figure 5.2. The interrelations between parameters within the two models. White boxes: 
given parameters, light grey boxes: assumed values, dark grey boxes: estimated. 
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Figure 5.3. Computational algorithms for the estimation of the liquid circulation velocity 
and gas hold-up in the riser from the two different models. 

 

5.3 Experimental and statistical analysis method 

5.3.1 Experimental photobioreactor 

The experimental PBRs were constructed from standard polyvinyl chloride piping 

connectors and polymethylmethacrylate tubing for riser and downcomer sections 

(Plastock). Five different PBR configurations were used which differed in diameter and 

height in order to examine their influence on the results. The dimensions of PBRs R1, 

R2, R3, R4 and R5 are shown in Table 5.1 and are based on designs from the 

unpublished work of Lizzul. Information for estimation of the frictional losses is shown 

in Table 5.2. The expansions and contractions are located at the points where flow 

passes from the main pipes to the fittings and from the fittings to the main pipes, 

respectively. The 180 close return bends are located at the top of the PBRs where 

liquid passes from the riser to the downcomer, whereas the 90 standard and square L 
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fittings are at the bottom of the downcomer and riser, respectively. Each PBR was filled 

with tap water to the middle of the horizontal degasser zone as shown in Figure 5.4.  

The gas was fed by the air-compressor (Hailea AC0-009E 112W) used in the 

previous experiments. The ambient temperature during the experiments was 23°C and 

the temperature of the water was 16°C. Three spargers of different porosities (shown in 

Figure 5.5) were used to conduct experiments with three different average bubble 

sizes. The first two spargers were 3D-printed from nylon beads. Sparger D1 was 

slightly perforated and D3 was more perforated. The third sparger (sparger D2) was a 

porous ceramic sparger. Bubble size within airlift bioreactors is usually 0.5 – 5 mm 

(Shah et al. 1982; Zimmerman et al. 2011), but can expand in the upper portion of 

longer tubes. 

 

Table 5.1. Dimensions of the photobioreactors used for the experiments. 

PBRs 𝐝𝐫 (m) 𝐝𝐝 (m) 𝐥𝐫 (m) 𝐥𝐝 (m) 𝒍 (m) 𝐡𝐝 (m) 

R1 0.054 0.054 1.04 1.04 2.40 1.04 

R2 0.054 0.054 2.04 2.04 4.40 2.04 

R3 0.058 0.058 0.54 0.54 1.40 0.54 

R4 0.10 0.10 1.04 1.04 2.40 1.04 

R5 0.034 0.034 1.04 1.04 2.40 1.04 

 

Table 5.2. Estimation of the frictional losses (velocity head loss). 

Loss types 𝑲𝒍 Estimation Values (Perry et al., 1999) 
Frequency in PBRs 

R1 R2 R3 R4 R5 

𝐊𝐟𝐢𝐭 

180° close returns bends 

90° standard L 

90° square L 

1.5 

1.3 

0.75 

2 

1 

1 

2 

1 

1 

2 

1 

1 

2 

1 

1 

2 

1 

1 

𝐊𝐜𝐨𝐧𝐭𝐫 ∑0.5 (1 −
𝑎𝑖+1
𝑎𝑖
)

𝑛

𝑖=1

 0.4177 
 

2 

 

4 

 

2 

 

2 

 

2 

𝐊𝐞𝐱𝐩 ∑(1 −
𝑎𝑖
𝑎𝑖+1

)
2

𝑛

𝑖=1

 0.2464 
 

2 

 

4 

 

2 

 

2 

 

2 
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Figure 5.4. Schematic of the external loop photobioreactors used for the experiments 
(dimensions are shown in Table 5.1). 

 

 

Figure 5.5. Photos of the spargers used. 
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5.3.2 Bubble size measurement 

The effects of bubble size on gas hold-up and liquid velocity were examined 

experimentally using flights of bubbles produced from the three different spargers with 

different steady-state gas flow rates.  The flights of bubbles were photographed with a 

high ISO setting on a Nikon D40x lens, 18 – 55mm (e.g., Figure 5.6). For each 

photograph, areas of up to 25 bubbles were measured using the open access software 

ImageJ v 1.47 (NIH) (Softonic International, 2014) and used to calculate average 

equivalent bubble diameters (referred to simply as bubble diameters in this study). This 

sample size gave an approximate 28% precision with a measured mean variance 0.2 

mm and for 95% confidence level, according to the sample size estimation by Reckhow 

and Chapra (1983). The probabilities, 𝑝, that the shown effects of repeat 

measurements are attributable to random error, were determined based on a 1-way 

ANOVA. An effect is generally considered as statistically significant when 𝑝 < 0.05. The 

𝑝 values between the different bubbles measured for the two runs were 0.19 and 0.74; 

therefore, only one measurement from each condition was used for the calculations in 

this paper. 

 

Figure 5.6. Example photograph of riser section of the photobioreactor used to 
measure bubble size. 

To determine whether the size of the bubbles changed as a function of the height of 

the PBR, bubbles were measured at the bottom, middle and top of the riser, at 0.1 m, 

0.5 m and 0.9 m, respectively, for the three spargers in PBR R1. Bubbles were then 

measured at the heights 0.1 m, 0.9 m and 1.9 m, for the three spargers in another PBR 

with double height, but with the same diameter and geometry (PBR R2). In both PBRs, 

sparger D1 showed monotonically increasing bubble diameter with increasing gas flow 

rate and height (Figure 5.7). Sparger D2 also shows an increase in bubble diameter 

with increasing gas flow rate and riser height, but with a shallower slope. However, for 

sparger D3 there was a slight decrease in bubble diameter with increasing height, 

which could be due to bubbles splitting during their rise in high turbulence. The 

performance of the three spargers shows that, in both PBRs, sparger D1 gives the 
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lowest bubble diameter output followed by sparger D2 and sparger D3. The mean 

bubble sizes and average standard deviations for the sparger measurements in the two 

set-ups (R1 and R2) are shown in Table 5.3. 

The results of a 3-way ANOVA were approximated by the use of a regression 

equation with three factors in Excel. The probabilities 𝑝 that the effect of the sparger 

and the gas flow rate on the bubble size is attributable to random error were 2.1ˣ10-15 

and 0.015 for PBR R1, respectively, and 5.3ˣ10-6 and 0.16 for PBR R2. However, the 

effect of the height in the PBR on the bubbles is statistically insignificant as the 

probability was 0.961 and 0.334 for PBRs R1 and R2, respectively. To simplify 

calculations, the variation of the bubble diameter as a function of the gas flow rate was 

not taken into account in the validation of the model, and bubble diameters of 2.2, 3.3, 

4.6 mm (average values between the two PBRs from Table 5.3) were used in the 

model.   
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Figure 5.7. Bubble diameter measured at different heights of the riser as a function of 
gas flow rate for the three spargers (D1, D2 and D3) in the photobioreactor 
configurations R1 (left) and R2 (right) along with the 95% confidence intervals 
calculated from the standard deviation and the sample mean.    
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Table 5.3. Bubble diameters for different spargers. 

Sparger 

Measurements for PBR R1  Measurements for PBR R2  

Mean bubble 
diameter (mm) 

Standard 
deviation (mm) 

Mean bubble 
diameter (mm) 

Standard 
deviation (mm) 

D1 1.8 0.5 2.6 0.7 

D2 3.3 0.5  3.3 0.7  

D3 4.4 0.6  4.7 1.0  

 

5.3.3 Gas hold-up and liquid velocity measurement 

Gas hold-up was measured using a U-bend manometer as suggested by Molina et 

al. (2001). Liquid circulation velocity was measured following the bubble measurements 

using a tracer injection of 0.8 mM acetic acid, detected by a pH probe (Jenway). The 

water was renewed after each measurement of velocity. The recirculation time was 

determined as the average duration between 3 peaks and between three troughs of the 

pH. The liquid circulation velocity was calculated by dividing the length of the PBR loop 

by the average recirculation time. One to three replicates were undertaken for each 

experimental condition to examine the repeatability of the method. The average 

standard errors among the average velocities for different gas flow rates were 0.0176 

ms-1, 0.0095 ms-1 and 0.0091 ms-1 for spargers D1, D2 and D3, respectively. ANOVA 

indicated probabilities 𝑝 that the effect of the sparger or the gas flow rate on the liquid 

velocity are attributable to random error were greater than 0.95.   

 

5.4 Results and discussion  

5.4.1 Basic model validation for gas hold-up results 

Figure 5.8 to 9 show measurements of the gas hold-up in the riser as a function of 

the gas flow rate, compared with predictions for the two modelling approaches. Figure 

5.8 examines the influence of bubble diameter. Results from the model developed, 

using the parameter values from Table 5.1 and Table 5.2, are presented as different 

solid lines for the three bubble diameters (spargers) in PBR R1, while results from 

Chisti’s model, which is independent of db, are shown with a dashed line. Results for 

riser gas hold-up from Chisti’s model are closer to the results from the model 

developed for 𝑑𝑏 = 3.3 𝑚𝑚, which suggests that bubbles of this size might have been 
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used for the development of the empirical Eq.6 in Chisti’s model. The model developed 

shows that gas hold-up in the riser decreases with increasing bubble diameter, as drag 

coefficient and bubble slip velocity increase and thus less gas is retained in the PBR at 

a particular time. However, this is not validated by the experimental data. The 

dependence of the measured gas hold-up on bubble diameter appears to be minor in 

this figure.  

Figure 5.9 shows the influence of riser diameter with 𝑑𝑏 = 4.6 𝑚𝑚 in the developed 

model and experiments. The selected limits used for the riser diameter are typical of 

the literature. The influence of the riser height is shown in Figure 5.10, again with 

𝑑𝑏 = 4.6 𝑚𝑚 in this study’s model and experiments. Similar behaviour and figures (not 

shown) were obtained for the other two spargers. The two models give similar gas 

hold-up results for all gas flow rates. In all cases, the models overestimate the gas 

hold-up, relative to the experiments, with an average relative error between the 

developed model and the experimental data measured of 59%, whereas the average 

relative error between Chisti’s model and the experimental data is 93%.   

 

Figure 5.8. Measurements of gas hold-up as a function of the gas flow rate in 
photobioreactor R1 for the bubble diameters indicated, compared with predictions from 
the models. 
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Figure 5.9. Measurements of gas hold-up as a function of gas flow rate in 
photobioreactors R1, R4 and R5, for the three different riser diameters indicated and 
using sparger D3, compared with predictions from the models. 

 

Figure 5.10. Measurements of gas hold-up as a function of the gas flow rate in 
photobioreactors R1, R2 and R3, for the three different riser heights indicated and 
using sparger D3, compared with predictions from the models.  
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5.4.2 Basic model validation for liquid circulation velocity results 

The results for the bubbles slip velocity predicted by the developed model are in 

agreement with Chisti’s (1989), and the assertion by Molina et al. (2001) that bubble 

slip velocities tend to range from 0.2 – 0.4 ms-1. Figure 5.11 to Figure 5.13 show 

measurements of liquid circulation velocity as a function of the gas flow rate, examining 

the influence of bubble diameter, riser diameter and riser length, respectively. Both 

modelling approaches predict that the liquid circulation velocity increases with gas flow 

rate, which accords with experiment results. The average relative error between the 

developed model and set of experimental data measured for the liquid velocity is 31%, 

whereas the average relative error between Chisti’s model and the experimental data 

of this work is 11%. 

Moreover, the  models were also compared to experimental data for various bubble 

diameters of two studies from the literature (Camarasa et al. 2001; Marquez et al. 

1999) in Figure 5.14 to Figure 5.16. The fit to the model developed is better apart from 

the liquid velocity data in Figure 5.16, but there is a lack of literature measurements of 

liquid velocities for different bubble sizes, to verify this observation.  

 

Figure 5.11. Measurements of liquid circulation velocity as a function of the gas flow 
rate in photobioreactor R1 for the three bubble diameters indicated, compared with 
predictions from the models. 
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Figure 5.12. Measurements of liquid circulation velocity as a function of the gas flow 
rate in photobioreactors R1, R4 and R5, for the three different riser diameters 
indicated and using sparger D3, compared with predictions from the models. 

 

Figure 5.13. Measurements of liquid circulation velocity as a function of the gas flow 
rate in photobioreactors R1, R2 and R3, for the three different riser heights indicated 
and using sparger D3, compared with predictions from the models. 
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Figure 5.14. Measurements of gas hold-up by Camarasa et al. (2001) in an airlift 
photobioreactor with a riser diameter of 0.23 m and riser length of 3.50 m as a function 
of the gas flow rate, compared to predictions from the models. 

 

Figure 5.15. Measurements of gas hold-up by Marquez et al. (1999) in an airlift 
photobioreactor with a riser diameter of 0.19 m and riser length of 1.56 m as a function 
of gas flow rate, compared to predictions from the models. 
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Figure 5.16. Measurements of liquid circulation velocity by Marquez et al. (1999) in an 
airlift photobioreactor with a riser diameter of 0.19 m and riser length of 1.56 m as a 
function of gas flow rate, compared to predictions from the models. 

 

 

5.4.3 Model uncertainty and experimental errors 

Uncertainties associated with the developed model include the assumptions of 

negligible bubble recirculation, spherical bubbles, and negligible friction of bubble 

wakes. There may be significant interfacial forces that are not considered. Overall, the 

model takes into account the integration of the main forces applied within the system 

and does not consider the micro-scale forces. Compared to Chisti’s model, it uses 

fewer algorithm steps, achieving results comparable to the developed own and other 

experiments, it is based on a simple consideration of explicit hydrodynamic factors and 

involves the minimal possible reliance on empirical equations that could limit the range 

of the model applicability. The fact that the measurements and the model give 

comparable results indicates that the major part of the involved physics has been 

adequately accounted for.  

Differences between model predictions and experimental results could be caused by 

either model or experimental inadequacies. Gas hold-up is overestimated by both 

models compared to this study’s experiments, which may be caused by the assumption 

taken of a single bubble diameter, whereas bubble size distribution has been shown to 
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affect both the average gas hold-up and the distribution of gas within the PBR (Law & 

Battaglia, 2013). Also, the possible change in volumetric gas flow rate due to the 

temperature difference between the heated compressed gas and the bubbles after 

cooling by the water was not taken into account.  

The results for the liquid velocity are likewise overestimated by the developed model 

compared to the experimental measurements, which may be attributable to the energy 

loss from turbulence produced by the bubbles and to small quantities of stagnant gas 

observed in the downcomer, especially at higher gas flows. Also, the surface tension 

developed upon addition of the acetic acid may have influenced the liquid velocity 

experiments. On the other hand, Chisti’s model appears to underestimate liquid 

circulation velocity at lower gas flow rates, as his model incorporates more friction 

forces. 

Figure 5.8 and Figure 5.11 show that the sensitivity of the gas hold-up and the liquid 

circulation velocity to the bubble diameter is lower than expected by the predictions. A 

clear order of the liquid circulation velocity output from the different spargers used is 

difficult to distinguish in Figure 5.11, which could probably be due to the sensitivity of 

the repeat measurements to factors such as the purity of the water and the gas flow 

meter adjustments. In addition, the influence of the drag coefficient on the liquid 

velocity is discussed below (5.4). The impression that the bubble size does not 

contribute as significantly as the gas flow rate to the liquid velocity could be further 

investigated using a targeted series of experiments, e.g., with a wider range of bubble 

sizes.   

 

 

5.4.4 Effect of different drag coefficient correlations 

The differences between the model developed and experimental data were greater 

when other drag coefficients for spherical shapes were used. For example, the 

correlations given by McCabe et al. (1956) (used by Chisti, 1989), Khan and 

Richardson (Sáez et al., 1998), Karamanev and Nikolov (1992) and Morisson (2013) 

gave errors in the gas hold-up of 72%, 66%, 150% and 67%, respectively; and in the 

liquid circulation velocity of 36%, 30%, 27% and 30%, respectively. As suggested by 

Sáez et al. (1998), these findings suggest that using an improved drag coefficient 

correlation could give better model fit. However, the use of different existing 

correlations did not lead to significant convergence of the models’ curves, or give 
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outputs that matched the order of the experimental data in Figure 5.8. Bubbles with 1 – 

10 mm diameter are ellipsoidal, lacking symmetry and oscillating in shape. Also, 

especially for air bubbles in water, their slip velocity is sensitive to the presence of 

surfactants (Clift et al., 1978). Curves given by Gaudin (1957) for distilled water and 

water with surfactants do not converge for ellipsoidal bubbles where surface tension 

forces are important (Clift et al. 1978; Gaudin 1957).  

There is a need to determine a correlation for bubbles of size range where their 

shape and flow regime change from spherical to ellipsoid shapes. Various published 

results for air bubbles in water do not show good agreement, mostly due to differences 

in water purity, wall effects and measurement techniques (Clift et al. 1978; Gaudin 

1957; McCabe et al. 1956). When data for correlation of bubble size to bubble rise 

velocity from experiments by Baker and Chao in McCabe et al. (1956), Taylor in 

Gaudin’s work (1957), and Clift et al. (1978) were used in this model, gas hold-up 

estimation errors were found to be 95%, 100% and 100%, respectively; and liquid 

circulation velocity estimation errors were 28%, 28% and 28%, respectively. Apart from 

the small differences in errors, the data gave different orders in the curves for the 

different bubble diameters and only Baker and Chao’s data gave the same order found 

in this study’s experiments in (Figure 5.8). Therefore, the development of an 

appropriate new drag coefficient correlation for bubbles in the examined flow regime 

may substantially improve fluid dynamic models for airlift PBRs. Also, well defined 

bubble shapes and optimally spherical bubbles would not only follow the current model 

better but would also give higher liquid circulation velocities, though this may be hard to 

influence. 

 

5.5 Conclusions 

This chapter presented a novel approach for the estimation of the liquid circulation 

velocity in a vertical airlift PBR. The model developed was validated by comparison 

both to experiments conducted in this study and other experimental results, and with 

the results from Chisti’s well-known semi-empirical model (1989). The model 

developed has a purely theoretical basis, allowing calculation of liquid velocity without 

the need for empirical expression for the gas hold-up. Thus, it is useful for estimation of 

gas hold-up and liquid velocity, and calculating optimal airlift PBR geometry, in 

applications where the conditions deviate from assumptions associated with the 

empirical formulae. A shipboard application would benefit from this model, as the 

estimation of liquid velocity can affect the estimation of heat loss on board. Importantly, 
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this model differs from Chisti’s in that it shows the potential impact that the bubble 

diameter can have on gas hold-up and liquid velocity.  

Predictions for gas hold-up and liquid circulation velocity from this model were 

comparable to experimental results over a range of values of gas flow rate, riser 

diameter, riser height, and bubble diameter, though the effect of varying the bubble 

diameter could not always be distinguished experimentally. Different drag coefficient 

correlations clearly affected model predictions and errors relative to the experimental 

data; improvement of the drag coefficient estimation is therefore recommended for 

good model fit.  
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6 Model of algal growth kinetics with variable 

light, temperature and nutrients   

 

6.1 Introduction 

A model of the effects of light intensity, temperature and nutrient concentrations on 

algal growth was developed to enable optimisation of the PBR operating conditions 

with respect to these variables (see 2.3.6.1). In general, the fit of algal growth models 

to data tends to be poor, as there is no clearly stated standard experimental approach 

for the cultivation of algae, and algal growth kinetics studies from the literature apply to 

different conditions (e.g., culture volumes and nutrient compositions) (Costache et al., 

2013; Derakhshan et al., 2014; Gonçalves et al., 2014). Nevertheless, an attempt was 

made to calibrate the model developed here with experimental measurements from 

laboratory cultivation of the fast growing species Chlorella sorokiniana in small multi-

well plates (Figure V.1 of Appendix V). This species was selected for the experiments 

here to speed up the experimental timeframe, though different shipboard applications 

could benefit from different wild algae (2.3.2.1 and 4.5). 

The attempted calibration of the model by non-linear regression estimated the 

values of the growth parameters for the specific species used in the experiments. The 

model used a single substrate term for the effect of nutrients (as in Eq.27) and the 

generic form of the Arrhenius equation (Eq.29) for the temperature effect. A more 

complex form of the model developed counted the nutrients, nitrates, phosphates and 

CO2, separately, and used the Arrhenius equation for the enzyme-mediated reactions 

of microorganisms (Eq.36). However, the increase in the number of parameters of the 

complex model form resulted in poor fit and estimated parameter values that were 

outside their natural bounds. Therefore, literature parameter values were used in a 

semi-continuous simulation of the model to predict optimal control variable values for 

some case studies of a shipboard PBR. These different case runs of the model 

addressed different objective functions: maximisation of the biomass concentration, of 

the productivity, and minimisation of the PBR volume.    
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6.2 Model development  

The simultaneous effects of multiple growth inhibiting factors on the growth rate 

calculation has been previously examined not only for two different nutrients (Xin et al., 

2010), but also for the effect of other types of factors, such as light and temperature 

under non-limiting nutrient supply (Bernard & Rémond, 2010). In the first case, the 

individual maximum growth rates for saturated nitrate and phosphate concentrations 

were determined experimentally in two different series of experiments where the 

concentration of the non-limiting nutrient factor was kept constant in each case. Then, 

since the data were in accordance with Monod’s model, its integrated form was given 

(Eq.57) by using an overall maximum growth rate (at optimal nitrates and phosphates 

together), multiplied by the two different efficiency factors for nitrates and phosphates, 

respectively (Xin et al., 2010). 

𝜇𝑟 = 𝜇𝑚𝑎𝑥𝜑(𝛮)𝜑(𝑃) = 𝜇𝑚𝑎𝑥
𝐶𝑁

𝐾𝑁 + 𝐶𝑁

𝐶𝑃
𝐾𝑃 + 𝐶𝑃

 
(57) 

In Bernard and Rémond's  (2010) study the same integrating method for the growth 

rate calculation was used under the hypothesis that the efficiency factor for 

temperature does not depend on irradiance. However, it has been stated that few 

models consider the simultaneous effect of more than two environmental factors on the 

growth (Zonneveld, 1998). For instance, Geider et al. (1997) have described the growth 

under the limitation of light, nutrients and temperature factors by considering the 

maximum growth rate as a multiplicative function of temperature and nutrient 

availability. They used the light utilisation factor of Van Oorschot (2.3.6.3.2), an 

Arrhenius equation and the Monod equation to describe the temperature dependence 

of the maximum growth rate and the nutrient limitation respectively (Geider et al., 

1997).  

Contrary to this approach, Arrigo and Sullivan (1994) described the effect of light 

and nutrients with the Monod equation and compared the growth under light-limited 

and under nutrient-limited conditions. However, this case considers exclusive limitation 

of one of the two factors, as one of the two variables is limited each time, according to 

the lowest growth rate. The maximum growth rate is also considered to be dependent 

on temperature. Response of algae species that grow in long-lasting ice fields to 

changes in four factors, temperature, irradiance, concentrations of nutrients and salinity 

was also presented.  
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In this study, the growth rate was estimated simultaneously, considering all of the 

main growth influencing factors (substrate, temperature, irradiance), by multiplying the 

maximum growth rate at the optimal values for the three factors with the different 

efficiency factors. Integrating the utilisation factors, the biomass concentration dynamic 

behaviour takes the form of Eq.58:  

𝑑𝐶𝑏
𝑑𝑡
= 𝐶𝑏[𝜇𝑚𝑎𝑥𝜑(𝑆)𝜑(𝐶𝐶𝑂2)𝜑(𝐼)𝜑(𝑇) − 𝑚𝑎 − 𝐷] (58) 

Monod’s model was used with a space-averaged light intensity. Space-averaged 

light intensity is commonly used to substitute intensity in Eq.26 and to define a space-

averaged growth rate in each time interval. It has been calculated in a plate PBR by 

integrating Eq.26 over 𝑧 (depth) in Cartesian coordinates as shown in Eq.59 

(Fernandez et al., 2001; Quinn et al., 2011). 

𝛪𝑎𝑣 = 𝐼0
1 − 𝑒𝑥𝑝 (−𝐾𝑎𝐶𝑏𝑑)

𝐾𝑎𝐶𝑏𝑑
 

(59) 

where 𝑑 is the depth of the culture. Other approaches have discretised light intensity 

and growth rate along the different PBR layers and estimated the growth rate in each 

region to yield an average, as it was argued that this discretisation results in better 

accuracy (Huesemann et al., 2013; Kim et al., 2002).  

Accurate predictions of the lag phase are very difficult to obtain and an empirical 

term was used that includes both influencing factors (temperature, culture history and 

pH), as in Koutsoumanis et al. (2000). In this model, the Arrhenius form of Eq.36, was 

used to represent the effect of temperature in a way that facilitates calibration.  

The nutrients considered are nitrates, phosphates and CO2. Their effects were 

simulated as separate Monod terms. Monod’s model has been used to represent the 

effect of the CO2 concentration on the growth (Cheenkachorn et al., 2011; Pegallapati 

& Nirmalakhandan, 2012). The dissolved CO2 was computed in Eq.2 and Eq.3 in 

2.3.2.4.Thus, the biomass concentration dynamic behaviour calculation used for the 

simulation of the process will have the form of Eq.60.  
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𝑑𝐶𝑏
𝑑𝑡
= 𝐶𝑏[𝜇𝑚𝑎𝑥𝜑(𝑁)𝜑(𝑃)𝜑(𝐶𝑂2)𝜑(𝐼𝑎𝑣)𝜑(𝑇) − 𝑚𝑎 − 𝐷] = 

𝐶𝑏

{
 

 

𝜇𝑚𝑎𝑥
𝐶𝑁

𝐾𝑁 + 𝐶𝑁

𝐶𝑃
𝐾𝑃 + 𝐶𝑃

𝐶𝐶𝑂2𝑙

𝐾𝐶𝑂2 + 𝐶𝐶𝑂2𝑙

𝐼𝑎𝑣
𝐾𝐼 + 𝐼𝑎𝑣

2𝑒𝑥𝑝 [
𝐸𝑎
𝑅𝑇
(𝑇 − 𝑇𝑜𝑝𝑡)
𝑇𝑜𝑝𝑡

]  

1 + 𝑒𝑥𝑝2 [
𝐸𝑎
𝑅𝑇
(𝑇 − 𝑇𝑜𝑝𝑡)
𝑇𝑜𝑝𝑡

]

− 𝑚𝑎 − 𝐷

}
 

 

  

 

(60) 

where the nitrate and phosphate concentrations are computed from the following 

equations (see 2.3.6.3.3):  

−𝑑𝐶𝑁
𝑑𝑡

=
1

𝑌𝑏/𝑁

𝑑𝐶𝑏
𝑑𝑡
+ 𝑚𝑠/𝑁𝐶𝑏 −

1

𝑌𝑏/𝑁
𝐷(𝐶𝑁,0 − 𝐶𝑁) 

(61) 

−𝑑𝐶𝑃
𝑑𝑡

=
1

𝑌𝑏/𝑃

𝑑𝐶𝑏
𝑑𝑡
+ 𝑚𝑠/𝑃𝐶𝑏 −

1

𝑌𝑏/𝑃
𝐷(𝐶𝑃,0 − 𝐶𝑃) 

(62) 

The parameter estimation was also applied to the simplified model (Eq.63), where 

the nitrates and phosphates were merged into a single substrate Monod term and the 

CO2 Monod term was excluded, as CO2 is assumed constant with time. Also, the 

temperature term was replaced by the simple Arrhenius equation in order to minimise 

the interdependent parameters for their estimation (Eq.29). The maximum growth rate 

term was integrated into the Arrhenius equation, with consistency units, as used in the 

literature when temperature was considered as single limiting factor (Eq.29).  

𝑑𝐶𝑏
𝑑𝑡
= 𝐶𝑏 (𝑘0𝑒

(−
𝐸𝑎
𝑅𝑇
) 𝐶𝑆
𝐾𝑆 + 𝐶𝑆

𝐼𝑎𝑣
𝐾𝐼 + 𝐼𝑎𝑣

−𝑚𝑎 − 𝐷) 
(63) 

where the substrate concentration is computed by Eq.64 and Eq.65. 

𝐶𝑆 = 𝐶𝑁 + 𝐶𝑃 (64) 

−𝑑𝐶𝑆
𝑑𝑡

=
1

𝑌𝑏/𝑆

𝑑𝐶𝑏
𝑑𝑡
+ 𝑚𝑠/𝑆𝐶𝑏 −

1

𝑌𝑏/𝑆
𝐷(𝐶𝑆,0 − 𝐶𝑆) 

(65) 

The assumptions made for the modelling and its calibration are the following.  

a. The Cartesian-averaged intensity is used in the calibration and fit of the model 

for consistency with the validation experimental set-up.  

b. Photoinhibition is not taken into account, to reduce the number of parameters 

to be estimated, and because it appears at irradiances over 1,000 lEm-2s-1 in 

most strains (and in some cases at lower irradiances down to 300 μEm-2s-1) 
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(Acién Fernández et al., 2013), while lower intensities were used in the 

experiments.   

c. The function φ(I) would have to be experimentally determined at a specific 

temperature (Huesemann et al., 2013), but it is assumed independent of 

temperature. Also, all rate parameters are assumed to be temperature 

independent. 

d. The nutrient concentrations of the model represent the extracellular 

concentration. The metabolism of the uptake is not considered in the model 

and the uptake is assumed to be instantaneous. 

e. N and P where combined in a single substrate term, although they play 

different roles (2.3.2.4) and have different metabolic functions. 

f. Supply of the CO2 in the gas fed is higher than its uptake by algae. Immediate 

dissolution is assumed and constant dissolved concentration for a given 

temperature and partial pressure.   

g. The utilisation factor for temperature does not depend on irradiance.  

h. Light scattering is not considered.  

i. The nutrient concentration is not high enough to inhibit growth. 

j. As individual cells mix in different discretisation layers within the culture, they 

immediately adjust to the light conditions of the new layer, expressing the 

growth rate that is experimentally determined at the local light intensity. This 

assumption has been previously made and it has been verified that changes in 

light intensity immediately change the photosynthetic O2 evolution rate 

(Huesemann et al., 2013).  

k. There is adequate mixing, so the liquid phases and algae cells are 

homogeneously distributed inside the PBR. 

l. Sampling procedure and duration do not affect growth, as the sampling/growth 

time ratio was lower than 1/48.   

m. Growth yield over the nitrates and phosphates is assumed stable and 

independent of the nutrient concentrations, contrary to the literature (van 

Bodegom, 2007). 

n. All cultures in the beginning of each experiment are assumed to have the same 

age. 

o. No growth inhibition by the reactions products is considered. 

p. Dilution rate is zero as the calibration experiments are run in batches. 
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6.3 Model calibration and application – Methods  

6.3.1 Experimental design 

Experiments were conducted with the help of the 3rd year undergraduate students 

Rena Seyidova and Michael Gonzalez (Seyidova & Gonzalez, 2015), to investigate the 

growth conditions for Chlorella sorokiniana and the effects of the four factors 

discussed; CO2 concentration in the surrounding gas phase, nutrient concentration, 

light intensity and temperature. The species was used due to its wide use and 

tolerance to CO2 (2.3.2.1), as well as its easy access within the lab.  

A set of factorial experiments (Box et al., 2005) – of the level 2x2x3 – was 

conducted using two different light intensities tested for two temperatures and three 

levels of nutrients. The CO2 concentration fed was selected as that which gave the 

highest productivity in a series of preliminary experiments with three concentrations. 

The preliminary and factorial experiments were both conducted using multi-well plates 

where each well had a culture growing in different media dilution. The biomass and the 

nutrient concentrations were measured during the experiments. 

Small multi-well plates have been used by others to examine the effects of different 

compounds on algae (Safonova et al., 2007), because they facilitate multiple 

measurements of cellular responses to various conditions (Tschumperlin et al., 2014). 

They have been used for studies of algal growth kinetics, though they are reported to 

be less accurate than cultures of large volume in measuring the strain-specific 

maximum specific growth rate (Van Wagenen et al., 2014), which is most likely due to 

the fast evaporation (Safonova et al., 2007).  

In biological experiments, including algal studies, responses over time are often 

studied by repeated sampling from the same culture (e.g., Belanger, 1997). This 

popular method, termed “temporal pseudoreplication” or resampling, avoids the effort 

of preparation of numerous identical cultures and was followed in this experiment. 

However, this technique leads to a potential dependence of subsequent measurements 

on previous measurements. Therefore, this experiment ran a parallel series of wells 

under identical conditions, with sacrificial sampling over time, i.e., the culture in each 

well had grown independently from the start of the experiment until it was sacrificed to 

sampling (sacrificial replication). Only one resampling well was used for each nutrient 

dilution of the experimental condition tested, a specific volume of which was engaged 

to be measured on each measuring day.  
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Convergence on a global optimum is often difficult in non-linear regression 

(Demidenko, 2013). Regarding the number of measurements needed for the model 

calibration, an arbitrary number of required data points to adequately fit a non-linear 

model’s curve is six, whereas in the existing experiments only four were taken (Illinois 

State University, 2014). In most real life studies in microorganisms, general 

conclusions are difficult, due to problems including pseudoreplication and confounding 

factors which are almost impossible to control (Azarbad et al., 2013). One of the 

solutions suggested in the literature when measurements are not accurate enough, 

would be for each data point used to make the plot to be averaged over numerous 

observations (Illinois State University, 2014). 

The strain of Chlorella sorokiniana (UTEX1230) was provided by fellow doctoral 

student Alessandro Marco Lizzul who obtained it from the Culture Collection of Algae 

from the University of Texas, Austin, USA. The culture was maintained in the laboratory 

in 1 L bottles filled with deionised water and 20 mL/L of the Bold Modified Basal 

Freshwater Nutrient Solution. Samples of this broth were obtained and centrifuged in 2 

mL cells using an Acotlab Microcentaur centrifuge at 6,500 rpm for 45 seconds, so that 

the sediment of the necessary number of cells when obtained and poured in each well 

would make up the desired initial biomass concentration of 0.06 g/L. The Bold media 

dilutions in deionised water used during each experiment in the wells were 5 mL/L, 10 

mL/L and 20 mL/L (dilution factors will be used in the remaining text as shown in Table 

6.1, with the theoretical concentrations estimated from Table V.1 of Appendix V). Each 

experiment ran under the constant CO2, light and temperature conditions.  

 

Table 6.1. Dilution factors and theoretical concentrations of the nutrients used in each 
series of experiments. 

Media 
diluted in 
water 
(mL/L) 

Dilution factor 
Theoretical 
concentration of 
nitrate (g/L) 

Theoretical 
concentration of 
phosphate (g/L) 

5 1:200 0.193 0.163 

10 1:100 0.386 0.326 

20 1:50 0.772 0.653 

 

6.3.2 Experimental set-up 

Four wells were allocated for each nutrient dilution in each experimental series; 3 

sacrificial wells and 1 resampling well. The volume was selected to minimise the space 
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requirements and duration of the experiments, as it provided thin culture depth with 

high light absorption. The plates used for the preliminary experiments (well height 12 

mm, volume 12 mL) were transparent acrylic with ventilated lid, whereas the one used 

for the factorial experiments was a dark non-transparent silicon tray (well height 13 

mm, volume 16 mL). The silicon trays allowed greater volume cultivation, sterilisation 

between the different experimental series, and illumination only from the top of the well 

as assumed by the model (pictures of both types of wells are shown in Figure V.1 of 

Appendix V). One of the sacrificial wells was sampled, measured and disposed of on 

the 1st, 2nd, 3rd and 5th day, at the same time as 2 mL were collected and measured 

from the resampling wells.  

The experiments were conducted inside a greenhouse box (Heated Vitopod 

Propagator by Greenhouse Warehouse shown in Figure V.2 of Appendix V) to avoid 

contamination from airbourne particles and to control the desired CO2 concentration 

during the cultivation. Illumination was provided by 15W LED rods, placed appropriately 

to illuminate all wells evenly. The cultivation plates were placed on a shaker turning at 

130 rpm and a glass bead of 1 cm diameter was immersed in each well to facilitate 

mixing. The CO2 fed to the greenhouse box was transported through flexible airline 

pipes from a 100% CO2 cylinder and laboratory air at an ambient temperature of 20 C 

was fed with a compressor Hailea AC0-009E 112W. The outlet was vented to a fume 

cupboard via an identical compressor. The two gases were not premixed before 

entering the box, but were placed away from the outflow pipe and the wells in order to 

have enough space to mix and maintain the desired concentration within the box 

space. The experimental set-up is shown in Figure 6.1.  
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Figure 6.1. Schematic of the experimental set-up used during the CO2 and the factorial 
experiments. 

 

 

 

6.3.3 Experimental method 

6.3.3.1 Preliminary CO2 experiments 

CO2 was investigated at three distinct levels (700, 4,300 and 50,000 mg/kg). Four 

wells (three sacrificial ones and one resampling) were assigned for each of three 

nutrient concentrations, dilutions of 1:200, 1:100 and 1:50 of nutrient medium. A 

temperature of 30 C and light intensity of 150 μmol/m2/s were used. The flow rates 

and CO2 concentrations measured for each experiment are shown in Table 6.2. 

Theoretical CO2 concentrations computed are higher than the ones measured (24%), 

which might be attributed to need for calibration of the equipment, or to faster leakage 

of the CO2 from uneven mixing of the two gases inside the box.  

  



149 

 

Table 6.2. Flow rates of the gas inlets and CO2 concentration in the greenhouse box 
used during the CO2 experiments. 

Experiment 
Air flow rate 
(cm

3
/min) 

CO2 flow rate 
(cm

3
/min) 

Measured CO2 
concentration 
(mg/kg) 

Theoretical 
CO2 
concentration 
(mg/kg) 

1 300 0 700 1,150 

2 1,000 2.5 4,300 4,930 

3 1,000 42.5 50,000 62,960 

 

6.3.3.2 Factorial experiments 

The factorial experiments were conducted with a CO2 concentration of 4,300 mg/kg 

selected based on the results of the preliminary experiments. Light intensities tested 

were 100 and 150 μmol/m2/s with a photoperiod 24:0 h. The temperatures used were 

22 – 25 C and 34 – 37 C. Table 6.3 shows the conditions used in each experiment. 

The high light intensity 150 μmol/m2/s was achieved with an extra fluorescent rod. The 

lower temperature 22 – 25 C was obtained by using an in-house designed water bath 

as shown in Figure 6.2. The temperature of the tap water used for cooling was 

approximately 16 C and the flow rate was approximately 110 cm3/min and it was 

achieved by the use of a Watson-Marlow H.R. peristaltic pump to overcome piping 

frictions. Duplicate samples (A and B) were taken from some sacrificial samples and 

Series 1 and 2 were repeated, to examine the methodological errors of the ion 

chromatography procedure. The second trials from Series 1 and 2 were used for the 

calibration, as they run for longer period, which would include cells dead phase and 

facilitate calibration of the corresponding parameter. Evaporation of the medium from 

the wells in Series 2 and 3 (6.4.1.2) was resolved by dilution of the wells after every 

measurement back to their initial volume. 

 

6.3.3.3 Description of measurements 

Optical density is the most common way to measure biomass concentration as it 

provides an immediate result. The optical densities of the samples taken each day 

were measured immediately, and then the samples were refrigerated until 

determination of anions by ion chromatography (IC) at the end of each series.  

The optical densities of 2 mL biomass samples in cuvettes were measured with a 

Camspec M550 Double Beam Scanning UV/Visible Spectrophotometer. The calibration 
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curve for these sample measurements used 100 mL algae samples which 

corresponded to optical density readings of around 0.2, 0.5, 0.6, 1.2 and 2, and had 

been cultivated in 1 L bottle. Following measurement of their optical density, the 

calibration samples were filtered in a vacuum filter using a 1.5 μm pore-sized filter, and 

then the net mass of biomass was determined after oven drying at 105 C to constant 

mass.   

Table V.2 of Appendix V shows the results of the calibration measurements. 

Absorption was measured at a wavelength of 750 nm, as it is out of the visible light 

range, it does not interfere with the wavelength emitted by variable chlorophyll levels 

throughout the cells’ lifetime (e.g., issues of absorbance higher than expected at low 

densities, due to high levels of chlorophyll grown at a point with low biomass 

concentration) and is that selected in most literature methods (Gonçalves et al., 2014; 

Quinn et al., 2011). More details of the calibration process are analysed in Appendix V.  

Nitrate, phosphate and other ion (fluoride, 𝐹−, chloride, 𝐶𝑙−, nitrite, 𝑁𝑂₂−, bromide, 

𝐵𝑟−, and sulphate, 𝑆𝑂₄2−) concentrations were measured in all of the samples by ion 

chromatography using the ICS 1100 Dionex IC system with AS-DV autosampler. The 

anion system’s characteristics were: IonPac AS23 4mm analytical column, IonPac 

AG23 guard column, AMMS 300 4 mm suppressor, 30 ˚C Column temperature, 4.5mM 

Na2CO3 + 0.8mM NaHCO3 Eluent, 1ml/min flow rate, conductivity detector, 25 μL 

injection volume. The samples collected over each series were filtered through a 0.45 

μm syringe filter. 1 mL of each sample was placed in an ion chromatography sample 

tube and diluted with 4 mL of Milli-Q water, to keep anion concentrations in 1:100 and 

1:50 nutrient dilutions within the detectable range (<200 mg/L) by the ion 

chromatography system.  

Light intensity was determined using a conventional Hansatech Quantitherm Light 

Meter. Air temperature of the area around the wells inside the greenhouse box was 

measured to be the same (± 2 C) as the temperature of the liquid algal cultures, using 

an H2O Glass Thermometer. pH was not measured for all experiments as it was not 

used in the model, but it generally ranged between 6 and 8. CO2 exposure was 

measured using a Fluke 975 Airmeter. Since the highest concentration used in the CO2 

experiments exceeded the upper detection limit of the meter, a 60 mL sample was 

taken from the greenhouse box air with a syringe and was injected into a sealable 

vessel (shown in Figure V.5 of Appendix V) of volume 10.750 L to dilute it for 

measurement. 
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6.3.3.4 Statistical analysis 

Statistical analysis to examine the significance of the effects of the different factors 

tested in the CO2 and the factorial experiments and their potential interaction was 

conducted in Excel. A t-test was done to compare the average results from the 

sacrificial and resampling measurements of biomass and nutrient concentrations. The 

1-way ANOVA of the CO2 experiments examined the effect of CO2 concentration on 

biomass growth and substrate depletion, by taking into account only the 4,300 mg/kg 

and 50,000 mg/kg CO2 levels, as the 700 mg/kg level did not have all of its 

measurements taken at similar times with the 4,300 mg/kg and 50,000 mg/kg levels. 

The 1-way ANOVA of the factorial experiments examined the effect of the initial 

nutrient concentration. The 2-way ANOVA of the factorial experiments examined the 

effect of temperature and initial nutrient concentration as well as their interaction. The 

regression was done each time by using the measurements of one time, to inspect the 

effect of each factor without the influence of time on each experiment. Specifically for 

the case of the CO2 experiments, this was done by testing all three CO2 experiments 

together at the 1st measurement (time 0), then testing the 2nd with the 50,000 mg/kg 

CO2 experiments at the 2nd measurement, the 1st with the 4,300 mg/kg CO2 

experiments at the 3rd measurement and the 1st with the 50,000 mg/kg CO2 

experiments at the 4th measurement.    

Plots of interactions between the variables were also created to show the effects of 

CO2 concentration, nutrient dilution, temperature and light intensity on the productivity 

of the experiments in an illustrative way (see 6.4.1.2). The productivity was computed 

for the first 3 measurements of the experiments, which correspond to approximately 90 

hours duration for the CO2 experiments and 43 hours for the factorial ones, to avoid 

including the start of cell death and to use times that were tested in all experiments. For 

simplification purposes, the production of these plots used average values between the 

sacrificial and resampling measurements, and the expected (not measured) initial 

nutrient dilutions.  
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Table 6.3. Conditions used on each factorial experiment. 
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Series 1, Try 1 01/12/14–
05/12/14 

1:200 
1:100 
1:50 

4,300 4,700 34 – 37  34.2 150  140 

Series 2, Try 1 19/01/15–
23/01/15 

1:200 
1:100 
1:50 

4,300 4,023 22 – 25  22.8 150  139 

Series 3 26/01/15–
02/02/15 

1:200 
1:100 
1:50 

4,300 4,400 22 – 25  23.5 100  84 

Series 4 02/02/15–
06/02/15 

1:200 
1:100 
1:50 

4,300 4,060 34 – 37  33 100  87 

Series 1, Try 2 09/02/15–
13/02/15 

1:200 
1:100 
1:50 

4,300 4,700 34 – 37  36.8 150  129 

Series 2, Try 2 25/02/15–
02/03/15 

1:200 
1:100 
1:50 

4,300 5,006 22 – 25  23.1 150  130 

 

Figure 6.2. Schematic of the water bath used for Series 2 and 3. 
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6.3.4 Model calibration 

6.3.4.1 Method  

Fitting of the model parameters to the experimental data was conducted using an 

iterative procedure in gPROMS 3.7.1, one of the leading software platforms for this 

task. The process used a standard mathematical mixed-integer non-linear 

programming fitting solver called MAXLKHD. The convergence criterion used for the 

solution tolerance is: 

1

|𝛷∗| + 1
(|∑

𝜕𝛷∗

𝜕𝜃𝑗
𝛿𝜃𝑗

𝑗
| +∑ |𝜇𝑗|𝑚𝑎𝑥 (0, 𝜃𝑗

𝐿 − 𝜃𝑗
∗, 𝜃𝑗

∗ − 𝜃𝑗
𝑈)

𝑗
) 

(66) 

∑ 𝑚𝑎𝑥 (0, 𝜃𝑗
𝐿 − 𝜃𝑗

∗, 𝜃𝑗
∗ − 𝜃𝑗

𝑈)
𝑗

≤ 𝑂𝑝𝑡𝑇𝑜𝑙 (67) 

where; 𝜃𝑗 is the 𝑗𝑡ℎ parameter to be estimated (including both model parameters and 

variance model parameters; 𝜃𝑗
∗ is the final value of that parameter; 𝜃𝑗

𝐿 is the lower 

bound imposed on the parameter; 𝜃𝑗
𝑈 is the upper bound imposed on the parameter; 

𝛷∗ is the final value of the maximum likelihood objective function; 𝛿𝜃𝑗 is the step taken 

in the parameter at the last iteration of the parameter estimation calculation; and 𝜇𝑗 is 

the Lagrange multiplier that corresponds to the bound constraints imposed on the 

parameter. The code used by the model is shown in Appendix V.  

