UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation.

Bousse, A; Manber, R; Holman, BF; Atkinson, D; Arridge, S; Ourselin, S; Hutton, BF; (2017) Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation. Med Phys 10.1002/mp.12253. (In press). Green open access

[img]
Preview
Text
Atkinson_Bousse_et_al-2017-Medical_Physics.pdf - Published version

Download (1MB) | Preview

Abstract

PURPOSE: Respiratory motion compensation in PET/CT and PET/MRI is essential as motion is a source of image degradation (motion blur, attenuation artifacts). In previous work, we developed a direct method for joint image reconstruction/motion estimation (JRM) for attenuation-corrected (AC) respiratory-gated PET, which uses a single attenuation-map (μ-map). This approach was successfully implemented for respiratory-gated PET/CT, but since it relied on an accurate μ-map for motion estimation, the question of its applicability in PET/MRI is open. The purpose of this work is to investigate the feasibility of JRM in PET/MRI and to assess the robustness of the motion estimation when a degraded μ-map is used. METHODS: We performed a series of JRM reconstructions from simulated PET data using a range of simulated Dixon MRI sequence derived μ-maps with wrong attenuation values in the lungs, from -100% (no attenuation) to +100% (double attenuation), as well as truncated arms. We compared the estimated motions with the one obtained from JRM in ideal conditions (no noise, true μ-map as an input). We also applied JRM on 4 patient datasets of the chest, 3 of them containing hot lesions. Patient list-mode data were gated using a principal component analysis method. We compared SUVmax values of the JRM reconstructed activity images and non motion-corrected images. We also assessed the estimated motion fields by comparing the deformed JRM-reconstructed activity with individually non-AC reconstructed gates. RESULTS: Experiments on simulated data showed that JRM-motion estimation is robust to μ-map degradation in the sense that it produces motion fields similar to the ones obtained when using the true μ-map, regardless of the attenuation errors in the lungs (< 0.5% mean absolute difference with the reference motion field). When using a μ-map with truncated arms, JRM estimates a motion field that stretches the μ-map in order to match the projection data. Results on patient datasets showed that using JRM improves the SUVmax values of hot lesions significantly and suppresses motion blur. When the estimated motion fields are applied to the reconstructed activity, the deformed images are geometrically similar to the non-AC individually reconstructed gates. CONCLUSION: Motion estimation by JRM is robust to variation of the attenuation values in the lungs. JRM successfully compensates for motion when applied to PET/MRI clinical datasets. It provides a potential alternative to existing methods where the motion fields are pre-estimated from separate MRI measurements.

Type: Article
Title: Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation.
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1002/mp.12253
Publisher version: http://dx.doi.org/10.1002/mp.12253
Language: English
Additional information: © 2017 University College London (UCL). Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Keywords: PET/MRI, attenuation correction, direct motion estimation, image reconstruction, maximum-likelihood, respiratory-gated PET
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Metabolism and Experi Therapeutics
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/1549450
Downloads since deposit
60Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item