The following criteria were applied to govern successful parameter estimation in 

gPROMS, though they were not always achievable in this problem due to its complexity 

and the numerous unknown parameters:  

1. An individual 95% t-value should be larger than the reference t-value. 

2. The standard deviation of each model parameter should be much lower than its 

individual 95% t-value. 

3. The values of the diagonal of the correlation matrix should be close to zero. 

4. The weighted residual should be less than the -𝜒2value to indicate an adequate 

model construct. 

A constant relative variance model was selected from the four different variance 

models provided (constant variance, constant relative variance, heteroscedastic and 

linear variance). A parameter space had to be searched for the optimal solutions to be 

found. The initial guesses selected for each parameter as well as the parameters 
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selected to be first estimated had an influence on the estimated values. Multiple trials 

of initial guesses of each parameter within its bounds were needed to estimate a local 

minimum of the objective function. 

 

6.3.4.2 Simplified model  

The difficulty in satisfying the parameter estimation requirements and finding a 

satisfying fit between the measurements and the predictions of the calibrated model led 

to an attempt to calibrate a simpler form of the model. The calibration technique in this 

case used the same solver as described in 6.3.4.1, and treated the two differential 

equations of the model (Eq.63 and Eq.65) independently. The biomass growth and 

substrate depletion measurements for the sacrificial samples were described in Excel 

by the lowest order polynomials that gave the best fit. 3rd order polynomials were 

selected for all biomass curves, as they all gave 𝑅2=1.0. Regarding the substrate 

curves, given the low values of the substrate concentrations and that some polynomials 

were predicting negative values, the polynomials that gave 𝑅2>0.9 and no negative 

values for the examined range were selected. These polynomials replaced the biomass 

concentration in Eq.65 and the substrate concentration in Eq.63. The polynomial 

parameter values were fixed at the beginning of the estimation process, until the final 

step of the process.  

First, the calibration of the model was completed for each experiment separately by 

using different polynomials for the three initial substrate concentrations tested. This 

was done for all four experimental series. Then, the four different pair combinations of 

the four series were each calibrated simultaneously. The parameters related to 

illumination were estimated for the series conducted at the same temperature, whereas 

the temperature parameters were estimated for the series with the same illumination 

intensity. Finally, parameter estimation was carried out using all four series 

simultaneously, excluding the use of the polynomials and relating the two equations to 

one another. The script of the final stage is shown in Appendix V. 

 

6.3.4.3 Full model  

The initial bounds used for the parameters during the calibration process were taken 

from the upper and lower values found in the literature (shown in Table V.5 and Table 

V.6 in Appendix V). Simultaneous estimation of the 13 parameters was not possible 

due to the interactions between them. Therefore, the estimation process was divided in 
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stages. In the first stage, the model included only the utilisation factors of the nutrients 

(nitrates and phosphates), assuming the remaining utilisation factors to be equal to 

their maximum value of 1. Parameter estimation was performed on all of the process 

entities that correspond to the conditions of each experiment conducted. Then, the 

model was gradually built up by using the values estimated in the previous stage as 

initial guesses. The 5 stages are summarised in Table 6.4. The 6th stage attempted to 

exclude the Monod term for nitrates. It was not used for the final results, just to 

examine the effect of this on the fit (as the nitrates depleted first in the measurements, 

causing the interruption of growth in the model).   

 

Table 6.4. Stages of the parameter estimation for the full model. 

Calibration 
stage 

Parameters included in the 
calibrated model   

Experiment used 

1st stage 𝐾𝑁, 𝐾𝑃  factorial experiments 

2nd stage 𝐾𝑁, 𝐾𝑃, 𝐾𝐼  factorial experiments 

3rd stage 𝐾𝑁, 𝐾𝑃, 𝐾𝐼, 𝐸𝑎 , 𝑇𝑜𝑝𝑡𝐾𝐶𝑂2 CO2 experiments 

4th stage 𝐾𝑁, 𝐾𝑃, 𝐾𝐼, 𝐸𝑎 , 𝑇𝑜𝑝𝑡𝐾𝐶𝑂2 factorial experiments (fixed 
parameters from the previous 
stage) 

5th stage 𝐾𝑁, 𝐾𝑃, 𝐾𝐼, 𝐸𝑎 , 𝑇𝑜𝑝𝑡𝐾𝐶𝑂2 factorial experiments (unfixed 
parameters) 

6th stage 𝐾𝑃, 𝐾𝐼, 𝐸𝑎 , 𝑇𝑜𝑝𝑡𝐾𝐶𝑂2 1:100 Series 3 of the factorial 
experiment 

The parameter estimation included the following steps: 

1. Initial conditions for biomass and substrate concentrations were given. 

2. The parameters of depth and incident light on the surface of the PBR were fixed 

at all times for the parameter estimation runs. The rest of the parameters were 

gradually unfixed as calibration passed to the next stages.  

3. Initial parameter estimation in each model was done based only on the 

measurements of the biomass concentration. When a good fit was achieved 

(checked with the lack of fit test), with small confidence intervals for the 

estimated parameters, the parameter estimation was repeated by adding the 

measurements for the substrate concentration.  

4. The previous step was repeated but with loose parameter bounds. 

5. The model was selected according to its fit and its statistical summary. 

6. Parameter estimation was repeated for the selected model but with the use of 

all measurements with all different initial conditions. 
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Also:  

 The CO2 experiments were excluded from the final parameter estimation for the 

full model, as the 700 mg/kg level for 1:100 and 1:50 nutrient dilutions gave 

initial nitrate and phosphate measured concentrations (see Table V.7 of 

Appendix V) that deviated substantially from their expected values (Table V.1 of 

Appendix V).  

 An inhibition half saturation constant for the CO2 depletion was used in its 

Monod term, as used by He et al. (2012).  

 The average nutrient values measured in sacrificial samples A and B were 

used.  

 The initial conditions of the sacrificial samples were used for the parameter 

estimation in each model entity, as they gave better predictions of both 

measurements (the sacrificial and the resampling ones).   

 The initial guesses of the parameters in each estimation run, together with their 

bounds, strongly affected the final results, a fact which could be attributed to the 

number of local optima for estimation of the multiple parameters. The validity of 

the results could be greatly affected by this. Hence, the model had to be 

simplified to reduce the number of parameters. Various initial guesses were 

tried in the different runs to examine if they gave similar results.  

 The constant relative variance used for the estimation was 0.1 for both 

biological variable (biomass and substrate concentration) measurements, in 

order to avoid over-parameterising the problem. The actuall overall uncertainty 

of the measuring methods was not known, but the average discrepancy 

between the nutrient measurements and their theoretically expected values was 

0.15 (6.5.1).  

 

The weakness in this method is that subsequent fits depend on previous fits. The 

overall purpose of this estimation approach is the development of a semi-empirical 

approach to help in the better fit of the model to the measurements and subsequently 

the optimal design of the reactor.  
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6.3.5 Model application for design of the photobioreactor  

To maintain wild algae in shipboard PBRs in the exponential growth phase, 

avoiding long lag periods (especially in the winter period, 4.5.3) and the toxic effect of 

NO (4.3), a shipboard PBR can be operated semi-continuously (where a fixed biomass 

volume is removed at regular time intervals, and an equal volume of fresh medium is 

instantaneously added, increasing nutrient concentrations and diluting biomass 

concentration). By gradual dilutions, the biomass concentration would be maintained 

within levels that facilitate fast growth (e.g., as used in studies such as Sánchez et al., 

2002; Ribeiro et al., 2008). The model was used to design the dilution regime to 

maximise biomass production. This study used the full model for the simulation of a 

semi-continuous PBR design in gPROMS (6.2). The simulations used the fixed 

parameters from Table 6.6, which came from values used in the literature and shown in 

Table V.5 of Appendix V (given that the estimated parameters in 6.4.2 exceeded their 

physically meaningful bounds). Optimisation of flue gas utilisation by algae has been 

previously simulated in an operation where CO2 is fed in a semi-continuous mode, but 

other nutrients and temperature were not taken into account (He et al., 2012).  

Three different simulations were performed using an iterative procedure, for three 

different objective functions: the dynamic maximisation of the biomass concentration, of 

the productivity (𝑃𝑉), and the dynamic minimisation of the PBR volume. The control 

variables used in both case study simulations were depth, temperature and illumination 

intensity, as time invariant control types, and the CO2, nitrate and phosphate 

concentrations and dilution rate as piecewise constant control types (Table 6.5). The 

initial guesses used for the above control variables, as well as the values of the fixed 

parameters, are the same as those given in Table 6.6. The time horizon used for all 

case studies was 350 hours. 

  



158 

 

                                                                              

Table 6.5. Control variables and types. 

Variable Control type Allowable 
values 

Initial 
guess 

Lower 
bound 

Upper 
bound 

𝑑 [m] Time-invariant Continuous 0.12 0.03 0.20 

𝐼0 
[μE/m

2
/sec] 

Time-invariant Continuous 90 0 180 

𝑇 [K] Time-invariant Continuous 298 0 320 

𝐷 [1/h] Piecewise-
constant 

Continuous 0.0027 0.0000 0.1000 

𝐶𝑁,0 [g/L] Piecewise-
constant 

Continuous 0.3 0.0 0.9 

𝐶𝑃,0 [g/L] Piecewise-
constant 

Continuous 0.09 0 0.9 

𝐶𝐶𝑂2 [L/L] Piecewise-
constant 

Continuous 0.005 0 0.2 
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Table 6.6. Parameter values used for the fed-batch simulation in gPROMS. 

Parameters Value 

𝑑 [m] 0.12 

𝐼0 [μE/m
2
/sec] 90 

𝑇 [K] 298 

𝑅 [J/mol/K] 8.314 

𝐷 [1/h] 0.0027 

𝐶𝑏,0 [g/L] 0.06 

𝐶𝑁,0 [g/L] 0.3 

𝐶𝑃,0 [g/L] 0.09 

𝐶𝐶𝑂2 [L/L] 0.01 

𝜇𝑚𝑎𝑥[1/h] 0.1 

𝑚𝑎 [1/h] 0.002 

𝑚𝑠/𝑁[gnitrates/g cells/h] 0.0001 

𝑚𝑠/𝑃[gphosphates/g cells/h] 0.0001 

𝐾𝐼 [μE/m
2
/sec] 100 

𝐾𝑎 [m
2
/g] 0.05 

𝐾𝑁 [mol/m
3
] 0.05 

𝐾𝑃 [mol/m
3
] 0.0027 

𝐾𝐶𝑂2 [m
3
/m

3
] 0.0000073 

𝑌𝑏/𝑁 [-] 0.5 

𝑌𝑏/𝑃 [-] 4 

𝐸𝑎 [J/mol] 100,000 

𝑇𝑜𝑝𝑡 [K] 303 

 

6.4 Model calibration and application – Results 

6.4.1 Experimental results  

6.4.1.1 Determination of optimal carbon dioxide concentration 

Results of the preliminary CO2 experiments are shown in Figure 6.3. Of the three 

different CO2 concentrations, 4,300 mg/kg was shown to give higher growth than 700 

mg/kg and 50,000 mg/kg. In contrast, the literature suggests that the optimal 

concentration is around 50,000 mg/kg (Myers, 1953; Nagaich et al., 2014; Nakano et 

al., 1996). The highest biomass concentration and productivity were reached with the 

1:100 and 1:50 nutrient dilutions. 
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Figure 6.3. Results for the growth of Chlorella sorokiniana sacrificial and resampling 
plates under three different dilutions of the media (1:200, 1:100, 1:50) and three 
different CO2 concentrations (700, 4,300, 50,000 mg/kg). 

 

6.4.1.2 Factorial experiments 

The growth rate was best for the highest nutrient dilution tested, 1:5, the lower 

temperature tested, 22 – 25 C, and the higher light intensity tested, 150 μmol/m2/s 

(Series 2). The nutrient removal rates for nitrates and phosphates were 97% and 37%, 

respectively. Uptake of nitrates was very rapid, with most series of the 1:200 and 1:100 

dilutions experiments showing complete depletion of nitrate by the second 

measurement (Figure 6.5). It should be noted that results for biomass and nutrient 

concentrations may be overestimated due to the evaporation of the medium from the 

wells (e.g., up to 8 – 10 mL/day during Series 4), which meant that resampling wells 

contained a reduced volume at the end of the series of experiments.  

Experimental data corresponding to CO2 and factorial experiments are shown in 

Table V.7 and Table V.8 of Appendix V. The outcomes mentioned are also verified in 

Figure 6.7, showing the plots of interaction between the variables, CO2 concentration, 

nutrient dilution, temperature and light intensity, on the productivity of the experiments. 

The effect of the CO2 concentration at its two low values tested is greater than the 

effect of the initial nutrient dilution, as shown in plot A of Figure 6.7. Plot B shows no 

interaction between temperature and light intensity, though a slightly greater effect of 

temperature than light intensity. Plots C to D also confirm the greater effect of 
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temperature compared to light intensity and show a slightly greater interaction between 

the nutrient dilution and temperature, compared to nutrient dilution with light intensity.  

The factorial experimental measurements are similar to the Blair et al. (2014) study, 

which used the same nutrients and genus, but flasks rather than plates. The fact that a 

significant effect of nutrient concentration and light on growth was found in their study, 

using similar nutrient concentrations, temperature and light intensities – although they 

obtained a much lower growth rate with the flasks – indicates that illumination and 

nutrients are simultaneously limiting factors and they are well taken into account for the 

model development.  

 

 

Figure 6.4. Biomass concentration measured for the four factorial experimental series. 
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Figure 6.5. Nitrate concentrations measured for the four factorial experimental series. 

 

  

 

Figure 6.6. Phosphate concentrations measured for the four factorial experimental 
series. 
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Figure 6.7. Interaction between the CO2 concentration, nutrient dilution, temperature 
(T) and light intensity (I) on the productivity of the CO2 experiments (I) and the factorial 
experiments (II-VI).  

 

 

6.4.1.3 Statistical analysis 

The P-values of the statistical analysis (6.3.3) are shown in Table 6.7 and Table 

6.8. The t-test values from the average results from the sacrificial and resampling 

measurements of biomass and nutrient concentrations in the CO2 experiments showed 

an insignificant effect of the difference between the sampling methods. The 1-way 
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ANOVA results showed an insignificant effect for both the CO2 and initial nutrient 

concentration factors and no interaction between them. The regression P-values from 

the 1st measurement showed that the methodological measuring errors did not have 

significant effect on the initial values measured. The rest of the tests show that CO2 

concentration has a significant effect on the biomass concentration at the 2nd and 3rd 

measurements, whereas initial nutrient concentration becomes a significant factor at 

the 4th measurement. Finally, the two factors do not have a significant effect on the 

nitrates and phosphates at measurement time, which shows that better experimental 

design and appropriate frequency of measurement could detect differences for the 

different nutrient concentrations used. The high F-values of almost all tests imply 

insufficient evidence to prove a significant effect of the factors on growth.  

Regarding the factorial experiments, t-tests for the effect of sacrificial samples A 

and B, taken at each ion chromatography measurement on Trials 2 of Series 1 and 2, 

showed no significant difference between the two replicates, thus their average values 

were used for the model’s parameter estimation. Similarly, the average of sacrificial 

measurements from Series 1 and 2 and sacrificials of the rest of the experiments did 

not show a great difference from three variables measured in the resampling wells. 

Finally, Trials 1 and 2 for Series 1 and 2 did not show significantly different results 

either. The 1-way ANOVA of the effect of initial nutrient concentrations in each 

experiment showed an insignificant effect on biomass and nitrates, but significant on 

the phosphates in all experiments. The 2-way ANOVA showed an insignificant effect of 

the temperature on the biomass and nitrates and no interaction between temperature 

and initial nutrient concentrations in any of the experiments. Regression showed that 

illumination had a significant effect on the biomass only at the second and third 

measurements. Both nitrates and phosphates are shown to be significantly affected by 

the initial nutrient concentrations, which is more rational than the 1-way ANOVA result, 

due to independence from the different times. Also, temperature and illumination 

appeared to be important to the nutrient concentrations but their effect was lost after 

time zero, which would imply that this outcome is just an expression of possible 

measurement errors.    
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Table 6.7. P-values of the statistical tests of the CO2 experiments. Shaded boxes 
indicate significant effect from P-values < 0.05. 

Statistical test Factor  Biomass Nitrates Phosphates 

Paired two-tailed t-test Sacr-Resamp 0.467 0.278 0.496 

1-way ANOVA 

700 mg/kg CO2 0.77 0.28 0.09 

4,300 mg/kg CO2 0.71 0.57 0.41 

50,000 mg/kg CO2 0.58 0.66 0.33 

2-way for 4,300 and 50,000 CO2 

CO2 0.24 0.32 0.34 

Nutrients 0.63 0.61 0.34 

Interaction 0.87 0.51 0.41 

Regression 

1
st
 measurement 

Nutr 0.81 0.24 0.23 

CO2 0.29 0.33 0.33 

2
nd

 measurement 
Nutr 0.052 0.45 0.28 

CO2 0.013 0.50 0.75 

3
rd

 measurement 
Nutr 0.35 0.67 0.017 

CO2 0.041 0.014 0.12 

4
th
 measurement 

Nutr 0.35 0.054 0.09 

CO2 0.085 0.19 0.38 
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Table 6.8. P-values of the statistical tests of all the factorial experimental series. 
Shaded boxes indicate significant effect from P-values < 0.05.        

Statistical test Factor  Biomass Nitrates Phosphates 

Paired two-tailed t-test 

SacrA&B (Series 1&2 Try2) - 0.51 0.46 

Sacr-Resamp 0.40 0.49 0.32 

Try 1&2 (for Series 1) 0.59 0.41 0.19 

Try 1&2 (for Series 2) 0.29 0.49 0.59 

1-way ANOVA  

Effect of nutr. Series 1 Try 2 0.64 0.45 0.000006 

Effect of nutr. Series 2 Try 1 0.70 0.68 0.02 

Effect of nutr. Series 3 0.98 0.40 0.003 

Effect of nutr. Series 4 0.65 0.57 0.005 

2-way for Series 1,2,3,4 
and effect of Nutrients, 
Temperature, Illumination  

Series 1 & 2 
(high I) 

Temperature 0.13 0.69 0.52 

Nutrients 0.72 0.34 0.000006 

Interaction  0.66 0.89 0.34 

Series 3 & 4 
(low I) 

Temperature 0.98 0.68 0.036 

Nutrients 0.76 0.23 0.000003 

Interaction  0.91 0.84 0.61 

Series 2 & 4 
(low T) 

Temperature 0.15 0.76 0.14 

Nutrients 0.70 0.28 0.00006 

Interaction  0.69 0.80 0.37 

Series 1 & 3 
(high T) 

Temperature 0.69 0.77 0.86 

Nutrients 0.44 0.26 0.00000004 

Interaction  0.95 0.94 0.60 

Regression 

1
st
 

measurement 

Nutrinets 0.72 0.000002 0.000001 

Temperature 0.065 0.027 0.054 

Illumination 0.14 0.074 0.043 

2
nd

 
measurement 

Nutrinets 0.11 0.0015 0.0013 

Temperature 0.10 0.67 0.51 

Illumination 0.0005 0.25 0.09 

3
rd

 
measurement 

Nutrinets 0.049 0.24 0.00001 

Temperature 0.18 0.89 0.79 

Illumination 0.008 0.80 0.94 

4
th
 

measurement 

Nutrinets 0.54 0.27 0.08 

Temperature 0.060 0.23 0.32 

Illumination 0.50 0.79 0.60 
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6.4.2 Attempted model calibration  

The results of the simplified model calibration are shown in Table 6.9, and the 

predictions of the calibrated simplified model (6.3.4.2) are shown along with the 

measurements in Figure 6.8 to Figure 6.11. The deviations are presented in Table 6.10 

to show the individual actual over- or under-estimations of the model. t-test values 

between the experimental results and predictions for the different measurements of 

each experimental series are also given to assess the dependence of deviation on the 

measurement progress. The root mean square errors of the predicted variables were 

36.7% and 9.5% for the biomass and substrate, respectively. Parameters 𝐾𝑎, 𝐾𝐼, 𝐾𝑆 

and 𝑚𝑆 hit their bounds, as given in the literature, and the confidence intervals were not 

possible to estimate. Estimation of 𝑌𝐶/𝑆 was in agreement with its expected value 

according to grams of substrate uptaken for the measured grams of biomass produced. 

A test parameter estimation done for Series 1 using the normalised Arrhenius equation 

gave the same fit, implying that the Arrhenius equation does not influence the 

calibration much at this stage. The results of the attempt to calibrate the full model 

(6.3.4.3) are shown in Table V.9 to Table V.14 and Figure V.6 to Figure V.13 of 

Appendix V.    

 

Table 6.9. Values of the estimated parameters from the calibration of the simplified 
model. 

Parameter  Optimal Estimate Initial Guess Lower Bound Upper Bound 95% confidence interval 

𝐸𝑎  27606 27312 20000 40000 5089 

𝑘0  4001126 4001160 3000000 4100000 8090000 

𝐾𝑎  4 4 1 4 42 

𝐾𝐼  800 800 500 800 9003 

𝐾𝑆  3.000 2.862 2.000 3.000 5.589 

𝑚𝑆  0 5E-09 0 0.0004 - 

𝑚𝑎  0 0.003 0 0.08 0.0006 

𝑌𝐶/𝑆  2.3392 2.7808 1.0000 4.0000 0.1006 
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Figure 6.8. Biomass concentrations measured and predicted with the calibrated 
simplified model for Series 1 and 2 and the different nutrient dilutions. 
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Figure 6.9. Biomass concentrations measured and predicted with the calibrated 
simplified model for Series 3 and 4 and the different nutrient dilutions. 
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Figure 6.10. Substrate concentrations measured and predicted with the calibrated 
simplified model for Series 1 and 2 and the different nutrient dilutions.  
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Figure 6.11. Substrate concentrations measured and predicted with the calibrated 
simplified model for Series 3 and 4 and the different nutrient dilutions.  
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Table 6.10. Average deviation percentage between the variables predicted by the 
calibrated simplified model and the measurements of the factorial experiments (the 
1:200, 1:100, 1:50 nutrient dilutions for the sacrificial (S) and resampling (R) wells are 
shown; N/M are missing measurements). 

 Series 1 Series 2 Series 3 Series 4 

 average 
% 
deviation 

t-test average % 
deviation 

t-test average % 
deviation 

t-test average % 
deviation 

t-test 

𝐶𝑏 
(1:200R) 

31.9 0.208 57.8 0.014 50.6 0.058 11.5 0.512 

𝐶𝑏 
(1:200S)  

26.4 0.154 45.2 0.088 M/M M/M 21.8 0.256 

𝐶𝑏 
(1:100R) 

-10.5 0.850 43.1 0.118 40.0 0.141 33.2 0.084 

𝐶𝑏 
(1:100S) 

9.4 0.509 38.3 0.103 M/M M/M 33.7 0.064 

𝐶𝑏 (1:50R) -22.5 0.320 -1.7 0.469 -8.7 0.997 12.4 0.314 

𝐶𝑏 (1:50S) -40.1 0.033 26.4 0.259    -23.9 0.494 

𝐶𝑆 
(1:200R) 

50.8 0.280 -7.6 0.724 -27.0 0.618 37.7 0.239 

𝐶𝑆 
(1:200S) 

46.5 0.241 -13.7 0.701 M/M M/M -12.3 0.404 

𝐶𝑆 
(1:100R) 

47.3 0.178 -16.5 0.621 -47.4 0.543 -9.0 0.085 

𝐶𝑆 
(1:100S) 

55.6 0.059 11.7 0.947 M/M M/M 0.6 0.998 

𝐶𝑆 (1:50R) 54.8 0.016 13.7 0.834 -24.3 0.578 20.0 0.370 

𝐶𝑆 (1:50S) 55.2 0.041 30.6 0.259   22.3 0.230 

 

 

6.4.3 Model-based photobioreactor design and operation  

The dynamic behaviours of the key variables in the case studies with the different 

objective functions to maximise biomass concentration and productivity and minimise 

PBR volume are shown in Figure 6.12. The corresponding time series of the control 

variable values required by the different case studies are presented in Figure 6.13. The 

case studies based on the different objective functions gave different results to the 

variables computed. PBR diameter is limited by light penetration, a fact which would 

result in a greater surface required per PBR volume and, hence, in high material 

requirements and large additional weight for a large-scale shipboard PBR. However, 
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PBR diameter was not used as a control variable as weight minimisation or constraint 

was not required by the current case studies, as it is shown by the results (Figure 6.3 

and Figure 6.4) to be long enough for the growth and algae cell death.      

 

 

Figure 6.12. Time series of the key variables (biomass concentration, culture volume, 
nutrient concentrations, average light intensity, growth rate) for a time horizon of 350 
hours, for the case studies that focused on optimising the biomass concentration, 
productivity and photobioreactor volume optimisation.  
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Figure 6.13. Time series of the control variables (i.e., nutrient feed concentrations, 
dilution rate, instant illumination intensity, temperature) for a time horizon of 350 hours, 
for the case studies that focused on optimising the biomass concentration, productivity 
and photobioreactor volume optimisation.   

 

6.5 Model calibration and application – Discussion  

6.5.1 Critical appraisal of the experimental approach 

The experimental procedure had several limitations, as presented in the 

paragraphs below, potentially giving rise to errors in the results. The limitations were 

also responsible for the unclear significance of the factors’ effects on the three 

variables.  

Low frequency of measurements. More frequent measurements were needed for a 

more valid calibration using an average of the measurements. The fact that the four 
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phases of the growth are not identifiable in the plots of the experimental data illustrates 

that there are insufficient data points (6.3.1) to describe the expected features of the 

growth curve l, such as the lag phase described by the Arrhenius term.  

Biomass precipitation before OD readings. Optical density readings had to be taken 

in the first minute after shaking of the sampling cuvette, while the algae remained 

suspended. However, the optical density fluctuated for the first few minutes, due to 

algae settling. Consequently, initial biomass optical density measured at time 0 was not 

the same for all experiments as expected (standard deviation 0.012 g/L). This could 

also be attributed to the loss of biomass during transportation (e.g., from the cuvette to 

the well). 

Initial cultures of different age. There was a difficulty in maintaining a culture of the 

same age for the beginning of each experimental series. Incubating a new culture 

before the beginning of each experimental series would be time consuming; hence, the 

same cultivation bottle was used for each series and was diluted every time the broth 

volume was depleting. The difference in the culture age at the beginning of each 

experiment series influences the growth rate. This would result in some parameters of 

the model, such as specific maintenance rate, to actually be different from those 

estimated in the different experimental series. 

Initial conditions. The lack of good fit of the model to the resampling 

measurements when using the sacrificial measurements for its calibration indicated the 

considerable effect of the failure in keeping the initial conditions used on the estimated 

growth curve stable among the different measurements, due to measurement errors. 

Inadequate calibration curve. A complete calibration curve was not achieved. 

calibration of the spectrophotometer without the dilution of samples with optical 

densities greater than 0.8 reduced the accuracy of the measurements of the higher 

biomass concentrations as higher concentrations approach the detection limits of the 

instrument (see Figure V.3, Table V.2 and Table V.3 of Appendix V). Furthermore, the 

expired calibration of the Thermo Electron UV/Vis Spectrophotometer might have 

caused significant errors (measurements and description of the calibration curves are 

shown in Figure V.4 and Table V.4 of Appendix V).  

Dilution of IC samples. The samples of 1:50 nutrient dilution at time 0 gave an IC 

measurement which exceeded the upper detection limit (200 mg/L) of the 

chromatograph. Consequently, all samples had to be diluted, which decreased 

accuracy for the samples of 1:200, as they approached the lower detection limits. A 

large discrepancy (of around 5% for nitrates and 25% for phosphates measured in the 
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main experiments) at time 0 was shown when comparing the initial nutrient 

concentration values measured with the ones estimated according to the media 

specification sheet (estimation shown in Table V.1 of Appendix V). This could be 

partially attributed to the fast nutrient uptake, but also to unfamiliarity with the ion 

chromatography method, as the nutrients were not only underestimated. A greater 

number of experiments could provide better estimation of the model parameters and a 

better fit of the model (see errors of the predictions in 6.5.2). 

Also, a stop in growth (e.g., Series 1 1:50 in Figure 6.8 and Figure 6.10, and Series 

3 1:50 in Figure 6.9 and Figure 6.11) shown in the experiments after the depletion of 

nitrates or phosphates did not occur in all series of experiments (e.g., Series 2 1:100 

and 1:50 in Figure 6.8 and Figure 6.10, and Series 3 1:100 in Figure 6.9 and Figure 

6.11). A possible error in the experimental method that could be responsible for this is 

non-detectable minor concentrations of nitrates and phosphates. 

Evaporation of the medium. Evaporation of the medium from the wells (6.4.1.2) was 

a serious issue as it affects the optical density and ion chromatography results.  

Inadequate illumination intensity measurements. There was variability of 

illumination intensity distribution from the light rods to the different wells, depending on 

their position on the plate (±20 μmol/m2/s).  

Gas leakage. Gas leakage from the greenhouse box may have resulted in variable 

CO2 concentrations over time and within the box. 

Extra problems during the CO2 experiments. Additional problems arose which 

resulted in greater errors. First, the non-fully-transparent acrylic lids used might have 

blocked light and mass transfer. Second, CO2 may have leaked from the chamber, 

where the 50,000 mg/kg CO2 concentration was monitored. Also, the lower initial 

biomass concentration for the 700 mg/kg CO2 level used might have caused a longer 

adaptation period. Finally, ion chromatography sample dilution was omitted during 

those experiments at that time due to unfamiliarity with the method. This fact may have 

led to inaccuracy of the nutrient concentrations measurements at time 0 (especially for 

the 1:50 dilution), which is revealed by their great difference from the rest of the 

measurements at time 0 in the CO2 experiments (Table V.1 of Appendix V).  

If each data point that was used to draw the plots (Figure 6.4 to Figure 6.6) had 

been the average over numerous observations, the results might have had a better fit 

(6.3.1). 
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6.5.2 Attempted model calibration  

As expected by Demidenko (2013) (6.3.1), convergence on a global optimum was 

difficult to obtain in this non-linear regression, and the goal in this calibration was 

adapted from identifying a global optimum to finding a local optimum that estimates all 

parameter values within the range used in the literature. The experiments did not follow 

the same assumptions (e.g. consideration of chlorophyll to carbon ratio, see 2.3.6.3.3) 

used by the model (Zonneveld, 1998). Also, they were not designed according to the 

Xin et al. (2010) method (concentration of the non-limiting nutrient factor constant in 

each case, hence, data to be in accordance with Monod’s model) and Bernard and 

Rémond (2010) method (temperature efficiency factor using cardinal temperature, see 

6.2) for estimation of various limiting factors’ parameters. The optimal values of each 

variable were not known, thus, the estimation of the model parameters using 

experiments where only one limiting factor acted each time was impossible.  

Root mean square errors of the predictions were 36.7% and 9.5% for the biomass 

and substrate, respectively (6.4.1.2), which was comparable to the average analytical 

error of the initial substrate concentrations (6.5.1).  

The model has a great number of parameters. A large deviation (Table V.12 of 

Appendix V) was observed in the estimated values of the parameters across the 

different stages of the calibration (Table 6.4). This fact could be attributed to the crucial 

consequences of the full model’s complexity or to the calibration method. This was 

solved by stage-wise calibration, which had as a main problem the consideration of the 

N and P nutrient concentrations in a single substrate term in the model. Problems with 

the experiments (6.5.1) led to additional problems. The fact that the optimal estimations 

of the parameters did not give a good fit to the measurements with the model, could be 

a consequence of the number of stages of the calibration and of the errors in the 

measurements. The following observations were made regarding the estimated 

parameters.   

Parameters outside meaningful bounds. Another problem encountered was that 

several parameters fell close to or outside one of their meaningful bounds. The 

inclusion of multiple factors in the biomass concentration formula – hence, 

multiplication with more values that are lower than 1 – does not allow the maximum 

growth rate to reach as a high peak value as it would have with fewer limiting factors. 

Therefore, during the calibration process, the half saturation constant values (KI, KN, 

KP, KCO2) had to decrease to levels outside their lower bound reported in the literature, 

in order to increase the corresponding utilisation factors. The model itself however is 
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able to show the stages of the typical microbial growth curve (Figure 2.12), when the 

parameters are not limited to their physically meaningful bounds. One of the best fits of 

the full model (Eq.60) is shown in Figure 6.14, the parameter values of which are 

presented in Table V.16 of Appendix V. 

No consideration of metabolism in the model. Due to the rapid uptake of the 

nitrates measured (6.4.1.2), the models (simplified and full one) predicted an early stop 

to growth. The most limiting factor in the given experimental conditions seems to be the 

nitrate concentrations, which is also verified by the fact that the yield over phosphates, 

Yb/P, is estimated with a higher value than the yield over nitrates, Yb/N. In some of the 

modelled biomass growth curves, a sudden decrease is shown instead of the smooth 

peak before apoptosis, due to the very low values taken by the nitrates efficiency factor 

in Eq.60 when nitrates deplete completely. In reality, as shown by the experiments in 

most plots (Figure 6.4 and Figure 6.5), even after the extracellular nitrates take values 

of zero, there is still growth. This indicates that metabolic characteristics and 

intracellular nitrate concentrations play a significant role in growth. When nitrates are 

excluded in stage 6, in order to show the detrimental effect of including the nitrate 

factor without including metabolism, there was a better fit (Table V.15 and Figure V.14 

of Appendix V). This was the reason for the simplified model calibration attempt where 

the two nutrients were combined in one term as a substrate, regardless the fact that N 

and P have different roles and metabolic functions (2.3.2.4). Another way to overcome 

this, instead of including metabolic factors in the formulae, would be to measure the 

internal nutrient concentration experimentally.  

Non-detectable nutrient concentration. Sometimes phosphates were not depleted 

in the model because biomass stopped growing in the model due to the nitrate 

depletion used from the experimental results. Thus, the parameter estimation process 

predicted higher values of the maintenance supply rate of minimum phosphates 

consumption to maintain cells, mP values, which also happened to be partially 

determined by the random selection of the initial guesses. However, since there is 

inconsistent stop in growth shown after the depletion of nitrates or phosphates among 

the different series of experiments (6.5.1), it is not only the model that has an error but 

also the experimental method. This is supported by the fact that there is better fit at 

high (1:50) nutrient levels (measurements at low ion chromatography were not 

accurate enough to calibrate model).   

Lag phase: Given that some of the factors that influence lag behaviour are culture 

temperature and pH history (2.3.6.3.4), the fact that the cultures of the different 
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experimental series had a different age might have influenced the differentiated results 

across the series of experiments. It might have been more accurate if an empirical term 

was used in the model that includes both factors (as cited in 6.2). 

 

Figure 6.14. Stages of a typical microbial curve, as indicated in Figure 2.12, 
demonstrated by the full model.  

 

Modelling also yielded several interesting observations regarding the role of 

nitrogen and phosphorous in the real and modelled algal systems: 

Sensitivity to the half saturation constant for nitrates. A high sensitivity of the 

biomass concentration to the half saturation constant for nitrates, KN, parameter was 

observed during the calibration of the full model. Also, the sudden stop of growth 

shown in Figure V.8 – Figure V.11 in Appendix V proved to be sometimes very 

sensitive to certain parameters, such as the half saturation constant for phosphates, 

KP. 

Maintenance coefficient. Very low values (≤2 × 10-4 g.substrate/g.cells/h in all 

cases, as in Ruiz et al., 2011) were predicted of the maintenance coefficient, mS 

(2.3.6.3.3), which could be due to the fact that nitrogen and phosphorus are not 

elements essential for cell maintenance, unlike carbon (Ruiz et al., 2011).  

 

6.5.3 Optimisation of the photobioreactor using the model 

Figure 6.3 shows that all the control variables used in the case studies examined 

(6.4.3), nitrate and phosphate feed concentrations, dilution rate, instant light intensity 

and temperature, were computed to be higher in the case study that focused on 

optimising biomass concentration, rather than productivity or reactor volume. This fact 
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was responsible for the highest growth rate in this study among the rest of the case 

studies. Also, as expected, the case study that focused on minimisation of the PBR 

volume did not predict any requirement for dilution as this would increase the PBR 

volume. Temperature was also predicted to be lower in this case study, compared to 

the other two. Sharp changes in the feed nitrate concentration values predicted when 

the dilution rate was zero (in the volume minimisation process) are possibly an error 

deriving from the computational method.  

Biomass concentration showed a continuous increase in all case studies, 

regardless of the dilutions occurring, which could be due to the low dilution rates 

proposed. The volume of the PBR and nutrient concentrations were predicted to be 

40% higher for the case study that focused on optimising the biomass concentration 

rather than productivity or reactor volume, due to the dilutions occurring. A faster 

increase in the growth rate occurred after each dilution, due to better light penetration, 

as well as the high concentration, and thus faster depletion, of nutrients. Such a use of 

objective functions could minimise costs related to excessive nutrient supply, as the 

dilution rate is predicted to be low enough to avoid any excess of nutrients and 

consequent deceleration of growth, but at the same time high enough to accelerate 

growth by increasing the nutrient supply and light penetration. Average light intensity 

was significantly higher at the beginning of the biomass concentration optimisation 

case study, due to the high instant light intensity supplied, but it later decreased to the 

same range of values as in the other two case studies, due to the light inhibition 

caused by the high biomass concentration grown. It should be mentioned that since the 

Cartesian-averaged intensity is used in the calibration and the case studies of the 

model for consistency with the validation experimental set-up, more accurate results 

would have been obtained if cylindrical coordinates had been used in the optimization 

of the tubular PBR considered.   

 

6.5.4 Improving the experimental design and set-up 

Illumination and nutrients are simultaneously limiting factors and were both taken 

into account for the development of the model of algal growth kinetics. It was 

experimentally demonstrated that the effect of the difference between the sampling 

methods and of the methodological measuring errors on the measurements was 

insignificant. It was also shown that the effect of the CO2 and initial nutrient 

concentration on biomass concentration was significant at only some of the 

measurements, whereas the effect of increase in biomass concentration due to 
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increase in temperature was slightly greater than that due to increase in illumination. 

No significant interaction between the factors was observed, but a slightly greater 

interaction was noted between the nutrient dilution and temperature compared to 

nutrient dilution with light intensity.  

Non-linear regression of the growth model proved to be very complex, due to the 

large number of parameters. The fact that the optimal values of each variable were not 

known for the given set-up, made it more difficult to estimate the model’s parameters. 

The calibration results implied model complexity, inadequate fit, a strong effect of the fit 

on the initial conditions of the experiment, an effect from the culture age, a need for 

larger volume of the vessels where the culture grows, the decisive influence of the 

initial guesses on the calibration, the estimations approaching given bounds, and a 

need for the inclusion of metabolism in the model. Also, better experimental design and 

a more appropriate frequency of measurement may enable the detection of a 

difference between the growth under the nutrient concentrations used. The case 

studies with the different objective functions gave different results for the variables 

investigated. The use of the objective functions presented here could minimise costs 

related to excessive nutrient supply. 
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7 Practical aspects of the shipboard integration 

of the photobioreactor  

 

7.1 Introduction 

In designing a shipboard PBR for waste processing, a key consideration is the 

location and method for storing a potentially large body of liquid with microorganisms.  

The design aspect becomes more challenging if the bioreactor is to have a minimal 

impact on the ships primary trading role, be it carrying cargo or passengers. Therefore, 

design and integration of a shipboard PBR facility should take into consideration 

existing ship systems such as ballast tanks for storage and growth of microorganisms 

and the engines of the ship for heat generation and nutrient supply via the flue gas. 

However, extensive modifications to the overall ship design may prove to be 

unavoidable, given the complex and multiple requirements of the PBR system. 

Through the use of preliminary models, this chapter starts (7.2) by examining the 

availability of space for a PBR within the ballast system of different ship types and 

sizes, to treat gas emissions. The second part of this chapter (7.3) briefly examines the 

potential of a generic shipboard WHR system – which would apply to any ship size – to 

use the heat of the flue gas produced in a ship and store heated water in the ballast 

tank (or a storage tank) to be used for the PBR and other heating requirements. 

Different cases of operating conditions are examined for a ship of similar size as 

Tamesis in Appendix VI. Finally, the heating rate output from the flue gas of each ship 

of the current tankers and ferries fleet is computed, to examine the generic potential of 

onboard WHR systems to be used for PBRs.     

The adaption of the PBR to the temperature conditions inside ships is examined in 

the third part (7.4) of this chapter. As mentioned in 2.3.2.3 and 2.2.3, the average 

temperature range tolerated by algae is 15 – 40 C and the average flue gas 

temperature is 380 C. For the case where a PBR is installed on the deck with an 

average ambient temperature around 10 C, temperature control of the PBR becomes 

a vital issue. The need for heating is irrespective of the PBR position within the ship, as 

heat is lost either to the ambient air or the ballast’s surrounding water. A system for the 

temperature control of the PBR developed in Chapter 4 is demonstrated and examined 

in this chapter. The suggested design would allow the PBR to be integrated into a 

WHR system on board a ship without requiring major modification to the PBR or 
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decreasing significantly its photosynthetic efficiency. The heat exchange structure is 

designed for tubular PBRs in general, hence, it is suited to small scale applications that 

do not treat the total ship emissions.  

 

7.2 Availability of space for implementation of a photobioreactor in 

different ship types 

7.2.1 Introduction 

Ballast tanks offer space for microorganisms to grow but would require artificial 

light to support growth of photosynthetic organisms. On the other hand, an external 

installation (on deck) would benefit from direct access to natural light but would be 

more susceptible to climatic factors, temperature control, and be associated with 

reduced stability and possibly interfere with routine shipping activity. A combined 

system is imagined, in which the ballast tanks are used along with externally mounted 

PBRs so that the algal culture can be circulated from the large ballast volume to an 

external PBR, allowing for growth in light and dark cycles.  

The main purpose of the ballast tank is to provide stability during material transfer 

and while underway. Surrounding water is typically used for ship ballast, due to its 

ready accessibility and is kept separate from the cargo and passenger space, so that 

safety and environmental risks can be better managed.  Ballast water is pumped in and 

out and can be moved around various chambers to maintain safe operating conditions 

throughout a voyage. The dynamic nature of the marine environment poses a 

challenge for provision of optimal algal growth conditions and is also associated with 

potential safety, economic and environmental implications. 

 

7.2.2 Materials and methods 

A fundamental model has been developed, making use of Clarkson’s World Fleet 

Register database (Clarkson Research Services Limited, 2011), and using inputs such 

as specific fuel consumption, engine power, ship size and growth rate in the PBR. The 

model estimates the total emissions and PBR water needs for a variety of tankers and 

ferries with different ballast capacities and engine sizes. The calculations are based on 

the widely accepted method of Moreno-Gutierrez et al. (2007). The fuel consumption is 

estimated according to Eq.68.   
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𝐹𝑓𝑢𝑒𝑙 = 𝑃𝑀𝐸 × 𝐿𝐹𝑀𝐸 × 𝑆𝑓𝑝,𝑀𝐸 × 24 × 𝑟𝑜𝑝𝑒𝑟 (68) 

where PME is horsepower, LFME the load of the engine, Sfp,ME specific fuel consumption 

per power unit and 𝑟𝑜𝑝𝑒𝑟 the day operation ratio. The model focuses on the main engine 

and assumes that the auxiliary engine emissions would either have a separate system 

or can be considered negligible relative to the main engine’s emissions.  

The fuel flow rate during the operating hours, the CO2 flow rate and the PBR water 

requirements to treat the CO2 produced are computed by Eq.69 – Eq.71, respectively: 

𝐹𝑓 =
𝐹𝑓𝑢𝑒𝑙

24 × 𝑟𝑜𝑝𝑒𝑟
 

(69) 

𝐹𝐶𝑂2 = 𝐹𝑓 × 𝐶𝑓  (70) 

𝑉𝑃𝐵𝑅 =
𝑡𝑝𝑑 × 𝐶𝑓 × 𝑓𝑠𝑐𝑟 × 1000

𝑃𝑟𝑃𝐵𝑅 × 𝑓𝑓𝑖𝑥
 

(71) 

where 𝐶𝑓 is the carbon emission factor, 𝑃𝑟𝑃𝐵𝑅 is the productivity of the PBR, 𝑓𝑠𝑐𝑟 is the 

ratio of CO2 fixed and 𝑓𝑓𝑖𝑥  is the CO2 fixation factor.   

The assumptions used are:  

1. Load: the engine is operated at 0.75 of its maximum power output (Lloyd’s 

Register Marine Services, 2008; Saborido et al., 2007).  

2. Specific Fuel Consumption of the engine: 190 g/kWh (Lloyd’s Register Marine 

Services, 2008;  Saborido et al., 2007) 

3. 𝐶𝑓 (Carbon Emission Factor): 3.17. CO2 emissions do not depend on the type of 

the fuel used or the engine type (2.2.1.1). The total bunker consumption (in 

tonnes/day) is simply multiplied by a factor of 3.17 in order to estimate the CO2 

emissions (in tonnes/day) (Psaraftis & Kontovas, 2008).  

4. CO2 concentration in flue gas: 5.2% (Cooper, 2003; Nishida et al., 1998; West, 

2009). 

5. Daily operation time (hours working per hours of the day) of the tankers is 1 

(Chevron Shipping Co, 1995), and of the ferries is 0.45 (Mossey, n.d.; Nexus, 

2010), although a rate of 0.8 for tankers and 0.3 for ferries minimised the 

deviation between the estimated and given fuel consumption values.  

6. Ballast capacity: approximately 37% of the deadweight tonnage as justified in 

2.2.2. This is a conservative assumption, as some data suggest a larger 

capacity (even double) (Clarkson Research Services Limited, 2011).  

7. Proportion of the CO2 captured: 39% of the flue gas is captured (Doucha et al., 

2005), as mentioned in 2.3.5.2. 
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8. CO2 fixation factor: 1.88 g/g of dry algae produced (derived from the molecular 

formula of algal biomass CO0.48H1.83N0.11P0.01) (Seambiotic Ltd., 2008; 

Van Den Hende et al., 2012). 

9. Average productivity of the PBR: 1 g/L/day (Douskova et al., 2009). 

10. The biomass grows all day although it is fed with the CO2 only during the 

operating hours.  

11. For simplicity, only fuel consumption during full load operation is considered 

(idling and manoeuvring are not explicitly considered), since this dominates the 

operating profile in terms of CO2 produced. 

12. 1 L of broth equals 1 kg broth 

 

7.2.3 Results and discussion 

The total water mass requirements for the treatment of the total flue gas emissions 

of each ship were computed. As shown in the Figure 7.1 and Figure 7.2, many tanker 

ballast tanks would be able to store sufficient water mass for the operation of a PBR 

that treats the total amount of their engines’ emissions. The potential is lower for 

ferries, because of their high fuel consumption and low availability of space. This 

implementation is therefore feasible for the treatment of only a small part of the 

emissions, especially if the ballast is also expected to accommodate hot water from the 

WHR system for the heating of the PBR. Therefore, analysis of space availability for a 

PBR shows the implementation to be feasible in many cases, but it is also shown to be 

a big issue in many cases and ways to improve efficiency of the absorption need to be 

found. Actual results might be more promising in reality, as the ballast capacity ratio is 

actually larger than the one used for the calculations, according to some data.  
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Figure 7.1. Ballast capacity computed for various ferries along with their estimated flue 
gas flow rates and the water requirements of a PBR to treat the total amount of 
emissions. 

 

Figure 7.2. Ballast capacity computed for various tankers along with their estimated 
flue gas flow rates and the water requirements of a PBR to treat the total amount of 
emissions. 
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Apart from the ship type, its age plays a contributing role for the potential of the 

installation. It is less likely that older vessels would be able to repay the investment of 

either a scrubber or a PBR installation before the end of their commercial use. 

However, many newer vessels could save money by installing scrubbers or carbon 

capture and storage methods if taxation is imposed. Future work on this model would 

include energy requirements of the different modules, energy penalty and net CO2 

avoidance. 

 

7.3 Use of ballast tanks for waste heat recovery 

7.3.1 Introduction 

Heating of ballast water to 37 – 38 C using waste heat in tankers has been 

investigated for destruction of non-indigenous species before offloading of ballast water 

(Prince William Sound Regional Citizens’ Advisory Council, 2005). In this case, heated 

ballast water could be used for heating of the spaces or the PBR during non-operating 

hours, minimizing the operating costs for heating. However, thermal treatment of 

ballast water is difficult to retrofit on old ships because of safety problems with 

expansion or corrosion (Prince William Sound Regional Citizens’ Advisory Council, 

2005). Extraction of the heat of the flue gas or the engine to the cooling water is one of 

the ways to thermally treat ballast water. The ability to couple algal growth with the ship 

engines, machinery, emissions and water use and to use low grade heat from the 

engine and cold water from the seawater or river water would make a technological 

advance that would bring emissions and costs down. 

Some of the ships shown in 7.2 with enough storage to accommodate a PBR on 

board could have potential to also accommodate a WHR that facilitates the PBR 

heating overnight during non-operating hours, as well as the heating requirements for 

other utilities, by using the heat of the engine or the flue gas. The goal would be to 

simultaneously fit both the PBR system and the water tank for the WHR system into the 

ballast tanks. This section examines a whole ship WHR system design for a case ship 

of size similar to that of the Tamesis vessel.  

Water stored at different temperatures in different compartments would supply 

thermostatically mixed water to the PBR, whereas the other compartment at higher 

temperature would supply the series of radiators working on the ship, and another 

would store hotter water overnight for the continuous operation of the PBR (3.2). In the 

current model a single compartment is examined.  
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7.3.2 System description and flowsheet development 

The diagram in Figure 7.3 represents the central cooling system suggested for a 

WHR system on a ship of similar size to the Tamesis vessel, with a PBR (3.2). The 

storage tank supplies water heated from the flue gas to the series of radiators working 

on the ship and to the PBR continuously, by storing hot water without additional heating 

overnight. The water streams that would require management and integration with a 

WHR system are indicated with red and blue arrows. The flue gas would be cooled in a 

HE that heats up water taken from the sea or the river. For ships with big engines, a 

series of HE might be needed in order to cool the flue gas adequately. The cooled flue 

gas would have to pass through an open cycle SOx scrubber before supply to the PBR. 

The PBR can either be based on the deck if it is small and treats a part of the 

emissions, or in the ballast tank, in a different compartment from the one where the hot 

water is stored.  

 

 

Figure 7.3. Flow diagram of the photobioreactor and waste heat recovery system on 
board. 

 

In general, the WHR and PBR systems would have to be integrated into the ballast 

water management decision support systems, as ballast is not always allowed to be 
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filled. It is recognized that, in practice, the ship will not always be in an operating 

condition, where it can carry a large quantity of ballast water, according to the ballast 

water discharge assessment decision model by David and Gollasch (2015). Also, 

Tamesis does not need to comply with ballast water regulations, but tankers will do, 

therefore some considerations may work or may not work depending on the case.  

A preliminary quantitative study with specific values of inlet and outlet 

temperatures and water flow rates of three HEs (two radiators and one for the PBR 

control) was conducted using a gPROMS flowsheet model (software introduced in 

6.3.4), to verify the feasibility of the scenarios mentioned later in the present section. 

The first case considered a low flue gas flow rate (corresponding to approximately 0.2 

tonnes/day fuel consumption engine if considered for a ferry), a small water storage 

capacity (40 tonnes) and two radiators on board. The objective was to first examine a 

case where one HE is enough to recover the heat from the whole flue gas produced by 

the engine. Sources, sinks, pumps, compressors, valves, tanks, pipes, heat pipes, 

coolers and HEs, as well as level and temperature controller component models of the 

software were used to construct the flowsheet (actual flow chart shown in Figure VI.1 of 

Appendix VI). Each gPROMS component model features an equations system. The 

flowsheet model method, the assumptions taken and the results are presented in Table 

VI.1 to Table VI.4, Figure VI.2 and Figure VI.3 and the text of Appendix VI. This design 

assumes the following: 

1. A HE is retrofitable to the exhaust system of the ship. 

2. A ship has sufficient space to accommodate the required storage tanks; 

implementation in the ballast tanks was not specifically considered.  

3. All equipment (storage and distribution) is ideally insulated – i.e., no heat is lost 

except through radiators. 

4. The issues of freight increase and cargo load from the ballast water mass 

required for the heating is not taken into account as the case ship is moored.  

 

The main variables that affect the performance of a continuous WHR system on 

board like the one in Figure 7.3 are: 

1. Flow rate of the flue gas into the HE 𝐹𝑔 

2. Flue gas temperature 

3. Heat transfer area of the HE 

4. Flow rate of water into the HE 𝐹𝑤,1 

5. Flow rate of water out of the tank 𝐹𝑤,2 
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6. Storage capacity  

7. Ambient temperature 

8. Heating rate required by the PBR and the radiator 

 

Three constraints need to be fulfilled: 

1. The heating rate of all the radiators and the PBR HE must satisfy the heating 

requirements of the ship  (this is considered to be fulfilled when the temperature 

at the exit of the heater 3 is always higher than 28 C),  

2. The stored water mass is enough to last until the end of the night when the 

engine starts to operate again and heat up new hot water, 

3. There is no overflow of the storage tank to cause flooding. 

 

For the fulfilment of the above constraints, and for the given flue gas flow rate and 

storage capacity, the flow rates of the water through the liquid valves 1 and 2 needed 

to be adjusted simultaneously. In the model, this was done by the following control 

variables: Centrifugal pump flow rate, valve liquid 2 leakage fraction and flow 

coefficient, PID controller 2 max output. Five cases were examined for this ship 

example, where according to their water flow rates, different combinations of existence 

of (i) overflow, (ii) enough storage tank capacity and (iii) fulfilment of heating 

requirements were tested. The values of the control variables for the five cases are 

shown in Table VI.3 of Appendix VI and the outcomes regarding the constraints are 

presented in Table 7.1. Some of the variables were kept constant, whereas some were 

being adjusted to examine different scenarios for the gas and water transient flow rates 

and temperatures as well as the tank level (results are shown in Figure VI.2 and Figure 

VI.3 of Appendix VI). 
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Table 7.1. Constraints fulfilled for the cases examined (for a given storage capacity, 
given number of radiators and heat transfer areas of the heat exchangers and given 
flow rate and temperature of the flue gas).   

 Case 1 Case2 Case 3 Case4 Case 5 

Water flow rate at valve 1 > 𝐹𝑤1,𝑝 

and 

<𝐹𝑤1,𝑜  

>𝐹𝑤1,𝑝 

and 

>𝐹𝑤1,𝑜 

>𝐹𝑤1,𝑝 

and 

>𝐹𝑤1,𝑜 

<𝐹𝑤1,𝑝, 

<𝐹𝑤1,𝑜 and 

<𝐹𝑤1,𝑏 

<𝐹𝑤1,𝑝, 

<𝐹𝑤1,𝑜 and 

>𝐹𝑤1,𝑏 

Water flow rate at valve 2 <𝐹𝑤2,𝑏 <𝐹𝑤2,𝑏 >𝐹𝑤2,𝑏 >𝐹𝑤2,𝑏 <𝐹𝑤2,𝑏 

Overflow  No Yes Yes No No 

Enough storage (when 

𝐹𝑤2 ≤ 𝐹𝑤2,𝑏) 
Yes Yes No No Yes 

Heating rate needs fulfilled 
(when 𝐹𝑤1 ≤ 𝐹𝑤1,𝑝 and 

𝐹𝑤2 ≥ 𝐹𝑤2,ℎ) 

No No No Yes Yes 

 

7.3.3 Discussion for the different cases examined  

For a given ship of the existing fleet, its flue gas temperature and flow rate, its 

storage capacity, the ambient temperature during its journey and its heating rate 

requirements are set variables that cannot be adjusted. Therefore, assuming that the 

heat transfer area of the HE is the maximum possible that can be implemented on the 

smokestack without causing considerable pressure drop, the only variables that can 

control the performance of the WHR system are the flow rates of the water, Fw,1 and 

Fw,2. The objective is to use the minimal possible pumping energy requirements while 

fulfilling the constraints mentioned in 7.3.2.  

When the water flow rate through valve 1, Fw1, is higher than a threshold value, 

Fw1,p, it is not heated up adequately to provide the required heat rate to the radiators. If 

it is higher than a value, Fw1,o, it leads to overflow of the tank for a given storage 

capacity. However, if it is below a value, Fw1,b, it is not enough to fill up the required 

volume for the heating water of the radiators during the non-operating hours. When the 

water flow rate through valve 2, Fw2, is higher than a threshold value, Fw2,b, it empties 

the storage tank earlier than the beginning of the next day when the engine starts 

again. However, if it is below a value, Fw2,h, it does not provide the required heat rate to 

the radiators. Therefore, the storage of a specific ship has enough volume when 

Fw2 ≥ Fw2,b. Also, the heating rate needs are satisfied when Fw1 ≤ Fw1,p and Fw2 ≥

Fw2,h.  
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Figure 7.4 and Figure 7.5 summarise the dependence of the objectives (vertical 

axes) on the two control variables (horizontal axes). The boundary values of the 

objectives in these figures are the constraints mentioned in 7.3.2. The optimal values of 

the two flow rates, Fw1 and Fw2, to satisfy both objectives of the multiobjective 

optimisation would be the intersection of the two curves in both plots. The values, 

shapes and inclinations of the two curves depend on each specific occasion and the 

ship characteristics.  However, the problem is more complex, as the two curves in each 

plot change depending on the value of the flow rate selected in the other plot, hence, 

there are many pairs of solutions. According to Figure 7.4 and Figure 7.5 and the 

corresponding pumping requirements for the five cases presented in Table VI.4 

Appendix VI, the energy requirements for pumping are minimised when the lowest 

possible water flow rate is selected. However, this flow rate needs to be above a value, 

Fw1,b, that is enough to fill up a volume which will keep the heating overnight. Among 

the five cases examined, Case 5 is the best as it fulfils the heating rate needs, provides 

enough water volume without causing overflow or wasting pumping energy.  

 

Figure 7.4. Objective functions versus the water flow rate into the tank. 
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Figure 7.5.Objective functions versus the water flow rate into the radiators and the 
photobioreactor heat exchanger. 

 

A proposed method to select the control variable values in the investigated 

problem would be to first assume a maximum temperature that can be reached by the 

heating water after losing heat in the tank, and subsequently use it to estimate the 

minimum possible flow rate Fw,2 which could be used to make this water stream reach 

its lowest allowed value at its exit from the heaters (temperature of the PBR plus 10 

C). The flow rate required passing through HE1 and flow into the tank can be 

computed – using the discharge rate from the tank – in order to fill just the volume 

needed by the time the engine of the ship stops. Finally, the heat loss of this water 

volume in the tank needs to be checked to see whether it results in the same 

temperature with the one assumed in the beginning. If it does not satisfy this check, a 

lower temperature needs to be assumed and the estimation steps need to be repeated. 

This approach would give the optimal water flow rates that correspond to the minimal 

possible pumping energy requirements in the existing problem. However, when the 

problem includes the cooled flue gas cleaning through the PBR and scrubber, then the 

low water flow rates selected from the proposed approach would not provide sufficient 

cooling to the flue gas to enter the scrubber or PBR, thus a higher rate should be 

selected.  
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7.3.4 Heating rate output to be stored in the ballast of tankers and ferries  

Different pairs of ballast capacities and flue gas flow rates of existing ships of the 

current fleet can be implemented in this flowsheet model to reach outcomes about the 

heat rate that can be provided by each ship type and size. The great number of ferries 

and tankers data processed by the Clarkson’s World Fleet Register (Clarkson 

Research Services Limited, 2011), is associated with wide range of ballast capacities, 

engine sizes and fuel flow rates. The computations developed in 7.2.2 were used to 

estimate flue gas flow rate and the potential of the different ship types and sizes for the 

implementation of a WHR system. 

To simplify the selection of the set variable pairs of the WHR system (ballast 

capacity and flue gas flow rate), ships of different ballast capacities and main engine 

fuel consumptions were plotted in Figure 7.6 and Figure 7.7 and their trendlines were 

computed. The heating requirements of each ship are different and unknown, thus the 

output of the model was selected to be the heating rate provided by the hot water. For 

the given gas flow rates and the corresponding ballast mass, the maximum heating 

rate output from the heat exchange system of the WHR was computed from Eq.72, and 

results are shown on the same figures.  

𝑞𝑚𝑎𝑥 = 𝐹𝑔𝑐𝑝,𝑔(𝑇𝑔,𝑖𝑛 − 𝑇𝑔,𝑜𝑢𝑡) (72) 

The assumptions used were the same as the ones stated in 7.2.2 plus that 

temperature of the flue gas is 380 C (according to 2.2.3), its outlet’s from the HE is 80 

C and heat capacity of flue gas: 1,012 J/K/kg.  
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Figure 7.6. Ballast capacity computed for various ferries along with their estimated flue 
gas flow rates and their maximum heating output produced for the waste heat recovery 
system. 

 

Figure 7.7. Ballast capacity computed for various tankers along with their estimated 
flue gas flow rates and their maximum heating output produced for the waste heat 
recovery system. 
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Some pairs of ballast capacities with the flue gas flow rates of different ferries and 

tankers can be selected in order to examine representative cases and draw 

conclusions about the WHR system implementation on the total fleet. The flowsheet 

would need to be modified, as for the high flow rates of flue gas, one HE and one 

compressor is not enough to provide the required cooling. The summary of the 

pumping requirements could then be linked to the results and cases where ships can 

store both a WHR system and a PBR in the ballast.   

An alternative implementation would be to use a WHR predominantly to extract 

kinetic energy from the exhaust gas (e.g. using a steam Rankine cycle, like the case of 

Maersk mentioned in 2.2.3), before SOx scrubbing and use of exhaust in a PBR. Then, 

the use any low grade waste heat from the WHR or engine jacket cooling water could 

be used for the purposes of PBR thermal management. The kinetic energy could either 

be used to supplement propulsion power or provide electrical energy (via a generator). 

The appropriate solution (kinetic or heat recovery) will depend on the specifics of wider 

energy demands of the ship and the cost and efficiency of the different technologies. 

 

7.4 Waste heat recovery for temperature control of the photobioreactor 

7.4.1 Introduction 

As shown in Figure 7.8, there are two sources of heat added to the PBRs in 

general, the heat from the hot flue gas and the radiation energy from the illumination. 

Some part of this energy is consumed by the endothermic photosynthesis and another 

part is lost to the environment (either by conduction and convection or by radiation). 

During hot periods a heat exchanger (HE) can be added to cool the PBR. In the case of 

a shipboard PBR placed on the deck of Tamesis, there could be a need either for 

heating, due to the low ambient temperature in London (the example city of this case 

study), or for cooling – through a cold water reservoir – in the case of heat conduction 

through the metal of the shell if the PBR is placed above water level.  

 

Figure 7.8. Heat absorbed and emitted by the photobioreactor. 
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The design of the temperature control structure for an algal PBR adds several 

constraints regarding its efficient operation, including reduction in light penetration and 

increase of the system’s weight. Temperature control methods used in algal PBRs for 

cooling or heating include water baths, immersed water tubes, water spraying, shading 

with tubes of dark plastic and immersed heating/cooling coils (Carvalho et al., 2006; 

Jeffryes & Agathos, n.d.). All of them add operating cost as well as significant weight to 

the system, an important parameter for the case of an onboard application. Systems 

that require a heating structure to be installed would show a trade-off between the cost 

(capital and operating) of the heating structure and potential thermal design of the 

system instead. However, in the case of PBRs, where wall transparency is a crucial 

point, insulation becomes difficult. The case of controlling the temperature with 

adjusting the temperature of the sparged gas has been examined for bubble columns, 

but not for the case of airlifts or PBR materials with simultaneous heat loss through the 

wall (Komarov & Sano, 1998).  

This section presents a heat transfer model that provides an estimate of the 

heating requirements of a shipboard PBR, and the possible solutions that could meet 

these requirements. The model estimates the required temperature of the sparged gas, 

Tgin, to maintain the mixture’s steady state temperature range within the culture’s 

tolerance limits along the whole length of the PBR. Liquid velocity computed in Chapter 

5 was used as an input here, for the estimation of the necessary temperature of the 

mixture in the entrance of the riser, 𝑇𝑚𝑖𝑛. The effect of the riser diameter, gas flow rate, 

wall thermal conductivity, wall thickness, ambient temperature and heat transfer 

coefficient is presented.  

The second part of this section presents an alternative suggestion for 

temperature control. A double pipe HE is suggested to replace part of the downcomer, 

where the passing broth restores its required temperature (shown also in Figure 7.9 

below). The high conductivity part of the downcomer used for the double pipe could be 

positioned at the junction between the end of the downcomer and the entrance of the 

riser. This novel method proposed is shown in this chapter to be a feasible way of 

temperature control for the ship PBR. The fluid medium in the temperature regulation 

circuit could be designed to switch between hot and cold coolant streams, adding the 

flexibility to use the same circuit for cooling if necessary, as in  Zimmerman et al. 

(2008), depending on the engine mode and the weather conditions. The two models 

developed in this section can be applied to outdoor or indoor external loop airlift tubular 

PBRs with spatially stable external temperature and fed with a gas. 
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Figure 7.9. The double pipe heat exchanger concept to control the photobioreactor’s 
temperature.  

 

7.4.2 Method 

7.4.2.1 Equations  

The heat provided by the hot gas sparged to the mixture is lost through the wall 

after its propagation for a certain distance in the PBR, especially when ambient 

temperature is low. The mixture is recirculating from the end of the PBR downcomer 

back to its riser with the liquid velocity computed in Chapter 5. It can be hypothesised 

that by its entrance into the riser and after its contact with the sparged gas, the mixture 

obtains a required temperature, Tmin, which after the heat loss at the end of the loop 

ends up to be equal to the culture’s optimal temperature, Tmout (temperatures shown in 

Figure 7.10). The sparged gas should heat the liquid sufficiently to maintain the 

temperature in the PBR within the permitted range so as not to harm the algae.  

The necessary temperature of the flue gas sparged, Tgin, to maintain the 

temperature required by the culture along the PBR until the end of the loop, Tmout, is 

estimated at steady state. The PBR tube is considered for the simulation as a single 

cylinder tube-shell HE assuming the stable ambient temperature as the shell fluid 

temperature. The temperature differences appearing within the system at steady-state 

are the following (also indicated in Figure 7.10):  
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i. Temperature difference in the mixture along the tube (driven by the convective 

and conductive heat flux) 

ii. Temperature difference on wall along the tube (conductive heat loss due to the 

difference of the temperatures out of the tube, 𝑇𝑒, and in the tube, 𝑇𝑚) 

iii. Radial temperature difference in the mixture 

Taking into account the first two heat transfers (full list of assumptions shown in 

7.4.2.2), the energy conservation equation requires the heat flux in the mixture with 

axial temperature variation dT to be equal to the heat loss to the environment.   

 

Figure 7.10. Illustration of mixture temperatures distributed along the tube (left image) 
and across the tube radius (right image). 

 

Regarding the heat transfer within the mixture of the PBR, the conservation of 

energy can be written in the form of Eq.73, taking the form of Eq.74 at a steady one 

dimensional flow field in cylindrical coordinates without heat sources (Lienhard Iv & 

Lienhard, 2008; Perry et al., 1999). 

𝜌𝑐𝑝 ∙
 

(
𝜕𝑇

𝜕𝑡
+ 𝑢⃗ ∙ 𝛻𝑇)

𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

=
𝑘𝛻2𝑇
ℎ𝑒𝑎𝑡

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
+

𝑞
ℎ𝑒𝑎𝑡

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

(73) 
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𝜕𝑇𝑚
𝜕𝑧

=
𝑘𝑚
𝜌𝑚𝑐𝑝𝑚

(
1

𝑟

𝜕

𝜕𝑟
𝑟𝑡
𝜕𝑇𝑚
𝜕𝑟

+
𝜕2𝑇𝑚
𝜕𝑧2

) 
(74) 

where 𝑇𝑚 the temperature of the broth, 𝑧 the longitudinal dimension, 𝑘𝑚 the thermal 

conductivity of the mixture, 𝜌𝑚 the density of the mixture, 𝑐𝑝𝑚 the specific heat capacity 

of the mixture, and 𝑟 the tube radius.  

The heat loss through the walls can be estimated from Fourier’s Law for heat 

conduction as in Eq.75, where 𝑘𝑡 coefficient is the thermal conductivity of the tube wall. 

The average heat transfer coefficient of the ambient air medium around the outside of 

the tube is ℎ𝑒̅̅ ̅. Special attention should be paid to the assumption of its value 

(discussed in the Assumption list, 7.4.2.2), which is greatly influenced by the weather 

(e.g., wind speed and rain). According to Newton’s law Eq.76 gives the cooling formula 

in steady state for the radial dimension and for a tube of uniform longitudinal 

temperature. This equation can be rewritten in Eq.77 in terms of 𝑞𝑙𝑜𝑠𝑠 = 𝑞𝑟𝑎𝑑𝑖𝑎𝑙(2𝜋𝑟𝑙) 

for a cylinder of length 𝑙. Eq.77 is analogous to Ohm’s law where the denominator is 

the sum of two thermal resistances (i.e., the convection through the boundary layer of 

air outside the tube and the conduction through the wall), as would be in the case of a 

series circuit (Lienhard Iv & Lienhard, 2008; Perry et al., 1999). The heat lost through 

the wall varies along the tube, as it is indirectly dependent on the difference between 

the mixture temperature and the ambient temperature, 𝑇𝑚 − 𝑇𝑒, and because 𝑇𝑚 

changes along the tube. 

𝑞 = −𝑘𝑡𝛻𝑇 (75) 

𝑞𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑞𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 
 
⇒ℎ𝑒̅̅ ̅(𝑇𝑤 − 𝑇𝑒)𝑟𝑡=𝑟𝑒 = −𝑘𝑡

𝑑𝑇

𝑑𝑟
|
𝑟𝑡=𝑟𝑒

 
(76) 

𝑞𝑙𝑜𝑠𝑠 =
𝑇𝑤𝑖𝑛 − 𝑇𝑒

1

ℎ𝑒̅̅ ̅2𝜋𝑟𝑒𝑙
+
𝑙𝑛 (
𝑟𝑒
𝑟𝑖
)

2𝜋𝑘𝑡𝑙

=
𝑇𝑤𝑖𝑛 − 𝑇𝑒

𝑅𝑡𝑐𝑜𝑛𝑣 − 𝑅𝑡𝑐𝑜𝑛𝑑
 

(77) 

where 𝑘𝑡 the thermal conductivity of the tube walls, 𝑇𝑤 and 𝑇𝑤𝑖𝑛 the wall and the inner 

wall temperature, 𝑟𝑒 and 𝑟𝑖 the external and internal radius, 𝑅𝑡𝑐𝑜𝑛𝑣 and 𝑅𝑡𝑐𝑜𝑛𝑑 the 

thermal resistance by convection and conduction.  

Given that only the temperature of the PBR fluid needs to be estimated, the heat 

transfer wall surface is considered as a single cylinder tube-shell HE, along which the 

fluid in the shell maintains stable temperature. The equations for heat transfer in HEs 
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by Lienhard Iv and Lienhard (2008) (chapter 2 & 7) and Perry et al. (1999) are used. 

The difference of the heat in the mixture, between its entrance and exit (of its 

recirculation path) is given by Eq.78, where ṁ is given by Eq.79, with um being the 

velocity of the mixture (considered as the linear liquid velocity, 𝑢̅l). The heat exchanged 

through the wall of the tube per differential length is given by Eq.80, which after axial 

integration and replacement of the overall heat transfer coefficient, 𝑈, and logarithmic 

mean temperature difference, 𝐿𝑀𝑇𝐷, relations, results in Eq.81, where hm̅̅ ̅̅  is the 

average heat transfer coefficient of the mixture. According to energy equilibrium, the 

heat in Eq.78 should equal the heat found in Eq.81, and thus Tmin can be computed, as 

shown in Eq.82. Prandtl (𝑃𝑟), Graetz (𝐺𝑧) and Nusselt (𝑁𝑢𝑑̅̅ ̅̅ ̅̅ ) numbers and ℎ𝑚̅̅ ̅̅  are 

computed as shown in Appendix VI.  

𝑞 = 𝑚̇𝑐𝑝𝑚(𝑇𝑚𝑜𝑢𝑡 − 𝑇𝑚𝑖𝑛) (78) 

𝑚̇ = 𝜌𝑚𝑢𝑚𝑎 (79) 

𝑑𝑞 = 𝑑𝐴 ∙ 𝑈 ∙ 𝐿𝑀𝑇𝐷 (80) 

𝑞 =
1

1
ℎ𝑚𝜋𝑑𝑟𝑙

+
𝑙𝑛 (
𝑑𝑜
𝑑𝑟
)

2𝑘𝑡𝜋𝑙
+

1
ℎ𝑒𝜋𝑑𝑜𝑙

(𝑇𝑚𝑜𝑢𝑡 − 𝑇𝑒) − (𝑇𝑚𝑖𝑛 − 𝑇𝑒)

𝑙𝑛 (
𝑇𝑚𝑜𝑢𝑡 − 𝑇𝑒
𝑇𝑚𝑖𝑛 − 𝑇𝑒

)

 
(81) 

𝑇𝑚𝑖𝑛 =
(𝑇𝑚𝑜𝑢𝑡 − 𝑇𝑒)

𝑒𝑥𝑝(−4{𝜌
𝑚
𝑢𝑚𝜋𝑑𝑟

2𝑐𝑝𝑚 [
1

ℎ𝑚𝜋𝑑𝑟𝑙
+
𝑙𝑛 (
𝑑𝑜
𝑑𝑟
)

2𝑘𝑡𝜋𝑙
+

1
ℎ𝑒𝜋𝑑𝑜𝑙

]}

−1

)

+ 𝑇𝑒 
(82) 

where  
1

ℎ𝑚𝜋𝑑𝑟𝑙
= 𝑅𝑡𝑚, 

𝑠

𝑘𝑡𝜋
𝑑𝑟+𝑑𝑜
2
𝑙
= 𝑅𝑡𝑡, 

1

ℎ𝑒𝜋𝑑𝑜𝑙
= 𝑅𝑡𝑒 are the absolute thermal resistances  

by convection in the mixture, by conduction in the tube and by convection in the 

ambient air. Finally, for the approximation of the quantities 𝜇𝑚, 𝑘𝑚, 𝑐𝑝𝑚 , 𝜌𝑚 the following 

equations are used, in combination with the gas hold-up estimated from Chapter 5. 

𝜇𝑚 = 𝜇𝑔𝜀𝑟 + 𝜇𝑙(1 − 𝜀𝑟) (83) 

𝑘𝑚 = 𝑘𝑔𝜀𝑟 + 𝑘𝑙(1 − 𝜀𝑟) (84) 

𝑐𝑝𝑚 = 𝑐𝑝𝑔𝜀𝑟 + 𝑐𝑝𝑙(1 − 𝜀𝑟) (85) 
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𝜌𝑚 = 𝜌𝑔𝜀𝑟 + 𝜌𝑙(1 − 𝜀𝑟) (86) 

The temperatures mentioned are mean temperatures after thermal quasi-

equilibrium between the liquid and the bubbles in each fractional differential volume. 

Bubbles come in a thermal quasi-equilibrium with the liquid after their propagation 

through a certain length, which is assumed to be minor compared to the total reactor 

length. The required temperature of the gas to enter the PBR in order to heat up the 

mixture from T𝑚𝑜𝑢𝑡 to T𝑚𝑖𝑛 will be T𝑔𝑖𝑛, which is found by the mass and energy 

equilibrium of the mixing at the entrance of the PBR expressed in Eq.87. The computed 

temperature can be tested whether it is within the tolerable range allowed by the algae 

grown in the PBR and the range provided by the hot flue gas.  

𝑞𝑔𝜌𝑔𝑐𝑝𝑔(𝑇𝑔𝑖𝑛 − 𝑇𝑚𝑖𝑛) = 𝑞𝑙𝜌𝑙𝑐𝑝𝑙(𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑜𝑢𝑡) 

 
⇒𝑇𝑔𝑖𝑛 = 𝑇𝑚𝑖𝑛 +

𝑣̇𝑙(1 − 𝜀𝑟)𝜋
𝑑𝑟
2

4 𝑐𝑝𝑙𝜌𝑙

𝑞𝑔𝑐𝑝𝑔𝜌𝑔
(𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑜𝑢𝑡) 

(87) 

 

Regarding the second temperature control method suggested (double pipe HE), 

the temperature (Thfin) and flow rate of the heating fluid (qhf) in the design proposed 

(Figure 7.9), and the required length of the HE (lHE) are calculated similarly. The 

variables of the shell fluid in Eq.82 are replaced by the variables of the heating fluid, 

after computation of 𝑇𝑚𝑖𝑛 from Eq.82, and thus Eq.88 is solved with trial and error.  

𝜌ℎ𝑓𝑞ℎ𝑓𝑐𝑝ℎ𝑓(𝑇ℎ𝑓𝑜𝑢𝑡 − 𝑇ℎ𝑓𝑖𝑛)

=
1

1
ℎ𝑚𝜋𝑑𝑟𝑙𝐻𝐸

+
𝑙𝑛 (
𝑑𝑜
𝑑𝑟
)

2𝑘𝑡𝜋𝑙𝐻𝐸
+

1
ℎℎ𝑓𝜋𝑑𝑜𝑙𝐻𝐸

(𝑇𝑚𝑜𝑢𝑡 − 𝑇ℎ𝑓𝑜𝑢𝑡)− (𝑇𝑚𝑖𝑛 − 𝑇ℎ𝑓𝑖𝑛)

𝑙𝑛(
𝑇𝑚𝑜𝑢𝑡 − 𝑇ℎ𝑓𝑜𝑢𝑡
𝑇𝑚𝑖𝑛 − 𝑇ℎ𝑓𝑖𝑛

)

 

(88) 

 

 

7.4.2.2 Assumptions  

1. The mixture is incompressible with negligible density changes, as more than 90% 

of the mixture is water (gas hold-up estimated in 5.4). 
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2. Pressure variations in the flow are not large enough to affect 𝑘 and ℎ values and 

the thermodynamic properties. 

3. The viscous stresses do not dissipate enough energy to warm the fluid 

significantly. 

4. No consideration of the enthalpy of photosynthesis and other reactions. 

5. Steady state flow and quasi-equilibrium conditions. 

6. No consideration of heat transfer through radiation from the sun and emittance to 

the environment. An approximate tube wall temperature was estimated from the 

sunlight absorptance and emittance equation (Eq.89) and using the assumptions in 

Lienhard Iv and Lienhard (2008). Heat loss from the wall to the mixture inside will 

reduce the wall temperature, but is assumed zero for this estimation due to lack of 

information on the heat loss. Assuming average global sunlight intensity over the 

year, 𝑞𝑠𝑜𝑙𝑎𝑟, is 235 W/m2, a maximum ambient air temperature of 30 C and sky 

temperature 15 C, emittance, 𝜀𝐼𝑅, 0.92 (0.937 degrees for glass (Perry et al., 

1999) and plastic 0.91 (The Engineering Toolbox, n.d.)), absorptance, 𝑎𝑠𝑜𝑙𝑎𝑟, 0.6 

for greens-red-blue colours (The Engineering Toolbox, n.d.), then temperature of 

the external tube wall is estimated to be 25.5 C, which is not of great difference 

from the one assumed without radiation. 

𝑎𝑠𝑜𝑙𝑎𝑟𝑞𝑠𝑜𝑙𝑎𝑟 + 𝜀𝐼𝑅𝜎𝑇𝑠𝑘𝑦
4 = ℎ𝑒(𝑇𝑤,𝑒𝑥 − 𝑇𝑒) + 𝜀𝐼𝑅𝜎𝑇𝑤,𝑒𝑥

4  (89) 

7. Bubbles reach thermal equilibrium with the liquid after a length from their 

introduction which is very small compared to the total length of the tube. 

8. No consideration of dirt and scale thermal resistances on the wall of the tube. 

9. No friction generated heat from the liquid contact with the inner tube walls. 

10. No axial heat transfer along the tube wall. 

11. Uniform distribution of the temperature of the mixture across each fractional cross 

section of the tube (due to the adequate mixing induced in an airlift). 

12. For the velocity of the mixture it is assumed that 𝑢𝑚 = 𝑢̅𝑙. 

13. 𝑑𝑑 = 𝑑𝑟 

14. 𝑇𝑒 constant along the tube and during time. 

15. The physical properties of the mixture (e.g., 𝜇𝑚, 𝑘𝑚, 𝑐𝑝𝑚) are constant along the 

whole tube, even for the part of the downcomer (which occupies a small part of the 

PBR in our case) where most of the bubbles have already been degassed. 

16. Prandtl (𝑃𝑟) number can be found from Eq.92 by using the properties of the 

mixture for simplification, although it is related to the properties of the continuous 

phase in a more complex way (Brennen, 2005). 
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17. 𝜇, 𝑘, 𝜌, 𝑐𝑝𝑙 = 𝜇, 𝑘, 𝜌, 𝑐𝑝𝑤𝑎𝑡𝑒𝑟 and 𝜇, 𝑘, 𝜌, 𝑐𝑝𝑔 = 𝜇, 𝑘, 𝜌, 𝑐𝑝𝑎𝑖𝑟 

18. For the estimation of the physical and thermal properties of the tube, it is assumed 

that it is made of a fluoropolymer, such as fluorinated ethylene-propylene. 

19. For the temperature and flow situations encountered here, a simple proportionality 

with a constant coefficient is usually adequate. The heat transfer coefficient of the 

ambient air by free convection (by warming or cooling of the air) is in the range of 3 

to 25 W/m²K and by forced convection (by wind) within the range of 10 to 200 

W/m²K (MediaWiki, 2008; The Engineering Toolbox, n.d.). It is assumed that the 

surface of the tube does not get wet by rain or surrounding water sprayed. Its 

value is taken as a first approximation equal to 12 W/m2K.  

20. Mass inflow of the sparged gas equals its outflow and only the inflow’s heat input is 

considered, as the outflow is assumed to have equal temperature with the mixture.    

21. Range of temperatures tolerated by algae: 15 – 40 C (2.3.2.3).  

22. Range of ambient temperatures that are likely to be encountered: -5 – 20 C.  The 

case where ambient temperature is above the temperature of the PBR is not 

examined, as it is hardly reached in London where the examined reactor is based 

in. However, chilling of the PBR could be realized by the use of the same HE and 

jacket water before its entrance to the engine.   

23. Range of the flue gas temperature: 120 – 720 C (2.2.3). 

 

Additionally, for the double pipe HE system, the following assumptions are considered: 

24. Counter current flow HE.  

25. The outer HE pipe is perfectly insulated. 

26. The temperature difference between the inlet temperature of the mixture and the 

exit temperature of the heating fluid is 10 K, which is suggested as the minimum 

value allowed for the greater temperature difference within the heat exchanger 

(MacKetta, 1992). 

27. The heat transfer coefficient of the heating fluid is 200 Wm-2K-1 for the case of air 

and 300 Wm-2K-1 for the case of water (The Engineering Toolbox, n.d.). 

28. The high conductivity tube part length estimated to replace or be added to the 

downcomer is not taken into account in the initial estimation of the heat loss from 

the entire PBR.  

29. Range of the heating fluid temperatures: less than 80 – 85 C when water is used 

(which is the jacket cooling water outflow as mentioned in 2.2.3), and less than 720 

C when flue gas is used (2.2.3).   
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7.4.2.3 Computation, parameters and variables  

Calculation of the heat loss through the PBR walls to the ambient and of the 

mixture temperature at the entrance of the loop for a given temperature at its exit is 

realised by use of the equations shown in the following algorithm. The Matlab code 

developed for the computations is presented in Appendix VI. 

Algorithm 

1. Set the parameters given in Table 7.2. Compute 𝑣̇𝑙 and 𝜀𝑟 from Chapter 5  

2. Compute 𝑅𝑒 from Eq.55. 

3. Compute 𝜇𝑚, 𝑘𝑚, 𝑐𝑝𝑚 , 𝜌𝑚 from Eq.83 – 86. 

4. Compute 𝑃𝑟 from Eq.92. 

5. Compute 𝑁𝑢 :  

If laminar: compute 𝐺𝑧 from Eq.93, then compute 𝑁𝑢𝑑̅̅ ̅̅ ̅̅
𝑙𝑎𝑚𝑖𝑛𝑎𝑟

 from Eq.94.  

If transition: compute 𝑁𝑢𝑑𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 from Eq.95.  

If turbulent: compute 𝑁𝑢𝑑𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡  from Eq.96. 

6. Compute hm from Eq.1. 

7. Compute Tmin from Eq.82. 

8. Compute T𝑔𝑖𝑛 from Eq.87. 
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Table 7.2. Parameters and variables used for the estimation of the temperature 
distribution. 

Parameters Values 

𝒅𝒓 0.060 

𝒅𝒃 0.005 

𝒍𝒅 1.50 

𝒒𝒈 0.00004 

𝒍𝒓 6.00 

𝝂𝒍 0.801 x 10
-6

 

𝝁𝒍 0.798 x 10
-3 

𝝁𝒈 1.983 x 10
-5 

𝝆𝒍 1000 

𝝆𝒈 1.225 

𝒄𝒑𝒍 4,181.3 

𝒄𝒑𝒈 1,012 

𝝅 3.142 

𝑲𝒍 1.5 

𝒈 9.810 

𝒌𝒕 0.195 

𝒌𝒍 0.55 

𝒌𝒈 0.027 

𝒔 0.002 

𝒉𝒆 12.00 

𝑻𝒎𝒐𝒖𝒕 296 (23 C) 

𝑻𝒆 283 (10 C) 

𝜺 0.0000025 

 

The parameters and variables used for the computations and their interrelation 

according to the two models developed (the hydrodynamic model and the heat transfer 

model) is shown in Figure 7.11. The inputs and outputs of the models could be 

modified according to the needs of each problem. Some examples of different 

combinations are shown in Table 7.3. 
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Figure 7.11. The interrelation amongst the airlift photobioreactor’s parameters and 
variables according to the two models developed. 

 

Table 7.3. Various combinations for inputs and outputs when using a modified script 
for the hydrodynamic and the heat transfer model. 

Inputs Outputs 

𝒅𝒃, 𝒅𝒓, 𝒒𝒈, 𝒍𝒓, 𝒔, 𝑻𝒎𝒐𝒖𝒕 𝑢̅𝑙, 𝜀𝑟 , 𝑇𝑔𝑖𝑛 , 𝑞𝑙𝑜𝑠𝑠 

𝒅𝒃, 𝒅𝒓, 𝒒𝒈, 𝒍𝒓 , 𝒔, 𝑻𝒈𝒊𝒏 𝑢̅𝑙 , 𝜀𝑟 , 𝑇𝑚𝑜𝑢𝑡 , 𝑞𝑙𝑜𝑠𝑠 

𝒅𝒃, 𝒍𝒓, 𝒒𝒈, 𝒔, 𝑻𝒈𝒊𝒏 , 𝑻𝒎𝒐𝒖𝒕 𝑢̅𝑙 , 𝜀𝑟 , 𝑑𝑟 , 𝑞𝑙𝑜𝑠𝑠 

 

 

7.4.3 Results and discussion  

The computed values of the variables are shown in Table 7.4 and the effect of 

the parameters of riser diameter, gas flow rate, wall thermal conductivity, wall 

thickness, ambient temperature and heat transfer coefficient is presented in Figure 

7.12 to Figure 7.18. According to the results in Table 7.4 the heat loss from the wall is 

minimal during one loop through the reactor, requiring the mixture to enter the riser at a 

temperature just 0.2 K higher than the exit temperature (all values shown in Figure 
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7.12). However, because of the great difference in heat capacity of the gas sparged 

and the liquid broth in the PBR, the required temperature for the gas inflow, 𝑇𝑔𝑖𝑛, would 

be much higher (more than 3,000 K) than the actual temperature of the flue gas. 

Besides, this temperature is too high for the algae to tolerate. Therefore, temperature 

control would be impossible by just using the hot flue gas sparging. The temperature 

along the PBR is within the temperature limits tolerated by most strains. However, if no 

temperature control is used, then the temperature of the broth would gradually drop 

down after several recirculations to the ambient temperature (computed equal to 𝑇𝑒 for 

the parameter values shown in the case of Table 7.2), which can be too low for the 

culture.  

Figure 7.12 shows the temperature of the mixture, Tmin, required to maintain 

Tmout at 23 °C, as a function of qg, and dr as the third dimension. The heat loss through 

the walls and the temperature of the sparged gas required to increase the temperature 

of the recirculated mixture from Tmout to Tmin, are shown in Figure 7.13 and Figure 7.14 

respectively. For the production of these plots, all other parameters, except those used 

as the third dimension in each case, have the values given in Table 7.2.  

Figure 7.12 verifies that, 𝑇𝑚𝑖𝑛 decreases with an increase in 𝑞𝑔 because of the 

higher heat added by the larger gas mass and because of the shorter duration that the 

mixture is in contact with the cooled tube before each recirculation. Nevertheless, there 

is an increase for a small range of very low 𝑞𝑔 which might be caused due to the low 𝑢𝑙 

produced and the higher time of recirculation that leaves the mixture exposed to heat 

loss for longer.  

Figure 7.14 shows the 𝑇𝑔𝑖𝑛 required for the entering sparged gas. Here, 𝑞𝑔 

plays a much more important role than the 𝑑𝑟 to the heat loss (also shown in Figure 

7.13). However, even with very high 𝑞𝑔 values, the 𝑇𝑔𝑖𝑛 required is much higher than 

the temperature of the flue gas and, hence, the temperature control with the sparged 

hot gas does not seem possible. Heat loss through the entire wall of the PBR has a 

range of 130 to 320 W (Figure 7.13) which is not too high to be easily compensated for 

with another method. Heat loss in the PBR decreases with 𝑞𝑔 increase, because the 

mixture recirculation velocity increases too (according to the findings of Chapter 5) and 

the time needed for one loop is shorter.  

Figure 7.15 to Figure 7.18 demonstrate the heat loss with various parameters 

as a third dimension (i.e., s, kt, he, Te, respectively). It is shown that for the range of the 

values of the parameters used in PBRs, wall thickness, 𝑠, and thermal conductivity, 𝑘𝑡, 
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(Figure 7.15 and Figure 7.16), do not play an important role for the heat loss relative to 

the other parameters examined. Heat loss – and consequently 𝑇𝑚𝑖𝑛 – is more sensitive 

to ℎ𝑒 and to 𝑇𝑒 (Figure 7.17 and Figure 7.18), but the heat loss still results in 𝑇𝑚𝑖𝑛 less 

than 0.5 C higher than the 𝑇𝑚𝑜𝑢𝑡. The sensitivity to ℎ𝑒 is very important for the actual 

operating conditions of the PBR, because it means that for low 𝑞𝑔 values, the heat loss 

depends on the airflow around the PBR and also means that rainy weather and wet 

surface of the walls due to river water sprayed on them would also increase heat loss 

significantly.   

Table 7.4. Results for the variables when the model uses the parameters and 
variables shown in Table 7.2. 

Variables Values estimated 

𝒖𝒃 0.392 

𝒖̅𝒍 0.517 

𝑹𝒆𝒍 38743 

𝜺𝒓 0.016 

𝒄𝒑𝒎 4,132 

𝒓𝒆 0.032 

𝒇 0.001 

𝑵𝒖𝒅 21.62 

𝑷𝒓 5.99 

𝒉𝒎 195.25 

𝒌𝒎 0.5419 

𝝁𝒎 7.85 x10
-4 

𝒒𝒎 0.00008 

𝒒𝒍𝒐𝒔𝒔 198 

𝑻𝒎𝒊𝒏 296.03 

𝑻𝒈𝒊𝒏 4327 
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Figure 7.12. Temperature of the mixture required at the entrance of the riser to 
maintain at 23°C at the exit, as a function of gas flow rate and for various riser 
diameters. 

 

 

Figure 7.13. Heat loss through the walls of the photobioreactor when ambient 
temperature is 10°C and the temperature of the mixture at the end of the tube is 
maintained at 23°C, as a function of gas flow rate and for various riser diameters. 
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Figure 7.14. Temperature of the sparged gas required at the entrance of the riser to 
maintain the mixture at 23°C at the exit, as a function of gas flow rate and for various 
riser diameters. 

 

 

Figure 7.15. Heat loss through the walls of the photobioreactor when ambient 
temperature is 10°C and the temperature of the mixture at the end of the tube is 
maintained at 23°C, as a function of gas flow rate and for various wall thicknesses, s. 
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Figure 7.16.  Heat loss through the walls of the photobioreactor when ambient 
temperature is 10°C and the temperature of the mixture at the end of the tube is 
maintained at 23°C, as a function of gas flow rate and for various wall thermal 
conductivities, kt (0.1 for fluorinated ethylene-propylene and 1 for glass). 

 

 

Figure 7.17. Heat loss through the walls of the photobioreactor when ambient 
temperature is 10°C and the temperature of the mixture at the end of the tube is 
maintained at 23°C, as a function of gas flow rate and for various wall heat transfer 
coefficients of the ambient air, he. 
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Figure 7.18. Heat loss through the walls of the photobioreactor when ambient 
temperature is 10°C and the temperature of the mixture at the end of the tube is 
maintained at 23°C, as a function of gas flow rate and for various ambient 
temperatures, Te. 

 

A double pipe HE is suggested to replace part of the downcomer (shown in 

Figure 7.9), where the passing broth is restored to the required temperature, before 

entering the riser for the next recirculation. This would not require a great mass of 

heating fluid to surround the PBR and consequently minimises the impact on light 

absorption into the PBR. Either hot water or the actual flue gas could be used as the 

heating fluid, as water is a commonly used WHR system fluid (7.3), and flue gas is 

supplied in abundance on the ship, respectively. The temperature of the mixture would 

increase from 𝑇𝑚𝑜𝑢𝑡 to 𝑇𝑚𝑖𝑛 as it passes through this system, because of the high 

thermal conductivity of the tube and the high flow rates of the heating gas, or the high 

heat capacity and heat transfer coefficient of the water. Temperature required for the 

heating fluid or this design and the length of the high conductivity tube part are 

important parameters to be considered. It is important for the temperature of the 

heating fluid not to exceed the upper limit of temperature tolerated by the specific algae 

strain. Therefore, instead of using too high temperatures of the heating fluid, a longer 

high-conductivity part could be added to allow lower heating fluid temperatures for 

adequate heating of the PBR.  

The HE characteristics for a case study of the PBR designed in 4.2 and liquid 

velocity 0.3 m/s are shown in Figure 7.19. Length and flow rate requirements for this 

temperature control are also shown. When gas is used as the heating fluid, high flow 
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rates are needed due to the low heat capacity, and they correspond to high volumes. 

Hence, the feasibility of this heating method depends on the mass of the available flue 

gas and its ability to cool the PBR size implemented in each case. This suggestion for 

temperature control does not require the whole PBR to be immersed in a temperature 

control bath. It only requires a replacement of a small part of the plastic PBR with a 

high conductivity part, e.g., stainless steel with 𝑘𝑡 = 16 Wm-1K-1 (The Engineering 

Toolbox, n.d.) (full list of parameter values used is shown in Table VI.5 of Appendix VI), 

surrounded by an outer insulated pipe.  

According to Figure 7.19, if water is used as the heating fluid, and its inlet 

temperature is around 358 K (which is the maximum temperature maintained by the 

jacket cooling water outflow as mentioned in 2.2.3), less than 70 cm of the downcomer 

would need to be replaced by the high conductivity tube part and less than 10 g/s mass 

flow rate of the water is needed. Similar curves are shown for the case where flue gas 

is used as the heating fluid, though higher flow rates and longer HE tubes are needed. 

It has to be noted that if the high conductivity tube part replaces part of the downcomer, 

then the heat loss at the reduced length is less than initially estimated and the actual 

length replacement required has to be corrected. Likewise, in the case that the high 

conductivity part does not replace part of the downcomer, but adds length to it, then the 

initially used liquid velocity changes slightly and a corrected heat loss needs to be 

computed.  
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Figure 7.19. Mass flow rate of the heating fluid and length of the high conductivity part 
of the downcomer required in order for the heat exchanger to raise the temperature of 
the mixture at the entrance to Tm,in as shown in Table 7.4. 

 

 

7.5 Conclusions  

Water mass requirements computed for the treatment of the total flue gas 

emissions of each ship suggest that many tankers would have the storage capacity in 

the ballast tanks for the operation of such PBRs (at least when they are operated in the 

ballast condition and so can use the ballast tank’s capacity). The high fuel consumption 

and low space availability of ferries make them less appropriate for this 

implementation. Even for the ferries, a portion of the emissions can still be fixed, but 

space is a crucial issue and would require significant developments in the design of the 

ship, logistics or PBR efficiency.   

A generic WHR system was proposed, which uses the flue gas to heat a PBR and 

fulfils the heating requirements of the utilities of the ship. The control variables of the 

system and the constraints to be fulfilled were discussed. A WHR for a case ship of 

similar size as Tamesis was run with the gPROMS flowsheet model. The influence of 



216 

 

the water flow rates on the fulfilment of the discussed constraints (i.e., fulfilment of the 

heating rate needs, with overflow avoidance and enough storage capacity) was 

demonstrated. Finally, heating output from potential WHR systems for the existing ferry 

and tanker fleets was computed, in order to pair the flue gas heating output to the 

ballast capacities of each ship and examine a broader feasibility of this implementation.    

Finally, a heat transfer model was developed to estimate the heat loss through the 

walls of a PBR based on the deck of a ship, for various ranges of parameters. If no 

temperature control is used, the temperature reaches the ambient temperature, which 

can be too low for the culture. The temperature variation along the PBR is not high and 

it is within the temperature limits tolerated by most strains. However, temperature 

control using the sparged gas was found to be infeasible, due to the great difference in 

heat capacity of the gas sparged and the broth in the PBR. It was also shown that the 

inlet temperature of the mixture, and consequently heat loss and inlet temperature of 

the gas, was not sensitive to parameters like the thermal conductivity of the walls, wall 

thickness and gas flow rate, over the ranges considered, but was very sensitive to riser 

diameter, heat transfer coefficient of the air and ambient temperature. A second 

temperature control method was therefore proposed, consisting of a double pipe HE 

occupying a small portion of the PBR downcomer, made of a high conductivity tube. 

Even minor lengths of the high conductivity tube part were found to be enough to 

control the temperature of the PBR, using allowable ranges of the heating fluid flow 

rate and temperature. This HE design could be a solution that could be used in 

combination with the WHR system of the ship for an experiment pilot installation. 

However, a different design would be more appropriate to generalise across full 

installations in large ships, where the PBR is not necessarily tubular and, hence, the 

double pipe HE does not apply.     
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8 Conclusions and future work 

 

8.1 Thesis summary 

The research in this thesis has developed new scientific and technological 

knowledge related to the development of a shipboard PBR for the capture of CO2 from 

flue gas. A variety of important issues regarding implementation, both in a broad 

shipping fleet and in a specific vessel (Tamesis), were considered. Several related 

aspects were explored using the existing literature across multiple disciplines and a 

research scope was developed in compliance with available resources, combining 

experimental and modelling approaches.  

This thesis has investigated shipping emissions and waste streams, the existing 

regulations regarding pollutants and methods to decrease shipping pollution. The algal 

cultivation systems and factors affecting their growth were then analysed.  From this, a 

PBR design for a small ship was identified that would capture some of the broad 

challenges required for both computational and experimental modelling. This included 

developing a simple theoretical hydrodynamic model to compute liquid velocity and gas 

hold-up in airlift PBRs, according to bubble size and reactor dimensions, and a model 

of algal kinetics, based on the simultaneous effects of multiple factors. 

Modelling was conducted in the MATLAB and gPROMS environments, to address:  

1.  The hydrodynamics of the gas-liquid mixture recirculating in airlift PBRs. 

The model is applicable to outdoor or indoor external loop airlift tubular 

PBRs;  

2.  The kinetics of algae growth process in relation to light intensity, 

temperature and nutrient concentrations;  

3.  The space requirements estimations for the PBR implementation on 

different ship sizes and types; 

4.  The space requirement for the storage of water was found to be 

approximately 0.6 times the ballast capacity of the tankers and 

approximately 30 times the ballast capacity of the ferries, recovering 100% 

of the flue gas waste heat to continuously provide the required heat to the 

PBR and other utilities;  

5.  The heat transfer between the PBR and a suggested HE design. The model 

is applicable to tubular PBRs fed with a gas and with spatially stable 
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external temperature, estimating the effect of the ambient temperature on 

the temperature of the liquid along the PBR tube.  

Some of the models developed can be integrated together so that the outputs of 

one feed the inputs of a subsequent model, according to the needs of the problem 

under consideration. For instance, the hydrodynamic model can provide the results for 

liquid velocity and gas holdup to be used in the heat transfer model, which can 

estimate the temperature in the PBR. The temperature can then be used to estimate 

the growth rate.   

At an experimental level, a hybrid helical airlift PBR was designed and assembled. 

It was a challenging design on which to test theoretical models. There is plenty of 

scope to improve the design and assembly of the reactor for carbon capture and to 

further test the reactor on an operating vessel.  

Wild algae samples were collected from fresh water sources to compare the growth 

characteristics with Chlorella sorokiniana, obtained from the laboratory based within the 

CEGE department of UCL.  

 

8.2 Concluding remarks 

Overall conclusions drawn from this research can be summarised as follows: 

1.  Shipboard PBRs are a means to assist in partial CO2 capture and can feasibly be 

incorporated into the systems onboard a ship. However, the technical feasibility of 

the implementation would potentially require complex modifications of the whole 

design of the ship storage spaces, machinery, fluid transport and control systems.  

2.  The dependence of the algae growth on poly-parametric factors and its sensitivity 

to environmental and other conditions on ships do not permit the determination of 

standard procedures and steps for PBR system operation, leaving areas open for 

further research and optimisation in this regard. 

3.  The need for a large water mass and for high gas absorption efficiency limit this 

application as far as the percentage of CO2 captured is concerned. One hundred 

percent capture with respect to the total emissions of many ship types, as they are 

currently designed, would be likely to be too energy consuming. 

4.  The ability to robustly couple algal growth with the ship engines, machinery, 

emissions and water use and to use low grade heat from the engine and cold 

water from the ambient seawater or river water, would constitute a technological 

advance that would bring emissions and wasted energy down. An algal PBR might 
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contribute not only to CO2 fixation but also to reduction of the NOx and particulate 

matter in the exhaust of the ships.  

5.  One of the outputs of a PBR – cultivating algae – has a variety of uses both as a 

biomass and energy commodity which could potentially be used onboard, or 

transferred to land and further production processes. These uses could create a 

revenue stream that could help to offset some of the costs associated with an 

onboard PBR. 

 

 Summarising the answers to the research questions of this work (3.1), 

regarding research question 1; a helical airlift design was tested and proved to 

face the issue of bubble coalescence, concentration of ship NOx and SOx have 

potential for toxic effect on algal growth, whereas cultivation of wild algae showed 

significant delay compared to the commercial species. Regarding research 

question 2, the hydrodynamic model developed has less reliance on empirical 

expressions and helped for dimensioning of the PBR, depending on the required 

operating conditions. Research question 3 was answered through the experiments 

of growth under different conditions and their use in the calibration of the model 

developed that used various factors. Difficulties in the calibration were analysed 

and predictions of the growth was examined to optimise the PBR requirements in 

material and energy inputs. Finaly, regarding research question 4; potential of 

different ships to accommodate the treatment of the total amount of emissions was 

estimated and revealed the appropriate ships, heat loss of the examined PBR 

design was estimated for different flow rates, the adjustment of flue gas 

temperature was shown to be inadequate to control PBR temperature, whereas 

the suggested HE design and WHR system were evaluated under different flow 

rates. In detail, this first study on the capture of ship CO2 emissions using 

shipboard PBRs revealed the following: 

1.  Some key practical challenges of PBR system integration include the viability with 

respect to ship-specific conditions (research question 1, 3.1), the most important of 

which are high NOx and SOx concentrations (1500 mg/kg and 600 mg/kg, 

respectively, as presented in 4.3), the high temperature of the flue gas (380 C, as 

stated in 2.2.3) and the varying salinity of the surrounding water supplied to each 

ship. SOx scrubbers would be needed before the flue gas entrance to the PBR. 

Salinity, however, did not appear to be a serious obstacle for many algal species 

(12 – 40 g/L, as shown in 4.4). Thus, seawater could be used for PBR operation as 

far as algae growth is concerned.  
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2.  Initial findings suggest that raw sample collections grow better under air with 10% 

CO2 concentration, compared to ambient air (research question 1, 3.1). However, 

their growth rate was slower when compared with Chlorella sorokiniana which took 

1 day to reach exponential growth, contrary to the other samples which took 7 

days approximately. Consequently, raw samples would benefit from pre-treatment. 

In addition, tests of the fluid dynamics in PBRs and of the algal growth kinetics 

were completed to validate and calibrate the models developed, using Chlorella 

sorokiniana. 

3.  A hybrid helical airlift PBR was suggested and constructed as a potentially optimal 

design for small and medium-scale implementations on ships, as it provides high 

gas absorption efficiency, good light absorption and low hydrostatic pressure. The 

main problem faced by the PBRs constructed is bubble coalescence (research 

question 1, 3.1). According to the lab measurements, the optimal inclination was 

suggested to be approximately 40, which would avoid bubble coalescence and 

optimise gas retention time.  

4.  The hydrodynamic model developed and validated in this research work, 

calculating the liquid velocity without the need for empirical expression of the gas 

hold-up (contrary to other models in the literature), can evaluate optimal PBR 

geometries for given problems. The model also revealed the impact that the 

bubble diameter can have on gas hold-up and liquid velocity (research question 2, 

3.1). 

5.  Results from the preliminary CO2 experiments using Chlorella sorokiniana revealed 

that of the three different CO2 concentrations tested, 4,300 mg/kg resulted in a 

higher growth rate than 700 mg/kg or 50,000 mg/kg, although the literature 

suggests that the latter is optimal. The growth rate was best at the highest nutrient 

concentration tested, 1:50, the lower temperature tested, 22 – 25 C, and the 

highest light intensity tested, 150 μmol/m2/s. Further improvement of growth rate is 

possible at higher nutrient concentrations and light intensities. The nutrient 

removal rates for nitrates and phosphates were 97% and 37%, respectively 

(research question 3, 3.1).  

6.  The non-linear growth model is difficult to calibrate and the inclusion of many 

factors in the biomass concentration formula leads to the estimation of extreme 

parameter values and the maximum growth rate predictions were not always in a 

good fit with the experiments. Experiments for the calibration of the model showed 

no significant interaction between the factors, but a slightly greater interaction was 

noted between the nutrient dilution and temperature compared to nutrient dilution 
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with light intensity. The growth model was simulated for different case studies 

based on three different objective functions using parameter values from the 

literature and the different results of the predicted key variables and the suggested 

control variables were discussed. The optimisation of productivity using the dilution 

rate as a control variable could also save significant needs related to excessive 

nutrient supply (research question 3, 3.1).   

7.  The specifics of the machinery installed (e.g., engine power and therefore 

emissions outputs), the operating hours of the ships and their empty space 

available are chiefly what determine whether an algal PBR system has potential for 

emission reduction (research question 4, 3.1). The ballast tanks of many tankers 

would be able to store a sufficient mass of water for the operation of a PBR that 

could treat the total mass of their engines’ emissions. The potential is lower for 

ferries, because of their high fuel consumption and low availability of space.  

8.  A PBR placed on a ship would, depending on its area of operation, face significant 

heat loss and so may require heating in order to maintain its temperature within the 

range tolerated by algal cultures.  

a. A solution for heating of the PBR was proposed, with the integration of a WHR 

system and the use of a double pipe HE (research question 4, 3.1). The 

suggested design would require a significantly smaller mass of water to 

surround the PBR and would also maintain the light penetration compared to 

other temperature controlling methods used by PBRs. Finally, the importance 

of the water flow rates for the efficiency of the system was discussed, to 

minimise the respective power consumption and energy penalty. This 

optimisation would require the minimum possible flow rate of the heating water 

that could be used to make this water stream reach its lowest allowed value at 

its exit from the heaters. The WHR and PBR systems have to be integrated 

into the ballast water management decision support systems, to optimise 

space use and balance, as well as to prevent transfer of harmful aquatic 

organisms and pathogens.  

b. The proposal to provide heating with the use of the hot flue gas straight from 

the engine was examined. An extremely high gas temperature would be 

required due to the wide difference in heat capacity between the gas and liquid 

and the low gas volume sparged in the given liquid mass (research question 4, 

3.1). The model showed that the temperature required for the flue gas was 

sensitive to the PBR diameter, the gas flow rate and the ambient temperature 



222 

 

and the ambient air heat transfer coefficient, but not to the thermal conductivity 

and the width of the PBR tube for the parameter ranges used in PBRs.   

 

8.3 Recommendations for further work  

Further research is recommended in the following directions: 

1.  The effect of the helix inclination on the bubble coalescence needs to be verified 

with the use of a helix PBR, in addition to the straight tube used in this study. Also, 

other PBR designs would need to be considered for a shipboard PBR, to find the 

most appropriate choice.    

2.  The effect of the NOx and SOx concentrations on the growth rate and the lipid 

productivity depends on the algal species, but the concentration range of the flue 

gas of ships has not yet been tested on algae. Hence, experimental testing of 

algae tolerance to these levels would provide knowledge about the specific gas 

cleaning pretreatment required before the PBR. 

3.  Improvement of the drag coefficient estimation is recommended for the good fit of 

the hydrodynamic models, simulating bubbles of the size range used in PBRs. 

Different drag coefficient correlations clearly affected model predictions and errors 

relative to the experimental data.  

4.  Also, experimental work in which the models would be tested more rigorously 

within real conditions of the examined environment is required. Making available a 

range of modelling approaches will help in understanding complex processes that 

will ultimately allow for deriving values such as the biomass productivity. 

5.  Estimation of the pumping needs in the case of inclined tube PBRs would be 

useful in order to evaluate the energy savings from the lower hydrostatic pressures 

and consider them with respect also to the possible increase in gas retention time 

and absorption efficiency. 

6.  The scale-up of the pilot plant and design of a PBR system for the treatment of 

larger gas volumes is essential for the commercialisation of this waste 

bioremediation system. A larger scale in the appropriate ships could also increase 

efficiency and CO2 fixation potential and thereby reduce the respective energy 

penalty.  

7.  More frequent measurements are needed in order to calibrate a growth model that 

includes several factors, as the four phases of the growth are not identifiable with 

the existing measurement data. Also, a growth model that takes into account 

metabolism in combination with kinetics would reveal the actual relation of algae 
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growth with the extracellular nitrate concentrations, as the current kinetics model 

gives phase input to the growth model and simulates an early stop of growth.  

8.  Inclusion of the heat produced by the photosynthesis and the heat introduced in 

the PBR by radiation into the heat transfer model that simulates the proposed 

novel heat exchange device would be useful in order to provide more accurate 

results, if their effect proves to be significant.  

9.  Algal species capable of growing under minimal air and CO2 supply might be 

needed, to maintain the PBR during the non-working hours of the engine, avoiding 

the use of storage tank for CO2 provision during those hours. Algae should also be 

able to adapt to changes in temperature that may occur during a journey crossing 

many lines of latitude. Influence of changes in light conditions that occur at 

different times of the day and in PBR mass distribution between deck and holds 

would facilitate optimisation of the pumping flow rate of PBR water from holds to 

deck for a continuous flow. The influence of medium-duration light/dark cycles is 

not clear (2.3.5.3.1), so experiments with intermittent illumination of the order of a 

few minutes will supplement the literature with cycles of this range. While sunlight 

provision on the deck would save illumination energy requirements, the placement 

of the PBR close to the waterline would help improve ship stability. Continuous 

provision of light to the PBR using sunlight is crucial to save energy requirements. 

Further work is needed in stress response to introduce a better understanding of 

the adaption mechanisms as a result of various stress responses appearing on 

board a ship.   
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Table I.1. Summary of pollutant quantities emitted by ships. Data taken from: [1]
Lloyds Register Engineering Services emission factors in kg/hr (Loyds 

Register Engineering Services, 1995). P = engine power (kW) x engine load (85% maximum continuous rating of the engine), N = No of MEs, A = Total 

auxiliary power (kW), C = 1, 2, 3, 4 and 5 where vessel gross registered tonnage is < 1000, 1000 – 5000, 5000 – 10000, 10000 – 50000 and > 50000 

respectively (David Cooper, 2002). 
[2]

IPCC 2006 (IMO, 2009). 
[3]

CORINAIR (IMO, 2009). 
[4]

Non-regulated\ subject to IMO NOx regulation (2007 average 

emission factor) (IMO, 2009). 
[5]

* pre-2000 engine\post 2000\ fleet average (Defra, 2010). 
[6]

NOx (Entec, 2002). 

Comp
onent 

Kg/hr g/kWh Kg/tonne fuel 

ME medium 
speed 

[1] 
ME slow 
speed 

[1] 

AE 
(medium 
speed) 

[1] 

Diesel 
Engines 

[1] 

At sea 2007 
[5]

 Manoeuvring and at Berth 2007 
[5]

 Diesel 
Engine

s
1 

2007 
inventory SSD Engine MSD Engine HSD Engine GT Engine ST Engine SSD Engine MSD Engine HSD Engine GT Engine ST Engine 

CO2    660 
MGO 588 
MDO 588 
RO 620 

MGO 645 
MDO 645 
RO 677 

MGO 645 
MDO 645 
RO 677 

MGO 922 
MDO 922 
RO 970 

MGO 922 
MDO 922 
RO 970 

MGO 647 
MDO 647 
RO 682 

MGO 710 
MDO 710 
RO 745 

MGO 710 
MDO 710 
RO 745 

MGO 1014 
MDO 1014 
RO 1067 

MGO 1014 
MDO 1014 
RO 1067 

3170 
RFO 3,130 
MDO 3,190 

[2] 

NOx
[6] 4.25 x 10

-3 
x 

P
1.15 

x N 
17.50x10

-

3
xPxN 

4.25 x 
10

-3
 x 

A
1.15 

slow speed 
17 

medium 
speed 12 

MGO 
17\14.1\16 

MDO 
17\14.1\16 

RO 
18.1\15\17 * 

MGO 
13.2\11\12.4 

MDO 
13.2\11\12.4 

RO 
14\11.6\13.1 

* 

MGO 
12\10\11.3 

MDO 
12\10\11.3 

RO 
12.7\10.5\11.

9 * 

MGO 
5.7\4.7\5.3 

MDO 
5.7\4.7\5.3 

RO 
6.1\5.1\5.7 * 

MGO 
2\1.7\1.9 

MDO 
2\1.7\1.9 

RO 
2.1\1.7\2 * 

MGO 
13.6\11.3\12.8 

MDO 
13.6\11.3\12.8 

RO 
14.5\12\13.6 * 

MGO 
10.6\8.8\9.9 

MDO 
10.6\8.8\9.9 

RO 
11.2\9.3\10.5 

* 

MGO 9.6\8\9 
MDO 9.6\8\9 

RO 
10.2\8.5\9.6 * 

MGO 
2.9\2.4\2.7 

MDO 
2.9\2.4\2.7 

RO 
3.1\2.6\2.9 

* 

MGO 
1.6\1.3\1.5 

MDO 
1.6\1.3\1.5 

RO 
1.7\1.4\1.6 * 

slow 
speed 

87 
mediu

m 
speed 

57 

Slow-speed 
diesel 

90\78(85) 
Medium-

speed diesel 
60\51(56) 

[4]
 

Boilers 7 

N2O                0.08   
[2,3] 

SO2 

2.31 x 10
-3 

x 
P x N for 
engines < 
2000 kW 

12.47 x 10
-3 

x 
P x N for 
engines > 
2000 kW 

11.34x10
-

3
xPxN 

2.36 x 
10

-3
 x A x 
C 

4.2 x S% 
MGO 0.7 
MDO 5.6 
RO 10.5 

MGO 0.8 
MDO 6.2 
RO 11.5 

MGO 0.8 
MDO 6.2 
RO 11.5 

MGO 1.2 
MDO 8.7 
RO 16.5 

MGO 1.2 
MDO 8.7 
RO 16.5 

MGO 0.8 
MDO 6.2 
RO 11.6 

MGO 0.9 
MDO 6.8 
RO 12.7 

MGO 0.9 
MDO 6.8 
RO 12.7 

MGO 1.3 
MDO 9.6 
RO 18.1 

MGO 1.3 
MDO 9.6 
RO 18.1 

20 x 
S% 

RFO (2.7 %) 
54 

MDO (0.5%) 
10 

[3] 

CO 
15.32 x 10

-3
 x 

P
0.68

 x N 
0.68 x 10

-3
 

x P
1.08

 x N 

15.32 x 
10

-3
 x 

A
0.68 

1.6           7.4 7.4   
[3]

 

HC 
4.86 x 10

-3
 x 

P
0.69

 x N 
0.28 x 10

-3
 

x P x N 

4.86 x 
10

-3
 x 

A
0.69 

0.5           2.4  

NMVO
C 

    0.6 0.5 0.2 0.1 0.1 1.8 1.5 0.6 0.5 0.3  2.4   
[3]

 

CH4                0.3  
[2,3] 

PM    
1.5 fuel oil 
0.2 gas oil 

MGO 0.3 
MDO 0.3 
RO 1.7 

MGO 0.3 
MDO 0.4 
RO 0.8 

MGO 0.3 
MDO 0.4 
RO 0.8 

MGO 0 
MDO 0 
RO 0.1 

MGO 0.3 
MDO 0.4 
RO 0.8 

MGO 0.9 
MDO 1.2 
RO 2.4 

MGO 0.9 
MDO 1.2 
RO 2.4 

MGO 0.9 
MDO 1.2 
RO 2.4 

MGO 0.5 
MDO 0.7 
RO 1.5 

MGO 0.9 
MDO 1.2 
RO 2.4 

7.6 fuel 
oil 

1.2 gas 
oil 

RFO 6.7 
MDO 1.1 

[3] 

CO is carbon monoxide, HC is hydrocarbons, CH4 is methane, PM is particulate matter, HFO is heavy fuel oil, MDO is marine diesel oil, MGO is marine gas oil, RO is residual oil and VOC is volatile 
organic compounds.   
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Table I.2. Critical variables for algal production systems, taken from the Algal Industry 
Survey (Edwards, 2009). 

Critical system parameters World (importance factor) 

Algal species 4.1 

Light penetration 4.0 

Growing containers 3.9 

Variable controls (temperature, pH) 3.6 

Nutrient costs 3.2 

Mixing methods 3.2 

Monitors 2.9 

Fouling 2.9 

 

 

 

Table I.3. Comparison of algal cultivation systems for land based implementations. 
Data taken from: 1(Scott et al., 2010), 2(Kumar et al., 2011), 3(Chisti, 1989), 4(Molina et 
al., 2001), 5(Morita et al., 2000), 6(Watanabe, De la Noue & Hall, 1995), 7(Wolkers et 
al., 2011), 8(Tredici & Zittelli, 1998), 9(Posten, 2009), 10(Lee et al., 1995), 
11(Christenson & Sims, 2011), 12(Gardner, 2011), as well as (Brennan & Owende, 
2010;  Carvalho, Meireles & Malcata, 2006; Girdhari, 2011).   
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e
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S
u
m

 

Raceway 
ponds

[1] 
Low Low Poor Easy Difficult High Low Small High 16 

Bubble 
columns

[2] 
Medium Medium Medium Difficult Easy Low Low Small High 17 

Airlifts
[2,3,4] 

Medium High Good Difficult Easy Low Low Small High 19 

Helical
[2,5,6] 

High High Medium Difficult Easy Medium Low Medium Low 18 

Flat panel
[7] 

High Medium Medium Difficult Difficult Low Low Small High 17 

Horizontal 
tubular

[2,8,9] 
High Low Poor Difficult Easy High High Big Low 14 

Inclined 
system

[10] 
High Medium Medium Difficult Easy Low Low Medium High 17 

Stirred tank
[2] 

Low Low Good Easy Difficult High High Small High 17 

Plastic bag
[11] 

High Low Medium Difficult Difficult Medium Low Small High 17 

Hollow Fibre 
Membranes

[12]
 High High Good Difficult Easy High High Medium Low 19 
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Table I.4. Productivities of various photobioreactor designs. 

Microalgal 
species 

Mode of 
operation 

PBR type Volume 
(L) 

Productivity 
(gL

-1
d

-1
) 

Reference 

Phaedoctylum 
tricornutum 

Continuous Tubular 200 1.9 (Molina et al., 
2001) 

Phaedoctylum 
tricornutum 

Continuous External loop 
airlift tubular 

200 1.2 (Fernandez et al., 
2001) 

Arthrospira 
platensis M2 

- Coiled tubular 120 0.9 (Tredici & Zittelli, 
1998) 

Chlorella 
sorokiniana 

Continuous Flat panel 1.6 12.2 (Cuaresma et al., 
2009) 

  Raceway pond  0.5 - 1.5 (Rosenberg et al., 
2011) 

  Helical tubular  0.9 gL-2d-1 (Tredici & Zittelli, 
1998) 

  Horizontal 
manifold 

 1.3 (Tredici & Zittelli, 
1998) 

  Horizontal a-
type manifold 

 72 gm-2d-1 (Lee et al., 1995) 

 

 

Table I.5. Percentage of vessels ballast water capacity in relation to the ships 

deadweight tonnage (David & Gollasch, 2015). 

Ship type/ deadweight tonnage % of deadweight tonnage 

Bulk carriers 33 

Bulk carriers /250,000&70,000 30-45 

Bulk carriers /35,000 33-57 

Tankers 38 

Tankers/100,000 40-45 

Tankers/40,000 43 

Cargo 35 

Cargo/40,000 28-40 

Cargo/17,000 35 

Cargo/15,000 30 

General Cargo 29 

General Cargo/8,000 38 

Passenger/ Roll-on-roll-off vessel 43 

Average percentage 37 
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Appendix II. Characteristics of the ship 

 

The Sound vessel was built by Asi-Verken A.S. of Amal, Sweden in 1959 as a car 

ferry. It has four 6-cylinder main engines Scania D11R 81 BT of 180 hp and two 

auxiliaries John Deere Generators (Powertech 4500) of 38 kW each. Images of the MV 

Sound, engine room and a part of the deck of the ship are shown in Figure II.1 to 

Figure II.3.  

 

Figure II.1. Ship section and engine room drawings of motor vessel Sound  by Octoply 

Ltd.(Octoply Ltd., n.d.). 

 

 

Figure II.2. Engine room of motor vessel Sound by Octoply Ltd. 
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Figure II.3. Image of a deck area on motor vessel Sound by Octoply Ltd. 
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Appendix III. Photobioreactor design aspects 

Reactor photos and inclination test 

 

Figure III.1. Side view of the hybrid helical airlift photobioreactor constructed at the 
Camley Street Park. 

 

Figure III.2. Side view of the hybrid helical airlift photobioreactor constructed onboard 
Tamesis (left picture) and its bottom connection (right picture). 
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Table III.1. Average bubble size (in mm) at the bottom and top positions of the column 

and their size difference for various gas flow rates and inclinations. 

  Flow rates (L/min) 

Inclination Position 0.1 0.4 0.6 0.8 1.0 1.5 

20 

Bottom 0.97 2.15 2.31 2.83 2.90 3.00 

Top 6.05 9.28 10.09 9.74 7.20 5.60 

difference 5.08 7.13 7.78 6.91 4.30 2.60 

30 

Bottom 1.17 1.50 1.56 2.09 2.23 2.75 

Top 5.14 5.75 6.43 5.16 4.91 5.19 

difference 3.97 4.25 4.87 3.07 2.68 2.44 

40 

Bottom 0.89 1.38 1.61 1.80 2.35 2.40 

Top 4.84 5.12 4.57 4.50 4.50 3.72 

difference 3.95 3.74 2.96 2.70 2.15 1.32 

50 

Bottom 0.78 1.20 1.89 2.01 2.42 2.71 

Top 4.75 4.85 4.38 4.68 4.55 4.55 

difference 3.97 3.65 2.49 2.67 2.13 1.84 

60 

Bottom 0.79 1.07 1.56 2.10 2.44 2.62 

Top 4.81 4.69 4.58 4.61 4.25 4.58 

difference 4.02 3.62 3.02 2.51 1.81 1.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



257 

 

Algae tolerance to SOx, NOx and salinity 

Table III.2. CO2, NOx and SO2 and temperature tolerance of various algal species 

(growth conditions not included) (Gardner, 2011; Kumar et al., 2011; Ono & Cuello, 

2001). 

Algal species 

 

Maximum 
temperature 
tolerance (°C) 

Maximum 
CO2% (v/v) 
tolerance 

Maximum 
SOx 
(mg/kg) 
tolerance 

Maximum 
NOx 
(mg/kg) 
tolerance 

Reference 

Cyanidium 
caldarium 

60 100 >200 - (Ono & Cuello, 
2001; 
Seckbach & 
Ikan, 1972) 

Scenedesmus 
sp. 

30 80 - - (Hanagata et 
al., 1992; 

Ono & Cuello, 
2001) 

Chlorococcun 
littorale 

- 60 – 70 - - (Ota et al., 
2009) 

Synechococcus 
elongates 

60 60 - - (Miyairi, 1995) 

Euglena gracilis - 45 - - (Nakano et al., 
1996) 

Chlorella sp. 45 40 - - (Hanagata et 
al., 1992; 

Ono & Cuello, 
2001) 

Chlorella sp. 
HA-1 

- 15 - 100 (Yanagi et al., 
1995) 

Eudorina sp. 30 20 - - (Hanagata et 
al., 1992) 

Dunalliela 
tertioleta 

- 15 - 1000 (Nagase et al., 
1998) 

Nannochloris sp. 25 15 - 100 (Yoshihara, 
1996) 

Tetraselmis sp. - 14 185 125 (Matsumoto et 
al., 1995) 

Monoraphidium 
minutum 

25 13.6 200 150 (Zeiler et al., 
1995) 

Spirulina sp. - 12 - - (de Morais & 
Costa, 2007) 

Chlorella sp. T-1 35 100 20 60 (Maeda et al., 
1995) 

Chlorella KR-1   150  (Lee et al., 
2000)  

Chlorella sp. 
MTF-7 

 <10 >90  (Chiu et al., 
2011)  
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Table III.3. Optimal salinities for maximum productivity and salinities tolerated for some 

genera, species and strains which are widely used for carbon fixation. 

 
Salinity type Examined Salinity 

suitable for 
growth [gL

-1
] 

Salinity for 
optimal 
growth  [gL

-1
] 

Reference 

Nannochloropsis 
Artificial seawater 
from hypochlorite 
solution 

20 – 40, 0 – 36 35 
(Briassoulis et al., 
2010) 

Tetraselmis sp. 
Total salinity 

 20 – 35 
(Kunjapur & 
Eldridge, 2010) 

Isochrysis sp. 
Total salinity 

 25 – 35 
(Kunjapur & 
Eldridge, 2010) 

Porphyra 
umbilicalis 

Control of NaCl or 
seawater 

7 – 200 7 – 52 (Kirst, 1989) 

Scenedesmus 
MJ11/18 

Total salinity 
2.5 – 20  (Borgvang, 2011) 

Scenedesmus 
species 

Total salinity 
1.7 – 5.8 1.7 (Borgvang, 2011) 

Botryococcus 
braunii KMITL 2 

Addition of 
seawater 

0 – 20 20 
(Ruangsomboon, 
2011) 

Dunaliella salina Addition of NaCl 3 – 290 180 – 220 (Araújo et al., 2009) 

Dunaliella maritime 
Addition of NaCl 

29 – 87 87 
(Alyabyev et al., 
2007) 

Spirulina-Spirulina 
Addition of 
Seawater 

1 – 270 20 – 70 (Oilgae, 2011b) 

 

Table III.4. Tideway Salinity between Kew and Southend, March 2006. The changing 

levels of salinity in the Thames Tideway (Lane et al., 2007).  

Location  Salinity gL
-1

  

Kew Bridge 0.37  
Barnes Bridge 0.39  
Vauxhall Bridge 0.40 
Charring Cross Bridge 0.40 
Tower Bridge 0.40 
Putney Bridge 0.41 
Greenwich 0.44 
Charlton 0.61 
Woolwich 1.06 
Becton 1.56 
Erith 6.21 
Littlebrook 11.13 
Gravesend 18.52 
Southend (sample taken out of 
temporal context) 

32 
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Wild algae samples experiments  

Table III.5. Water quality of the samples taken from the six different sites. 

Site\Para
meter 

Regent’s Canal 
near Camley 
Street Natural 
Park 

Indoor 
potted 
plant  

Camley 
Street 
Natural 
Park pond 

Boating 
Lake, 
Regent’s 
Park 

St 
James’
s Park 
Lake 

Serpentin
e Lake, 
Hyde 
Park 

Date 41614 41659 41659 41659 41659 41659 

Temperat
ure (°C) 

7.8 
 

4.9 6.6 6.5 7.0 

Dissolved 
Oxygen 
(mg/L) 

9.23  3.83 4.68 9.19 7 

C
a

rb
o

n
 

TOC 
(mg/L) 

4.947 84.18 7.085 9.02 6.18 9.01 

TC 
(mg/L) 

48.975 86.26 46.81 70.23 53.02 56.68 

IC 
(mg/L) 

44.028 2.08 39.72 61.21 46.84 47.66 

Io
n

 C
h

ro
m

a
to

g
ra

p
h

y
 

Fluorid
e 
(mg/L) 

0.80 - 1.03 1.76 1.10 10.39 

Chlorid
e 
(mg/L) 

76.41 - 63.65 58.15 94.83 575.35 

Nitrite 
(mg/L) 

- - 0.066 - - - 

Nitrate 
(mg/L) 

10.71 - 3.20 6.88 8.00 11.10 

Phosp
hate 
(mg/L) 

- - 0.69 1.50 - - 

Sulpha
te 
(mg/L) 

84.24 - 52.08 117.77 91.58 941.61 
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Table III.6. Specification sheet of the Bold Modified Basal Freshwater Nutrient Solution 

(B 5282, pH 3.7 – 4.7, osmolality 556 – 604 mOs/kg) purchased from supplier Sigma-

Aldrich.  

Component  
Concentration 
(mg/L) 

Boric acid 11.42 

Calcium chloride dihydrate 25.0 

Cobalt nitrate • 6H2O 0.49 

Cupric sulfate • 5H2O 1.57 

EDTA (free acid) 50.0 

Ferrous sulfate • 7H2O 4.98 

Magnesium sulfate • 7H2O 75.0 

Manganese chloride • 4H2O 1.44 

Molybdenum trioxide 0.71 

Nickel chloride • 6H2O 0.003 

Potassium hydroxide 31.0 

Potassium iodide 0.003 

Potassium phosphate monobasic 175.0 

Potassium phosphate dibasic 75.0 

Sodium chloride 25.0 

Sodium nitrate 250.0 

Sodium selenite 0.002 

Stannic chloride 0.001 

Vanadium sulfate • 3H2O 0.0022 

Zinc sulfate • 7H2O 8.82 

Grams of powder to prepare 1L n/a 

 

http://www.sigmaaldrich.com/ProductLookup.html?ProdNo=B5282&Brand=SIGMA
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Figure III.3. Set-up of the cultivation of wild algae. 

 

Table III.7. Data used for the production of the calibration curve of the wild algae. 

Dilution Optical density   Algal concentration (g/L) 

1:0 0.966  0.492 

1:1 0.575  0.228 

1:2 0.391  0.161 

1:3 0.299  0.119 

1:4 0.174  0.068 

 

 

Figure III.4. Calibration curve for the cultivation experiments of wild algae. 
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The inverted formula used to convert from the optical density readings to biomass 

concentration was therefore: 

𝐶𝑏 = 0.2948 ∙ 𝑂𝐷
2 + 0.1897 ∙ 𝑂𝐷 + 0.0314 (90) 

Table III.8. Biomass concentration measurements (in g/L) for the four wild algae 

samples growth under normal conditions (no UV light or fed CO2). 

Day  RC22
/1 

PP CSP RP SJP HP RC20
/2 

RC20
/3 

RC20
/4 

RC20
/5 

0 0.161 0.033 0.033 0.032 0.033 0.032 0.010 0.000 0.000 0.003 

1 0.164 0.034 0.045 0.041 0.048 0.035     

5 0.240 0.040 0.035 0.042 0.039 0.034     

6 0.225 0.039 0.032 0.035 0.034 0.033     

7       0.027 0.037 0.017 0.020 

8 0.254 0.043 0.032 0.033 0.034 0.032     

12 0.427 0.058 0.032 0.038 0.033 0.033     

13 0.400 0.075 0.043 0.062 0.044 0.043     

14  0.048 0.032 0.034 0.032 0.061 0.200 0.227 0.047 0.377 

16  0.044 0.034 0.035 0.032 0.035     

19  0.050 0.039 0.039 0.034 0.036     

21  0.031 0.031 0.031 0.031 0.031 0.537 0.317 0.090 0.700 

29  0.135 0.089 0.046 0.102 0.033 0.783 0.510 0.247 0.810 

36       0.243 0.757 0.197 0.463 

43       0.147 0.157 0.070 0.207 

50       0.123 0.227 0.063 0.157 

57       0.040 0.153 0.040 0.177 

64       0.073 0.173 0.043 0.160 
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Table III.9. Biomass concentration measurements (in g/L) for the four wild algae 
samples RC5/1A – RC5/1D and RC24/1D1 – RC24/1D3.  

Day  RC5/1A RC5/1B RC5/1C RC5/1D RC24/1D1 RC24/1D2 RC24/1D3 

0 0.073 0.074 0.072 0.071 0.047 0.044 0.046 

1     0.050 0.048 0.050 

2 0.074 0.058 0.051 0.081 0.049 0.051 0.059 

3     0.043 0.074 0.097 

4     0.052 0.110 0.162 

5 0.079 0.052 0.061 0.097    

9     0.085 0.306 0.648 

14 0.112 0.104 0.072 0.156    

 

 

Figure III.5. Effect of UV wavelength and duration of exposure on the bacteria, grown 

in agar Petri dishes after the UV treatment. 
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Figure III. 6. Cultivation bottles at the end of the growth monitoring of the UV effect 

experiments (Bottles RC5/1A – RC5/1D from left to right). 

 

Table III.10. Possible identities of some algal species isolated from the wild algae 

samples. 

Microscopy photo Possible identity 

 

Chlorella vulgaris 

 

Acutodesmus genus 

 

Monoraphidium Contortum 

 

Chlamydomonas genus 

 

Stichococcus genus 
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Desmodesmus Abundans 

 

Navicula genus 

 

Chlamydomonas genus 

 

Anabaena genus 

 

Ancistrodesmus genus 

 

Sinedra genus 

 

Nitzsechia genus 

  



266 

 

Appendix IV. MATLAB script of the 

hydrodynamic model 

clear all; close all; clc; 

  

%PARAMETERS 

d_r=0.054; %[m] riser diameter 

d_d=0.054; %[m] downcomer diameter 

d_b=0.015; % [m] diameter of the sparger 

d_contr=0.052; %[m](used for the 2.04 m long reactor to connect the pipes) 

d_exp1=0.058; %[m](diameter of top and bottom middle fittings) 

d_exp2=0.063; %[m](diameter of the four connecting curves on the corners) 

a_r= pi*(d_r^2)/4; %[m^2] (cross section area of the riser) 

a_d= pi*(d_d^2)/4; %[m^2] (cross section area of the downcomer) 

a_b= pi*(d_b^2)/4; %[m^2] (cross section area of the sparger) 

v_l=0.000000801; %[m2/s] (kinematic viscosity of the liquid) 

m_l=0.000798; %[kg/m/s] (dynamic voscosity of the liquid) 

p_l=1000; %[kg/m3] (density of the liquid) 

p_g=1.225; %[kg/m3] (density of the gas) 

l_r=1.04; %[m] (length of the riser) 

l_d=l_r; %[m] (length of the downcomer 

l=l_r+l_d+0.3; %[m] (total length of the reactor including the degasser and 

botom zone) 

h_L=l_r; %[m] (liquid dispersion height) 

% k_B=5; %if we take it from table on page 209 

% k_B=11.4*((a_d/a_b)^0.79); %[dimensionless] if we find it from eq.5.55 in 

page 210  

k_B=5; %taken from table 5.7 for external loops in Chisti 

K_fit=(1.5+1.5+1.3+0.75); %[frictional loss, no of velocity heads] 

n_contr1=2; %number of contraction fittings from d_exp2 to d_r 

n_contr2=2; %number of contraction fittings from d_exp2 to d_exp1 

n_contr3=0; %number of contraction fittings from d_r to d_contr m 

n_expan1=2; % number of expansion fittings from d_r to d_exp2 

n_expan2=2; % number of expansion fittigns from d_exp1 to d_exp2 

n_expan3=0; % number of expansion fittings from d_contr to d_r 

mid_fit=0; %it gets 1 later only when we have the 2 m long reactor with the 

fittings in the middle of the tubes 

K_contr=(n_contr1*0.5*(1-((d_r^2)/(d_exp2^2))))+(mid_fit*n_contr3*0.5*(1-

((d_contr^2)/(d_r^2))))+(n_contr2*0.5*(1-((d_exp1^2)/(d_exp2^2)))); % (K from 

contractions in the loop) 

K_exp=(mid_fit*n_expan3*((1-

((d_contr^2)/(d_r^2)))^2)*((d_r^2)/(d_contr^2)))+(n_expan1*((1-

((d_r^2)/(d_exp2^2)))^2)*((d_exp2^2)/(d_r^2)))+(n_expan2*((1-

((d_exp1^2)/(d_exp2^2)))^2)*((d_exp2^2)/(d_exp1^2))); %(K from expansions in 

the loop) 

K_avg=K_fit+K_contr+K_exp; % (all K values summed up for the case of the Power 

balance model) 

r=0.0000025; % [m](meann height of roughness) 

pi=3.142;  

g=9.81; %[m/s2] 

n=1000; %linspace for the horizontal axis of the figures  

d=0.5; %step for l_r when in z axis 

z=30; %linspace for q_g 3D plot  

vvm=1; %[volume gas/volume liquid/minute] (not needed) 

q_g_examined=[0.00000167, 0.000004167, 0.000006667, 0.00001, 0.00001667, 

0.000033333, 0.00005, 0.0000667, 0.00008333]; % [m^3/s] (gas flow rate the 

values tested in lpm were; 0.1, 0.25, 0.4, 0.6, 1, 2, 3, 4, 5) 

d_b_examined=[0.001, 0.0018, 0.0033, 0.0044, 0.005, 0.01]; %[m] (bubble 

diameters, used for the z axis of figures) 

l_r_row=[0.54,1.04,2.04]; 

x=size(q_g_examined,2); % linspace for q_g 

b=size(d_b_examined,2); % linspace for d_b 

d_r_examined=[0.034, 0.054, 0.1]; 
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%ESTIMATION OF u_b 

% The following part estimates the relative rising velocity of the bubbles in 

a 

% bubble column as a function of their diameter, by using the formula 

% produced in the report which is derived by equating Buoyancy force with 

% drag force from the water. 

  

d_b = linspace(0.0001,0.01,n); %(for the x axis of figure 1) 

s_d_b=size(d_b); 

u_b = zeros(1,s_d_b(2)); 

Re=zeros(1,n); 

  

for i=1:s_d_b(2); 

    u_b_t=linspace(0.00005,2,n); %(vector used for the trial and error method) 

    u_b_e_numerator=4*g*d_b(i).*(p_l-p_g); % 

    u_b_e_denom_0 = 3*p_l; 

    Re=u_b_t.*d_b(i)./v_l; 

    u_b_e_denom_1 = 24./Re.*(ones(1,n)+0.1*(Re.^0.75)); 

    u_b_e = (u_b_e_numerator.*((u_b_e_denom_0.*u_b_e_denom_1).^(-1))).^0.5; 

%[m/s]         

    u_b_error = abs(u_b_e-u_b_t); 

    u_b_rel_error=u_b_error./u_b_e; 

    [inVal, position] =min(u_b_rel_error); 

    u_b(i) = u_b_e(position); 

   

end 

  

 

% Approach Power Balance 

vel_l_1=zeros(s_d_b(2),x); 

q_g_row=q_g_examined; 

q_g_col=reshape(q_g_row,x,1); 

  

for m=1:s_d_b(2); 

    for k=1:size(q_g_col,1); 

        vel_l_1_t=linspace(0.00005,2,n); 

        vel_l_1_e_1=(vel_l_1_t.^3).*(vel_l_1_t+u_b(m)*ones(1,n)); 

        vel_l_1_e_num1=8*g*(p_l-p_g)*u_b(m).*l_r.*q_g_col(k); 

        vel_l_1_e_den1=pi*p_l*d_r; 

        vel_l_1_e_den2=K_avg*d_r*ones(1,n); 

        vel_l_1_e_den3=l; 

        vel_l_1_e_den4=-

4*log((0.27*r/d_r).*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r)).^0.9)); 

        

vel_l_1_e_2=(vel_l_1_e_num1./(vel_l_1_e_den1.*(vel_l_1_e_den2+vel_l_1_e_den3.*

(vel_l_1_e_den4.^(-2))))); 

        vel_l_1_e_error = abs(vel_l_1_e_1-vel_l_1_e_2); 

        vel_l_1_e_rel_error=abs(vel_l_1_e_error./vel_l_1_t); 

        [inVal, position] =min(vel_l_1_e_rel_error); 

        vel_l_1(m,k)=vel_l_1_t(position); 

    end 

end 

   

% Approach Chisti's formula 

u_g_2_col=q_g_col./(pi.*(d_r.^2)./4); 

u_l_2=zeros(s_d_b(2),x); 

vel_l_2=zeros(s_d_b(2),x); 

u_l_2_er=zeros(s_d_b(2),x); 

  

for v=1:s_d_b(2); 

    for k=1:size(q_g_col,1); 

        u_l_2_t=linspace(0.00005,2,n); 

        u_l_2_er_e= 

u_g_2_col(k)./(0.24*ones(1,n)+1.35*((u_g_2_col(k)*ones(1,n)+u_l_2_t).^0.93)); 

        u_l_2_ed=0; % (closer results to the experiments when e_d=0) 

%         u_l_2_ed=0.46*u_l_2_er_e-0.024; %(from eq.5.59 in Chisti) 
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        e_mean=((a_r*u_l_2_er_e)+(a_d*u_l_2_ed))./(a_r+a_d); 

        h_D=h_L./(1-e_mean); 

        u_l_2_num=2*g*h_D.*(u_l_2_er_e-u_l_2_ed); 

        u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er_e).^2))+((a_r/a_d).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

        u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

        u_l_2_error=abs(u_l_2_t-u_l_2_e); 

        u_l_2_rel_error=u_l_2_error./u_l_2_e; 

        [inVal,position]=min(u_l_2_rel_error); 

        u_l_2(v,k)=u_l_2_e(position); 

        u_l_2_er(v,k)=u_l_2_er_e(position); 

        vel_l_2(v,k)=u_l_2(v,k)./(1-u_l_2_er(v,k)); 

    end 

end  

  

  

     

%------------------- 

  

    % x axis: q_g, z axis: d_b 

     

% Approach Power Balance 

q_g_row=linspace(0.0000001,0.00009,n); 

s_q_g_row=size(q_g_row); 

d_b_row=d_b_examined; 

s_d_b_row=size(d_b_row); 

d_b_col=reshape(d_b_row,b,1); 

vel_l_1=zeros(b,n); 

  

u_b_few = zeros(1,s_d_b_row(2)); % estimation of the u_b 

  

for i=1:s_d_b_row(2); 

    u_b_t=linspace(0.00005,2,n); 

    u_b_e_numerator=4*g*d_b_row(i).*(p_l-p_g); 

    u_b_e_denom_0 = 3*p_l; 

    Re=u_b_t.*d_b_row(i)./v_l; 

    u_b_e_denom_1 = 24./Re.*(ones(1,n)+0.1*(Re.^0.75)); 

    u_b_e = (u_b_e_numerator.*((u_b_e_denom_0.*u_b_e_denom_1).^(-1))).^0.5; 

%[m/s] 

    u_b_error = abs(u_b_e-u_b_t); 

    u_b_rel_error=u_b_error./u_b_e; 

    [inVal, position] =min(u_b_rel_error); 

    u_b_few(i) = u_b_e(position);     

     

     

end  

  

  

  

for k=1:s_q_g_row(2); % estimation of the v_l 

    for m=1:size(d_b_col,1); 

        vel_l_1_t=linspace(0.00005,2,n); 

        vel_l_1_e_1=(vel_l_1_t.^3).*(vel_l_1_t+u_b_few(m)*ones(1,n)); 

        vel_l_1_e_num1=8*g*(p_l-p_g)*u_b_few(m).*l_r.*q_g_row(k); 

        vel_l_1_e_den1=pi*p_l*d_r; 

        vel_l_1_e_den2=K_avg*d_r*ones(1,n); 

        vel_l_1_e_den3=l; 

        vel_l_1_e_den4=-

4*log((0.27*r/d_r)*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r)).^0.9)); 

        

vel_l_1_e_2=vel_l_1_e_num1./(vel_l_1_e_den1.*(vel_l_1_e_den2+vel_l_1_e_den3.*(

vel_l_1_e_den4.^(-2)))); 

        vel_l_1_e_error = abs(vel_l_1_e_1-vel_l_1_e_2); 

        vel_l_1_e_rel_error=vel_l_1_e_error./vel_l_1_e_2; 

        [inVal, position] =min(vel_l_1_e_rel_error); 

        vel_l_1(m,k)=vel_l_1_t(position); 

    end 
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end 

  

  

% Approach Chisti's formula 

u_g_2_row=q_g_row./(pi.*(d_r.^2)./4); 

u_l_2=zeros(b,n); 

vel_l_2=zeros(b,n); 

u_l_2_er=zeros(b,n); 

  

for k=1:s_q_g_row(2); 

    for v=1:size(d_b_col,1); 

        u_l_2_t=linspace(0.00005,2,n); 

        u_l_2_er_e= 

u_g_2_row(k)./(0.24*ones(1,n)+1.35*((u_g_2_row(k)*ones(1,n)+u_l_2_t).^0.92)); 

        u_l_2_ed=0; 

%         u_l_2_ed=0.46.*u_l_2_er_e-(0.024*ones(1,n)); 

        e_mean=((a_r*u_l_2_er_e)+(a_d*u_l_2_ed))/(a_r+a_d); 

        h_D=h_L./(1-e_mean); 

        u_l_2_num=2*g*h_D.*(u_l_2_er_e-u_l_2_ed); 

        u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er_e).^2))+((a_r/a_d).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

        u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

        u_l_2_error=abs(u_l_2_t-u_l_2_e); 

        u_l_2_rel_error=u_l_2_error./u_l_2_e; 

        [inVal,position]=min(u_l_2_rel_error); 

        u_l_2(v,k)=u_l_2_e(position); 

        u_l_2_er(v,k)=u_l_2_er_e(position); 

        vel_l_2(v,k)=u_l_2(v,k)./(1-u_l_2_er(v,k)); 

    end 

end 

  

  

       

%------------------- 

     

    % x axis: d_r, z axis: d_b  

% Approach Power Balance 

  

q_g_stable=0.00001667; % select a flow rate  

d_r_row=linspace(0.03,0.1,n); 

s_d_r_row=size(d_r_row); 

d_b_row=d_b_examined; 

s_d_b_row=size(d_b_row); 

d_b_col=reshape(d_b_row,b,1); 

vel_l_1=zeros(b,n); 

   

for k=1:s_d_r_row(2); 

    for m=1:size(d_b_col,1); 

        vel_l_1_t=linspace(0.00005,2,n); 

        vel_l_1_e_1=(vel_l_1_t.^3).*(vel_l_1_t+u_b_few(m)*ones(1,n)); 

        vel_l_1_e_num1=8*g*(p_l-p_g)*u_b_few(m).*l_r.*q_g_stable; 

        vel_l_1_e_den1=pi*p_l*d_r_row(k); 

        vel_l_1_e_den2=K_avg*d_r_row(k)*ones(1,n); 

        vel_l_1_e_den3=l; 

        vel_l_1_e_den4=-

4*log((0.27*r/d_r_row(k))*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r_row(k))).^0.9)); 

        

vel_l_1_e_2=vel_l_1_e_num1./(vel_l_1_e_den1.*(vel_l_1_e_den2+vel_l_1_e_den3.*(

vel_l_1_e_den4.^(-2)))); 

        vel_l_1_e_error = abs(vel_l_1_e_1-vel_l_1_e_2); 

        vel_l_1_e_rel_error=vel_l_1_e_error./vel_l_1_e_2; 

        [inVal, position] =min(vel_l_1_e_rel_error); 

        vel_l_1(m,k)=vel_l_1_t(position); 

    end 

end 
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% Approach Chisti's formula 

u_g_2_row=q_g_stable./(pi.*(d_r_row.^2)./4); 

u_l_2=zeros(b,n); 

vel_l_2=zeros(b,n); 

d_d_row=d_r_row; 

a_r_row= pi*(d_r_row.^2)./4; %[m^2] 

a_d_row= pi*(d_d_row.^2)./4; %[m^2] 

  

for k=1:s_d_r_row(2); 

    for v=1:size(d_b_col,1); 

        u_l_2_t=linspace(0.00005,2,n); 

        u_l_2_er= 

u_g_2_row(k)./(0.24+1.35*((u_g_2_row(k)*ones(1,n)+u_l_2_t).^0.92)); 

        u_l_2_ed=0; 

%         u_l_2_ed=0.46.*u_l_2_er-(0.024*ones(1,n)); 

        e_mean=((a_r.*u_l_2_er)+(a_d.*u_l_2_ed))./(a_r+a_d); 

        h_D=h_L./(ones(1,n)-e_mean); 

        u_l_2_num=2*g*h_D.*(u_l_2_er-u_l_2_ed); 

        u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er).^2))+((a_r_row(k)./a_d_row(k)).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

        u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

        u_l_2_error=abs(u_l_2_t-u_l_2_e); 

        u_l_2_rel_error=u_l_2_error./u_l_2_e; 

        [inVal,position]=min(u_l_2_rel_error); 

        u_l_2(v,k)=u_l_2_e(position); 

        u_l_2_er(v,k)=u_l_2_er(position); 

        vel_l_2(v,k)=u_l_2(v,k)./(1-u_l_2_er(v,k)); 

    end 

end  

  

  

  

  

%------------------- 

  

    % x axis: q_g, z axis: d_r 

  

% Approach Power Balance 

% d_b_stable=0.004; %u_b(292) will be used, since d_b(399)=0.004 

q_g_row=linspace(0.0000001,0.00009,n); 

s_q_g_row=size(q_g_row); 

d_r_row=d_r_examined; 

s_d_r_row=size(d_r_row); 

d_r_col=reshape(d_r_row,s_d_r_row(2),1); 

vel_l_1=zeros(s_d_r_row(2),n); 

  

for k=1:s_q_g_row(2); 

    for m=1:size(d_r_col,1); 

        vel_l_1_t=linspace(0.00005,2,n); 

        vel_l_1_e_1=(vel_l_1_t.^3).*(vel_l_1_t+u_b(453)*ones(1,n)); 

        vel_l_1_e_num1=8*g*(p_l-p_g)*u_b(453).*l_r.*q_g_row(k); 

        vel_l_1_e_den1=pi*p_l*d_r_col(m); 

        vel_l_1_e_den2=K_avg*d_r_col(m)*ones(1,n); 

        vel_l_1_e_den3=l; 

        vel_l_1_e_den4=-

4*log((0.27*r/d_r_col(m))*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r_col(m))).^0.9)); 

        

vel_l_1_e_2=vel_l_1_e_num1./(vel_l_1_e_den1.*(vel_l_1_e_den2+vel_l_1_e_den3.*(

vel_l_1_e_den4.^(-2)))); 

        vel_l_1_e_error = abs(vel_l_1_e_1-vel_l_1_e_2); 

        vel_l_1_e_rel_error=vel_l_1_e_error./vel_l_1_e_2; 

        [inVal, position] =min(vel_l_1_e_rel_error); 

        vel_l_1(m,k)=vel_l_1_t(position); 

    end 

end 
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% Approach Chisti's formula 

q_g_mat=repmat(q_g_row,s_d_r_row(2),1); 

d_r_mat=repmat(d_r_col,1,n); 

u_g_2_mat=q_g_mat./(pi.*(d_r_mat.^2)./4); 

u_l_2=zeros(s_d_r_row(2),n); 

vel_l_2=zeros(s_d_r_row(2),n); 

d_d_col=d_r_col+ones(s_d_r_row(2),1)*0.01; 

a_r_col= pi*(d_r_col.^2)./4; %[m^2] 

a_d_col= pi*(d_d_col.^2)./4; %[m^2] 

  

for k=1:s_q_g_row(2); 

    for v=1:size(d_r_col,1); 

        u_l_2_t=linspace(0.0005,3,n); 

        u_l_2_er= 

u_g_2_mat(v,k)./(0.24.*ones(1,n)+1.35*((u_g_2_mat(v,k).*ones(1,n)+u_l_2_t).^0.

92)); 

        u_l_2_ed=0; 

%         u_l_2_ed=0.46.*u_l_2_er-(0.024*ones(1,n)); 

        e_mean=((a_r.*u_l_2_er)+(a_d.*u_l_2_ed))./(a_r+a_d); 

        h_D=h_L./(1-e_mean); 

        u_l_2_num=2*g*h_D.*(u_l_2_er-u_l_2_ed); 

        u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er).^2))+((a_r_col(v)./a_d_col(v)).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

        u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

        u_l_2_error=abs(u_l_2_t-u_l_2_e); 

        u_l_2_rel_error=u_l_2_error./u_l_2_e; 

        [inVal,position]=min(u_l_2_rel_error); 

        u_l_2(v,k)=u_l_2_e(position); 

        u_l_2_er(v,k)=u_l_2_er(position); 

        vel_l_2(v,k)=u_l_2(v,k)./(1-u_l_2_er(v,k)); 

    end 

end  

  

       

%------------------------- 

  

    % x axis q_g, z axis: l_r 

     

% Approach Power Balance 

q_g_row=linspace(0.0000001,0.00009,n); 

s_q_g_row=size(q_g_row); 

l_d_row=l_r_row; 

l_row=l_r_row+l_d_row; 

s_l_r_row=size(l_r_row); 

l_r_col=reshape(l_r_row,s_l_r_row(2),1); 

vel_l_1=zeros(s_l_r_row(2),size(d_b_examined,2),n); 

   

for k=1:s_q_g_row(2); 

    for p=1:size(d_b_examined,2); 

    for m=1:size(l_r_col,1); 

        if m>=3; 

        mid_fit=1; 

        K_contr=(n_contr1*0.5*(1-

((d_r^2)/(d_exp2^2))))+(mid_fit*n_contr3*0.5*(1-

((d_contr^2)/(d_r^2))))+(n_contr2*0.5*(1-((d_exp1^2)/(d_exp2^2)))); 

K_exp=(mid_fit*n_expan3*((1-

((d_contr^2)/(d_r^2)))^2)*((d_r^2)/(d_contr^2)))+(n_expan1*((1-

((d_r^2)/(d_exp2^2)))^2)*((d_exp2^2)/(d_r^2)))+(n_expan2*((1-

((d_exp1^2)/(d_exp2^2)))^2)*((d_exp2^2)/(d_exp1^2))); 

K_avg=K_fit+K_contr+K_exp; 

        end 

         

        if m<=1; 

           d_r=0.058; %because the short reactor was a PVC non-transparent 

tube with different thickness and ID 

        else d_r=0.054; 

        end 
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        vel_l_1_t=linspace(0.00005,2,n); 

        vel_l_1_e_1=(vel_l_1_t.^3).*(vel_l_1_t+u_b_few(p)*ones(1,n)); 

        vel_l_1_e_num1=8*g*(p_l-p_g)*u_b_few(p).*l_r_row(m).*q_g_row(k); 

        vel_l_1_e_den1=pi*p_l*d_r; 

        vel_l_1_e_den2=K_avg*d_r*ones(1,n); 

        vel_l_1_e_den3=l_row(m); 

        vel_l_1_e_den4=-

4*log((0.27*r/d_r)*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r)).^0.9)); 

        

vel_l_1_e_2=vel_l_1_e_num1./(vel_l_1_e_den1.*(vel_l_1_e_den2+vel_l_1_e_den3.*(

vel_l_1_e_den4.^(-2)))); 

        vel_l_1_e_error = abs(vel_l_1_e_1-vel_l_1_e_2); 

        vel_l_1_e_rel_error=vel_l_1_e_error./vel_l_1_e_2; 

        [inVal, position] =min(vel_l_1_e_rel_error); 

        vel_l_1(m,p,k)=vel_l_1_t(position); 

    end 

    end 

end 

  

% Approach Chisti's formula 

q_g_mat=repmat(q_g_row,s_l_r_row(2),1); 

l_r_mat=repmat(l_r_col,1,n); 

u_g_2_mat=q_g_mat./(pi.*(d_r.^2)./4); 

u_l_2=zeros(s_l_r_row(2),n); 

vel_l_2=zeros(s_l_r_row(2),n); 

h_L_row=l_r_row; 

  

for k=1:s_q_g_row(2); 

    for v=1:size(l_r_col,1); 

        if v<=1; 

           d_r=0.058; %because the short reactor was a PVC non-transparent 

tube with different thickness and ID 

        else d_r=0.054; 

        end 

         

        u_l_2_t=linspace(0.00005,2,n); 

        u_l_2_er= 

u_g_2_mat(v,k)./(0.24.*ones(1,n)+1.35*((u_g_2_mat(v,k).*ones(1,n)+u_l_2_t).^0.

92)); 

        u_l_2_ed=0; 

%         u_l_2_ed=0.46.*u_l_2_er-(0.024*ones(1,n)); 

        e_mean=((a_r.*u_l_2_er)+(a_d.*u_l_2_ed))./(a_r+a_d); 

        h_D_row=h_L_row(v)./(1*ones(1,n)-e_mean); 

        u_l_2_num=2*g*h_D_row.*(u_l_2_er-u_l_2_ed); 

        u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er).^2))+((a_r./a_d).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

        u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

        u_l_2_error=abs(u_l_2_t-u_l_2_e); 

        u_l_2_rel_error=u_l_2_error./u_l_2_e; 

        [inVal,position]=min(u_l_2_rel_error); 

        u_l_2(v,k)=u_l_2_e(position); 

        u_l_2_er(v,k)=u_l_2_er(position); 

        vel_l_2(v,k)=u_l_2(v,k)./(1-u_l_2_er(v,k)); 

    end 

end  

  

  

  

%------------------------- 

   

%ESTIMATION OF u_l 

  

    % a axis q_g, z axis: d_b   

% Approach Power Balance 

  

d_r_stable=0.054; 
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q_g_row=linspace(0.000001,0.00009,n); 

d_b_row=d_b_examined; 

d_b_col=reshape(d_b_row,b,1); 

vel_l_1_er=zeros(b,n); 

e_r_1=zeros(b,n); 

e_r_2=zeros(b,n); 

u_g_2_row=q_g_row./(pi.*(d_r_stable.^2)./4); 

  

  

for s=1:b; 

    for t=1:n; 

        vel_l_1_er_t=linspace(0.00005,2,n); 

        vel_l_1_e_er_1=(vel_l_1_er_t.^3).*(vel_l_1_er_t+u_b_few(s)*ones(1,n)); 

        vel_l_1_e_er_num1=8*g*(p_l-p_g)*u_b_few(s).*l_r.*q_g_row(t); 

        vel_l_1_e_er_den1=pi*p_l*d_r; 

        vel_l_1_e_er_den2=K_avg*d_r*ones(1,n); 

        vel_l_1_e_er_den3=l; 

        vel_l_1_e_er_den4=-

4*log((0.27*r/d_r)*ones(1,n)+((7*v_l./(vel_l_1_er_t.*d_r)).^0.9)); 

        

vel_l_1_e_er_2=vel_l_1_e_er_num1./(vel_l_1_e_er_den1.*(vel_l_1_e_er_den2+vel_l

_1_e_er_den3.*(vel_l_1_e_er_den4.^(-2)))); 

        vel_l_1_e_er_error = abs(vel_l_1_e_er_1-vel_l_1_e_er_2); 

        vel_l_1_e_er_rel_error=vel_l_1_e_er_error./vel_l_1_e_er_2; 

        [inVal, position] =min(vel_l_1_e_er_rel_error); 

        vel_l_1_er(s,t)=vel_l_1_er_t(position); 

        e_r_1(s,t) = 

(4*q_g_row(t))./(pi*(d_r_stable^2)*(u_b_few(s)+vel_l_1_er(s,t))) ;  

         

         

    % Approach Chisti's formula 

  

    u_l_2_t=linspace(0.00005,2,n); 

    u_l_2_er= 

u_g_2_row(t)./(0.24+1.35*((u_g_2_row(t)*ones(1,n)+u_l_2_t).^0.92)); 

    u_l_2_ed=0; 

%     u_l_2_ed=0.46.*u_l_2_er-(0.024*ones(1,n)); 

    e_mean=((a_r.*u_l_2_er)+(a_d*u_l_2_ed))./(a_r+a_d); 

    h_D=h_L./(1-e_mean); 

    u_l_2_num=2*g*h_D.*(u_l_2_er-u_l_2_ed); 

    u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er).^2))+((a_r./a_d).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

    u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

    u_l_2_error=abs(u_l_2_t-u_l_2_e); 

    u_l_2_rel_error=u_l_2_error./u_l_2_e; 

    [inVal,position]=min(u_l_2_rel_error); 

    u_l_2(s,t)=u_l_2_e(position); 

    e_r_2(s,t)=u_l_2_er(position); 

    end 

end  

  

  

%------------------------------------------------------------------ 

  

    % x axis: d_r, z axis: db  

  

% Power balance approach     

  

q_g_stable=0.00001667; 

d_r_row=linspace(0.03,0.1,n); 

d_d_row=d_r_row; 

d_b_row=d_b_examined; 

d_b_col=reshape(d_b_row,b,1); 

vel_l_1_er=zeros(b,n); 

e_r_1=zeros(b,n); 

u_l_2_e=zeros(1,s_d_b(2)); 

u_l_2_er=zeros(1,s_d_b(2)); 
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e_r_2=zeros(b,n); 

u_g_2_row=q_g_stable./(pi.*(d_r_row.^2)./4); 

a_r_row= pi*(d_r_row.^2)./4; %[m^2] 

a_d_row= pi*(d_d_row.^2)./4; %[m^2] 

  

for s=1:b; 

    for t=1:n; 

        vel_l_1_er_t=linspace(0.00005,2,n); 

        vel_l_1_e_er_1=(vel_l_1_t.^3).*(vel_l_1_t+u_b_few(s)*ones(1,n)); 

        vel_l_1_e_er_num1=8*g*(p_l-p_g)*u_b_few(s).*l_r.*q_g_stable; 

        vel_l_1_e_er_den1=pi*p_l*d_r_row(t); 

        vel_l_1_e_er_den2=K_avg*d_r_row(t)*ones(1,n); 

        vel_l_1_e_er_den3=l; 

        vel_l_1_e_er_den4=-

4*log((0.27*r/d_r_row(t))*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r_row(t))).^0.9)); 

        

vel_l_1_e_er_2=vel_l_1_e_er_num1./(vel_l_1_e_er_den1.*(vel_l_1_e_er_den2+vel_l

_1_e_er_den3.*(vel_l_1_e_er_den4.^(-2)))); 

        vel_l_1_e_er_error = abs(vel_l_1_e_er_1-vel_l_1_e_er_2); 

        vel_l_1_e_er_rel_error=vel_l_1_e_er_error./vel_l_1_e_er_2; 

        [inVal, position] =min(vel_l_1_e_er_rel_error); 

        vel_l_1_er(s,t)=vel_l_1_er_t(position); 

        e_r_1(s,t) = 

(4*q_g_stable)./(pi*(d_r_row(t)^2)*(u_b_few(s)+vel_l_1_er(s,t))) ;  

         

     

        % Approach Chisti's formula 

  

    u_l_2_t=linspace(0.00005,2,n); 

    u_l_2_er= 

u_g_2_row(t)./(0.24+1.35*((u_g_2_row(t)*ones(1,n)+u_l_2_t).^0.92)); 

    u_l_2_ed=0; 

%     u_l_2_ed=0.46.*u_l_2_er-(0.024*ones(1,n)); 

    e_mean=((a_r.*u_l_2_er)+(a_d.*u_l_2_ed))./(a_r+a_d); 

    h_D=h_L./(1-e_mean); 

    u_l_2_num=2*g*h_D.*(u_l_2_er-u_l_2_ed); 

    u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er).^2))+((a_r_row(t)./a_d_row(t)).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

    u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

    u_l_2_error=abs(u_l_2_t-u_l_2_e); 

    u_l_2_rel_error=u_l_2_error./u_l_2_e; 

    [inVal,position]=min(u_l_2_rel_error); 

    u_l_2(s,t)=u_l_2_e(position); 

    e_r_2(s,t)=u_l_2_er(position); 

    end 

end  

  

  

  

%------------------------ 

     

    % x axis:q_g, z axis: d_r 

     

    % Power balance approach 

q_g_row=linspace(0.000001,0.00009,n); 

s_q_g_row=size(q_g_row); 

d_r_row=d_r_examined; 

d_d_row=d_r_row; 

s_d_r_row=size(d_r_row); 

% d_b_stable=0.004; %u_b(292) will be used, since d_b(399)=0.004 

d_r_col=reshape(d_r_row,s_d_r_row(2),1); 

vel_l_1_er=zeros(s_d_r_row(2),n); 

e_r_1=zeros(s_d_r_row(2),n);  

e_r_2=zeros(s_d_r_row(2),n); 

q_g_mat=repmat(q_g_row,s_d_r_row(2),1); 

d_r_mat=repmat(d_r_col,1,s_q_g_row(2)); 

u_g_2_mat=q_g_mat./(pi.*(d_r_mat.^2)./4); 
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a_r_row= pi*(d_r_row.^2)./4; %[m^2] 

a_d_row= pi*(d_d_row.^2)./4; %[m^2] 

  

for k=1:s_q_g_row(2); 

    for m=1:size(d_r_col,1); 

        vel_l_1_er_t=linspace(0.00005,2,n); 

        vel_l_1_e_er_1=(vel_l_1_er_t.^3).*(vel_l_1_er_t+u_b(453)*ones(1,n)); 

        vel_l_1_e_er_num1=8*g*(p_l-p_g)*u_b(453).*l_r.*q_g_row(k); 

        vel_l_1_e_er_den1=pi*p_l*d_r_col(m); 

        vel_l_1_e_er_den2=K_avg*d_r_col(m)*ones(1,n); 

        vel_l_1_e_er_den3=l; 

        vel_l_1_e_er_den4=-

4*log((0.27*r/d_r_col(m))*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r_col(m))).^0.9)); 

        

vel_l_1_e_er_2=vel_l_1_e_er_num1./(vel_l_1_e_er_den1.*(vel_l_1_e_er_den2+vel_l

_1_e_er_den3.*(vel_l_1_e_er_den4.^(-2)))); 

        vel_l_1_e_er_error = abs(vel_l_1_e_er_1-vel_l_1_e_er_2); 

        vel_l_1_e_er_rel_error=vel_l_1_e_er_error./vel_l_1_e_er_2; 

        [~, position] =min(vel_l_1_e_er_rel_error); 

        vel_l_1_er(m,k)=vel_l_1_er_t(position); 

        e_r_1(m,k) = 

(4*q_g_row(k))./(pi*(d_r_col(m)^2)*(u_b(453)+vel_l_1_er(m,k))) ; 

     

         

        %Chisti's approach 

         

    u_l_2_t=linspace(0.00005,2,n); 

    u_l_2_er= 

u_g_2_mat(m,k)./(0.24+1.35*((u_g_2_mat(m,k)*ones(1,n)+u_l_2_t).^0.92)); 

    u_l_2_ed=0; 

%     u_l_2_ed=0.46.*u_l_2_er-(0.024*ones(1,n)); 

    

e_mean=((a_r_row(m).*u_l_2_er)+(a_d_row(m).*u_l_2_ed))./(a_r_row(m)+a_d_row(m)

); 

    h_D=h_L./(1-e_mean); 

    u_l_2_num=2*g*h_D.*(u_l_2_er-u_l_2_ed); 

    u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er).^2))+((a_r_row(m)./a_d_row(m)).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

    u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

    u_l_2_error=abs(u_l_2_t-u_l_2_e); 

    u_l_2_rel_error=u_l_2_error./u_l_2_e; 

    [inVal,position]=min(u_l_2_rel_error); 

    u_l_2(m,k)=u_l_2_e(position); 

    e_r_2(m,k)=u_l_2_er(position); 

     

     

    end 

     

end 

  

  

  

%------------------------- 

   

    % x axis: l_r, z axis: d_b  

  

% Power balance approach 

q_g_stable=0.00001667; 

l_r_row=linspace(0.01,6,n); 

l_d_row=l_r_row; 

l_row=l_r_row+l_d_row; 

h_L_row=l_r_row; 

d_b_row=d_b_examined; 

d_b_col=reshape(d_b_row,b,1); 

vel_l_1_er=zeros(b,n); 

e_r_1=zeros(b,n); 

u_l_2_holdup=zeros(1,s_d_b(2)); 



276 

 

u_l_2_holdup_er=zeros(1,s_d_b(2)); 

e_r_2=zeros(b,n); 

u_g_2=q_g_stable./(pi.*(d_r.^2)./4); 

a_r= pi*(d_r.^2)./4; %[m^2] 

a_d= pi*(d_d.^2)./4; %[m^2] 

  

for s=1:b; 

    for t=1:n; 

        vel_l_1_er_t=linspace(0.00005,2,n); 

        vel_l_1_e_er_1=(vel_l_1_t.^3).*(vel_l_1_t+u_b_few(s)*ones(1,n)); 

        vel_l_1_e_er_num1=8*g*(p_l-p_g)*u_b_few(s).*l_r_row(t).*q_g_stable; 

        vel_l_1_e_er_den1=pi*p_l*d_r; 

        vel_l_1_e_er_den2=K_avg*d_r*ones(1,n); 

        vel_l_1_e_er_den3=l_row(t); 

        vel_l_1_e_er_den4=-

4*log((0.27*r/d_r)*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r)).^0.9)); 

        

vel_l_1_e_er_2=vel_l_1_e_er_num1./(vel_l_1_e_er_den1.*(vel_l_1_e_er_den2+vel_l

_1_e_er_den3.*(vel_l_1_e_er_den4.^(-2)))); 

        vel_l_1_e_er_error = abs(vel_l_1_e_er_1-vel_l_1_e_er_2); 

        vel_l_1_e_er_rel_error=vel_l_1_e_er_error./vel_l_1_e_er_2; 

        [inVal, position] =min(vel_l_1_e_er_rel_error); 

        vel_l_1_er(s,t)=vel_l_1_er_t(position); 

        e_r_1(s,t) = (4*q_g_stable)./(pi*(d_r^2)*(u_b_few(s)+vel_l_1_er(s,t))) 

;  

         

     

        % Approach Chisti's formula 

    u_l_2_t=linspace(0.00001,2,n); 

    u_l_2_er= u_g_2./(0.24+1.35*((u_g_2*ones(1,n)+u_l_2_t).^0.92)); 

    u_l_2_ed=0; 

%     u_l_2_ed=0.46.*u_l_2_er-(0.024*ones(1,n)); 

    e_mean=((a_r.*u_l_2_er)+(a_d*u_l_2_ed))./(a_r+a_d); 

    h_D_row=h_L_row(t)./(1-e_mean); 

    u_l_2_num=2*g*h_D_row.*(u_l_2_er-u_l_2_ed); 

    u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er).^2))+((a_r./a_d).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

    u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

    u_l_2_error=abs(u_l_2_t-u_l_2_e); 

    u_l_2_rel_error=u_l_2_error./u_l_2_e; 

    [inVal,position]=min(u_l_2_rel_error); 

    u_l_2(s,t)=u_l_2_e(position); 

    e_r_2(s,t)=u_l_2_er(position); 

    end 

end  

  

  

  

%---------- 

  

    %x axis:q_g, z axis: l_r 

  

% Power balance approach 

q_g_row=linspace(0.0000001,0.00009,n); 

s_q_g_row=size(q_g_row); 

l_r_row=[0.54,1.04,2.04]; 

l_d_row=l_r_row; 

l_row=l_r_row+l_d_row; 

h_L_row=l_r_row; 

s_l_r_row=size(l_r_row); 

l_r_col=reshape(l_r_row,s_l_r_row(2),1); 

vel_l_1_er=zeros(s_l_r_row(2),size(d_b_examined,2),n); 

e_r_1=zeros(s_l_r_row(2),n);  

e_r_2=zeros(s_l_r_row(2),n); 

u_g_2_row=q_g_row./(pi.*(d_r.^2)./4); 

  

for k=1:s_q_g_row(2); 
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    for p=4; 

    for m=1:size(l_r_col,1); 

        if m>=3; 

        mid_fit=1; 

        K_contr=(n_contr1*0.5*(1-

((d_r^2)/(d_exp2^2))))+(mid_fit*n_contr3*0.5*(1-

((d_contr^2)/(d_r^2))))+(n_contr2*0.5*(1-((d_exp1^2)/(d_exp2^2)))); 

K_exp=(mid_fit*n_expan3*((1-

((d_contr^2)/(d_r^2)))^2)*((d_r^2)/(d_contr^2)))+(n_expan1*((1-

((d_r^2)/(d_exp2^2)))^2)*((d_exp2^2)/(d_r^2)))+(n_expan2*((1-

((d_exp1^2)/(d_exp2^2)))^2)*((d_exp2^2)/(d_exp1^2))); 

K_avg=K_fit+K_contr+K_exp; 

        end 

         

        if m<=1; 

           d_r=0.058; %because the short reactor was a PVC non-transparent 

tube with different thickness and ID 

        else d_r=0.054; 

        end 

         

        vel_l_1_er_t=linspace(0.00005,2,n); 

        vel_l_1_e_er_1=(vel_l_1_er_t.^3).*(vel_l_1_er_t+u_b_few(p)*ones(1,n)); 

        vel_l_1_e_er_num1=8*g*(p_l-p_g)*u_b_few(p).*l_r_row(m).*q_g_row(k); 

        vel_l_1_e_er_den1=pi*p_l*d_r; 

        vel_l_1_e_er_den2=K_avg*d_r*ones(1,n); 

        vel_l_1_e_er_den3=l_row(m); 

        vel_l_1_e_er_den4=-

4*log((0.27*r/d_r)*ones(1,n)+((7*v_l./(vel_l_1_t.*d_r)).^0.9)); 

        

vel_l_1_e_er_2=vel_l_1_e_er_num1./(vel_l_1_e_er_den1.*(vel_l_1_e_er_den2+vel_l

_1_e_er_den3.*(vel_l_1_e_er_den4.^(-2)))); 

        vel_l_1_e_er_error = abs(vel_l_1_e_er_1-vel_l_1_e_er_2); 

        vel_l_1_e_er_rel_error=vel_l_1_e_er_error./vel_l_1_e_er_2; 

        [inVal, position] =min(vel_l_1_e_er_rel_error); 

        vel_l_1_er(m,k)=vel_l_1_er_t(position); 

        e_r_1(m,k) = (4*q_g_row(k))./(pi*(d_r^2)*(u_b_few(p)+vel_l_1_er(m,k))) 

; 

     

         

        %Chisti's approach 

         

    u_l_2_t=linspace(0.00001,2,n); 

    u_l_2_er= 

u_g_2_row(k)./(0.24+1.35*((u_g_2_row(k)*ones(1,n)+u_l_2_t).^0.92)); 

    u_l_2_ed=0; 

%     u_l_2_ed=0.46.*u_l_2_er-(0.024*ones(1,n)); 

    e_mean=((a_r.*u_l_2_er)+(a_d*u_l_2_ed))./(a_r+a_d); 

    h_D_row=h_L_row(m)./(1-e_mean); 

    u_l_2_num=2*g*h_D_row.*(u_l_2_er-u_l_2_ed); 

    u_l_2_den= k_B.*((1./((ones(1,n)-

u_l_2_er).^2))+((a_r./a_d).^2).*(1./((ones(1,n)-u_l_2_ed).^2))); 

    u_l_2_e=(u_l_2_num./u_l_2_den).^(1/2); 

    u_l_2_error=abs(u_l_2_t-u_l_2_e); 

    u_l_2_rel_error=u_l_2_error./u_l_2_e; 

    [inVal,position]=min(u_l_2_rel_error); 

    u_l_2(m,k)=u_l_2_e(position); 

    e_r_2(m,k)=u_l_2_er(position); 

     

     

    end 

    end 

end  
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Appendix V. Growth kinetics  

Estimation of the initial nutrient concentrations 

Table V.1. Estimation of the nitrate and phosphate concentrations contained in the 
media.  

Nutrient 
element 
contained 

Component Chemical 
formula 

Quantity 
(mg/L) 

Molecular 
weight 
(g/mol) 

mol/L Macronutrient 
quantity (g/L) 

Total 
nitrates 
and 
phosphates 
(g/L) 

N  

(MrNO3- = 62) 

Cobalt nitrate • 
6H2O 

Co(NO3)2 • 
6H2O 

0.49 291 0.00000168 0.000104 0.19307 

EDTA (free 
acid) 

C10H16N2O8 50.0 292 0.00017123 0.010616 

Sodium nitrate NaNO3 250.0 85 0.00294118 0.182353 

P  

(Mr(PO4)3- = 
95) 

Potassium 
phosphate 
monobasic 

KH2PO4 175.0 136 0.00128677 0.122243 0.16319 

Potassium 
phosphate 
dibasic 

K2HPO4 75.0 174 0.00043103 0.040948 

 

 

Pictures of the set-up 

     

Figure V.1. Multi-well plates used for the experiments. Left: transparent plates from the 

CO2 preliminary experiments, Right: non-transparent silicon tray from the factorial 

experiments. 
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Figure V.2. Greenhouse box. 

 

 

Calibration curves of the spectrophotometers for Chlorella sorokiniana 

cultures 

The measurements of the biomass ODs, and their corresponding dry weight 

and concentrations are shown in Table V.2. Some optical densities were by mistake 

measured when the cuvette was oriented vertically to the orientation suggested in the 

specifications (light passing through the non-arrow side), thus these data were also 

converted to dry biomass using the same procedure. Calibration curves are shown in 

Figure V.3. The equation used to convert the optical density measurements from the 

Camspec spectrophotometer (using the arrow side of the cuvettes) is the following.  

The difference of Lizzul’s method is that the samples to be measured were 

diluted in order to always maintain an optical density below 0.8, due to the 

spectrophotometer’s precision requirements. This dilution was not realised during the 

experiments and calibration measurements, hence, the calibration Eq.91 was used. 

The implication of following this method is mainly the accuracy of the optical density 

measurementswhich at high biomass concentration could be responsible for an 

incorrect exponential calibration curve’s shape, instead of the linear suggested by 

Lambert-Beer law (Myers et al., 2013). It gave a difference of up to 70 % from a linear 

curve produced by fellow doctoral student Alessandro Marco Lizzul, although having an 

RMSE greater than 0.99. On top of that, the Thermo Electron UV/Vis 
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Spectrophotometer was last calibrated in 2002, which might have caused significant 

errors to the optical densities of Series 1 Try 2, Series 4 and the last day of Series 3. 

𝐶𝑏  = 0.0492𝑒
1.7944∙𝑂𝐷 (91) 

During the period February 2nd to 13th when the spectrophotometer was being 

serviced, a Thermo Electron UV/Vis Spectrometer was used for Series 1 Try 2, Series 

4 and the last day of Series 3, with conversion of optical density based on a separate 

calibration curve. The calibration curves for conversion of optical density to biomass 

concentration for the two spectrophotometers are all shown in Table V.2, Table V.3, 

Table V.4, Figure V.3 and Figure V.4. 

 

  

 

Table V.2. Chlorella biomass dry weight and optical density (OD) measurements with 

Campspec for the calibration curve. 

OD arrow 
side 

OD non-arrow 
side 

Volume Filtered 
(ml) 

Dry 
Biomass (g) 

Biomass 
Concentration 
(g/L) 

0.2881 0.1415 200 0.0162 0.081 

0.6195 0.3747 100 0.0162 0.162 

1.2390 0.7493 98.5 0.0381 0.387 

1.5600 
 

100 0.0897 0.897 

1.9730 
 

100 0.1693 1.693 

 

 

Table V.3. Camspec spectrophotometer calibration curve data (optical density, OD) 
measured by Alessandro Marco Lizzul. 

OD Biomass 
Concentration (g/L) 

0.134 0.004 

0.778 0.100 

2.496 0.520 

4.124 0.840 

4.64 0.928 

9.164 2.246 
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Figure V.3. Chlorella biomass measurement calibration curve. 

 

Table V.4. Conversion between the optical densities (OD) of the two 
spectrophotometers used. 

Thermo Electron UV/Vis 
Spectrometer OD readings 

Camspec M550 Double 
Beam UV/V 
Spectrophotometer OD 

0.665 0.4826 

0.701 0.5072 

0.623 0.4946 

0.36 0.459 

0.746 0.54 

0.556 0.4035 

1.904 1.4396 
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Figure V.4. Optical density values measured with the two spectrophotometers and the 
conversion equation.   
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Pictures of the set-up (continued) 

 

 

Figure V.5. Sealable vessel for the measurement of the highest CO2 concentration 

used in the preliminary experiments. 

 

 

gPROMS script for the full kinetic model form 

VARIABLE 

maint   AS Maintenance_Algal 

m_N     AS Maintenance_Consumpt  

m_P     AS Maintenance_Consumpt 

K_N     AS Half_Saturation_Con_Substrate 

K_P     AS Half_Saturation_Con_Substrate 

Y_bN    AS Yield_Substrate 

Y_bP    AS Yield_Substrate 

m_max   AS Growth_Rate    

K_I     AS Light_Utilisation_Effic 

K_CO2   AS Half_Saturation_Con_CO2 

K_i_CO2 AS Inhibition_Con_CO2 

C_CO2   AS Concentration_CO2 

I_0     AS Illumination_Average 

K_a     AS Light_Absorption_Coeff 

L_to_m3 AS L_to_m3 

R       AS Gas_constant 

T       AS Temperature 

T_opt   AS Temperature 

E_a     AS Activation_Energy 

Dil     AS Dilution_rate 

C_N0    AS Concentration_Substrate 

C_P0    AS Concentration_Substrate 

d       AS Radial_Distance 

C_B   AS Concentration_Biomass 
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m     AS Growth_Rate 

C_N   AS Concentration_Substrate 

C_P   AS Concentration_Substrate 

f_N   AS Efficiency_Factor  

f_P   AS Efficiency_Factor  

f_I     AS Efficiency_Factor 

I_av    AS Illumination_Average 

C_CO2_D AS Concentration_CO2_Dissolved 

k_H     AS Henry_Constant_CO2 

f_T     AS Efficiency_Factor  

f_CO2   AS Efficiency_Factor 

 

 

EQUATION 

# Efficiency factors   

f_N=C_N/(K_N+C_N); 

f_P=C_P/(K_P+C_P); 

I_av=I_0*((1-exp(-K_a*L_to_m3*C_B*d))/(K_a*L_to_m3*C_B*d)); 

f_I=I_av/(K_I+I_av); 

f_T=(2*exp((E_a*(T-T_opt))/(R*T*T_opt)))/(1+((exp((E_a*(T-

T_opt))/(R*T*T_opt)))^2));  

k_H=exp(-8.1403+(842.9/(T+151.5))); 

C_CO2_D=k_H*C_CO2; 

f_CO2=C_CO2_D/(K_CO2+C_CO2_D+(C_CO2_D^2/K_i_CO2)); 

 

# Substrate&CO2&light growth rate 

m=m_max*f_N*f_P*f_I*f_T*f_CO2; 

 

# Cell Concentration 

$C_B=C_B*(m-maint-Dil); 

 

# Substrate concentration 

-$C_N=((1/Y_bN)*(C_B*m))+(m_N*C_B)-((1/Y_bN)*Dil*(C_N0-C_N)); 

-$C_P=((1/Y_bP)*(C_B*m))+(m_P*C_B)-((1/Y_bP)*Dil*(C_P0-C_P)); 

 

 

 

gPROMS script for the simple kinetic model form 

VARIABLE 

maint     AS Maintenance_Algal 

m_S       AS Maintenance_Consumpt  

K_S       AS Half_Saturation_Con_Substrate 

Y_bS      AS Yield_Substrate 

K_I       AS Light_Utilisation_Effic 

I_0_1       AS Illumination_Average 

I_0_2       AS Illumination_Average 

I_0_3       AS Illumination_Average 

I_0_4       AS Illumination_Average 

K_a       AS Light_Absorption_Coeff 

L_to_m3   AS L_to_m3 

R         AS Gas_constant 

T_1         AS Temperature 

T_2         AS Temperature 

T_3         AS Temperature 

T_4         AS Temperature 

E_a       AS Activation_Energy 

k_0       AS Preexponential_Factor 

Dil       AS Dilution_rate 

C_S0_05    AS Concentration_Substrate 

C_S0_10   AS Concentration_Substrate 

C_S0_20   AS Concentration_Substrate 

d         AS Radial_Distance 
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f_S_1_05_S   AS Efficiency_Factor 

f_S_1_05_R   AS Efficiency_Factor 

f_S_1_10_S  AS Efficiency_Factor 

f_S_1_10_R  AS Efficiency_Factor 

f_S_1_20_S  AS Efficiency_Factor 

f_S_1_20_R  AS Efficiency_Factor 

I_av_1_05_S  AS Illumination_Average 

I_av_1_05_R  AS Illumination_Average 

I_av_1_10_S AS Illumination_Average 

I_av_1_10_R AS Illumination_Average 

I_av_1_20_S AS Illumination_Average 

I_av_1_20_R AS Illumination_Average 

f_I_1_05_S   AS Efficiency_Factor 

f_I_1_05_R   AS Efficiency_Factor 

f_I_1_10_S  AS Efficiency_Factor 

f_I_1_10_R  AS Efficiency_Factor 

f_I_1_20_S  AS Efficiency_Factor 

f_I_1_20_R  AS Efficiency_Factor 

f_T_1       AS Efficiency_Factor 

m_1_05_S     AS Growth_Rate 

m_1_05_R     AS Growth_Rate 

m_1_10_S    AS Growth_Rate 

m_1_10_R    AS Growth_Rate 

m_1_20_S    AS Growth_Rate 

m_1_20_R    AS Growth_Rate 

C_B_1_05_S   AS Concentration_Biomass 

C_B_1_05_R   AS Concentration_Biomass 

C_B_1_10_S  AS Concentration_Biomass 

C_B_1_10_R  AS Concentration_Biomass 

C_B_1_20_S  AS Concentration_Biomass 

C_B_1_20_R  AS Concentration_Biomass 

C_S_1_05_S   AS Concentration_Substrate 

C_S_1_05_R   AS Concentration_Substrate 

C_S_1_10_S  AS Concentration_Substrate 

C_S_1_10_R  AS Concentration_Substrate 

C_S_1_20_S  AS Concentration_Substrate 

C_S_1_20_R  AS Concentration_Substrate 

 

f_S_2_05_S   AS Efficiency_Factor 

f_S_2_05_R   AS Efficiency_Factor 

f_S_2_10_S  AS Efficiency_Factor 

f_S_2_10_R  AS Efficiency_Factor 

f_S_2_20_S  AS Efficiency_Factor 

f_S_2_20_R  AS Efficiency_Factor 

I_av_2_05_S  AS Illumination_Average 

I_av_2_05_R  AS Illumination_Average 

I_av_2_10_S AS Illumination_Average 

I_av_2_10_R AS Illumination_Average 

I_av_2_20_S AS Illumination_Average 

I_av_2_20_R AS Illumination_Average 

f_I_2_05_S   AS Efficiency_Factor 

f_I_2_05_R   AS Efficiency_Factor 

f_I_2_10_S  AS Efficiency_Factor 

f_I_2_10_R  AS Efficiency_Factor 

f_I_2_20_S  AS Efficiency_Factor 

f_I_2_20_R  AS Efficiency_Factor 

f_T_2       AS Efficiency_Factor 

m_2_05_S     AS Growth_Rate 

m_2_05_R     AS Growth_Rate 

m_2_10_S    AS Growth_Rate 

m_2_10_R    AS Growth_Rate 

m_2_20_S    AS Growth_Rate 

m_2_20_R    AS Growth_Rate 

C_B_2_05_S   AS Concentration_Biomass 

C_B_2_05_R   AS Concentration_Biomass 

C_B_2_10_S  AS Concentration_Biomass 

C_B_2_10_R  AS Concentration_Biomass 
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C_B_2_20_S  AS Concentration_Biomass 

C_B_2_20_R  AS Concentration_Biomass 

C_S_2_05_S   AS Concentration_Substrate 

C_S_2_05_R   AS Concentration_Substrate 

C_S_2_10_S  AS Concentration_Substrate 

C_S_2_10_R  AS Concentration_Substrate 

C_S_2_20_S  AS Concentration_Substrate 

C_S_2_20_R  AS Concentration_Substrate 

 

f_S_3_05_S   AS Efficiency_Factor 

#f_S_3_05_R   AS Efficiency_Factor 

f_S_3_10_S  AS Efficiency_Factor 

#f_S_3_10_R  AS Efficiency_Factor 

f_S_3_20_S  AS Efficiency_Factor 

#f_S_3_20_R  AS Efficiency_Factor 

I_av_3_05_S  AS Illumination_Average 

#I_av_3_05_R  AS Illumination_Average 

I_av_3_10_S AS Illumination_Average 

#I_av_3_10_R AS Illumination_Average 

I_av_3_20_S AS Illumination_Average 

#I_av_3_20_R AS Illumination_Average 

f_I_3_05_S   AS Efficiency_Factor 

#f_I_3_05_R   AS Efficiency_Factor 

f_I_3_10_S  AS Efficiency_Factor 

#f_I_3_10_R  AS Efficiency_Factor 

f_I_3_20_S  AS Efficiency_Factor 

#f_I_3_20_R  AS Efficiency_Factor 

f_T_3       AS Efficiency_Factor 

m_3_05_S     AS Growth_Rate 

#m_3_05_R     AS Growth_Rate 

m_3_10_S    AS Growth_Rate 

#m_3_10_R    AS Growth_Rate 

m_3_20_S    AS Growth_Rate 

#m_3_20_R    AS Growth_Rate 

C_B_3_05_S   AS Concentration_Biomass 

#C_B_3_05_R   AS Concentration_Biomass 

C_B_3_10_S  AS Concentration_Biomass 

#C_B_3_10_R  AS Concentration_Biomass 

C_B_3_20_S  AS Concentration_Biomass 

#C_B_3_20_R  AS Concentration_Biomass 

C_S_3_05_S   AS Concentration_Substrate 

#C_S_3_05_R   AS Concentration_Substrate 

C_S_3_10_S  AS Concentration_Substrate 

#C_S_3_10_R  AS Concentration_Substrate 

C_S_3_20_S  AS Concentration_Substrate 

#C_S_3_20_R  AS Concentration_Substrate 

 

f_S_4_05_S   AS Efficiency_Factor 

f_S_4_05_R   AS Efficiency_Factor 

f_S_4_10_S  AS Efficiency_Factor 

f_S_4_10_R  AS Efficiency_Factor 

f_S_4_20_S  AS Efficiency_Factor 

f_S_4_20_R  AS Efficiency_Factor 

I_av_4_05_S  AS Illumination_Average 

I_av_4_05_R  AS Illumination_Average 

I_av_4_10_S AS Illumination_Average 

I_av_4_10_R AS Illumination_Average 

I_av_4_20_S AS Illumination_Average 

I_av_4_20_R AS Illumination_Average 

f_I_4_05_S   AS Efficiency_Factor 

f_I_4_05_R   AS Efficiency_Factor 

f_I_4_10_S  AS Efficiency_Factor 

f_I_4_10_R  AS Efficiency_Factor 

f_I_4_20_S  AS Efficiency_Factor 

f_I_4_20_R  AS Efficiency_Factor 

f_T_4       AS Efficiency_Factor 

m_4_05_S     AS Growth_Rate 
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m_4_05_R     AS Growth_Rate 

m_4_10_S    AS Growth_Rate 

m_4_10_R    AS Growth_Rate 

m_4_20_S    AS Growth_Rate 

m_4_20_R    AS Growth_Rate 

C_B_4_05_S   AS Concentration_Biomass 

C_B_4_05_R   AS Concentration_Biomass 

C_B_4_10_S  AS Concentration_Biomass 

C_B_4_10_R  AS Concentration_Biomass 

C_B_4_20_S  AS Concentration_Biomass 

C_B_4_20_R  AS Concentration_Biomass 

C_S_4_05_S   AS Concentration_Substrate 

C_S_4_05_R   AS Concentration_Substrate 

C_S_4_10_S  AS Concentration_Substrate 

C_S_4_10_R  AS Concentration_Substrate 

C_S_4_20_S  AS Concentration_Substrate 

C_S_4_20_R  AS Concentration_Substrate 

mytime    AS timeline 

 

EQUATION 

# Efficiency factors   

f_S_1_05_S=C_S_1_05_S/(K_S+C_S_1_05_S); 

f_S_1_05_R=C_S_1_05_R/(K_S+C_S_1_05_R); 

f_S_1_10_S=C_S_1_10_S/(K_S+C_S_1_10_S); 

f_S_1_10_R=C_S_1_10_R/(K_S+C_S_1_10_R); 

f_S_1_20_S=C_S_1_20_S/(K_S+C_S_1_20_S); 

f_S_1_20_R=C_S_1_20_R/(K_S+C_S_1_20_R); 

I_av_1_05_S=I_0_1*((1-exp(-

K_a*L_to_m3*C_B_1_05_S*d))/(K_a*L_to_m3*C_B_1_05_S*d)); 

I_av_1_05_R=I_0_1*((1-exp(-

K_a*L_to_m3*C_B_1_05_R*d))/(K_a*L_to_m3*C_B_1_05_R*d)); 

I_av_1_10_S=I_0_1*((1-exp(-

K_a*L_to_m3*C_B_1_10_S*d))/(K_a*L_to_m3*C_B_1_10_S*d)); 

I_av_1_10_R=I_0_1*((1-exp(-

K_a*L_to_m3*C_B_1_10_R*d))/(K_a*L_to_m3*C_B_1_10_R*d)); 

I_av_1_20_S=I_0_1*((1-exp(-

K_a*L_to_m3*C_B_1_20_S*d))/(K_a*L_to_m3*C_B_1_20_S*d)); 

I_av_1_20_R=I_0_1*((1-exp(-

K_a*L_to_m3*C_B_1_20_R*d))/(K_a*L_to_m3*C_B_1_20_R*d)); 

f_I_1_05_S=I_av_1_05_S/(K_I+I_av_1_05_S); 

f_I_1_05_R=I_av_1_05_R/(K_I+I_av_1_05_R); 

f_I_1_10_S=I_av_1_10_S/(K_I+I_av_1_10_S); 

f_I_1_10_R=I_av_1_10_R/(K_I+I_av_1_10_R); 

f_I_1_20_S=I_av_1_20_S/(K_I+I_av_1_20_S); 

f_I_1_20_R=I_av_1_20_R/(K_I+I_av_1_20_R); 

f_T_1=k_0*exp(-E_a/R/T_1);  

 

# Substrate&CO2&light growth rate 

m_1_05_S=f_S_1_05_S*f_I_1_05_S*f_T_1; 

m_1_05_R=f_S_1_05_R*f_I_1_05_R*f_T_1; 

m_1_10_S=f_S_1_10_S*f_I_1_10_S*f_T_1; 

m_1_10_R=f_S_1_10_R*f_I_1_10_R*f_T_1; 

m_1_20_S=f_S_1_20_S*f_I_1_20_S*f_T_1; 

m_1_20_R=f_S_1_20_R*f_I_1_20_R*f_T_1; 

 

# Cell Concentration 

$C_B_1_05_S=C_B_1_05_S*(m_1_05_S-maint-Dil); 

$C_B_1_05_R=C_B_1_05_R*(m_1_05_R-maint-Dil); 

$C_B_1_10_S=C_B_1_10_S*(m_1_10_S-maint-Dil); 

$C_B_1_10_R=C_B_1_10_R*(m_1_10_R-maint-Dil); 

$C_B_1_20_S=C_B_1_20_S*(m_1_20_S-maint-Dil); 

$C_B_1_20_R=C_B_1_20_R*(m_1_20_R-maint-Dil); 

 

# Substrate concentration 

-$C_S_1_05_S=((1/Y_bS)*(C_B_1_05_S*m_1_05_S))+(m_S*C_B_1_05_S)-

((1/Y_bS)*Dil*(C_S0_05-C_S_1_05_S)); 
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-$C_S_1_05_R=((1/Y_bS)*(C_B_1_05_R*m_1_05_R))+(m_S*C_B_1_05_R)-

((1/Y_bS)*Dil*(C_S0_05-C_S_1_05_R)); 

-$C_S_1_10_S=((1/Y_bS)*(C_B_1_10_S*m_1_10_S))+(m_S*C_B_1_10_S)-

((1/Y_bS)*Dil*(C_S0_10-C_S_1_10_S)); 

-$C_S_1_10_R=((1/Y_bS)*(C_B_1_10_R*m_1_10_R))+(m_S*C_B_1_10_R)-

((1/Y_bS)*Dil*(C_S0_10-C_S_1_10_R)); 

-$C_S_1_20_S=((1/Y_bS)*(C_B_1_20_S*m_1_20_S))+(m_S*C_B_1_20_S)-

((1/Y_bS)*Dil*(C_S0_20-C_S_1_20_S)); 

-$C_S_1_20_R=((1/Y_bS)*(C_B_1_20_R*m_1_20_R))+(m_S*C_B_1_20_R)-

((1/Y_bS)*Dil*(C_S0_20-C_S_1_20_R)); 

 

 

#Experiment 2 

# Efficiency factors   

f_S_2_05_S=C_S_2_05_S/(K_S+C_S_2_05_S); 

f_S_2_05_R=C_S_2_05_R/(K_S+C_S_2_05_R); 

f_S_2_10_S=C_S_2_10_S/(K_S+C_S_2_10_S); 

f_S_2_10_R=C_S_2_10_R/(K_S+C_S_2_10_R); 

f_S_2_20_S=C_S_2_20_S/(K_S+C_S_2_20_S); 

f_S_2_20_R=C_S_2_20_R/(K_S+C_S_2_20_R); 

I_av_2_05_S=I_0_2*((1-exp(-

K_a*L_to_m3*C_B_2_05_S*d))/(K_a*L_to_m3*C_B_2_05_S*d)); 

I_av_2_05_R=I_0_2*((1-exp(-

K_a*L_to_m3*C_B_2_05_R*d))/(K_a*L_to_m3*C_B_2_05_R*d)); 

I_av_2_10_S=I_0_2*((1-exp(-

K_a*L_to_m3*C_B_2_10_S*d))/(K_a*L_to_m3*C_B_2_10_S*d)); 

I_av_2_10_R=I_0_2*((1-exp(-

K_a*L_to_m3*C_B_2_10_R*d))/(K_a*L_to_m3*C_B_2_10_R*d)); 

I_av_2_20_S=I_0_2*((1-exp(-

K_a*L_to_m3*C_B_2_20_S*d))/(K_a*L_to_m3*C_B_2_20_S*d)); 

I_av_2_20_R=I_0_2*((1-exp(-

K_a*L_to_m3*C_B_2_20_R*d))/(K_a*L_to_m3*C_B_2_20_R*d)); 

f_I_2_05_S=I_av_2_05_S/(K_I+I_av_2_05_S); 

f_I_2_05_R=I_av_2_05_R/(K_I+I_av_2_05_R); 

f_I_2_10_S=I_av_2_10_S/(K_I+I_av_2_10_S); 

f_I_2_10_R=I_av_2_10_R/(K_I+I_av_2_10_R); 

f_I_2_20_S=I_av_2_20_S/(K_I+I_av_2_20_S); 

f_I_2_20_R=I_av_2_20_R/(K_I+I_av_2_20_R); 

f_T_2=k_0*exp(-E_a/R/T_2);  

 

# Substrate&CO2&light growth rate 

m_2_05_S=f_S_2_05_S*f_I_2_05_S*f_T_2; 

m_2_05_R=f_S_2_05_R*f_I_2_05_R*f_T_2; 

m_2_10_S=f_S_2_10_S*f_I_2_10_S*f_T_2; 

m_2_10_R=f_S_2_10_R*f_I_2_10_R*f_T_2; 

m_2_20_S=f_S_2_20_S*f_I_2_20_S*f_T_2; 

m_2_20_R=f_S_2_20_R*f_I_2_20_R*f_T_2; 

 

# Cell Concentration 

$C_B_2_05_S=C_B_2_05_S*(m_2_05_S-maint-Dil); 

$C_B_2_05_R=C_B_2_05_R*(m_2_05_R-maint-Dil); 

$C_B_2_10_S=C_B_2_10_S*(m_2_10_S-maint-Dil); 

$C_B_2_10_R=C_B_2_10_R*(m_2_10_R-maint-Dil); 

$C_B_2_20_S=C_B_2_20_S*(m_2_20_S-maint-Dil); 

$C_B_2_20_R=C_B_2_20_R*(m_2_20_R-maint-Dil); 

 

# Substrate concentration 

-$C_S_2_05_S=((1/Y_bS)*(C_B_2_05_S*m_2_05_S))+(m_S*C_B_2_05_S)-

((1/Y_bS)*Dil*(C_S0_05-C_S_2_05_S)); 

-$C_S_2_05_R=((1/Y_bS)*(C_B_2_05_R*m_2_05_R))+(m_S*C_B_2_05_R)-

((1/Y_bS)*Dil*(C_S0_05-C_S_2_05_R)); 

-$C_S_2_10_S=((1/Y_bS)*(C_B_2_10_S*m_2_10_S))+(m_S*C_B_2_10_S)-

((1/Y_bS)*Dil*(C_S0_10-C_S_2_10_S)); 

-$C_S_2_10_R=((1/Y_bS)*(C_B_2_10_R*m_2_10_R))+(m_S*C_B_2_10_R)-

((1/Y_bS)*Dil*(C_S0_10-C_S_2_10_R)); 

-$C_S_2_20_S=((1/Y_bS)*(C_B_2_20_S*m_2_20_S))+(m_S*C_B_2_20_S)-

((1/Y_bS)*Dil*(C_S0_20-C_S_2_20_S)); 
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-$C_S_2_20_R=((1/Y_bS)*(C_B_2_20_R*m_2_20_R))+(m_S*C_B_2_20_R)-

((1/Y_bS)*Dil*(C_S0_20-C_S_2_20_R)); 

 

#Experiment 3 

# Efficiency factors   

f_S_3_05_S=C_S_3_05_S/(K_S+C_S_3_05_S); 

#f_S_3_05_R=C_S_3_c05_R/(K_S+C_S_3_c05_R); 

f_S_3_10_S=C_S_3_10_S/(K_S+C_S_3_10_S); 

#f_S_3_10_R=C_S_3_c10_R/(K_S+C_S_3_c10_R); 

f_S_3_20_S=C_S_3_20_S/(K_S+C_S_3_20_S); 

#f_S_3_20_R=C_S_3_c20_R/(K_S+C_S_3_c20_R); 

I_av_3_05_S=I_0_3*((1-exp(-

K_a*L_to_m3*C_B_3_05_S*d))/(K_a*L_to_m3*C_B_3_05_S*d)); 

#I_av_3_05_R=I_0_3*((1-exp(-

K_a*L_to_m3*C_B_3_05_R*d))/(K_a*L_to_m3*C_B_3_05_R*d)); 

I_av_3_10_S=I_0_3*((1-exp(-

K_a*L_to_m3*C_B_3_10_S*d))/(K_a*L_to_m3*C_B_3_10_S*d)); 

#I_av_3_10_R=I_0_3*((1-exp(-

K_a*L_to_m3*C_B_3_10_R*d))/(K_a*L_to_m3*C_B_3_10_R*d)); 

I_av_3_20_S=I_0_3*((1-exp(-

K_a*L_to_m3*C_B_3_20_S*d))/(K_a*L_to_m3*C_B_3_20_S*d)); 

#I_av_3_20_R=I_0_3*((1-exp(-

K_a*L_to_m3*C_B_3_20_R*d))/(K_a*L_to_m3*C_B_3_20_R*d)); 

f_I_3_05_S=I_av_3_05_S/(K_I+I_av_3_05_S); 

#f_I_3_05_R=I_av_3_05_R/(K_I+I_av_3_05_R); 

f_I_3_10_S=I_av_3_10_S/(K_I+I_av_3_10_S); 

#f_I_3_10_R=I_av_3_10_R/(K_I+I_av_3_10_R); 

f_I_3_20_S=I_av_3_20_S/(K_I+I_av_3_20_S); 

#f_I_3_20_R=I_av_3_20_R/(K_I+I_av_3_20_R); 

f_T_3=k_0*exp(-E_a/R/T_3);  

 

# Substrate&CO2&light growth rate 

m_3_05_S=f_S_3_05_S*f_I_3_05_S*f_T_3; 

#m_3_05_R=f_S_3_05_R*f_I_3_05_R*f_T_3; 

m_3_10_S=f_S_3_10_S*f_I_3_10_S*f_T_3; 

#m_3_10_R=f_S_3_10_R*f_I_3_10_R*f_T_3; 

m_3_20_S=f_S_3_20_S*f_I_3_20_S*f_T_3; 

#m_3_20_R=f_S_3_20_R*f_I_3_20_R*f_T_3; 

 

# Cell Concentration 

$C_B_3_05_S=C_B_3_05_S*(m_3_05_S-maint-Dil); 

#$C_B_3_05_R=C_B_3_05_R*(m_3_05_R-maint-Dil); 

$C_B_3_10_S=C_B_3_10_S*(m_3_10_S-maint-Dil); 

#$C_B_3_10_R=C_B_3_10_R*(m_3_10_R-maint-Dil); 

$C_B_3_20_S=C_B_3_20_S*(m_3_20_S-maint-Dil); 

#$C_B_3_20_R=C_B_3_20_R*(m_3_20_R-maint-Dil); 

 

# Substrate concentration 

-$C_S_3_05_S=((1/Y_bS)*(C_B_3_05_S*m_3_05_S))+(m_S*C_B_3_05_S)-

((1/Y_bS)*Dil*(C_S0_05-C_S_3_05_S)); 

#-$C_S_3_05_R=((1/Y_bS)*(C_B_3_c05_R*m_3_c05_R))+(m_S*C_B_3_c05_R)-

((1/Y_bS)*Dil*(C_S0_05-C_S_3_05_R)); 

-$C_S_3_10_S=((1/Y_bS)*(C_B_3_10_S*m_3_10_S))+(m_S*C_B_3_10_S)-

((1/Y_bS)*Dil*(C_S0_10-C_S_3_10_S)); 

#-$C_S_3_10_R=((1/Y_bS)*(C_B_3_c10_R*m_3_c10_R))+(m_S*C_B_3_c10_R)-

((1/Y_bS)*Dil*(C_S0_10-C_S_3_10_R)); 

-$C_S_3_20_S=((1/Y_bS)*(C_B_3_20_S*m_3_20_S))+(m_S*C_B_3_20_S)-

((1/Y_bS)*Dil*(C_S0_20-C_S_3_20_S)); 

#-$C_S_3_20_R=((1/Y_bS)*(C_B_3_c20_R*m_3_c20_R))+(m_S*C_B_3_c20_R)-

((1/Y_bS)*Dil*(C_S0_20-C_S_3_20_R)); 

 

#Experiment 4 

# Efficiency factors   

f_S_4_05_S=C_S_4_05_S/(K_S+C_S_4_05_S); 

f_S_4_05_R=C_S_4_05_R/(K_S+C_S_4_05_R); 

f_S_4_10_S=C_S_4_10_S/(K_S+C_S_4_10_S); 

f_S_4_10_R=C_S_4_10_R/(K_S+C_S_4_10_R); 
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f_S_4_20_S=C_S_4_20_S/(K_S+C_S_4_20_S); 

f_S_4_20_R=C_S_4_20_R/(K_S+C_S_4_20_R); 

I_av_4_05_S=I_0_4*((1-exp(-

K_a*L_to_m3*C_B_4_05_S*d))/(K_a*L_to_m3*C_B_4_05_S*d)); 

I_av_4_05_R=I_0_4*((1-exp(-

K_a*L_to_m3*C_B_4_05_R*d))/(K_a*L_to_m3*C_B_4_05_R*d)); 

I_av_4_10_S=I_0_4*((1-exp(-

K_a*L_to_m3*C_B_4_10_S*d))/(K_a*L_to_m3*C_B_4_10_S*d)); 

I_av_4_10_R=I_0_4*((1-exp(-

K_a*L_to_m3*C_B_4_10_R*d))/(K_a*L_to_m3*C_B_4_10_R*d)); 

I_av_4_20_S=I_0_4*((1-exp(-

K_a*L_to_m3*C_B_4_20_S*d))/(K_a*L_to_m3*C_B_4_20_S*d)); 

I_av_4_20_R=I_0_4*((1-exp(-

K_a*L_to_m3*C_B_4_20_R*d))/(K_a*L_to_m3*C_B_4_20_R*d)); 

f_I_4_05_S=I_av_4_05_S/(K_I+I_av_4_05_S); 

f_I_4_05_R=I_av_4_05_R/(K_I+I_av_4_05_R); 

f_I_4_10_S=I_av_4_10_S/(K_I+I_av_4_10_S); 

f_I_4_10_R=I_av_4_10_R/(K_I+I_av_4_10_R); 

f_I_4_20_S=I_av_4_20_S/(K_I+I_av_4_20_S); 

f_I_4_20_R=I_av_4_20_R/(K_I+I_av_4_20_R); 

f_T_4=k_0*exp(-E_a/R/T_4);  

 

# Substrate&CO2&light growth rate 

m_4_05_S=f_S_4_05_S*f_I_4_05_S*f_T_4; 

m_4_05_R=f_S_4_05_R*f_I_4_05_R*f_T_4; 

m_4_10_S=f_S_4_10_S*f_I_4_10_S*f_T_4; 

m_4_10_R=f_S_4_10_R*f_I_4_10_R*f_T_4; 

m_4_20_S=f_S_4_20_S*f_I_4_20_S*f_T_4; 

m_4_20_R=f_S_4_20_R*f_I_4_20_R*f_T_4; 

 

# Cell Concentration 

$C_B_4_05_S=C_B_4_05_S*(m_4_05_S-maint-Dil); 

$C_B_4_05_R=C_B_4_05_R*(m_4_05_R-maint-Dil); 

$C_B_4_10_S=C_B_4_10_S*(m_4_10_S-maint-Dil); 

$C_B_4_10_R=C_B_4_10_R*(m_4_10_R-maint-Dil); 

$C_B_4_20_S=C_B_4_20_S*(m_4_20_S-maint-Dil); 

$C_B_4_20_R=C_B_4_20_R*(m_4_20_R-maint-Dil); 

 

# Substrate concentration 

-$C_S_4_05_S=((1/Y_bS)*(C_B_4_05_S*m_4_05_S))+(m_S*C_B_4_05_S)-

((1/Y_bS)*Dil*(C_S0_05-C_S_4_05_S)); 

-$C_S_4_05_R=((1/Y_bS)*(C_B_4_05_R*m_4_05_R))+(m_S*C_B_4_05_R)-

((1/Y_bS)*Dil*(C_S0_05-C_S_4_05_R)); 

-$C_S_4_10_S=((1/Y_bS)*(C_B_4_10_S*m_4_10_S))+(m_S*C_B_4_10_S)-

((1/Y_bS)*Dil*(C_S0_10-C_S_4_10_S)); 

-$C_S_4_10_R=((1/Y_bS)*(C_B_4_10_R*m_4_10_R))+(m_S*C_B_4_10_R)-

((1/Y_bS)*Dil*(C_S0_10-C_S_4_10_R)); 

-$C_S_4_20_S=((1/Y_bS)*(C_B_4_20_S*m_4_20_S))+(m_S*C_B_4_20_S)-

((1/Y_bS)*Dil*(C_S0_20-C_S_4_20_S)); 

-$C_S_4_20_R=((1/Y_bS)*(C_B_4_20_R*m_4_20_R))+(m_S*C_B_4_20_R)-

((1/Y_bS)*Dil*(C_S0_20-C_S_4_20_R)); 

 

$mytime=1; 
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Table V.5. Parameter values used in the literature and used as initial bounds for the 

parameter estimation. 

Parameter Value  Reference 

𝜇𝑚𝑎𝑥 [1/h] 0.8 d
-1 

0.7-1.3 d
-1

  
0.046 h-1 
0.025 h-1 

(Arrigo & Sullivan, 1994) 
(Bernard & Rémond, 2010) 
(Molina Grima et al., 1994),  
(Quinn et al., 2011) 

𝐾𝑁 [mol/m
3
] 0.3 – 2.3 μΜ 

12.1 mg/L 
0.005 g/L 

(Arrigo & Sullivan, 1994) 
(Xin et al., 2010) 
(Quinn et al., 2011) 

𝐾𝑃 [mol/m
3
] 0.3 & 2.3 μΜ 

0.27 mg/L 
(Arrigo & Sullivan, 1994) 
(Xin et al., 2010) 

𝐾𝐶𝑂2 [mol/m
3
] 0.0003 mol/m3  

(=7.3 x 10^-6 L/L) 
(He et al., 2012) 

𝐾𝐼 [μE/m
2
/sec] 18 μE/m

2
/s 

14 μmol/m
2
/s 

94.3 μE/m
2
/s 

(Arrigo & Sullivan, 1994) 
(He et al., 2012) 
(Molina Grima et al., 1999) 

𝐾𝑎 [m
2
/g] 0.2 

0.127-0.233 
0.0752 

(Huesemann et al., 2013) 
(Vejrazka et al., 2011) 
(Quinn et al., 2011) 

𝐸𝑎 [J/mol] 75 – 85 kJ/mol 
65 kJ/mol (grass) 
85 – 222 kJ/mol (bacteria) 
63 kJ/mol (microalgae) 
36 kJ/mol (microalgae) 
36.72 kJ/mol 
75 – 85 kJ/mol 

(Ribeiro et al., 2008) 
(Koutsoumanis et al., 2000) 
(Alexandrov & Yamagata, 2007) 
(Giannuzzi et al., 1998) 
(Quinn et al., 2011) 
(Ashokkumar et al., 2014) 
(Koutsoumanis et al., 2000) 

𝑇𝑜𝑝𝑡 [K] 298 K 
300 K 

(Alexandrov & Yamagata, 2007) 
(Zheng-Rong et al., 2010) 

𝑚𝑎 [1/h] 0.005 h-1 
0.000432 h-1 
0.01800.03 h-1 
0.00385 h-1 

(Cabello et al., 2014) 
(Quinn et al., 2011) 
(Ruiz et al., 2011) 
(Molina Grima et al., 1994) 

𝑚𝑠/𝑁[gsubstrate/g cells/h] <2x10
-4

 (Ruiz et al., 2011) 

𝑌𝑏/𝑁 [g/g] 0.65 gb/gO2 

130 
11.51-49 gcells/gN 

(Molina Grima et al., 1994) 
(Concas et al., 2012) 
(Ruiz et al., 2011) 

𝑚𝑠/𝑃[gsubstrate/g cells/h] <2x10
-4

 (Ruiz et al., 2011) 

𝑌𝑏/𝑃 [g/g] 0.2 gb/gO2 
10.4 
0.046-470 gcells/gPO4 

(Molina Grima et al., 1994) 
(Concas et al., 2012) 
(Ruiz et al., 2011) 

𝑘0 [1/h] 148-1.3E42 days-1 (bacteria) 
0.16-0.28 h-1  
31/sec 

(Giannuzzi et al., 1998) 
(Ribeiro et al., 2008) 
(Ashokkumar et al., 2014) 

𝐾𝑆 [mol/m
3
] 0.27 mg/L 

0.3 – 2.3 μΜ 
(Xin et al., 2010) 
(Arrigo & Sullivan, 1994) 

𝑌𝑏/𝑆 [g/g] 0.0199 m2/g 
0.6 g/g 
470 gcells/gPO4 

(Molina Grima et al., 1994) 
(van Bodegom, 2007) 
(Ruiz et al., 2011) 

𝑚𝑠/𝑆[gsubstrate/g cells/h] <2x10
-4

 (Ruiz et al., 2011) 
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Table V.6. Average bounds used for the final stage parameter estimation for all the 

experiments. 

 Lower bound Upper bound 

𝑬𝒂  609 917500 

𝑲𝑨  0.00001 58.5833 

𝑲𝑪𝑶𝟐  2.51E-10 47.5833 

𝑲𝑰  1.71E-05 117.25 

𝑲𝑵  9.43E-09 0.01258 

𝑲𝑷  5.00E-07 0.05633 

𝝁𝒎𝒂𝒙  0.020 0.16 

𝒎𝑵  8.53E-08 0.00025 

𝒎𝑷  0.000001 0.00092 

𝒎𝒂  0.00011 0.05426 

𝑻𝒐𝒑𝒕  295 303 

𝒀𝒃/𝑵  0.93 12 

𝒀𝒃/𝑷 8.92 60 
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Experimental measurements 

Table V.7. Sacrificial (S) and resampling (R) measurements of the different 
substances (in g/L) for the CO2 experiments. 

CO2 
experiment 

Substance 
measured 

Time 
(h) 

Nutrient dilution  

1:200 1:100 1:50 

S R S R S R 

700 mg/L 

Biomass 

0 0.0710   0.0683   0.0805   

23 0.1011 0.0978 0.0898 0.0896 0.0792 0.0747 

95 0.2341 0.2518 0.1702 0.2151 0.0914 0.1287 

167 0.2527 0.2542 0.3475 0.6316 0.5853 1.3624 

Nitrates 

0 0.0705   0.0068   1.7295   

23 0.0395 0.0401 0.1180 0.1341 0.3598 0.3550 

95 0.0019 0.0043 0.0032 0.0021 0.0360 0.0159 

167 0.0001 0.0029 0.0011 0.0050 0.0049 0.0057 

Phosphates 

0 0.0502  0.0050  1.1708  

23 0.0540 0.0621 0.1168 0.1344 0.2704 0.2425 

95 0.0482 0.0560 0.0998 0.1048 0.2049 0.2005 

167 0.0021 0.0684 0.0184 0.1621 0.2781 0.2765 

4,300 mg/L 

Biomass 

0 0.1069  0.1083  0.1077  

45 0.7286 0.6979 0.7800 0.8640 0.9761 0.9451 

94 0.4838 0.5323 0.7975 0.9319 1.1229 1.2569 

Nitrates 

0 0.0599  0.6128  0.1648  

45 0.0012 0.0101 0.0011 0.0033 0.0033 0.0047 

94 0.0012 0.0318 0.0005 0.0034 0.0007 0.0020 

Phosphates 

0 0.0438  0.4294  0.1193  

45 0.0105 0.0086 0.0162 0.0640 0.1332 0.1380 

94 0.0350 0.0549 0.0696 0.0710 0.1271 0.1049 

50,000 mg/L 

Biomass 

0 0.1027  0.1016  0.1016  

43 0.4963 0.5124 0.6306 0.6274 0.6306 0.6274 

89.5 0.3484 0.3668 0.5150 0.5423 0.5150 0.5423 

167 0.2354 0.1458 0.1804 0.4482 0.5069 0.5909 

Nitrates 

0 0.1247  0.0379  0.0111  

43 0 0.0010 0.0089 0.0094 0.0026 0.0162 

89.5 0.0019 0.0058 0.0020 0.0041 0.0091 0.0004 

167 0.0007 0.0007 0.0038 0.0095 0.0129 0.0138 

Phosphates 

0 0.0848  0.0270  0.0320  

43 0.0015 0.1451 0.1142 0.0607 0.0078 0.1142 

89.5 0.0113 0.1210 0.0200 0.2894 0.0549 0.0050 

167 0.0368 0.0037 0.1834 0.0539 0.0983 0.1024 
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Table V.8. Sacrificial (S) and resampling (R) measurements of the different 
substances (in g/L) for the factorial experiments. 

E
x

p
e

ri
m

e
n

t 
S

u
b

s
ta

n

c
e
 

m
e

a
s

u
r

e
d

  

Time (h) 

Nutrient dilution  

5 10 20 

S (A) S (B) R S (A) S (B) R S (A) S (B) R 
S

e
ri

e
s
 1

, 
T

ry
 1

 B
io

m

a
s
s
 0.0 0.0946   0.1054   0.1011   

41.5 0.4940  0.5284 0.5350  0.6728 0.7218  0.4619 

93.0 0.2635  0.1638 0.2196  0.1479 0.7212  0.6824 

N
it
ra

t

e
s
 

0.0 0.0423   0.0693   0.1926   

41.5 0.0097  0.0016 0.0144  0.0010 0.0037  0.0030 

93.0 0.0006  0.0000 0.0046  0.0262 0.0031  0.0053 

P
h

o
s

p
h

a
te

s
 

0.0 0.0136   0.0216   0.0619   

41.5 0.0122  0.0153 0.0249  0.0159 0.0419  0.0797 

93.0 0.0084  0.0085 0.0331  0.0689 0.0345  0.0612 

S
e

ri
e

s
 1

, 
T

ry
 2

 

B
io

m
a
s
s
 0.0 0.0906  0.0920 0.0907  0.0925 0.0886  0.0928 

23.3 0.3211  0.3340 0.3768  0.3687 0.2912  0.2935 

47.0 0.4015  0.3711 0.5006  0.4371 0.5800  0.6071 

94.9 0.2890   0.1948 0.3577  0.1904 0.6087  0.4962 

N
it
ra

te
s
 0.0 0.0497 0.0443 0.0273 0.0856 0.0883 0.0690 0.1738 0.1951 0.1468 

23.3 0.0019 0.0000 0.0000 0.0589 0.0013 0.0015 0.0845 0.0562 0.0516 

47.0 0.0000 0.0135 0.0018 0.0000 0.0010 0.0030 0.0000 0.0000 0.0012 

94.9 0.0000 0.0015 0.0012 0.0000 0.0012 0.0000 0.0000 0.0000 0.0009 

P
h

o
s
p
h

a
t

e
s
 

0.0 0.0306 0.0388 0.0225 0.0586 0.0624 0.0488 0.1158 0.1346 0.0978 

23.3 0.0318 0.0302 0.0168 0.0956 0.0483 0.0486 0.1260 0.1006 0.1004 

47.0 0.0206 0.0258 0.0441 0.0391 0.0399 0.0369 0.0991 0.1061 0.0747 

94.9 0.0268 0.0239 0.0193 0.0371 0.0381 0.0302 0.0923 0.1010 0.0580 

S
e

ri
e

s
 2

, 
T

ry
 1

 B
io

m

a
s
s
 0.0 0.0848  0.0830 0.0946  0.0898 0.0905  0.0800 

24.5 0.2802  0.3988 0.3210  0.3671 0.2969  0.3850 

46.0 0.5581  0.6784 0.6458  0.7794 0.7683  0.9724 

N
it
ra

t

e
s
 

0.0 0.0502  0.0684 0.0850  0.0843 0.1701  0.1754 

24.5 0.0000  0.0101 0.0040  0.0000 0.0105  0.0994 

46.0 0.0000  0.0103 0.0044  0.0117 0.0043  0.0000 

P
h

o
s

p
h

a
te

s
 

0.0 0.0336  0.0444 0.0569  0.0506 0.1161  0.1116 

24.5 0.0306  0.0471 0.0492  0.0583 0.0062  0.1308 

46.0 0.0021  0.0368 0.0410  0.0467 0.0946  0.1051 

S
e

ri
e

s
 2

, 
T

ry
 2

 

B
io

m
a
s
s
 0.0 0.1170  0.1222 0.1195  0.1121 0.1297  0.1015 

20.9 0.3586  0.5162 0.3955  0.3485 0.3376  0.2110 

46.9 0.6758   0.6595 0.8131  0.8404 0.8968  0.6665 

117.3 0.5278  0.5699 0.7161  0.7390 1.4886  1.2145 

N
it
ra

te
s
 0.0 0.0715 0.0446 0.0424 0.1069 0.0930 0.0819 0.1555 0.1737 0.1762 

20.9 0.0005 0.0000 0.0000 0.0067 0.0054 0.0009 0.0893 0.0982 0.0643 

46.9 0.0000 0.0006 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000 0.0000 

117.3 0.0011 0.0000 0.0051 0.0121 0.0000 0.0007 0.0012 0.0010 0.0013 

P
h

o
s
p
h

a
t

e
s
 

0.0 0.0565 0.0338 0.0366 0.0728 0.0705 0.0680 0.1081 0.1172 0.1089 

20.9 0.0367 0.0289 0.0285 0.0651 0.0640 0.0451 0.1124 0.1228 0.0901 

46.9 0.0249 0.0315 0.0212 0.0641 0.0650 0.0442 0.0951 0.0928 0.0833 

117.3 0.0195 0.0288 0.0134 0.0349 0.0424 0.0286 0.0719 0.0811 0.0778 

S
e

ri
e

s
 3

 

B
io

m

a
s
s
 0.0 0.0958  0.0964 0.1061  0.1064 0.0940  0.0948 

22.0 0.3172  0.3035 0.3437  0.2978 0.2475  0.2457 

41.8 0.6008  0.6976 0.8010  0.8147 0.7658  0.8177 
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164.3 0.6884   0.7288   0.8222   

N
it
ra

te
s
 0.0 0.0770 0.0726 0.0761 0.1156 0.1189 0.1115 0.2555 0.2397 0.1961 

22.0 0.0053 0.0056 0.0035 0.0059 0.0048 0.0132 0.1194 0.1191 0.1473 

41.8 0.0031 0.0029 0.0020 0.0026 0.0000 0.0000 0.0022 0.0029 0.0014 

164.3 0.0026 0.0020  0.0010 0.0021  0.0010 0.0015  

P
h

o
s
p
h

a
t

e
s
 

0.0 0.0513 0.0495 0.0530 0.0768 0.0797 0.0747 0.1663 0.1548 0.1280 

22.0 0.0461 0.0607 0.0539 0.0805 0.0830 0.0769 0.1305 0.1392 0.1597 

41.8 0.0318 0.0277 0.0288 0.0347 0.0453 0.0435 0.0933 0.1069 0.0685 

164.3 0.0367 0.0362  0.0554 0.0592  0.0913 0.1001  

S
e

ri
e

s
 4

 

B
io

m
a
s
s
 0.0 0.0984  0.0962 0.0897  0.0946 0.0984  0.0943 

22.4 0.3179  0.2782 0.2938  0.2872 0.2148  0.2283 

45.9 0.4155  0.3924 0.5142  0.5382 0.5423  0.5972 

93.6 0.3107  0.2097 0.5221  0.5749 0.7590  0.7875 

N
it
ra

te
s
 0.0 0.0800 0.0602 0.0508 0.0856 0.0697 0.0856 0.1801 0.1858 0.1257 

22.4 0.0052 0.0058 0.0294 0.0193 0.0000 0.0084 0.1023 0.0717 0.0565 

45.9 0.0032 0.0037 0.0471 0.0029 0.0019 0.0076 0.0136 0.0061 0.0027 

93.6 0.0000 0.0136 0.0027 0.0000 0.0085 0.0000 0.0000 0.0000 0.0039 

P
h

o
s
p
h

a
t

e
s
 

0.0 0.0449 0.0406 0.0437 0.0611 0.0520 0.0541 0.1265 0.1258 0.0883 

22.4 0.0406 0.0458 0.0517 0.0400 0.0491 0.0444 0.1226 0.1061 0.0743 

45.9 0.0261 0.0329 0.0514 0.0385 0.0405 0.0319 0.1277 0.0988 0.0790 

93.6 0.0000 0.0231 0.0110 0.0410 0.0502 0.0432 0.0818 0.0917 0.0555 

 

 

 

 

  



296 

 

 

Parameter Estimation of the full model 

 

Figure V.8 to Figure V.11 plot the biomass and substrate dynamic behaviour 

according to each model that uses the parameters estimated with either correct or 

wrong bounds used in the estimation procedure.  A significantly better fit to the 

biomass data is shown when relaxed bounds are used and some parameters take 

extreme values which might not be physically correct, so those values need to be 

checked with the literature if they are rational. Table V.9 Table V.14 show the 

parameters estimated from each case.  

 

Table V.9. Parameters estimated from stage 1 for all the factorial (main) experiments. 

 1:200 
T20 
I100 

1:200 
T20 
I150 

1:200 
T30 
I100 

1:200 
T30 
I150 

1:100 
T20 
I100 

1:100 
T20 
I150 

1:100 
T30 
I100 

1:100 
T30 
I150 

1:50 
T20 
I100 

1:50 
T20 
I150 

1:50 
T30 
I100 

1:50 
T30 
I150 

(ˣ10-

6)𝑲𝑵  
21.377 5.903 4.971 58.014 6908.8

86 
2855.0
88 

0.252 10.000 74.921 99.893 9995.0
38 

107.61
7 

(ˣ10-

3)𝑲𝑷  
0.0089 2.00 0.0217 25.989 83.660 0.0016

4 
0.0017
4 

0.0011
2 

0.0148
5 

0.0169
8 

18.663 50.633
5 

𝝁𝒎𝒂𝒙  0.064 0.075 0.063 0.123 0.160 0.076 0.050 0.071 0.053 0.051 0.052 0.083 

(ˣ10-

10)
𝒎𝑵  

1.00 10000.
0 

10000.
0 

145.37 12.40 0.10 10.00 90.09 12207.
80 

999.04 0 3201.7
6 

(ˣ10-

7)
𝒎𝑷  

1.00 2000.0
0 

2000.0
0 

518.73 0 2000.0
0 

0.0009
9 

25.72 11.09 23.01 7953.2
4 

7289.0
1 

(ˣ10-

3)
𝒎𝒂  

0.005 0.203 1.744 3.901 0.050 0.203 0.203 7.610 0.200 0.204 0.200 0.203 

𝒀𝒃/𝑵  
4.20 7.00 4.47 7.12 2.82 4.41 3.55 5.14 2.62 3.65 3.07 2.61 

𝒀𝒃/𝑷 
19.13 28.17 12.11 52.22 12.31 18.30 18.82 24.85 9.90 21.77 90.00 50.31 
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Table V.10. Parameters estimated from stage 2 for all the factorial (main) experiments. 

 1:200 
T20 
I100 

1:200 
T20 
I150 

1:200 
T30 
I100 

1:200
T30 
I150 

1:100 
T20 
I100 

1:100 
T20 
I150 

1:100 
T30 
I100 

1:100 
T30 
I150 

1:50 
T20 
I100 

1:50 
T20 
I150 

1:50 
T30 
I100 

1:50 
T30 
I150 

(ˣ10-2)𝑲𝒂  13.38 9.44 11.84 0.007 56.21 19.56 4.68 0.02 0.01 0.01 1.21E-
7 

5.00 

𝑲𝑰  2.85 1.0E-5 0.17 1.40 7.2E-
12 

1.0E-
10 

9.64 1.58E-
4 

1.21E-
04 

1.00 5.95E-
03 

4.02E
-03 

(ˣ10-6)𝑲𝑵  
27.73 2.52 8.58 71.70 5993.5

8 
521.68 0.82 10.33 82.97 99.89 90.01 115.7

5 

(ˣ10-3)𝑲𝑷  
8.898 1.666 3.584 33.90 0.001 26.461 1.0E-6 1.0E-9 0.015 0.0170 3.0E-4 0.064 

𝝁𝒎𝒂𝒙  0.079 0.056 0.076 0.140 0.164 0.100 0.068 0.071 0.051 0.040 0.041 0.056 

(ˣ10-10)𝒎𝑵  
1.00 2.0E6 0.60 100.00 0.66 0.10 10.00 100.00 18646.

80 
999.04 479.90 327.6

1 

(ˣ10-7)𝒎𝑷  
1.000 0.010 0.137 707.26 0.100 2000.0

0 
0.001 0.002 11.21 23.01 7104.5

9 
7253.
33 

(ˣ10-3)𝒎𝒂  0.100 2.030 2.181 3.737 0.050 0.103 0.203 7.610 0.199 0.204 0.200 0.200 

𝒀𝒃/𝑵  
4.24 9.00 4.45 7.00 2.75 4.32 3.90 5.15 2.77 8.00 3.18 2.64 

𝒀𝒃/𝑷  
18.98 30.00 6.89 53.15 12.19 18.17 19.97 25.16 10.33 38.00 67.33 55.20 

 

Table V.11. Parameters estimated from stage 3 for all the CO2 experiments (T30, 

I150). 

 C700 1:50  C4,300 1:200 C4,300 1:100 C4,300 1:50 C50,000 1:200 C50,000 1:100 

𝑬𝒂  13442.00 1000.00 1000.00 1000.00 1.0E-11 2.16 

(ˣ10-2) 𝑲𝒂  4.28 1.00 0.63 6.96 1.0E-8 1.98E-3 

(ˣ10-7) 

𝑲𝑪𝑶𝟐  
100.00 5.17 1000.00 40.88 8.5E-16 3.5E-14 

𝑲𝑰  3.6E-03 1.000 1.0E-05 1.000 1.0E-05 1.0E-05 

(ˣ10-7) 𝑲𝑵  
2.922 0.414 261.674 3.849 5.000 5.000 

(ˣ10-7) 𝑲𝑷  

0.010 5.807 0.000001 0.000001 10.000 10.000 

𝝁𝒎𝒂𝒙  0.120 0.120 0.121 0.150 0.208 0.208 

(ˣ10-6) 𝒎𝑵  
2000.00 0.494 0.100 20.000 0.080 5.0E-5 

(ˣ10-6) 𝒎𝑷  
2.00 2.00 1.36 1.36 70.00 10.0 

(ˣ10-3) 𝒎𝒂 0.0002 7.221 0.229 0.229 0.203 6.030 

𝑻𝒐𝒑𝒕  302.4 297.7 297.0 297.0 305.0 299.0 

𝒀𝒃/𝑵  
0.90 11.00 2.00 5.00 0.65 1.18 

𝒀𝒃/𝑷  
2.59 21.00 7.00 80.00 80.00 200.00 
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Table V.12. Parameters estimated from stage 4 for all the factorial (main) experiments. 

 1:200 
T20 
I100 

1:200 
T20 
I150 

1:200 
T30 
I100 

1:200 
T30 
I150 

1:100 
T20 
I100 

1:100 
T20 
I150 

1:100 
T30 
I100 

1:100 
T30 
I150 

1:50 
T20 
I100 

1:50 
T20 
I150 

1:50 
T30 
I100 

1:50 
T30 
I150 

 𝑬𝒂   2.0 421.7 22459.
1 

1000.0 59354.
9 

1000.0 1000.0 1000.0 1200.0 900.0 2.0 9995.8 

(ˣ10
-

2
) 

𝑲𝒂  

13.53 100.76 4.69 0.007 0.006 19.56 4.68 0.019 0.010 0.010 1.2E-7 5.00 

(ˣ10
-

7
) 

𝑲𝑪𝑶𝟐   

0.010 0.043 1.0E-5 1.0E-5 1.0E-4 1.0E-5 0.339 0.010 0.010 0.010 0.010 1.0E-5 

𝑲𝑰   2.857 1.0E-05 0.094 1.400 1.400 1.0E-
10 

1.0E-
05 

1.6E-
04 

1.2E-04 1.000 5.9E-
03 

4.0E-
03 

(ˣ10
-

6
) 

𝑲𝑵  

27.73 4.58 0.50 7.17 0.60 521.68 0.22 10.33 83.25 99.89 90.00 114.77 

(ˣ10
-

3
) 

𝑲𝑷  

8.898 1.666 2.012 33.898 0.100 26.395 0.0015 1.0E-9 0.015 0.017 0.0003 0.064 

𝝁𝒎𝒂𝒙   0.079
4 

0.056 0.062 0.140 0.154 0.100 0.071 0.071 0.051 0.040 0.041 0.056 

(ˣ10
-

10
) 

𝒎𝑵  

1.00 100000
00 

0.60 100.00 661.63 0.10 10.0 100.00 18646.8
0 

999.04 479.90 327.61 

(ˣ10
-

7
) 

𝒎𝑷  

1.0 2000.0 0.14 707.26 0.10 2000.0 0.001 0.002 11.2 23.0 7103.8 7253.3 

ˣ10
-3

) 

𝒎𝒂 

0.100 2.030 0.207 3.737 3.000 0.103 0.203 7.610 0.199 0.204 0.200 0.201 

𝑻𝒐𝒑𝒕  295.0 297.4 302.2 295.0 295.0 300.3 302.8 299.0 303.0 303.0 303.0 302.8 

𝒀𝒃/𝑵 4.23 9.00 3.67 7.00 6.00 4.32 2.77 5.15 2.77 8.00 3.18 2.63 

𝒀𝒃/𝑷 19.16 30.00 5.68 53.15 41.00 17.77 39.87 25.16 10.28 38.00 67.33 55.20 
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Table V.13. Parameters estimated from stage 5 for all the factorial (main) experiments. 

 1:200 
T20 
I100 

1:200 
T20 
I150 

1:200 
T30 
I100 

1:200 
T30 
I150 

1:100 
T20 
I100 

1:100 
T20 
I150 

1:100 
T30 
I100 

1:100 
T30 
I150 

1:50 
T20 
I100 

1:50 
T20 
I150 

1:50 
T30 
I100 

1:50 
T30 
I150 

(ˣ1

0-

2) 

𝑬𝒂   

1000.0 1000.0 222.7 1000.0 531.6 10.0 10.1 10.0 12.0 9.0 25.9 7.0 

(ˣ1

0-

2) 

𝑲𝒂  

3.526 5.000 4.694 0.007 0.006 19.6 4.681 0.017 0.016 17.128 50.00 1.272 

(ˣ1

0-

7) 

𝑲𝑪𝑶𝟐  

0.3448 0.00001 0.00001 0.05857 15.900 0.00001 12.2713 0.0100 0.0138
4 

0.0100 10.294
7 

22.761
3 

𝑲𝑰  3.704E-
05 

1.954E-
06 

0.0939 1.40 1.40 1.000E-
10 

1.262E-
05 

1.418E-
04 

3.587E-
05 

1.0E-09 0.2484
9 

1.013E-
04 

(ˣ1

0-

6) 

𝑲𝑵  

6.758 1.717 5.002 71.702 0.599 0.172 1.562 9.297 21.973 99.893 8.092 30.929 

(ˣ1

0-

3) 

𝑲𝑷  

20.00 0.11 2.01 0.798 0.143 0.001 0.0015 1.00E-9 0.0148 0.001 0.0003 0.0179 

𝝁𝒎𝒂𝒙  
0.169 0.140 0.087 0.150 0.154 0.10 0.13 0.07 0.05 0.05 0.07 0.15 

(ˣ1

0-

10) 

𝒎𝑵  

1.00 1000.00 0.60 100.00 661.63 0.10 10.00 100.00 18646.
8 

999.04 479.90 10.00 

(ˣ1

0-

7) 

𝒎𝑷  

1.00 2.00 0.137 0.00007 168.5 2000.0 2.62 2000.0 11.21 23.01 710.38 5109.5
5 

(ˣ1

0-

3) 

𝒎𝒂  

1.000 2.030 0.2072 3.193 0.050 0.0103 0.586 7.560 0.199 0.204 0.0440
0 

0.1515 

𝑻𝒐𝒑𝒕  
299.83 300.22 299.96 295.02 302.69 300.33 302.45 299.40 303.00 299.43 303.00 302.74 

𝒀𝒃/𝑵  
6.00 10.00 3.94 6.80 2.62 5.00 3.54 5.15 2.77 3.63 3.18 2.62 

𝒀𝒃/𝑷  
23.00 30.00 8.68 41.26 12.03 10.03 17.86 34.75 10.30 21.69 19.01 26.52 
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Table V.14. Parameters estimated from stage 6 for the 1:100 T20 I100 factorial (main) 

experiment tested. 

Parameter Estimated value 

𝑬𝒂  
5.236E+04 

𝑲𝒂  
1.00E-05 

𝑲𝑪𝑶𝟐  
2.23E-06 

𝑲𝑰  
0.100 

𝑲𝑷  0.0256 

𝝁𝒎𝒂𝒙  0.1600 

𝒎𝑷  3.33E-04 

𝒎𝒂  5.00E-05 

𝑻𝒐𝒑𝒕  302.47 

𝒀𝒃/𝑷  19.383 

 

  



301 

 

 

Figure V.6. Average values of the estimated parameters half saturation constant for 
nitrates and phosphates, KN, KP, maximum growth rate, μmax, specific maintenance 
rate, ma, maintenance supply rate of minimum nitrates and phosphates consumption 
mS/N, mS/P, yield over nitrates and phosphates, Yb/N, Y b/P from the full model calibration 
with their 95% confidence levels.  
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Figure V.7. Average values of the estimated parameters bioenergetics efficiency of 
light utilisation, KI, half saturation constant for CO2, KCO2, biomass light absorption 
coefficient, Ka, activation energy, Ea, and optimal temperature Topt, from the full model 
calibration with their 95% confidence levels. 

 

The values of the parameters shown in the tables above were used in the simulation 

process for all conditions, and plots are shown below to show the fit of each experiment 

to the model that it contributed to calibrate. Below, the plots of each experiment, plots 

with its percentage deviations of the measured with the predicted values are shown.  
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Figure V.8. Factorial experimental measurements of Series 1 and model predictions for the sacrifical (S) resampling (R) wells measurements 
during the 6 stages of the calibration.  
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Figure V.9. Factorial experimental measurements of Series 2 and model predictions for the sacrifical (S) resampling (R) wells measurements 
during the 6 stages of the calibration. 



305 

 

 

Figure V.10. Factorial experimental measurements of Series 3 and model predictions for the sacrifical (S) resampling (R) wells measurements 
during the 6 stages of the calibration. 
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Figure V.11. Factorial experimental measurements of Series 4 and model predictions for the sacrifical (S) resampling (R) wells measurements 
during the 6 stages of the calibration. 
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Figure V.12. Percentage deviation of the predicted values of the different measured variables among the 6 stages of the calibration and the 4 
factorial experiments series. 
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Figure V.13. Model predictions of the variables in the CO2 experiments during Stage 3 of the calibration.  
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Table V.15. Average values of the parameters estimated from Stage 5 of the 

calibration and used for the process simulation. 

Parameter Average estimation 

𝐸𝑎  
31986.53 

𝐾𝑎  
0.08826 

𝐾𝐶𝑂2  
5.13E-07 

𝐾𝐼  
0.261896 

𝐾𝑁  0.00002 

𝐾𝑃  0.00193 

𝜇𝑚𝑎𝑥  0.1099 

𝑚𝑁  1.83E-07 

𝑚𝑃  8.36E-05 

𝑚𝑎  0.00119 

𝑇𝑜𝑝𝑡  300.67 

𝑌𝑏/𝑁  4.6033 

𝑌𝑏/𝑃  21.2610 
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Figure V.14. Model predictions of the processes corresponding to the experimental 
Series 3 and 4, using the average values of the parameters estimated during Stage 5 
of the calibration (shown in Table V.15).  
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Table V.16. Parameter values used for to adjust the full model to the typical growth 
stages shown in Figure 2.12.  

Parameters Value 

𝑑 [m] 0.12 

𝐼0 [μE/m
2
/sec] 90 

𝑇 [K] 298 

𝑅 [J/mol/K] 8.314 

𝐷 [1/h] 0 

𝐶𝑏,0 [g/L] 0.03 

𝐶𝑁,0 [g/L] 2.99 

𝐶𝑃,0 [g/L] 2.92 

𝐶𝐶𝑂2 [L/L] 0.01 

𝜇𝑚𝑎𝑥[1/h] 0.2 

𝑚𝑎 [1/h] 0.060 

𝑚𝑠/𝑁[gnitrates/g cells/h] 0.060 

𝑚𝑠/𝑃[gphosphates/g cells/h] 0.060 

𝐾𝐼 [μE/m
2
/sec] 10 

𝐾𝑎 [m
2
/g] 0.8 

𝐾𝑁 [mol/m
3
] 0.03 

𝐾𝑃 [mol/m
3
] 0.027 

𝐾𝐶𝑂2 [m
3
/m

3
] 0.0000073 

𝑌𝑏/𝑁 [-] 46 

𝑌𝑏/𝑃 [-] 45 

𝐸𝑎 [J/mol] 100,000 

𝑇𝑜𝑝𝑡 [K] 303 
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Appendix VI. Photobioreactor heating and waste 

heat recovery 

 

Method of the flowsheet development in gPROMS Model Builder  

The hot water is stored in the storage tank (Tank 001 of Figure VI.1) which has two 

level controllers (PID_controller002 and 003) to prevent overflow and cavitation. Since 

the default variable specification of the tank component model is not dependent on the 

temperature, an extra heat input controller is added which stops the heat loss from the 

tank when its temperature reaches the ambient temperature. Two radiators (Heater001 

and 001) are simulated after the storage tank, which are represented by coolers of 

defined heat input rate. At the end of the flow a HE (Heater003) simulates the HE 

design suggested for the PBR. It needs to be simulated by a shell and tube exchanger 

than has only one tube, but for the moment it is represented as a third cooler. The 

model was run as dynamic for a period of 24 hours assuming 8 hours of flue gas 

provision and 24 hours of heating requirements.  

 

Figure VI.1. Actual flowsheet run on gPROMS for the 5 cases examined. 

 

The parameters of the component models have default values able to be modified 

and their variables are set. The different component models are connected with 

streams through their ports. In order to run the simulation, a Process has to be created 

that makes a call to the flowsheet model where the timing schedule of the simulation is 

defined. The description of each component model used is presented below and Table 

VI.1 lists the model parameters, variables, initial conditions and outputs. Some 

variables specifications have the option of advanced setting which can be used to 

define more variables, depending on the requirements of the problem and the degrees 

of freedom.  
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Source: The source models are used to define the materials entry into the streams. 

One source model for the flue gas inlet from the engine exhaust and one for the 

water inlet from the river are used.  

Tank: This model is used to simulate the storage tank of the ships. It has multiple inlet 

and outlet ports. It has includes control ports for the measurement and control of the 

pressure, liquid level and the temperature. Tank outlet is driven by the hydrostatic 

pressure.  

Sink: The sink model is the exit of a material stream out of the flowsheet process. One 

sink model is used to represent the cooled flue gas emitted to the environment and 

two sink models for the dump of the heated water streams back to the river are 

used. It describes an infinite volume sink.   

Compressor centrifugal: The compression is modelled as polytropic. Fan laws are 

used. The model relates the gas flow rate to the pressure head, the compressor 

speed and the characteristic performance curves of the compressor which are 

provided by the foreign object LookupTableFO. A compressor is used to transfer the 

flue gas from the engine exhaust to the ambient through the HE and the PBR.  

Pump centrifugal: The pump model is simulated to transport the river water to the tank 

through the HE. Isenthalpic flow is assumed and the model is based on the 

quadratic relationship between the head and flow.     

Gas and liquid valves: The models are used to control the flow rate of the material 

streams. Isenthalpic, isothermal flow is assumed.  

Pipe: The pipe models are used to simulate the head loss at the piping connecting the 

tank with the radiators and the PBR HE. Adiabatic flow is assumed.  

Heat exchanger: This model is used to simulate the HE – or series of HEs – that cool 

down the flue gas form the engine and heat up the water pumped from the river. It 

calculates the heat exchanged by lumping two models of the heater pipe model. The 

mean temperature difference is selected to be calculated using the log-mean 

method. Counter-current type of flow is selected and the heat transfer coefficient is 

selected as constant.    

Heat exchanger tubular: The tubular HE represents a tube and shell type exchanger 

and is used to simulate the PBR double pipe HE (assuming one tube in the model). 

Counter current operation mode is selected. Heat transfer coefficient can be 

selected as either constant or related to the flow rates 
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Heater: This model can be used as either a heater or a cooler and in the existing 

problem it represents radiators of the ships, hence, it works as a cooler for the 

heating water stream. This component model uses a lumped heater pipe model as a 

sub-model.  

Heat pipe: It calculates the change in temperature of a flowing fluid when subjected to 

an external heat input term. This model is not designed to be used separately and it 

is used as a sub-model in the HEs. However, the heat pipes models are used in the 

existing flowsheet to simulate the same piping simulated by the pipes models, but 

this time the heat loss from them is computed.  

PID controller: The controllers used are for the heat input and level control of the 

storage tank. Two level controllers are introduced. One for the low level, to stop the 

flow in order to avoid cavitation when tank empties, and one high level controller to 

prevent overflow, by dumping extra water back to the river. The heat input controller, 

measures the temperature and stops the heat loss when the tank temperature 

reaches the ambient temperature. This component model describes a PID controller 

and any of the classes combinations of proportional, integral and derivative action 

can be selected (P, PI, PID, D, PD and I). The controller action in calculating the 

error term can also be selected between direct and reverse mode. Reverse 

approach has been selected for all of them.  

 

Table VI.1. Parameters and variables that need to be specified, initial conditions 

selected for the dynamic models and outputs of each model. 

 Parameters 
specifications 

Variables specifications Initial 
conditions 

Output 

Source Physical 
properties 
foreign 
object,  
Components  

Pressure, Temperature, 
Phase,  
Mass fractions, Advanced: 
Flow rate  
 

- Normalised 
mass fraction  
Mass specific 
enthalpy 

Tank - Height, Diameter, Pressure, 
Heat input   
 

Selection 
among 
different. In 
this study: 
Temperature, 
Mass hold up  

Mass fraction 
Enthalpy 
Flow rate 
Holdup, Liquid 
volume, Liquid 
level, Pressure 

Sink - Mass fraction,  
Temperature, Pressure, (only 
used in case of backflow)  

- Flow rate   

Compressor 
centrifugal 

Head flow 
equation 
Flow 
efficiency 
equation 

Design speed, Load speed  - Power 
consumed, 
Load torque, 
Discharge, 
Temperature  
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(stored in 
foreign 
object).   

Pump 
centrifugal  

- Head at zero flow,  
Flow at zero head, Design 
speed, Advanced: Flow rate,  
Efficiency, Operating fraction 

- Flow rate, Load 
power, Load 
torque 

Gas and 
liquid valves 

- Flow coefficient,  
Recovery factor, Stem 
position setting, Gas valve 
also: Leakage fraction, Time 
constant  

Dynamic 
mode: 
Actual valve 
stem position  

Flow rate 

Pipe - Length, Diameter,  
Wall roughness, Fittings head 
loss coefficients, Inlet and 
outlet elevations   

- Pressure 
difference 

Heat 
exchanger 

- Heat transfer area, Multipass 
correction factor, Fouling 
resistance, Flow coefficients, 
Design heat transfer 
coefficient, Design mass flow 
rates, Advanced:, Outlet 
temperatures, Mean 
differential temperature 

- Both pipes: 
Outlet 
temperatures, 
Flow rates  

Heat 
exchanger 
tubular 

Number of 
tubes and 
grids 

For tubes: Length, Diameter, 
Metal density, Specific heat 
capacity, For tubes and shell: 
Flow coefficients, Flow 
exponents, Design mass flow 
rates, Heat transfer 
coefficients  

Dynamic 
option: initial 
tube metal, 
tube fluid and 
shell fluid 
temperatures  

Flow rates, 
Change in 
fluids 
temperatures  

Heater  - Heat transfer coefficient, Heat 
transfer area, Energy input 
rate, Flow coefficient  

- Fluid flow rate, 
Change in 
temperature 

Heat pipe - Heat input rate,  
Pipe flow coefficient 

- Exit 
temperature 

PID 
controller 

Percentage 
factor of 
output 

Min measured variable, Max 
measured variable, min 
controller output, max 
controller output, P class: 
bias, gain, set point  

(-) for the 
proportional 
class 
controller 

Heat input 
controller: heat 
input value, 
Level 
controllers: 
stem position 
setting 

 

The constant values of the parameters and variables are shown in Table VI.2. The 

variables that changed are presented with their values at the different scenarios in 

Table VI.3. Some assumptions used for the flowsheet model are that: 

1.  No pump is used after the storage tank, due to cavitation problems 

appearing in the flowsheet. Flow is driven with hydrostatic pressure. The 

height-to-diameter ratio used for the storage tank examined was 0.55. 

2.  The pump could not be completely terminated in the simulation after the 8 

hours of operation, due to a non-typical error appearing in the model. 
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3.  The PBR HE is simulated as a simple heater and not a double pipe HE as 

suggested in 7.4, due to complexities with the pressure drop in the model 

and the addition of a pump downstream.    

4.   The radiators needs are also simulated for 24 hours, although in most 

cases, only the PBR will require heat for the whole day. In order to resolve 

this, the hot water stream needs to be split before the radiators series and 

create a by-pass straight to the PBR. 

5.  The heat loss from the tank is 200,000 W and an IF loop sets it to zero when 

temperature is equal or below the ambient temperature.  

 

Table VI.2. Parameter and variables values given for the model simulation during the 

five cases examined. 

Component model Representation Variables Values Units 

Source 1 River water Phase Liquid - 
Components Water - 
Pressure 1.013˟10

5 
Pa 

Temperature 280.15 K 
Mass fraction 1 - 

Pump centrifugal 1 Centrifugal pump Design head at 0 flow 3˟10
5 

Pa 
Design speed 276.45 rps 
Operating speed fraction 1 - 
Efficiency  60% - 
Mass flow rate Varied  kg/s 

Valve liquid 1 Liquid valve 1 Stem position specification Manual   
Leakage fraction  1˟10

-2
 - 

Time constant 0.5 s 
Flow coefficient 20 gpm/psi

0.5 

Stem position setting 1 - 
Initial actual stem position  1 - 

Source 2 Engine flue gas  Phase Gas - 
Components N2, O2, CO2 - 
Pressure 1.6˟10

5 
Pa 

Temperature 653.15 K 
Mass fraction 0.79, 0.16, 

0.05 
- 

Compressor 
centrifugal 1 

Centrifugal compressor Design speed 50.45 rps 
Load speed 10.45 rps 

Valve gas 1 Gas valve 1 Stem position specification Dynamic   
Flow coefficient 1˟10

4
 scf/h/psia 

Recovery factor 60 - 
Stem position setting 1 -

 

Initial actual stem position  1 - 

Heat exchanger 1 Heat exchanger Heat transfer area  3 m
2
 

Multipass correction factor 1 - 
Fouling resistance 0 m

2
K/W 

Water pipe flow coefficient 1E-2 kg/sPa 
Water pipe design heat 
transfer coefficient 

1000 W/ m
2
K 

Water pipe design mass flow 
rate 

1 kg/s 

Water pipe flow coefficient 1E-2 kg/sPa 
Water pipe design heat 
transfer coefficient 

1000 W/ m
2
K 

Water pipe design mass flow 
rate 

0.5 kg/s 
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Sink 2 Flue gas to scrubbers Phase Gas - 
Components N2, O2, CO2 - 
Pressure 1.5˟10

5 
Pa 

Temperature 373.15 K 
Mass fraction 0.79, 0.16, 

0.05 
- 

Tank 1 Storage tank Heat input  Controlled  
Liquid protection True  
Liquid initial flow protection  Normal   
Height 2.5 m 
Diameter 4.5 m 
Pressure 3E5 Pa 
Initial conditions temperature 280 K 
Initial conditions mass 
holdup 

1 kg 

PID controller 1 Heat input controller Class P - 
Mode Automatic - 
Action Direct - 
Min input 278 K 
Max input 900 K 
Min output 0 W 
Max output -900000 W 
Bias 0 - 
Gain 1 - 
Set point 600 - 

PID controller 3 High level controller Class P - 
Mode Automatic - 
Action Reverse - 
Min input 0 m 
Max input 2.2 m 
Min output 0 - 
Max output 1 - 
Bias 0 - 
Gain 1 - 
Set point 1 - 

PID controller 2 Low level controller Class P - 
Mode Automatic - 
Action Reverse - 
Min input 0.1 m 
Max input 3 m 
Min output 0.1 - 
Max output Varied  - 
Bias 0 - 
Gain 1 - 
Set point 1 - 

Valve liquid 3 Liquid valve 3 Stem position specification Controlled   
Leakage fraction  1˟10

-3
 - 

Time constant 0.5 s 
Flow coefficient 10 gpm/psi

0.5 

Sink 3 Overflow water to river Phase Liquid  - 
Components Water - 
Pressure 0.9˟10

5 
Pa 

Temperature 280 K 
Mass fraction 1 Kg/kg 

Valve liquid 2 Liquid valve 2 Stem position specification Controlled   
Leakage fraction  Varied  - 
Time constant 1 s 
Flow coefficient Varied  gpm/psi

0.5 

Pipe 1 Piping 1 flow 
calculations 

Turbulent friction factor 
correlation 

Constant - 

Length 10 m 
Internal diameter 0.1 m 
Inlet elevation 0.5 m 
Outlet elevation 3 m 
Fittings heat loss coefficient 1 - 
Wall roughness 5E-6 m 
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Heat pipe 1 Piping 1 heat loss 
calculations 

Flow coefficient 1E-3 kg/sPa 
Heat input rate -400 J/s 

Heater 1  Radiator 1 phase Liquid - 
Heat transfer coefficient 100 W/ m

2
K 

Heat transfer area 2 m
2
 

Rate of energy input -2000 J/s 
Flow coefficient 1E-3 kg/sPa 

Pipe 2 Piping 2 flow 
calculations 

Turbulent friction factor 
correlation 

Constant - 

Length 10 m 
Internal diameter 0.1 m 
Inlet elevation 3 m 
Outlet elevation 3 m 
Fittings heat loss coefficient 1 - 
Wall roughness 5E-6 m 

Heat pipe 2 Piping 2 heat loss 
calculations 

Flow coefficient 1E-3 kg/sPa 
Heat input rate -400 J/s 

Heater 2 Radiator 2 phase Liquid - 
Heat transfer coefficient 100 W/ m

2
K 

Heat transfer area 2 m
2
 

Rate of energy input -2000 J/s 
Flow coefficient 1E-3 kg/sPa 

Pipe 3 Pipeline 3 flow 
calculations 

Turbulent friction factor 
correlation 

Constant - 

Length 5 m 
Internal diameter 0.1 m 
Inlet elevation 3 m 
Outlet elevation 3 m 
Fittings heat loss coefficient 1 - 
Wall roughness 5E-6 m 

Heat pipe 3 Pipeline 3 heat loss 
calculations 

Flow coefficient 1E-3 kg/sPa 
Heat input rate -400 J/s 

Heater 3 PBR double pipe HE phase Liquid - 
Heat transfer coefficient 100 W/ m

2
K 

Heat transfer area 0.5 m
2
 

Rate of energy input -800 J/s 
Flow coefficient 1E-3 kg/sPa 

Sink 3 Overflow water to river Phase Liquid  - 
Components Water - 
Pressure 1˟10

5 
Pa 

Temperature 280 K 
Mass fraction 1 Kg/kg 

 

Table VI.3. Values of the control variables for the cases examined (for a given storage 

capacity, given number of radiators and heat transfer areas of the heat exchangers 

and given flow rate and temperature of the flue gas). 

 Case 1 Case2 Case 3 Case4 Case 5 

Centrifugal pump flow rate [kg/s] 1.3 2.8 2.8 0.85 0.85 

Valve liquid 2 leakage fraction [-] 0.1 0.01 0.01 0.01 0.01 

Valve liquid 2 flow coefficient [gpm/psi
0.5

] 8 20.5 30.5 20 10 

PID controller 2 max output [-] 0.2 0.9 0.9 0.9 0.9 

 

The following figures show the response of the tank level and temperatures of the 

two fluids in the various streams according to the water flow rates output, 

corresponding to the settings of the five cases in Table VI.3. Pumping requirements 



319 

 

during the engine working hours are shown in Table VI.4. The reason why the water 

flow rate after the first 8 hours (time 28,800 seconds) is not zero is because the pump 

could not be switched off. The compressor had the same issue and the gas flow rate 

after the first 8 hours was set to 0.015 kg/s. Case 4 in Figure VI.2 has a continuous 

step change after the time that the tank empties, because of the low level controller 

and the minor inlet flow rate. The same happens with the water temperature of this 

case in Figure VI.3.  

Table VI.4. Pumping requirements for the 5 cases examined. 

 Centrifugal compressor (J/s) Centrifugal pump (J/s) 

Case 1 10,122 449 

Case 2 10,122 1,096 

Case 3 10,122 1,096 

Case 4 10,122 288 

Case 5 10,122 288 
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Figure VI.2.Water flow rates along with the corresponding transient level of the storage 

tank response for the five cases examined.  
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Figure VI.3. Temperature response of the water and gas streams for the five cases 

examined. 
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Method and script for the temperature control methods suggested  

Prandtl (𝑃𝑟) number can be found from Eq.92 by using the properties of the 

mixture for simplification, although it is related to the properties of the continuous phase 

in a more complex way (Brennen, 2005). Graetz (𝐺𝑧) number from Eq.93 and Nusselt 

(𝑁𝑢𝑑̅̅ ̅̅ ̅̅ ) number is found from Eq.94 to Eq.96, for the laminar flow (𝑅𝑒 < 2100), the 

transition Reynolds numbers (2100 < 𝑅𝑒 < 4000), and the turbulent pipe flow 

(𝑅𝑒 ˃ 4000), respectivly. Finally, ℎ𝑚̅̅ ̅̅  is computed from Eq.1 and can be replaced in 

Eq.82 (Lienhard Iv & Lienhard, 2008 (chapters 7.2-7.4); Perry et al., 1999).  

𝑃𝑟 =
𝜇𝑚𝑐𝑝𝑚
𝑘𝑚

 
(92) 

𝐺𝑧 =
𝑅𝑒𝑙𝑃𝑟𝑑𝑟
𝑙

 
(93) 

𝑁𝑢𝑑̅̅ ̅̅ ̅̅
𝑙𝑎𝑚𝑖𝑛𝑎𝑟

= 3.657 +
0.0668𝐺𝑧1/3

0.04 + 𝐺𝑧−2/3
 

(94) 

𝑁𝑢𝑑𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 =
(
𝑓
8)
(𝑅𝑒 − 1000)𝑃𝑟

1 + 12.7√
𝑓
8 (𝑃𝑟

2/3 − 1)

 

(95) 

𝑁𝑢𝑑𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 =
(
𝑓
8)𝑅𝑒𝑃𝑟

1.07 + 12.7√
𝑓
8
(𝑃𝑟2/3 − 1)

 

(96) 

ℎ𝑚̅̅ ̅̅ =
𝑁𝑢𝑑̅̅ ̅̅ ̅̅ 𝑘𝑚
𝑑𝑟

 
(97) 

 

Code for Figure 7.12, Figure 7.14 and Figure 7.13: 

clear all; close all; clc; 

 

clear all; close all; clc; 

  

% The following code estimates the temperature needed for the flue gas to  

% enter the reactor in order to maintain the temperature until the end of  

% the tube above the lower limit that does not harm algae, by using the  

% heat transfer model produced in the report. 

  

%PARAMETERS 

d_r=0.06; %[m] 

d_b=0.005; %[m] 

l_d=1.5; %[m] 

q_g=0.00004; %[m3/s] 
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v_l=0.000000801; %[m2/s] 

K_avg=(1.5+1.5+1.3+0.75)/4; 

e_yo=0.0000025; 

l_r=6; 

l=l_r+l_d; 

m_l=0.000798; %[kg/m/s] 

m_g=0.00001983; %[kg/m/s] 

p_l=1000; %[kg/m3] 

p_g=1.225; %[kg/m3] 

cp_l=4181.3; %[JK-1kg-1] 

cp_g=1012; %[JK-1kg-1] 

pi=3.142; %[dimensionless] 

g=9.81; %[m/s2] 

c_s=0; %[dimensionless parameter of solids]  

k_t=0.195; %[Wm-1K-1] 

k_l=0.55; %[Wm-1K-1] 

k_g=0.027; %[Wm-1K-1] 

r_i=d_r/2; %[m] 

s=0.002; %[m] 

r_e=r_i+s; %[m] 

d_o=d_r+(2*s); %[m] outer diameter 

h_e=12; %[Wm-2K-1]  

T_m_out=296; %[K] 

T_e=283; %[K] 

T_max= 345; 

n=1000000; %linspace for T_m_in 

x=1000; %linspace for u_b 

z=100; %linspace for q_g_row 

  

%ESTIMATION OF u_b 

u_b_t=linspace(0.0005,2,x); %[m/s] 

u_b_e_numerator=4*g*d_b.*(p_l-p_g); 

u_b_e_denom_0 = 3*p_l; 

u_b_e_denom_1 = 24*((u_b_t.*d_b./v_l).^(-1)); 

u_b_e_denom_2 = 2.6*u_b_t.*d_b.*((5*v_l)^(-1)).*((1+((u_b_t.*d_b.*((v_l*5)^(-

1))).^1.52)).^(-1)); 

u_b_e_denom_3 = 0.411*((u_b_t.*d_b./(263000*v_l)).^(-

7.94))./(1+((u_b_t.*d_b.*((v_l*263000))^(-1)).^(-8))); 

u_b_e_denom_4 = ((u_b_t.*d_b./v_l).^0.8)./461000; 

u_b_e = 

(u_b_e_numerator*((u_b_e_denom_0*(u_b_e_denom_1+u_b_e_denom_2+u_b_e_denom_3+u_

b_e_denom_4)).^(-1))).^0.5; %[m/s] 

u_b_error = abs(u_b_e-u_b_t); 

[inVal, position] =min(u_b_error); 

u_b = u_b_e(position); 

  

d_r_chan=0.04:0.02:0.1; 

d_r_col=reshape(d_r_chan,size(d_r_chan,2),1); 

q_g_row=linspace(0.000001,0.0001,z); 

d_r_mat=repmat(d_r_col,1,z); 

d_o_mat=repmat(d_r_col+(2*s),1,z); 

q_g_mat=repmat(q_g_row,size(d_r_col,1),1); 

  

    

%ESTIMATION OF u_l 

% Approach Force Bualance 

  

u_l=zeros(size(d_r_chan,2),z); 

% q_g_row=linspace(0.000001,0.0001,x); 

% q_g_col=reshape(q_g_row,x,1); 

  

for m=1:size(d_r_chan,2); 

    for k=1:z; 

        u_l_t=linspace(0.0005,2,n); 

        u_l_e_1=(u_l_t.^3).*(u_l_t+u_b*ones(1,n)); 

        u_l_e_num1=8*g*(p_l-p_g)*u_b.*l_r.*q_g_mat(m,k); 

        u_l_e_den1=pi*p_l*d_r_mat(m,k); 
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        u_l_e_den2=4*K_avg*d_r_mat(m,k)*ones(1,n); 

        u_l_e_den3=l; 

        u_l_e_den4=-

4*log((0.27*e_yo./d_r_mat(m,k)).*ones(1,n)+((7*v_l./(u_l_t.*d_r_mat(m,k))).^0.

9)); 

        

u_l_e_2=u_l_e_num1./(u_l_e_den1.*(u_l_e_den2+u_l_e_den3.*(u_l_e_den4.^(-2)))); 

        u_l_e_error = abs(u_l_e_1-u_l_e_2); 

        [inVal, position] =min(u_l_e_error); 

        u_l(m,k)=u_l_t(position); 

    end 

end 

  

  

  

  

  

% Re 

Re=u_l.*d_r_mat./v_l ; 

  

% e_r 

e_r=(4*q_g_mat)./(pi*(d_r_mat.^2).*(u_b.*ones(size(q_g_mat,1),size(q_g_mat,2))

+u_l)); 

  

% cp_m, k_m, m_m, p_m, q_m, m, n,  

q_m=2*q_g_mat; 

k_m= (k_g.*e_r) + (k_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m_m=(m_g.*e_r) + (m_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

cp_m=(cp_g.*e_r) + (cp_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

p_m=(p_g.*e_r) + (p_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m= p_m.*u_l.*pi.*(d_r_mat.^2)./4; 

  

% Pr 

Pr=m_m.*cp_m./k_m; 

  

clr=jet(size(d_r_col,1)); 

Nu_d_mat=zeros(size(q_g_mat,1),size(q_g_mat,2)); 

for i=1:size(d_r_col,1); 

    for e=1:size(q_g_row,2); 

        % Nu_d 

        if Re(i,e)<=2100; 

            Gz=Re(i,e)*Pr(i,e)*d_r_mat(i)./l; 

            Nu_d= 3.657+ (0.0668*(Gz.^(1/3))./(0.04+(Gz.^(-2/3)))) ; 

        else 

                if Re(i,e)<=4000; 

                    f=(-4*log((0.27*e_yo/d_r_mat(i))+((7/Re(i,e))^0.9)))^(-2); 

                    Nu_d= ((f./8)*(Re(i,e)-

1000).*Pr(i,e))/(1+12.7*((f./8)^0.5)*((Pr(i,e)^(2/3))-1)); 

                else 

                        % Re(i,e)>4000; 

                        f=(-

4*log((0.27*e_yo/d_r_mat(i))+((7/Re(i,e))^0.9)))^(-2); 

                        Nu_d= 

((f./8).*Re(i,e).*Pr(i,e))./(1.07+12.7*((f./8)^0.5).*((Pr(i,e)^(2/3))-1)); 

                end 

        end 

        Nu_d_mat(i,e)=Nu_d; 

    end 

  

     

    figure(1) 

    hold on 

    plot(q_g_row,Nu_d_mat(i,:),'Color', clr(i,:)); 

  

end 

hold off 

xlabel('q_g (m^3/s)'); 
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ylabel('Nu_d'); 

zlabel('d_r(m)'); 

str=cellstr(num2str(d_r_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','d_r (m)'); 

  

% h_m 

h_m= Nu_d_mat.*k_m./d_r_mat; 

  

figure(5) 

plot(q_g_row,h_m(4,:),'g');  % test for d_r= d_r(4) 

xlabel('q_g (m^3/s)'); 

ylabel('h_m'); 

  

figure (6) 

plot(q_g_row,Re(4,:),'g'); % test for d_r= d_r(4) 

xlabel('q_g (m^3/s)'); 

ylabel('Re'); 

  

% Thermal resistances 

R_t_m=1./(h_m.*pi.*d_r_mat.*l); 

R_t_t=(log(d_o_mat./d_r_mat))./(2*k_t.*pi.*l); 

R_t_e=1./(h_e.*pi.*d_o_mat.*l); 

  

  

% T_1 

  

  

T_m_in=zeros(size(d_r_col,1),size(q_g_row,2)); 

q=zeros(size(d_r_col,1),size(q_g_row,2)); 

T_g_in=zeros(size(d_r_col,1),size(q_g_row,2)); 

  

clr=cool(size(d_r_col,1)); 

% clr=colormap(winter); 

for i=1:size(d_r_col,1); 

    for e=1:size(q_g_row,2); 

 

        T_m_in(i,e)=((T_m_out-T_e)/(exp(-

4*((p_m(i,e)*u_l(i,e)*pi*(d_r_mat(i,e)^2)*cp_m(i,e)*(R_t_m(i,e)+R_t_t(i,e)+R_t

_e(i,e))).^(-1)))))+T_e; 

        q(i,e)=m(i,e)*cp_m(i,e)*(T_m_in(i,e)-T_m_out); 

 

        T_g_in(i,e)=T_m_in(i,e)+((cp_l*p_l*u_l(i,e)*(1-

e_r(i,e))*pi*((d_r_mat(i,e).^2)/4))/(cp_g*p_g*q_g_mat(i,e)))*(T_m_in(i,e)-

T_m_out); 

    end 

    

    figure(2) 

    hold on 

    clr_inv=gray(size(d_r_col,1)+1); 

    clr_inv(size(clr_inv,1),:)=[]; 

    clr=flipud(clr_inv); 

    plot(q_g_row,T_m_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0.000001 0.0001 296 296.14]); 

    title('Temperature of the mixture required at the entrance of the 

reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature in the mixture (K)'); 

    zlabel('d_r(m)'); 

    str=cellstr(num2str(d_r_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','d_r (m)'); 

     

    figure(4) 

    hold on 
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    plot(q_g_row,T_g_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0.000001 0.0001 0 250000]); 

    title('Temperature of the gas required at the entrance of the reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature of the gas required (K)'); 

    zlabel('d_r(m)'); 

    str=cellstr(num2str(d_r_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','d_r (m)'); 

  

    figure(3) 

    hold on 

    plot (q_g_row,q(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0.000001 0.0001 110 330]); 

    title('Heat loss through the walls along the reactor'); 

xlabel('Gas flow rate (m^3/s)'); 

ylabel('Heat transferred (W)'); 

zlabel('d_r(m)'); 

str=cellstr(num2str(d_r_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','d_r (m)');  

end 

  

hold off; 

  

  

 

   

 

Code for Figure 7.15: 

 

clear all; close all; clc; 

  

% The following code estimates the temperature needed for the flue gas to  

% enter the reactor in order to maintain the temperature until the end of  

% the tube above the lower limit that does not harm algae, by using the  

% heat transfer model produced in the report. 

  

%PARAMETERS 

d_r=0.06; %[m] 

d_b=0.005; %[m] 

l_d=1.5; %[m] 

q_g=0.00004; %[m3/s] 

v_l=0.000000801; %[m2/s] 

K_avg=(1.5+1.5+1.3+0.75)/4; 

e_yo=0.0000025; 

l_r=6; 

l=l_r+l_d; 

m_l=0.000798; %[kg/m/s] 

m_g=0.00001983; %[kg/m/s] 

p_l=1000; %[kg/m3] 

p_g=1.225; %[kg/m3] 

cp_l=4181.3; %[JK-1kg-1] 

cp_g=1012; %[JK-1kg-1] 

pi=3.142; %[dimensionless] 

g=9.81; %[m/s2] 

c_s=0; %[dimensionless parameter of solids]  

k_t=0.195; %[Wm-1K-1] 

k_l=0.55; %[Wm-1K-1] 

k_g=0.027; %[Wm-1K-1] 

r_i=d_r/2; %[m] 

s=0.002; %[m] 

r_e=r_i+s; %[m] 
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d_o=d_r+(2*s); %[m] outer diameter 

h_e=12; %[Wm-2K-1]  

T_m_out=296; %[K] 

T_e=283; %[K] 

T_max= 400; 

n=100000; %linspace for T_m_in 

x=1000; %linspace for u_b 

z=100; %linspace for q_g_row 

  

%ESTIMATION OF u_b 

u_b_t=linspace(0.0005,2,x); %[m/s] 

u_b_e_numerator=4*g*d_b.*(p_l-p_g); 

u_b_e_denom_0 = 3*p_l; 

u_b_e_denom_1 = 24*((u_b_t.*d_b./v_l).^(-1)); 

u_b_e_denom_2 = 2.6*u_b_t.*d_b.*((5*v_l)^(-1)).*((1+((u_b_t.*d_b.*((v_l*5)^(-

1))).^1.52)).^(-1)); 

u_b_e_denom_3 = 0.411*((u_b_t.*d_b./(263000*v_l)).^(-

7.94))./(1+((u_b_t.*d_b.*((v_l*263000))^(-1)).^(-8))); 

u_b_e_denom_4 = ((u_b_t.*d_b./v_l).^0.8)./461000; 

u_b_e = 

(u_b_e_numerator*((u_b_e_denom_0*(u_b_e_denom_1+u_b_e_denom_2+u_b_e_denom_3+u_

b_e_denom_4)).^(-1))).^0.5; %[m/s] 

u_b_error = abs(u_b_e-u_b_t); 

[inVal, position] =min(u_b_error); 

u_b = u_b_e(position); 

  

s_chan=0.002:0.002:0.008; 

s_col=reshape(s_chan,size(s_chan,2),1); 

q_g_row=linspace(0.000001,0.0001,z); 

s_mat=repmat(s_col,1,z); 

q_g_mat=repmat(q_g_row,size(s_col,1),1); 

d_o=d_r*ones(size(s_col,1),size(q_g_row,2))+(2*s_mat);  

    

%ESTIMATION OF u_l 

% Approach Force Balance 

  

u_l=zeros(size(s_chan,2),z); 

  

for m=1:size(s_chan,2); 

    for k=1:z; 

        u_l_t=linspace(0.0005,2,n); 

        u_l_e_1=(u_l_t.^3).*(u_l_t+u_b*ones(1,n)); 

        u_l_e_num1=8*g*(p_l-p_g)*u_b.*l_r.*q_g_mat(m,k); 

        u_l_e_den1=pi*p_l*d_r; 

        u_l_e_den2=4*K_avg*d_r*ones(1,n); 

        u_l_e_den3=l; 

        u_l_e_den4=-

4*log((0.27*e_yo./d_r).*ones(1,n)+((7*v_l./(u_l_t.*d_r)).^0.9)); 

        

u_l_e_2=u_l_e_num1./(u_l_e_den1.*(u_l_e_den2+u_l_e_den3.*(u_l_e_den4.^(-2)))); 

        u_l_e_error = abs(u_l_e_1-u_l_e_2); 

        [inVal, position] =min(u_l_e_error); 

        u_l(m,k)=u_l_t(position); 

    end 

end 

  

  

% Re 

Re=u_l.*d_r./v_l ; 

  

% e_r 

e_r=(4*q_g_mat)./(pi*(d_r.^2).*(u_b.*ones(size(q_g_mat,1),size(q_g_mat,2))+u_l

)); 

  

% cp_m, k_m, m_m, p_m, q_m, m, n,  

q_m=2*q_g_mat; 

k_m= (k_g.*e_r) + (k_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 
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m_m=(m_g.*e_r) + (m_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

cp_m=(cp_g.*e_r) + (cp_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

p_m=(p_g.*e_r) + (p_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m= p_m.*u_l.*pi.*(d_r.^2)./4; 

  

% Pr 

Pr=m_m.*cp_m./k_m; 

  

clr=cool(size(s_col,1)); 

Nu_d_mat=zeros(size(q_g_mat,1),size(q_g_mat,2)); 

for i=1:size(s_col,1); 

    for e=1:size(q_g_row,2); 

        % Nu_d 

        if Re(i,e)<=2100; 

            Gz=Re(i,e)*Pr(i,e)*d_r./l(i,e); 

            Nu_d= 3.657+ (0.0668*(Gz.^(1/3))./(0.04+(Gz.^(-2/3)))) ; 

        else 

                if Re(i,e)<=4000; 

                    f=(-4*log((0.27*e_yo/d_r_mat(i))+((7/Re(i,e))^0.9)))^(-2); 

                    Nu_d= ((f./8)*(Re(i,e)-

1000).*Pr(i,e))/(1+12.7*((f./8)^0.5)*((Pr(i,e)^(2/3))-1)); 

                else 

                        % Re(i,e)>4000; 

                        f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                        Nu_d= 

((f./8).*Re(i,e).*Pr(i,e))./(1.07+12.7*((f./8)^0.5).*((Pr(i,e)^(2/3))-1)); 

                end 

        end 

        Nu_d_mat(i,e)=Nu_d; 

    end 

  

     

    figure(1) 

    hold on 

    plot(q_g_row,Nu_d_mat(i,:),'Color', clr(i,:)); 

  

end 

hold off 

xlabel('q_g (m^3/s)'); 

ylabel('Nu_d'); 

zlabel('s(m)'); 

str=cellstr(num2str(s_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','s (m)'); 

  

% h_m 

h_m= Nu_d_mat.*k_m./d_r; 

  

figure(5) 

plot(q_g_row,h_m(4,:),'g');  % test for d_r= d_r(4) 

xlabel('q_g (m^3/min)'); 

ylabel('h_m'); 

  

figure (6) 

plot(q_g_row,Re(4,:),'g'); % test for d_r= d_r(4) 

xlabel('q_g (m^3/min)'); 

ylabel('Re'); 

  

% Thermal resistances 

R_t_m=1./(h_m.*pi.*d_r*l); 

R_t_t=(log(d_o./d_r.*ones(size(s_col,1),size(q_g_row,2))))./(2*k_t.*pi.*l); 

R_t_e=1./(h_e.*pi.*d_o.*l); 

  

% T_1 

  

T_m_in=zeros(size(s_col,1),size(q_g_row,2)); 
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q=zeros(size(s_col,1),size(q_g_row,2)); 

T_g_in=zeros(size(s_col,1),size(q_g_row,2)); 

  

for i=1:size(s_col,1); 

    for e=1:size(q_g_row,2); 

        T_m_in(i,e)=((T_m_out-T_e)/(exp(-

4*((p_m(i,e)*u_l(i,e)*pi*(d_r^2)*cp_m(i,e)*(R_t_m(i,e)+R_t_t(i,e)+R_t_e(i,e)))

.^(-1)))))+T_e; 

        q(i,e)=m(i,e)*cp_m(i,e)*(T_m_in(i,e)-T_m_out); 

        T_g_in(i,e)=T_m_in(i,e)+((cp_l*p_l*u_l(i,e)*(1-

e_r(i,e))*pi*((d_r.^2)/4))/(cp_g*p_g*q_g_mat(i,e)))*(T_m_in(i,e)-T_m_out); 

    end 

    

    figure(2) 

    hold on 

    clr_inv=gray(size(s_col,1)+1); 

    clr_inv(size(clr_inv,1),:)=[]; 

    clr=flipud(clr_inv); 

    plot(q_g_row,T_m_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0.000001 0.0001 296.02 296.1]); 

    title('Temperature of the mixture required at the entrance of the 

reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature in the mixture (K)'); 

    zlabel('s(m)'); 

    str=cellstr(num2str(s_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','s (m)'); 

     

    figure(4) 

    hold on 

    plot(q_g_row,T_g_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0.000001 0.0001 0 150000]); 

    title('Temperature of the gas required at the entrance of the reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature of the gas required (K)'); 

    zlabel('s(m)'); 

    str=cellstr(num2str(s_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','s (m)'); 

  

    figure(3) 

    hold on 

    plot (q_g_row,q(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    title('Heat loss through the walls along the reactor'); 

    axis ([0.000001 0.0001 160 200]); 

xlabel('Gas flow rate (m^3/s)'); 

ylabel('Heat transferred (W)'); 

zlabel('s(m)'); 

str=cellstr(num2str(s_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','s (m)');  

  

end 

  

hold off; 
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Code for Figure 7.16: 

clear all; close all; clc; 

  

% The following code estimates the temperature needed for the flue gas to  

% enter the reactor in order to maintain the temperature until the end of  

% the tube above the lower limit that does not harm algae, by using the  

% heat transfer model produced in the report. 

  

%PARAMETERS 

d_r=0.06; %[m] 

d_b=0.005; %[m] 

l_d=1.5; %[m] 

q_g=0.00004; %[m3/s] 

v_l=0.000000801; %[m2/s] 

K_avg=(1.5+1.5+1.3+0.75)/4; 

e_yo=0.0000025; 

l_r=6; 

l=l_r+l_d; 

m_l=0.000798; %[kg/m/s] 

m_g=0.00001983; %[kg/m/s] 

p_l=1000; %[kg/m3] 

p_g=1.225; %[kg/m3] 

cp_l=4181.3; %[JK-1kg-1] 

cp_g=1012; %[JK-1kg-1] 

pi=3.142; %[dimensionless] 

g=9.81; %[m/s2] 

c_s=0; %[dimensionless parameter of solids]  

k_t=0.195; %[Wm-1K-1] 

k_l=0.55; %[Wm-1K-1] 

k_g=0.027; %[Wm-1K-1] 

r_i=d_r/2; %[m] 

s=0.002; %[m] 

r_e=r_i+s; %[m] 

d_o=d_r+(2*s); %[m] outer diameter 

h_e=12; %[Wm-2K-1]  

T_m_out=296; %[K] 

T_e=283; %[K] 

T_max= 400; 

n=100000; %linspace for T_m_in 

x=1000; %linspace for u_b 

z=100; %linspace for q_g_row 

  

%ESTIMATION OF u_b 

u_b_t=linspace(0.0005,2,x); %[m/s] 

u_b_e_numerator=4*g*d_b.*(p_l-p_g); 

u_b_e_denom_0 = 3*p_l; 

u_b_e_denom_1 = 24*((u_b_t.*d_b./v_l).^(-1)); 

u_b_e_denom_2 = 2.6*u_b_t.*d_b.*((5*v_l)^(-1)).*((1+((u_b_t.*d_b.*((v_l*5)^(-

1))).^1.52)).^(-1)); 

u_b_e_denom_3 = 0.411*((u_b_t.*d_b./(263000*v_l)).^(-

7.94))./(1+((u_b_t.*d_b.*((v_l*263000))^(-1)).^(-8))); 

u_b_e_denom_4 = ((u_b_t.*d_b./v_l).^0.8)./461000; 

u_b_e = 

(u_b_e_numerator*((u_b_e_denom_0*(u_b_e_denom_1+u_b_e_denom_2+u_b_e_denom_3+u_

b_e_denom_4)).^(-1))).^0.5; %[m/s] 

u_b_error = abs(u_b_e-u_b_t); 

[inVal, position] =min(u_b_error); 

u_b = u_b_e(position); 

  

k_t_chan=0.2:0.4:1; 

k_t_col=reshape(k_t_chan,size(k_t_chan,2),1); 

q_g_row=linspace(0.000001,0.0001,z); 

k_t_mat=repmat(k_t_col,1,z); 

q_g_mat=repmat(q_g_row,size(k_t_col,1),1); 
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%ESTIMATION OF u_l 

% Approach Force Balance 

  

u_l=zeros(size(k_t_chan,2),z); 

  

for m=1:size(k_t_chan,2); 

    for k=1:z; 

        u_l_t=linspace(0.0005,2,n); 

        u_l_e_1=(u_l_t.^3).*(u_l_t+u_b*ones(1,n)); 

        u_l_e_num1=8*g*(p_l-p_g)*u_b.*l_r.*q_g_mat(m,k); 

        u_l_e_den1=pi*p_l*d_r; 

        u_l_e_den2=4*K_avg*d_r*ones(1,n); 

        u_l_e_den3=l; 

        u_l_e_den4=-

4*log((0.27*e_yo./d_r).*ones(1,n)+((7*v_l./(u_l_t.*d_r)).^0.9)); 

        

u_l_e_2=u_l_e_num1./(u_l_e_den1.*(u_l_e_den2+u_l_e_den3.*(u_l_e_den4.^(-2)))); 

        u_l_e_error = abs(u_l_e_1-u_l_e_2); 

        [inVal, position] =min(u_l_e_error); 

        u_l(m,k)=u_l_t(position); 

    end 

end 

  

  

% Re 

Re=u_l.*d_r./v_l ; 

  

% e_r 

e_r=(4*q_g_mat)./(pi*(d_r.^2).*(u_b.*ones(size(q_g_mat,1),size(q_g_mat,2))+u_l

)); 

  

% cp_m, k_m, m_m, p_m, q_m, m, n,  

q_m=2*q_g_mat; 

k_m= (k_g.*e_r) + (k_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m_m=(m_g.*e_r) + (m_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

cp_m=(cp_g.*e_r) + (cp_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

p_m=(p_g.*e_r) + (p_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m= p_m.*u_l.*pi.*(d_r.^2)./4; 

  

% Pr 

Pr=m_m.*cp_m./k_m; 

  

clr=cool(size(k_t_col,1)); 

Nu_d_mat=zeros(size(q_g_mat,1),size(q_g_mat,2)); 

for i=1:size(k_t_col,1); 

    for e=1:size(q_g_row,2); 

        % Nu_d 

        if Re(i,e)<=2100; 

            Gz=Re(i,e)*Pr(i,e)*d_r./l; 

            Nu_d= 3.657+ (0.0668*(Gz.^(1/3))./(0.04+(Gz.^(-2/3)))) ; 

        else 

                if Re(i,e)<=4000; 

                    f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                    Nu_d= ((f./8)*(Re(i,e)-

1000).*Pr(i,e))/(1+12.7*((f./8)^0.5)*((Pr(i,e)^(2/3))-1)); 

                else 

                        % Re(i,e)>4000; 

                    f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                        Nu_d= 

((f./8).*Re(i,e).*Pr(i,e))./(1.07+12.7*((f./8)^0.5).*((Pr(i,e)^(2/3))-1)); 

                end 

        end 

        Nu_d_mat(i,e)=Nu_d; 

    end 

  

     

    figure(1) 



332 

 

    hold on 

    plot(q_g_row,Nu_d_mat(i,:),'Color', clr(i,:)); 

  

end 

hold off 

xlabel('q_g (m^3/s)'); 

ylabel('Nu_d'); 

zlabel('k_t(W/m/K)'); 

str=cellstr(num2str(k_t_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','k_t (W/m/K)'); 

  

% h_m 

h_m= Nu_d_mat.*k_m./d_r; 

  

figure(5) 

plot(q_g_row,h_m(3,:),'g');  % test for d_r= d_r(4) 

xlabel('q_g (m^3/min)'); 

ylabel('h_m'); 

  

figure (6) 

plot(q_g_row,Re(3,:),'g'); % test for d_r= d_r(4) 

xlabel('q_g (m^3/min)'); 

ylabel('Re'); 

  

% Thermal resistances 

R_t_m=1./(h_m.*pi.*d_r*l); 

R_t_t=(log(d_o./d_r))./(2.*k_t_mat.*pi.*l); 

R_t_e=1./(h_e.*pi.*d_o*l); 

  

% T_1 

  

T_m_in=zeros(size(k_t_col,1),size(q_g_row,2)); 

q=zeros(size(k_t_col,1),size(q_g_row,2)); 

T_g_in=zeros(size(k_t_col,1),size(q_g_row,2)); 

  

  

for i=1:size(k_t_col,1); 

    for e=1:size(q_g_row,2);   

        T_m_in(i,e)=((T_m_out-T_e)/(exp(-

4*((p_m(i,e)*u_l(i,e)*pi*(d_r.^2)*cp_m(i,e)*(R_t_m(i,e)+R_t_t(i,e)+R_t_e)).^(-

1)))))+T_e; 

        q(i,e)=m(i,e)*cp_m(i,e)*(T_m_in(i,e)-T_m_out); 

        T_g_in(i,e)=T_m_in(i,e)+((cp_l*p_l*u_l(i,e)*(1-

e_r(i,e))*pi*((d_r.^2)/4))/(cp_g*p_g*q_g_mat(i,e)))*(T_m_in(i,e)-T_m_out); 

    end 

    

    figure(2) 

    hold on 

    clr_inv=gray(size(k_t_col,1)+1); 

    clr_inv(size(clr_inv,1),:)=[]; 

    clr=flipud(clr_inv); 

    plot(q_g_row,T_m_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0 0.0001 296.02 296.1]); 

    title('Temperature of the mixture required at the entrance of the 

reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature in the mixture (K)'); 

    zlabel('k_t(W/m/K)'); 

    str=cellstr(num2str(k_t_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','k_t (W/m/K)'); 

     

    figure(4) 

    colormap cool; 
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    hold on 

    plot(q_g_row,T_g_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0 0.0001 0 160000]); 

    title('Temperature of the gas required at the entrance of the reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature of the gas required (K)'); 

    zlabel('k_t(W/m/K)'); 

    str=cellstr(num2str(k_t_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','k_t (W/m/K)'); 

  

    figure(3) 

    hold on 

    plot (q_g_row,q(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0 0.0001 185 220]); 

end 

  

hold off; 

  

title('Heat loss through the walls along the reactor'); 

xlabel('Gas flow rate (m^3/s)'); 

ylabel('Heat transferred (W)'); 

zlabel('k_t(W/m/K)'); 

str=cellstr(num2str(k_t_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','k_t (W/m/K)');  

  

  

 

 

Code for Figure 7.17: 

clear all; close all; clc; 

  

% The following code estimates the temperature needed for the flue gas to  

% enter the reactor in order to maintain the temperature until the end of  

% the tube above the lower limit that does not harm algae, by using the  

% heat transfer model produced in the report. 

  

%PARAMETERS 

d_r=0.06; %[m] 

d_b=0.005; %[m] 

l_d=1.5; %[m] 

q_g=0.0003; %[m3/s] 

v_l=0.000000801; %[m2/s] 

K_avg=(1.5+1.5+1.3+0.75)/4; 

e_yo=0.0000025; 

l_r=6; 

l=l_r+l_d; 

m_l=0.000798; %[kg/m/s] 

m_g=0.00001983; %[kg/m/s] 

p_l=1000; %[kg/m3] 

p_g=1.225; %[kg/m3] 

cp_l=4181.3; %[JK-1kg-1] 

cp_g=1012; %[JK-1kg-1] 

pi=3.142; %[dimensionless] 

g=9.81; %[m/s2] 

c_s=0; %[dimensionless parameter of solids]  

k_t=0.195; %[Wm-1K-1] 

k_l=0.55; %[Wm-1K-1] 

k_g=0.027; %[Wm-1K-1] 

r_i=d_r/2; %[m] 

s=0.002; %[m] 
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r_e=r_i+s; %[m] 

d_o=d_r+(2*s); %[m] outer diameter 

h_e=12; %[Wm-2K-1]  

T_m_out=296; %[K] 

T_e=283; %[K] 

T_max= 400; 

n=100000; %linspace for T_m_in 

x=1000; %linspace for u_b 

z=100; %linspace for q_g_row 

  

%ESTIMATION OF u_b 

u_b_t=linspace(0.0005,2,x); %[m/s] 

u_b_e_numerator=4*g*d_b.*(p_l-p_g); 

u_b_e_denom_0 = 3*p_l; 

u_b_e_denom_1 = 24*((u_b_t.*d_b./v_l).^(-1)); 

u_b_e_denom_2 = 2.6*u_b_t.*d_b.*((5*v_l)^(-1)).*((1+((u_b_t.*d_b.*((v_l*5)^(-

1))).^1.52)).^(-1)); 

u_b_e_denom_3 = 0.411*((u_b_t.*d_b./(263000*v_l)).^(-

7.94))./(1+((u_b_t.*d_b.*((v_l*263000))^(-1)).^(-8))); 

u_b_e_denom_4 = ((u_b_t.*d_b./v_l).^0.8)./461000; 

u_b_e = 

(u_b_e_numerator*((u_b_e_denom_0*(u_b_e_denom_1+u_b_e_denom_2+u_b_e_denom_3+u_

b_e_denom_4)).^(-1))).^0.5; %[m/s] 

u_b_error = abs(u_b_e-u_b_t); 

[inVal, position] =min(u_b_error); 

u_b = u_b_e(position); 

  

h_e_chan=5:70:215; 

h_e_col=reshape(h_e_chan,size(h_e_chan,2),1); 

q_g_row=linspace(0.000001,0.00012,z); 

h_e_mat=repmat(h_e_col,1,z); 

q_g_mat=repmat(q_g_row,size(h_e_col,1),1); 

  

    

%ESTIMATION OF u_l 

% Approach Force Balance 

  

u_l=zeros(size(h_e_chan,2),z); 

  

for m=1:size(h_e_chan,2); 

    for k=1:z; 

        u_l_t=linspace(0.0005,2,n); 

        u_l_e_1=(u_l_t.^3).*(u_l_t+u_b*ones(1,n)); 

        u_l_e_num1=8*g*(p_l-p_g)*u_b.*l_r.*q_g_mat(m,k); 

        u_l_e_den1=pi*p_l*d_r; 

        u_l_e_den2=4*K_avg*d_r*ones(1,n); 

        u_l_e_den3=l; 

        u_l_e_den4=-

4*log((0.27*e_yo./d_r).*ones(1,n)+((7*v_l./(u_l_t.*d_r)).^0.9)); 

        

u_l_e_2=u_l_e_num1./(u_l_e_den1.*(u_l_e_den2+u_l_e_den3.*(u_l_e_den4.^(-2)))); 

        u_l_e_error = abs(u_l_e_1-u_l_e_2); 

        [inVal, position] =min(u_l_e_error); 

        u_l(m,k)=u_l_t(position); 

    end 

end 

  

  

  

% Re 

Re=u_l.*d_r./v_l ; 

  

% e_r 

e_r=(4*q_g_mat)./(pi*(d_r.^2).*(u_b.*ones(size(q_g_mat,1),size(q_g_mat,2))+u_l

)); 

  

% cp_m, k_m, m_m, p_m, q_m, m, n,  
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q_m=2*q_g_mat; 

k_m= (k_g.*e_r) + (k_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m_m=(m_g.*e_r) + (m_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

cp_m=(cp_g.*e_r) + (cp_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

p_m=(p_g.*e_r) + (p_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m= p_m.*u_l.*pi.*(d_r.^2)./4; 

  

% Pr 

Pr=m_m.*cp_m./k_m; 

  

clr=cool(size(h_e_col,1)); 

Nu_d_mat=zeros(size(q_g_mat,1),size(q_g_mat,2)); 

for i=1:size(h_e_col,1); 

    for e=1:size(q_g_row,2); 

        % Nu_d 

        if Re(i,e)<=2100; 

            Gz=Re(i,e)*Pr(i,e)*d_r./l; 

            Nu_d= 3.657+ (0.0668*(Gz.^(1/3))./(0.04+(Gz.^(-2/3)))) ; 

        else 

                if Re(i,e)<=4000; 

                    f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                    Nu_d= ((f./8)*(Re(i,e)-

1000).*Pr(i,e))/(1+12.7*((f./8)^0.5)*((Pr(i,e)^(2/3))-1)); 

                else 

                        % Re(i,e)>4000; 

                        f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                        Nu_d= 

((f./8).*Re(i,e).*Pr(i,e))./(1.07+12.7*((f./8)^0.5).*((Pr(i,e)^(2/3))-1)); 

                end 

        end 

        Nu_d_mat(i,e)=Nu_d; 

    end 

  

     

    figure(1) 

    hold on 

    plot(q_g_row,Nu_d_mat(i,:),'Color', clr(i,:)); 

  

end 

hold off 

xlabel('q_g (m^3/s)'); 

ylabel('Nu_d'); 

zlabel('h_e(W/m^2/K)'); 

str=cellstr(num2str(h_e_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','h_e (W/m^2/K)'); 

  

% h_m 

h_m= Nu_d_mat.*k_m./d_r; 

  

figure(5) 

plot(q_g_row,h_m(4,:),'g');  % test for d_r= d_r(4) 

xlabel('q_g (m^3/min)'); 

ylabel('h_m'); 

  

figure (6) 

plot(q_g_row,Re(4,:),'g'); % test for d_r= d_r(4) 

xlabel('q_g (m^3/min)'); 

ylabel('Re'); 

  

% Thermal resistances 

R_t_m=1./(h_m.*pi.*d_r*l); 

R_t_t=(log(d_o./d_r))./(2.*k_t.*pi.*l); 

R_t_e=1./(h_e_mat.*pi.*d_o*l); 

  

% T_1 
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T_m_in=zeros(size(h_e_col,1),size(q_g_row,2)); 

q=zeros(size(h_e_col,1),size(q_g_row,2)); 

T_g_in=zeros(size(h_e_col,1),size(q_g_row,2)); 

  

  

for i=1:size(h_e_col,1); 

    for e=1:size(q_g_row,2); 

        T_m_in(i,e)=((T_m_out-T_e)/(exp(-

4*((p_m(i,e)*u_l(i,e)*pi*(d_r.^2)*cp_m(i,e)*(R_t_m(i,e)+R_t_t+R_t_e(i,e))).^(-

1)))))+T_e; 

        q(i,e)=m(i,e)*cp_m(i,e)*(T_m_in(i,e)-T_m_out); 

        T_g_in(i,e)=T_m_in(i,e)+((cp_l*p_l*u_l(i,e)*(1-

e_r(i,e))*pi*((d_r.^2)/4))/(cp_g*p_g*q_g_mat(i,e)))*(T_m_in(i,e)-T_m_out); 

    end 

    

    figure(2) 

    hold on 

    clr_inv=gray(size(h_e_col,1)+1); 

    clr_inv(size(clr_inv,1),:)=[]; 

    clr=flipud(clr_inv); 

    plot(q_g_row,T_m_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0 0.0001 296 296.35]); 

    title('Temperature of the mixture required at the entrance of the 

reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature in the mixture (K)'); 

    zlabel('h_e(W/m^2/K)'); 

    str=cellstr(num2str(h_e_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','h_e (W/m^2/K)'); 

     

    figure(4) 

    colormap cool; 

    hold on 

    plot(q_g_row,T_g_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0 0.0001 0 500000]); 

    title('Temperature of the gas required at the entrance of the reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature of the gas required (K)'); 

    zlabel('h_e(W/m^2/K)'); 

    str=cellstr(num2str(h_e_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','h_e (W/m^2/K)'); 

  

    figure(3) 

    hold on 

    plot (q_g_row,q(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0 0.0001 0 1000]); 

end 

  

hold off; 

  

title('Heat loss through the walls along the reactor'); 

xlabel('Gas flow rate (m^3/s)'); 

ylabel('Heat transferred (W)'); 

zlabel('h_e(W/m^2/K)'); 

str=cellstr(num2str(h_e_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','h_e (W/m^2/K)');  
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Code for Figure 7.18: 

clear all; close all; clc; 

  

% The following code estimates the temperature needed for the flue gas to  

% enter the reactor in order to maintain the temperature until the end of  

% the tube above the lower limit that does not harm algae, by using the  

% heat transfer model produced in the report. 

  

%PARAMETERS 

d_r=0.06; %[m] 

d_b=0.005; %[m] 

l_d=1.5; %[m] 

q_g=0.0003; %[m3/s] 

v_l=0.000000801; %[m2/s] 

K_avg=(1.5+1.5+1.3+0.75)/4; 

e_yo=0.0000025; 

l_r=6; 

l=l_r+l_d; 

m_l=0.000798; %[kg/m/s] 

m_g=0.00001983; %[kg/m/s] 

p_l=1000; %[kg/m3] 

p_g=1.225; %[kg/m3] 

cp_l=4181.3; %[JK-1kg-1] 

cp_g=1012; %[JK-1kg-1] 

pi=3.142; %[dimensionless] 

g=9.81; %[m/s2] 

c_s=0; %[dimensionless parameter of solids]  

k_t=0.195; %[Wm-1K-1] 

k_l=0.55; %[Wm-1K-1] 

k_g=0.027; %[Wm-1K-1] 

r_i=d_r/2; %[m] 

s=0.002; %[m] 

r_e=r_i+s; %[m] 

d_o=d_r+(2*s); %[m] outer diameter 

h_e=12; %[Wm-2K-1]  

T_m_out=296; %[K] 

T_e=283; %[K] 

T_max= 400; 

n=100000; %linspace for T_m_in 

x=1000; %linspace for u_b 

z=100; %linspace for q_g_row 

  

%ESTIMATION OF u_b 

u_b_t=linspace(0.0005,2,x); %[m/s] 

u_b_e_numerator=4*g*d_b.*(p_l-p_g); 

u_b_e_denom_0 = 3*p_l; 

u_b_e_denom_1 = 24*((u_b_t.*d_b./v_l).^(-1)); 

u_b_e_denom_2 = 2.6*u_b_t.*d_b.*((5*v_l)^(-1)).*((1+((u_b_t.*d_b.*((v_l*5)^(-

1))).^1.52)).^(-1)); 

u_b_e_denom_3 = 0.411*((u_b_t.*d_b./(263000*v_l)).^(-

7.94))./(1+((u_b_t.*d_b.*((v_l*263000))^(-1)).^(-8))); 

u_b_e_denom_4 = ((u_b_t.*d_b./v_l).^0.8)./461000; 

u_b_e = 

(u_b_e_numerator*((u_b_e_denom_0*(u_b_e_denom_1+u_b_e_denom_2+u_b_e_denom_3+u_

b_e_denom_4)).^(-1))).^0.5; %[m/s] 

u_b_error = abs(u_b_e-u_b_t); 

[inVal, position] =min(u_b_error); 

u_b = u_b_e(position); 

  

T_e_chan=268:8:292; 

T_e_col=reshape(T_e_chan,size(T_e_chan,2),1); 

q_g_row=linspace(0.000001,0.00012,z); 

T_e_mat=repmat(T_e_col,1,z); 

q_g_mat=repmat(q_g_row,size(T_e_col,1),1); 
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%ESTIMATION OF u_l 

% Approach Force Balance 

u_l=zeros(size(T_e_chan,2),z); 

  

for m=1:size(T_e_chan,2); 

    for k=1:z; 

        u_l_t=linspace(0.0005,2,n); 

        u_l_e_1=(u_l_t.^3).*(u_l_t+u_b*ones(1,n)); 

        u_l_e_num1=8*g*(p_l-p_g)*u_b.*l_r.*q_g_mat(m,k); 

        u_l_e_den1=pi*p_l*d_r; 

        u_l_e_den2=4*K_avg*d_r*ones(1,n); 

        u_l_e_den3=l; 

        u_l_e_den4=-

4*log((0.27*e_yo./d_r).*ones(1,n)+((7*v_l./(u_l_t.*d_r)).^0.9)); 

        

u_l_e_2=u_l_e_num1./(u_l_e_den1.*(u_l_e_den2+u_l_e_den3.*(u_l_e_den4.^(-2)))); 

        u_l_e_error = abs(u_l_e_1-u_l_e_2); 

        [inVal, position] =min(u_l_e_error); 

        u_l(m,k)=u_l_t(position); 

    end 

end 

  

% Re 

Re=u_l.*d_r./v_l ; 

  

% e_r 

e_r=(4*q_g_mat)./(pi*(d_r.^2).*(u_b.*ones(size(q_g_mat,1),size(q_g_mat,2))+u_l

)); 

  

% cp_m, k_m, m_m, p_m, q_m, m, n,  

q_m=2*q_g_mat; 

k_m= (k_g.*e_r) + (k_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m_m=(m_g.*e_r) + (m_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

cp_m=(cp_g.*e_r) + (cp_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

p_m=(p_g.*e_r) + (p_l.*(ones(size(q_g_mat,1),size(q_g_mat,2))-e_r)); 

m= p_m.*u_l.*pi.*(d_r.^2)./4; 

  

% Pr 

Pr=m_m.*cp_m./k_m; 

  

clr=cool(size(T_e_col,1)); 

Nu_d_mat=zeros(size(q_g_mat,1),size(q_g_mat,2)); 

for i=1:size(T_e_col,1); 

    for e=1:size(q_g_row,2); 

        % Nu_d 

        if Re(i,e)<=2100; 

            Gz=Re(i,e)*Pr(i,e)*d_r./l; 

            Nu_d= 3.657+ (0.0668*(Gz.^(1/3))./(0.04+(Gz.^(-2/3)))) ; 

        else 

                if Re(i,e)<=4000; 

                    f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                    Nu_d= ((f./8)*(Re(i,e)-

1000).*Pr(i,e))/(1+12.7*((f./8)^0.5)*((Pr(i,e)^(2/3))-1)); 

                else 

                        % Re(i,e)>4000; 

                    f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                        Nu_d= 

((f./8).*Re(i,e).*Pr(i,e))./(1.07+12.7*((f./8)^0.5).*((Pr(i,e)^(2/3))-1)); 

                end 

        end 

        Nu_d_mat(i,e)=Nu_d; 

    end 

  

     

    figure(1) 

    hold on 

    plot(q_g_row,Nu_d_mat(i,:),'Color', clr(i,:)); 
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end 

hold off 

xlabel('q_g (m^3/s)'); 

ylabel('Nu_d'); 

zlabel('T_e(K)'); 

str=cellstr(num2str(T_e_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','T_e (K)'); 

  

% h_m 

h_m= Nu_d_mat.*k_m./d_r; 

  

figure(5) 

plot(q_g_row,h_m(4,:),'g');  % test for d_r= d_r(4) 

xlabel('q_g (m^3/min)'); 

ylabel('h_m'); 

  

figure (6) 

plot(q_g_row,Re(4,:),'g'); % test for d_r= d_r(4) 

xlabel('q_g (m^3/min)'); 

ylabel('Re'); 

  

% Thermal resistances 

R_t_m=1./(h_m.*pi.*d_r*l); 

R_t_t=(log(d_o./d_r))./(2.*k_t.*pi.*l); 

R_t_e=1./(h_e.*pi.*d_o*l); 

  

  

% T_1 

  

T_m_in=zeros(size(T_e_col,1),size(q_g_row,2)); 

q=zeros(size(T_e_col,1),size(q_g_row,2)); 

T_g_in=zeros(size(T_e_col,1),size(q_g_row,2)); 

  

for i=1:size(T_e_col,1); 

    for e=1:size(q_g_row,2);         

        T_m_in(i,e)=((T_m_out-T_e_mat(i,e))/(exp(-

4*((p_m(i,e)*u_l(i,e)*pi*(d_r.^2)*cp_m(i,e)*(R_t_m(i,e)+R_t_t+R_t_e)).^(-

1)))))+T_e_mat(i,e); 

        q(i,e)=m(i,e)*cp_m(i,e)*(T_m_in(i,e)-T_m_out); 

        T_g_in(i,e)=T_m_in(i,e)+((cp_l*p_l*u_l(i,e)*(1-

e_r(i,e))*pi*((d_r.^2)/4))/(cp_g*p_g*q_g_mat(i,e)))*(T_m_in(i,e)-T_m_out); 

  

    end 

    

    figure(2) 

    hold on 

    clr_inv=gray(size(T_e_col,1)+1); 

    clr_inv(size(clr_inv,1),:)=[]; 

    clr=flipud(clr_inv); 

    plot(q_g_row,T_m_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0 0.0001 296 296.2]); 

    title('Temperature of the mixture required at the entrance of the 

reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature in the mixture (K)'); 

    zlabel('T_e(K)'); 

    str=cellstr(num2str(T_e_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','T_e (K)'); 

     

    figure(4) 

    colormap cool; 

    hold on 
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    plot(q_g_row,T_g_in(i,:),'Color', clr(i,:),'Linewidth',1.2); 

   axis ([0 0.0001 0 300000]); 

    title('Temperature of the gas required at the entrance of the reactor'); 

    xlabel('Gas flow rate (m^3/s)'); 

    ylabel('Temperature of the gas required (K)'); 

    zlabel('T_e(K)'); 

    str=cellstr(num2str(T_e_col)); 

    legend(str); 

    v=get(legend(str),'title'); 

    set(v,'string','T_e (K)'); 

  

    figure(3) 

    hold on 

    plot (q_g_row,q(i,:),'Color', clr(i,:),'Linewidth',1.2); 

    axis ([0 0.0001 50 450]); 

end 

  

hold off; 

  

title('Heat loss through the walls along the reactor'); 

xlabel('Gas flow rate (m^3/s)'); 

ylabel('Heat transferred (W)'); 

zlabel('T_e(K)'); 

str=cellstr(num2str(T_e_col)); 

legend(str); 

v=get(legend(str),'title'); 

set(v,'string','T_e (K)');  
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Table VI.5. Parameters used for the production of Figure 7.19 and variables 

computed. 

Parameters Values Variables Values estimated 

𝒅𝒓 0.060 𝒖𝒃 0.392 

𝒅𝒃 0.005 𝑢̅𝒍 0.133 

𝒍𝒅 1.50 𝑹𝒆𝒍 9959 

𝒒𝒈 0.00015 𝜺𝒓 0.2 

𝒍𝒓 7.98 𝒍 9.00 

𝝂𝒍 0.801 x 10
-6

 𝒄𝒑𝒎 3,541 

𝝁𝒍 0.798 x 10
-3 

𝒓𝒆 0.032 

𝝁𝒈 1.983 x 10
-5 

𝒇 0.0317 

𝝆𝒍 1000 𝑵𝒖𝒅 28.5 

𝝆𝒈 1.225 𝑷𝒓 5.85 

𝒄𝒑𝒍 4,181.3 𝒉𝒎 249.7 

𝒄𝒑𝒈 1,012 𝒌𝒎 0.527 

𝝅 3.142 𝝁𝒎 7.6 x10
-4 

𝒈 9.810 𝒒𝒎 0.0003 

𝒌𝒕 0.195 𝒒𝒍𝒐𝒔𝒔 199.8 

𝒌𝒍 0.55 𝑻𝒎𝒊𝒏 296.02 

𝒌𝑯𝑬 16 𝑻𝒉𝒇𝒐𝒖𝒕 306 

𝒌𝒈 0.027   

𝒔 0.002   

𝒉𝒆,𝒍 300   

𝒉𝒆,𝒈 200   

𝑻𝒎𝒐𝒖𝒕  296 (23 C)   

𝑻𝒆 283 (10 C)   

 

 

Code for Figure 7.19: 

clear all; close all; clc; 

  

% The following code estimates the temperature needed for the flue gas to  

% enter the reactor in order to maintain the temperature until the end of  

% the tube above the lower limit that does not harm algae, by using the  

% heat transfer model produced in the report. 

  

%PARAMETERS 

d_r=0.06; %[m] 

d_b=0.005; %[m] 

q_g=0.00015; %[m3/s] 
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l_d=1.5; 

v_l=0.000000801; %[m2/s] 

K_avg=(1.5+1.5+1.3+0.75)/4; 

e_yo=0.0000025; 

l_r=6; 

l=l_r+l_d; 

m_l=0.000798; %[kg/m/s] 

m_g=0.00001983; %[kg/m/s] 

p_l=1000; %[kg/m3] 

p_g=1.225; %[kg/m3] 

p_hf_l=p_l; %for the heating fluid if water  

p_hf_g=p_g; %for the heating fluid if gas 

cp_l=4181.3; %[JK-1kg-1] 

cp_g=1012; %[JK-1kg-1] 

cp_hf_l=cp_l; %for the heating fluid if liquid 

cp_hf_g=cp_g; % for the heating fluid if gas 

h_e=12; 

h_e_he_l=300; % for the heating fluid if liquid 

h_e_he_g=200; %for the heating fluid if gas 

pi=3.142; %[dimensionless] 

g=9.81; %[m/s2] 

k_t=0.195; %[Wm-1K-1] for the plastic  

k_t_he=16; %for stailess steel 

k_l=0.55; %[Wm-1K-1] 

k_g=0.027; %[Wm-1K-1] 

r_i=d_r/2; %[m] 

s=0.002; %[m] 

s_he=s; %width of metal part  

r_e=r_i+s; %[m] 

d_o=d_r+(2*s); %[m] outer diameter 

T_dif=10; % temperature difference between the heatinf fluid  

T_e=283; % ambient temperature 

T_m_out=296; %[K] 

T_hf_out=T_m_out+T_dif; %[K] 

T_max= 345; 

n=1000; %linspace for T_m_in 

x=1000; %linspace for u_b 

z=100; %linspace for q_g_row 

  

%ESTIMATION OF u_b 

u_b_t=linspace(0.0005,2,x); %[m/s] 

u_b_e_numerator=4*g*d_b.*(p_l-p_g); 

u_b_e_denom_0 = 3*p_l; 

u_b_e_denom_1 = 24*((u_b_t.*d_b./v_l).^(-1)); 

u_b_e_denom_2 = 2.6*u_b_t.*d_b.*((5*v_l)^(-1)).*((1+((u_b_t.*d_b.*((v_l*5)^(-

1))).^1.52)).^(-1)); 

u_b_e_denom_3 = 0.411*((u_b_t.*d_b./(263000*v_l)).^(-

7.94))./(1+((u_b_t.*d_b.*((v_l*263000))^(-1)).^(-8))); 

u_b_e_denom_4 = ((u_b_t.*d_b./v_l).^0.8)./461000; 

u_b_e = 

(u_b_e_numerator*((u_b_e_denom_0*(u_b_e_denom_1+u_b_e_denom_2+u_b_e_denom_3+u_

b_e_denom_4)).^(-1))).^0.5; %[m/s] 

u_b_error = abs(u_b_e-u_b_t); 

[inVal, position] =min(u_b_error); 

u_b = u_b_e(position); 

  

    

%ESTIMATION OF u_l 

% Approach Force Balance 

  

u_l_t=linspace(0.0005,2,n); 

u_l_e_1=(u_l_t.^3).*(u_l_t+u_b*ones(1,n)); 

u_l_e_num1=8*g*(p_l-p_g)*u_b.*l_r.*q_g; 

u_l_e_den1=pi*p_l*d_r; 

u_l_e_den2=4*K_avg*d_r*ones(1,n); 

u_l_e_den3=l; 

u_l_e_den4=-4*log((0.27*e_yo./d_r).*ones(1,n)+((7*v_l./(u_l_t.*d_r)).^0.9)); 
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u_l_e_2=u_l_e_num1./(u_l_e_den1.*(u_l_e_den2+u_l_e_den3.*(u_l_e_den4.^(-2)))); 

u_l_e_error = abs(u_l_e_1-u_l_e_2); 

[inVal, position] =min(u_l_e_error); 

u_l=u_l_t(position); 

  

  

% Re 

Re=u_l.*d_r./v_l ; 

  

% e_r 

e_r=(4*q_g)./(pi*(d_r.^2).*(u_b.*ones(size(q_g,1),size(q_g,2))+u_l)); 

  

  

% cp_m, k_m, m_m, p_m, q_m, m, n,  

q_m=2*q_g; 

k_m= (k_g.*e_r) + (k_l.*(1-e_r)); 

m_m=(m_g.*e_r) + (m_l.*(1-e_r)); 

cp_m=(cp_g.*e_r) + (cp_l.*(1-e_r)); 

p_m=(p_g.*e_r) + (p_l.*(1-e_r)); 

m= p_m.*u_l.*pi.*(d_r.^2)./4; 

  

% Pr 

Pr=m_m.*cp_m./k_m; 

  

% clr=jet(size(d_r,1)); 

Nu_d_mat=zeros(size(q_g,1),size(q_g,2)); 

for i=1:size(d_r,1); 

    for e=1:size(q_g,2); 

        % Nu_d 

        if Re(i,e)<=2100; 

            Gz=Re(i,e)*Pr(i,e)*d_r./l_r; 

            Nu_d= 3.657+ (0.0668*(Gz.^(1/3))./(0.04+(Gz.^(-2/3)))) ; 

        else 

                if Re(i,e)<=4000; 

                    f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                    Nu_d= ((f./8)*(Re(i,e)-

1000).*Pr(i,e))/(1+12.7*((f./8)^0.5)*((Pr(i,e)^(2/3))-1)); 

                else 

                        % Re(i,e)>4000; 

                    f=(-4*log((0.27*e_yo/d_r)+((7/Re(i,e))^0.9)))^(-2); 

                        Nu_d= 

((f./8).*Re(i,e).*Pr(i,e))./(1.07+12.7*((f./8)^0.5).*((Pr(i,e)^(2/3))-1)); 

                end 

        end 

        Nu_d_mat(i,e)=Nu_d; 

    end 

  

     

%     figure(1) 

%     hold on 

%     plot(q_g,Nu_d_mat(i,:),'Color', clr(i,:)); 

  

end 

% hold off 

% xlabel('q_g (m^3/s)'); 

% ylabel('Nu_d'); 

% zlabel('d_r(m)'); 

% str=cellstr(num2str(d_r)); 

% legend(str); 

% v=get(legend(str),'title'); 

% set(v,'string','d_r (m)'); 

%   

% h_m 

h_m= Nu_d_mat.*k_m./d_r; 

  

% Thermal resistances 

R_t_m=1./(h_m.*pi.*d_r*l); 
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R_t_t=(log(d_o./d_r))./(2.*k_t.*pi.*l); 

R_t_e=1./(h_e.*pi.*d_o*l); 

  

  

% T_m_in 

T_m_in=((T_m_out-T_e)/(exp(-

4*((p_m*u_l*pi*(d_r.^2)*cp_m*(R_t_m+R_t_t+R_t_e)).^(-1)))))+T_e; 

q=m*cp_m*(T_m_in-T_m_out); 

  

% l_he 

  

T_hf_in=linspace(T_m_in+11,T_m_out+62, n); 

  

%lmtd according to counter flow het exchanger. be carefull T in and Tout 

%are confusing because for the mixture Tin is in for the riser but out of 

%the HE 

  

lmtd_he=((T_hf_in-T_m_in*ones(1,n))-(T_hf_out-

T_m_out)*ones(1,n))./(log((T_hf_in-T_m_in.*ones(1,n))./(T_hf_out-

T_m_out).*ones(1,n))); 

R_t_m_he=1./(h_m.*pi.*d_r); 

R_t_t_he=(log(d_o./d_r))./(2.*k_t.*pi); 

R_t_e_he_l=1./(h_e_he_l.*pi.*d_o); 

R_t_e_he_g=1./(h_e_he_g.*pi.*d_o); 

UA_he_l= (1/(R_t_m_he+R_t_t_he+R_t_e_he_l)); 

UA_he_g= (1/(R_t_m_he+R_t_t_he+R_t_e_he_g)); 

  

m_hf_l=q./(cp_hf_l*(T_hf_in-T_hf_out)); 

  

l_he_l=q./UA_he_l./lmtd_he; 

  

m_hf_g=q./(cp_hf_g*(T_hf_in-T_hf_out)); 

  

l_he_g=q./UA_he_g./lmtd_he; 

  

  

figure(2) 

hold on 

[AX,h1,h2]=plotyy(T_hf_in,m_hf_g,T_hf_in, l_he_g,'plot'); 

  

axes(AX(1)); 

lh=line(T_hf_in,m_hf_l,'Linewidth',3); 

set(get(AX(1),'Ylabel'),'String','Mass flow rate of the heating fluid (kg/s)')   

axis([307 358 0 0.2]); 

  

axes(AX(2)); 

lh=line(T_hf_in,l_he_l,'Linewidth',3); 

set(get(AX(2),'Ylabel'),'String','Length of the metal part (m)')  

axis ([307 358 0 2]); 

xlabel('Temperature of the entering heating fluid (K)')  

%title('Mass flow rate and length required for the heat exchanger')  

  

figure(3) 

plot (T_hf_in,l_he_l); 

 

 

 

 

 


